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Abstract  21 

The study of early embryo metabolism has fascinated researchers in the field for nearly a 22 

century. Herein, we give a brief account of the general features of embryo metabolism and 23 

some consideration of the research performed to reach such conclusions. It is becoming 24 

increasingly obvious that metabolism informs many fate decisions and outcomes beyond 25 

ATP generation, such as DNA methylation, Reactive Oxygen Species generation and cell 26 

signaling. We discuss the reasons for studying metabolism in the face of our current 27 

knowledge of the effect that the culture environment on the developing embryo and the 28 

downstream effects that can cause. The study of in vitro embryo metabolism can also give 29 

us insight into developmental perturbations in vivo. The strengths and limitations of the 30 

methods we use to study metabolism are reviewed with reference to species-specific 31 

fundamental biology and plasticity and we discuss what the future holds for metabolic 32 

studies and the unanswered questions that remain. 33 

 34 

  35 



 

 3 

Introduction 36 

The study of mammalian early embryo metabolism has a rich history (Leese, 2012).  37 

Whilst work in the period of the 1940s-1960s focused on the effect of adding energy 38 

substrates to embryos in culture, real progress in understanding embryo metabolism was 39 

made in the 1970s by the likes of Biggers and Stern (1973), Brinster (1973) and Gwatkin 40 

and Haidri (1974) who examined the fate of radiolabeled compounds added to the 41 

medium.  From experiments such as these, a picture of early embryo metabolism began to 42 

emerge.  Like so much of our knowledge of early mammalian embryo development, the 43 

first data came from the classical laboratory model species; mouse and rabbit, as well as 44 

the hamster.  Interest grew, and embryo metabolism was soon examined in the large 45 

domestic animals; pigs, cattle, sheep and, to a lesser extent, the horse, dog and cat.  46 

Underpinning research were studies on early human development with the aim of clinical 47 

translation for the treatment of infertility; a feat first achieved in 1978 by Steptoe and 48 

Edwards.  Alongside this feat was the development of assisted conception techniques for 49 

use in farm animals.  It is not the intention of this article to re-describe the history of the 50 

research that lead to successful embryo culture or the contribution that studies on 51 

metabolism.  For expert insight, the reader is encouraged to read (Leese, 2012; 52 

Chronopoulou and Harper, 2014). 53 

 54 

Embryo metabolism: what do we know? 55 

The description of carbohydrate metabolism during preimplantation development is largely 56 

accepted and will be familiar to anyone who has an interest in the early embryo.  In almost 57 

all species studied, the cleavage stage embryo, from fertilisation through to formation of 58 

the morula, is relatively metabolically quiescent.  Oxygen consumption at this time remains 59 

comparatively low, and the dominant substrate depleted from the culture environment is 60 
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pyruvate.  Pyruvate is consumed at an almost steady rate during cleavage, with a 61 

proportion of the carbon (depending on the species) appearing in the medium as lactate 62 

with the generation of metabolic energy. The source of the pyruvate involved in such 63 

reactions is generally either glycolytic conversion of glucose or that taken up directly from 64 

the external environment.  Pyruvate may also enter the Tricarboxylic Acid (TCA; Krebs) 65 

cycle, where it can be oxidised completely generating electron donors for the electron 66 

transport chain which occurs in the matrix of mitochondria and relies on oxygen acting as 67 

the terminal electron acceptor.  For this reason, oxygen consumption provides a good 68 

marker of overall oxidative metabolic activity (for review, see Smith and Sturmey, 2013).  69 

 70 

As the cleavage stage embryo progresses to a blastocyst, there is a sharp and 71 

characteristic rise in the amount of glucose consumed in all species studied, and a 72 

concomitant rise in lactate release into the medium.  Coincident with this is a fall in 73 

pyruvate consumption.  This general pattern of “blastocyst glycolysis” appears to be 74 

conserved across all species studied.  There are a range of explanations for this, however, 75 

as glycolysis is a comparatively inefficient means of generating ATP therefore energy 76 

production is unlikely to be the prime reason.  Moreover, as the blastocyst forms, oxygen 77 

consumption also rises (Fridhandler et al., 1957, Houghton et al., 1996, Sturmey and 78 

