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CXCR4 is a target of growing interest for the development of new therapeutic drugs and 

imaging agents as its role in multiple disease states has been demonstrated. AMD3100, a 

CXCR4 chemokine receptor antagonist that is in current clinical use as a haematopoietic stem 

cell mobilising drug, has been widely studied for its anti-HIV properties, potential to inhibit 

metastatic spread of certain cancers and, more recently, its ability to chelate radiometals for 

nuclear imaging. In this study, AMD3100 is functionalised on the phenyl moiety to 

investigate the influence of the structural modification on the anti-HIV-1 properties and 

receptor affinity in competition with anti-CXCR4 monoclonal antibodies and the natural 

ligand for CXCR4, CXCL12. The effect of complexation of nickel(II) in the cyclam cavities 

has been investigated. Two amino derivatives were obtained and are suitable intermediates 

for conjugation reactions to obtain CXCR4 molecular imaging agents. A fluorescent probe 

(BODIPY) and a precursor for 18F (positron emitting isotope) radiolabelling were conjugated 

to validate this route to new CXCR4 imaging agents. 
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Introduction 

The CXCR4 chemokine receptor is a seven transmembrane helix protein, and member of the 

G-protein-coupled receptor (GPCR) superfamily.1 It has only one naturally occurring 

endogenous ligand known as SDF-1 or CXCL12.2 Together with its natural ligand, CXCR4 is 

a central part of the signalling system in the human body that results in a variety of normal 

physiological responses, such as chemotaxis, cell survival and proliferation, intracellular 

calcium flux, and gene transcription. However CXCR4 is also involved in the pathogeneses 

of a wide range of diseases.3 Malignant cells from at least 23 different types of cancer express 

the chemokine receptor CXCR4 and respond to its ligand CXCL12.4 Furthermore, CXCR4 is 

a co-receptor for T-cell tropic strains of human immunodeficiency virus-1 (HIV-1) and 

allows fusion and entry of the virus into human white blood cells.5 Hence, CXCR4 is a target 

of growing interest for the development of anti-HIV drugs and in the field of diagnostic 

oncology. Clinically AMD3100 is used in combination with G-CSF (granulocyte colony 

stimulating factor) to mobilise haematopoietic stem cells and allow harvesting.  

Inhibition of the CXCR4-CXCL12 signalling was investigated as a therapeutic strategy 

using antagonists of the natural ligand. Several CXCR4-binding agents, including antibodies 

and peptide-based antagonists have been developed.6 In the search for new anti-HIV agents, 

bicyclam compounds were discovered as CXCR4 antagonists with potent and selective anti-

HIV activities.7 These molecules consist of two 14-member tetraaza macrocyclic rings, linked 

either by an aliphatic bridge or an aromatic bridge such as AMD3100. The latter, unlike 

many other existing HIV drugs that target the virus after it has infected a healthy cell, blocks 

the virus from entering the cell, inhibiting the replication of both HIV-1 and HIV-2.8 

AMD3100 binds to the CXCR4 chemokine receptor mainly via electrostatic interaction 

between the positively charged protonated amino nitrogens of the cyclam moieties and the 

negatively charged carboxylates of the aspartate and glutamate residues of the receptor.9 

AMD3100 has also been demonstrated to be a ligand for another chemokine receptor, 

CXCR7. In contrast to its antagonistic effect blocking the CXCR4/CXCL12 interaction, 

AMD3100 positively modulates CXCL12 effects on binding to CXCR7, it is therefore 

qualified as an allosteric agonist of CXCR7.10 AMD3100 was clinically tested as an anti-HIV 

drug but the trial was discontinued in favour of an orally available CXCR4 antagonist.11 

Nevertheless, AMD3100 demonstrated a great potential in hematopoietic stem cell 
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mobilisation and is now approved by the U.S. Food and Drug Administration for use in non-

Hodgkin's lymphoma and multiple myeloma patients.12 

With the aim of optimising the anti-HIV activity of bis-azamacrocycles, many parameters 

of AMD3100 have been studied to determine the modifications that can be tolerated whilst 

maintaining high CXCR4 receptor affinity. Analogues were synthesised either with a 

different linker, a macrocycle ring size varying from 12 to 16 ring members,13 the 

introduction of one or more heteroatoms in the macrocycle ring or replacement of one amino 

group by a heteroaromatic, all analogues resulting in a reduced anti-HIV potency (Fig. 1).14 

 

 

 

Fig. 1 AMD3100 and derivatives studied for 

their anti-HIV activities and CXCR4 

affinities. 
 