Leese, 2003, Thompson et al., 1996, Trimarchi et al. 2000) further supporting the notion 79 

that glycolytic production of lactate is of minor consequence in contributing ATP for the 80 

blastocyst.  It is much more likely that glycolysis rises to meet the need for carbon for 81 

biosynthetic processes.  A description of glycolysis in the early embryo can be found in 82 

Smith and Sturmey (2013). This general picture of embryo metabolism was summarized 83 

with great prescience by Brinster in 1973; in the intervening years many laboratories 84 
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across the world have generated evidence to support such a description, illustrating the 85 

robustness with which these findings can be considered. 86 

 87 

While early work focused on carbohydrate metabolism, it is now clear that the metabolism 88 

of amino acids, lipids and vitamins such as folate all also act in an interdependent manner 89 

to produce a viable embryo. Amino acids are crucial components of the culture 90 

environment in vitro (reviewed by Sturmey et al., 2010). Their addition to simple culture 91 

medium either singly (Rieger et al., 1992) or in combinations (Chatot et al., 1989, Gardner 92 

and Lane, 1993)  permitted mouse embryos to be cultured past the so-called 2-cell block 93 

(Chatot et al., 1989) and their widespread inclusion lead to improved blastocyst rates in 94 

almost every species studied.  The addition of amino acids has had such a positive effect 95 

on the efficacy of in vitro embryo culture, that their inclusion is often described as having a 96 

primary role in the formulation of “next generation medium” (Leese, 2012). The precise 97 

mechanism for the positive effect of amino acid provision is still to be defined, however it is 98 

well established that addition of amino acids to in vitro medium can alleviate culture 99 

associated stress in flushed murine embryos (Lane and Gardner, 1998). The contribution 100 

that amino acid metabolism makes to ATP production remains unclear, however the 101 

turnover of amino acids (that is, the sum of their depletion or accumulation into the culture 102 

droplet) has been linked to embryo blastocyst rates (Houghton, 2002), human embryo live 103 

birth rates (Brison et al., 2004), DNA damage (Sturmey, 2009), aneuploidy (Picton et al., 104 

2010) embryo sex (Sturmey et al., 2009a), maternal age (Picton et al., 2010) and 105 

embryonic stress (Wale and Gardner, 2012). 106 

 107 

When considering energy metabolism of early embryos, it is vital that the contribution 108 

made by endogenous triglyceride is not overlooked.  Fatty acid β-oxidation was studied in 109 
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detail in the 1970s by Kane and colleagues (1979) but then largely ignored, with the 110 

notable exception of the work by Downs (see Downs 2015).  However, interest in fatty acid 111 

metabolism has re-awakened, partly in response to the report from Dunning et al., (2010) 112 

who elegantly demonstrated that mouse oocytes require fatty acid oxidation in order to 113 

develop.  A similar conclusion was drawn by Sturmey and Leese (2003) in the pig, 114 

underlining the importance of fatty acid β-oxidation during oocyte maturation, development 115 

and in the preimplantation stages.  Species differences in the importance of fatty acid 116 

oxidation during oocyte and embryo development have also been identified. For example, 117 

where a mouse zygote will arrest after 15 hours in media lacking nutrients (cited in Leese, 118 

2012) a rabbit embryo can complete up to 3 cleavage divisions in the absence of energy 119 

substrates (Kane, 1987) and sheep embryos can also develop to the blastocyst stage in 120 

the absence of glucose (Thompson et al., 1992). This can be explained by the differences 121 

in intracellular triglyceride content, acting in a buffering capacity by providing an alternate 122 

energy source (Ferguson and Leese, 2006; Sturmey et al., 2009).  Recently, a number of 123 

laboratories have described altered fatty acid metabolism by embryos from overweight and 124 

obese mice (Pantasri et al., 2015; Reynolds et al., 2015) and the human (Leary et al., 125 

2014). After receiving comparatively little attention since the work of Kane, interest in fatty 126 

acid metabolism by oocytes and embryos has been intense, and has been widely 127 

reviewed in recent years (Downs, 2015, Dunning et al., 2014, Leroy et al., 2012, 128 

McKeegan and Sturmey, 2012, Sturmey et al., 2009). 129 

 130 

This very brief overview is intended to remind the reader of the basic features of early 131 

embryo energy metabolism.  However, ‘metabolism’ refers to significantly more functions 132 

than ATP generation.  For example, there is an extensive literature describing the role of 133 

the pentose phosphate pathway (Downs et al., 1998; Sutton-McDowall et al., 2010) in 134 
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mammalian oocytes and early embryos.  Moreover, metabolic processes link to signaling 135 

mechanisms (Manser and Houghton, 2006), generation of Reactive Oxygen Species 136 

(Agarwal et al., 2005) and gene expression in terms of establishment of epigenetic marks 137 

such as methylation and acetylation and post-translational modifications of proteins 138 

(DeBerardinis and Thompson, 2012).  For example, defects in folate metabolism have 139 

been linked to methylation and epigenetic modifications affecting developmental 140 

competence (Xu and Sinclair, 2015). However, reviewing all of the literature on embryo 141 

metabolism in it’s broadest sense would require several articles and so in the remainder of 142 

this article, we will consider some more fundamental aspects. 143 

 144 

Why do we study embryo metabolism? 145 

Understanding the basic physiology and metabolism of the early embryo is a noble quest 146 

in itself that has fascinated researchers over the past decades.  However, a major gap in 147 

our knowledge is the metabolism of the in vivo produced embryo, as well as the embryo in 148 

situ, which remain an elusive goal. We aim to gain information that can, and has been, 149 

translated into clinical practice in many ways; to design appropriate species specific 150 

culture media with the aim of producing viable healthy offspring; to design non-invasive 151 

methods for embryo selection for transfer and shed light on metabolic perturbations 152 

occurring in vivo.  Moreover, as our understanding of somatic cell nuclear transfer (SCNT; 153 

Wilmut et al., 2002) grows and becomes linked inextricably to stem cell physiology and 154 

regenerative medicine, we must also accept that we know comparatively little about the 155 

impact of such techniques may have on embryo physiology.  Furthermore, we are on the 156 

brink of many new and exciting developments in Assisted Conception, including 157 

mitochondrial transfer for the treatment of debilitating hereditary conditions as well as the 158 

replenishment of mitochondria in aged oocytes with the aim of improving pregnancy rates 159 
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in older women (Craven et al., 2010; Smeets, 2013). Such techniques may be considered 160 

‘beyond experimental’; mitochondrial transfer was licensed for treatment in the UK in 2014 161 

and autologous mitochondrial transfer for infertility is already commercially available in 162 

some countries.  However, since each of the approaches described above involve, in 163 

some way, altering the mitochondrial content of embryos, the need for detailed 164 

understanding of metabolic regulation of individual preimplantation mammalian embryo 165 

has never been greater. 166 

 167 

A further drive to study embryo metabolism comes from the need to identify biomarkers of 168 

embryo health and viability.  This relies on the inherent variability in metabolism between 169 

different embryos and has been used in an attempt to select viable embryos for transfer, 170 

with the end goal being clinical IVF in humans. There have been several observations that 171 

have yielded promising results. The ‘quiet embryo hypothesis’ proposed by Leese in 2002, 172 

stated that those embryos that are viable have a decreased metabolic rate; a proposition 173 

that has been supported by several studies showing embryos with an upregulated 174 

metabolism of both carbohydrates and amino acids to have decreased viability post 175 

transfer (Guerif et al., 2013, Lane and Gardner, 1996, Sturmey et al., 2009). However, the 176 

notion is contested, and there are recent studies suggesting that elevated metabolism, 177 

particularly with respect to glucose consumption is associated with embryo viability 178 

(Gardner et al., 2011). Clearly, this is an area in which more work is needed. 179 

 180 

Since pioneering observations linking human birth weight to cardiovascular events in later 181 

life by David Barker (1989) it has now been shown unequivocally in many species that the 182 

periconceptual environment can have downstream effects which can impact on the viability 183 

of the developing embryo and on the future health of the resulting offspring (Ceelen et al., 184 
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2008, Fleming et al., 2012, Frank et al., 2014, Leroy et al., 2009, Watkins et al., 2008). It is 185 

also clear that certain embryonic stages are more susceptible to damage (Rieger, 1992), 186 

such as the early cleavage embryo during embryonic genome activation, suggesting that 187 

progeny may have a ‘memory’ of their origins.   188 

 189 

With the rising obesity epidemic both in humans and companion animals, in addition to 190 

metabolic disease in farm animal species due to increased production pressures, the study 191 

of embryo metabolism in vitro can provide insight into the mechanisms of resultant 192 

suppressed fertility and potentially identify therapeutic interventions. 193 

 194 

These are important reasons for studying embryo metabolism, and it is clear that 195 

metabolic processes can directly influence gene expression (Van Hoeck et al., 2013, Van 196 

Hoeck et al., 2011), and patterning of the embryo (Leary et al., 2014).  However, it is also 197 

of fundamental importance to be aware of what is measured when studying embryo 198 

metabolism.  In the final part of this review, we will describe the strengths and limitations of 199 

embryo metabolic studies. 200 

 201 

What are we actually measuring? 202 

The measurement of embryo metabolism is faced with many technical challenges.  203 

Critically, the in vivo environment is still largely unknown for most species, meaning that 204 

the extrapolation of knowledge to an embryo in vivo is of questionable validity.  The data 205 

available on embryo metabolism inform us of the strategy of substrate depletion and 206 

appearance in a given milieu.  In vitro, this milieu is constrained by the addition of a limited 207 

number of substrates at static levels; supply and ratio of substrates varies only in response 208 

to an embryo’s own activity.  This is in stark contrast to the situation in vivo, which is 209 
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dynamic and responsive (Leese et al., 2008).  Even in species for which the in vivo 210 

embryo environment has been described, the method used to define it should be noted. 211 

Often post mortem changes and/or inflammatory changes due to catheterization can 212 

influence results thus making samples non-representative (Leese et al., 2008).  Moreover, 213 

the embryo in situ likely exists in a microenvironment within the oviduct, thus any subtle, 214 

specific composition features will be lost in flushing of the tube. 215 

 216 

Given the heterogeneity in developmental potential, measures pertaining to single 217 

embryos are key and thus highly sensitive assays are needed. Both the use of 218 

radiolabelled substrates (Rieger et al., 1992) and enzyme-linked fluorescence assays to 219 

detect the appearance and disappearance of a substrate from culture media have been 220 

described (Leese and Barton, 1984; Guerif et al., 2013). The relative metabolic quiescence 221 

of single embryos means that ‘analysis media’ (that is a medium in which the 222 

concentrations of substrates is reduced to enable measurement of change) is often used in 223 

order to permit detection of changes in substrate concentration (Hardy et al., 1989; 224 

Sturmey and Leese, 2003). This ‘analysis medium’ is often different to the in vitro culture 225 

media known to support development for most species, which, in turn differs vastly to the 226 

in vivo environment. Of course, it also must be realized that there are many complex cell 227 

transport and metabolic pathways involved, and notions of influx and efflux leads’ us to 228 

make what are essentially educated guesses about what occurs in the cell. Despite these 229 

limitations, these assays have greatly advanced our knowledge of metabolic pathways 230 

involved and have yielded highly repeatable results across different laboratories.  Further 231 

methods that have been used to detect metabolic activity of embryos include culturing 232 

individually in micro-droplets or in large groups of embryos.  However, the resolution of 233 
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data from group culture is reduced since individual embryo heterogeneity is lost by 234 

‘averaging’. 235 

 236 

New promising studies using NMR metabolomic technology, where substrate flux can be 237 

measured in situ have been recently described (Krisher et al., 2015), however the 238 

subsequent interpretation and analysis of the complex data acquired presents new 239 

challenges. 240 

 241 

Inferences about the contribution of oxidative metabolism are usually derived from 242 

measuring oxygen consumption. Methods vary, the most widely used being pyrene 243 

fluorescence (Houghton et al., 1996) and nanorespirometry (Lopes et al., 2010). Again 244 

while allowing accurate measurement of oxygen depletion in single embryos and 245 

seemingly not affecting development (Lopes et al., 2005), the methods represents a 246 

significant ‘alien’ environment for the embryo. 247 

 248 

Studies involving metabolic inhibitors and enzymatic co-factors have also added to our 249 

knowledge of embryo metabolism and in some cases provided the initial proof of certain 250 

pathways occurring and either being essential or non-essential for development. Among 251 

these, Brison and Leese (1994) showed that oxidative phosphorylation was not an 252 

absolute requirement for blastocoele formation in the rat by culturing embryos in the 253 

presence of cyanide, while Macháty and colleagues (2001) indicated that suppression of 254 

oxidative phosphorylation at the morula stage improved development to the blastocyst in 255 

the pig.  Moreover, Dunning et al., (2010) have shown that β-oxidation is essential for 256 

optimal development in the mouse by culturing in the presence of etomoxir.  In some 257 

cases, inhibition of certain metabolic pathways has been shown to improve developmental 258 
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potential; for example the addition of EDTA to embryo culture medium (Gardner et al., 259 

2000). Although the mechanism is not confirmed, one possible role of EDTA in embryo 260 

culture medium is the suppression of glycolysis (Gardner et al., 2000).  However, it is 261 

equally likely that EDTA acts as an antioxidant by sequesteration of metal ions which 262 

would otherwise catalyse the formation of Reactive Oxygen Species (Orsi and Leese, 263 

2001). Studies such as these illustrate the importance of appropriate regulation of 264 

metabolic pathways during development and also indicate why it is necessary for 265 

pathways to be correctly orchestrated to match needs at a given stage of development. 266 

 267 

It all depends on the environment 268 

It could be argued that measuring embryo metabolism in vitro (by necessity) amounts to 269 

measuring a stress response. This issue must be considered given the extremely 270 

adaptable nature of embryos of all species. Metabolism is necessarily dynamic, enabling 271 

rapid changes in needs to be met to maintain development.  However, such dynamism 272 

means that the metabolic profile of an embryo can respond quickly in response to a 273 

change in external environment, shown clearly in mice, where perturbations occur within 3 274 

hours of in vitro culture in flushed in vivo blastocysts (Lane and Gardner, 1998). Both the 275 

presence and relative quantities of metabolic substrates in the environment in which 276 

experiments are conducted will significantly affect the results. While not attempting to 277 

provide a detailed discussion on the controversial aspects of in vitro culture systems, 278 

which still vary widely across laboratories, this point can be further illustrated by the 279 

differential metabolism that results from the presence or absence of serum and the 280 

atmospheric oxygen concentration (Wale and Gardner 2010). 281 

 282 



 

 13 

While the human IVF industry has moved towards defined culture media using 283 

macromolecular sources such as recombinant albumin, serum is still used in many 284 

production animal systems. Culture with serum has been shown to increase blastocyst 285 

development rates in the horse (Choi et al., 2004) and the kinetics of blastocyst 286 

development in the cow (Rizos et al., 2003). However, its presence has also been 287 

associated with increased intracellular lipid content (Ferguson and Leese, 2006) and 288 

altered metabolism (Reis et al., 2003), up-regulation of oxidative stress and inflammatory 289 

pathways (Cagnone & Sirard, 2014) and decreased survival after vitrification (Gómez et 290 

al., 2008). In addition, the oxygen tension of the reproductive tract in all species studied 291 

has been found to be below 10% (Fischer and Bavister, 1993), In terms of the 292 

environmental gas profile, there is now unequivocal evidence to support the notion that 293 

20% oxygen reduces embryo development (Thompson et al., 1990, Wale and Gardner, 294 

2010) and that culture in low oxygen (5%) results in metabolic and proteomic profiles more 295 

closely matching in vivo counterparts (Thomson et al., 1990; Katz-Jaffe et al., 2005). 296 

Clearly, these factors will influence the results of any metabolic study and must be kept in 297 

mind when comparing studies. 298 

 299 

In addition to the embryo adapting to its environment, the culture environment itself is not 300 

static. Depletion and accumulation of excreted of substrates such as lactate and amino 301 

acids will change the local environment. Spontaneous de-amination will occur at 37°C, 302 

especially of glutamine, resulting in ammonium build up (Gardner and Lane, 1993), lactate 303 

build up may overwhelm pH buffering system of the media and depletion of energy 304 

substrates can lead to alternative ATP generating pathways being used (Kane, 1987). 305 

 306 
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It is also important to note that the manner in which an embryo responds to its 307 

environment is species specific. This can be seen in differences in response to 308 

hyperglycaemia. While species such as rodents and humans, will have significant 309 

diminished development in the presence of high glucose (Moley et al., 1998; Frank et al., 310 

2014), others such as the horse and pig are apparently unaffected (Choi et al., 2015, 311 

Sturmey and Leese, 2003). Qualitative testing of equine embryos produced in 312 

hyperglycaemic conditions however, highlights subtle differences not reflected in the 313 

blastocyst development rate such as a decrease in ICM cell number allocation (also 314 

observed in the rat) and known to be mediated through apoptosis (Moley et al., 1998; Choi 315 

et al., 2015). 316 

 317 

It is thus vital to consider that studies on embryo metabolism provide us a snapshot of 318 

physiology in a given set of conditions.  Whilst such data are of fundamental importance, 319 

care must be taken when extrapolating and comparing such information.  It is thus much 320 

more desirable that studies on the depletion and appearance of embryo metabolism are 321 

reinforced by consideration of mechanisms of metabolic regulation of early development. 322 

 323 

Embryo metabolism: some unanswered questions 324 

As the emphasis in human IVF is increasingly on single embryo transfer, the identification 325 

of reliable non-invasive methods of determining embryo quality to maximize pregnancy 326 

rate per transfer remains the Holy Grail.  Moreover, in species such as the horse where in 327 

vitro embryo production is rapidly generating interest, a specific tailored culture media has 328 

yet to be formulated. Whilst acceptable blastocyst rates (41%) and pregnancy rates after 329 

transfer (66%) can be achieved by some laboratories in the horse using cell culture media 330 

such as DMEM-F12, (Jacobson et al., 2010; Hinrichs et al., 2014)  the more subtle effects 331 
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of potentially inappropriate culture conditions leading to decreased viability remain to be 332 

seen. Identifying optimal species-specific culture systems presents an exciting challenge 333 

for those involved in studying embryo metabolism. 334 

 335 

Sex selection is another lively area of embryo metabolism. Ethical considerations preclude 336 

the implementation of sex selection in the human, but in the production animal industry, 337 

and in dairy cattle in particular, appropriate non-invasive identification of sex before 338 

transfer would be an application with many uses. Promising results have been presented 339 

so far showing that both glucose metabolism and amino acid metabolism varies with sex  340 

(Sturmey et al., 2010; for review see Gardner et al., 2010), however more work will need 341 

performed to increase specificity in order for the technology to make the transition to 342 

commercial  practice. 343 

 344 

New information is emerging all the time on the far-reaching downstream effects of 345 

aberrations in early embryo metabolism (Harrison and Langley-Evans, 2009).  Given the 346 

clear links between the periconceptual environment and sub-optimal health outcomes in 347 

the human (Barker et al., 2002) and production species such as the bovine (for example, 348 

the so-called Large Offspring Syndrome; Young et al., 1998), understanding and 349 

attempting to mitigate the negative effects on suboptimal embryo development and life-350 

long health of the offspring is an important area for future study (Leese 2014).  351 

 352 

 353 

Conclusions 354 

It is acknowledged “that metabolism pervades every aspect of cell physiology” 355 

(DeBerardinis and Thompson, 2012) and this is especially pertinent to the developmentally 356 
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plastic early mammalian embryo.  As genomic, transcriptomic and imaging techniques 357 

advance we will be able to expand our understanding of embryo metabolism and how it 358 

links inextricably with developmental pathways through subsequent stages of gestation 359 

leading to the birth of a healthy offspring.  It is the responsibility of us all working in the 360 

earliest stages of this process to understand the periconceptual environmental challenges 361 

faced by the embryo and to optimize the conditions under which it is grown to ensure the 362 

best start in life.  Metabolic studies allow us to gain vital information on the requirements of 363 

a competent embryo and identify when things go wrong, but the reader is cautioned 364 

towards careful interpretation of measures of metabolism especially between laboratories 365 

and to consider the environment as a whole under which they have been taken.  366 
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