Because of the preorganisation and the flexibility of their macrocyclic framework, 

macrocyclic polyamines such as cyclam, are known to bind to metal ions and form highly 

stable metal complexes. Complexes of AMD3100 with metal cations were prepared and the 

incorporation of ZnII, NiII and CuII led to the enhancement of the binding affinity to CXCR4 

receptor and a higher anti-HIV activity in most cases. The nickel(II) complex of AMD3100 

in solution can adopt the folded (cis-V) and planar (trans-III) configuration, rearranging to 
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give the cis-V compound on binding to the protein aspartate residues.15 Studies with 

AMD3100 analogues complexes with configurationally restricted macrocycles, where ethyl 

bridges link adjacent and non-adjacent nitrogen atoms to give respectively side and cross 

bridged cyclams, demonstrated that the rigidification of the cyclic scaffold may be a route 

toward the optimisation of the interactions of the antagonist with the receptor.16 Additionally, 

as metal ion incorporation was shown to enhance the affinity of AMD3100 for its receptor, 

the ligand was used for direct radiolabelling with 62Zn, 64Cu, 67Ga and 99mTc, resulting in 

tracers suitable for positron emission tomography (PET) and single-photon emission 

computed tomography (SPECT) to image CXCR4 expression in human cancer xenografts in 

mice.17 

Only two examples of optical CXCR4 imaging agents based on cyclam structures have 

been studied despite the advantages of optical imaging. A rhodamine conjugated to a 

reinforced cyclam competes with anti-CXCR4 antibodies during binding competition when 

labelled with copper(II)18 and a fluorescent AMD3100 analogue with an anthracenyl moiety 

used as a spacer shows a significant reduction of the affinity probably due to the lipophilic 

character of the anthracenyl group.19 

In this study, new CXCR4 antagonists are investigated as potent anti-HIV agents and 

platforms for conjugation in molecular imaging agent design. The syntheses of new 

AMD3100 analogues functionalised on the phenyl moiety by an ester or an ethylenediamine 

moiety are discussed and we report the influence of the functionalisation on the affinity 

towards the CXCR4 chemokine receptor and antiviral potency against an X4 HIV-1 strain. 

Metal complex formation with nickel(II) and the influence on the binding and antiviral 

potency will also be presented. Ni2+ was chosen because its incorporation in the biscyclam 

AMD3100 enhances the binding to the chemokine receptor CXCR4 by 50-fold. This is the 

highest affinity obtained by incorporation of a transition metal.22 Finally, the functionalisation 

on the phenyl spacer allowed the introduction of an imaging component, i.e. optical probe or 

PET imaging agent precursor, confirming the versatility of the modified AMD3100 

derivatives. 

Results and discussion 

Synthetic procedures 
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Several synthetic routes to produce AMD3100 are reported in the literature.20 A cyclam ring 

protected with tosyl, mesityl, diethylphosphoramidate (Dep) or tert-butoxycarbonyle (Boc) 

groups is used as a starting material. Indeed, the best synthetic approach for bridging two 

macrocyclic units is to use a triprotected tetraazamacrocycle, in order to avoid the formation 

of polymers. Boc protecting groups were chosen as they can be easily removed by acidic 

treatment. The reaction of the protected macrocycle with α,α-dibromo-p-xylene and the 

deprotection in acidic conditions give access to AMD3100 in two steps (Scheme 1).  

 

 
Scheme 1 General synthesis of AMD3100. 

 
To investigate the influence of a functionalisation of the phenyl moiety on AMD3100 

properties, we considered the synthesis of a p-dibromoxylyl spacer substituted with an ester 

group. The precursor is obtained in two steps (Scheme 2) starting from a commercially 

available product, 2,5-dimethylbenzoic acid.21 Esterification with methanol using sulfuric acid 

as a catalyst yields compound 1 in 92% yield. 2 is then prepared through NBS-based bis-

bromination of the aryl methyl groups of 1. 

 

 

 

Scheme 2 Synthesis of a dibromo aromatic 

spacer bearing an ester group.  

AMD3100 derivative 3 is obtained in 82% yield, after condensation of two equivalents of 

tris(Boc)cyclam on compound 2 in the presence of a base (Scheme 3). Nucleophilic attack of 

ethylenediamine on the ester function gives access to 4 after 6 days at 60 °C. Compounds 3 

and 4 are then deprotected in acidic condition to form respectively 5 and 6 in good yields. 
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Scheme 3 Synthesis of new AMD3100 

analogues functionalised with an ester and an 

ethylenediamine group. 
 

As it has been shown that the incorporation of Ni2+ in the biscyclam AMD3100 enhances 

the binding to the chemokine receptor by 50-fold,22 we investigated the metal complex 

formation of our analogues. Additionally, Ni2+-cyclam complexes are known to be 

particularly inert due to their stability constants (log K) indicative of high thermodynamic 

stability (19.9–20.3)23 and their slow kinetics of dissociation.24 The complexes persist almost 

indefinitely even in strong acidic solutions and the only reported method to remove Ni2+ from 

cyclam involves cyanide at high temperature. 

Thus, after deprotonation of 5 and 6 with NaOH (16 M) and extraction with chloroform, 

two equivalents of Ni(NO3)2·6H2O were added to obtain the corresponding Ni2+ complexes 

(Scheme 4). Purification by reverse phase chromatography to remove any trace of free 

nickel(II) was performed to obtain 7 and 8 in 18% and 39% yield respectively. Yields are low 

in these cases due to the purification process. In order to investigate if ethylenediamine 

pendant arm coordinates one of the nickel atoms in compound 8, UV-Visible absorption 

spectra was recorded in PBS at room temperature (see ESI†). The latter shows a band at 460 

cm−1, characteristic of a low-spin NiII tetramine complex. The amino pendant arm is therefore 

not involved in the coordination sphere of nickel.25 
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Scheme 4 Nickel(II) complex formation of 

the AMD3100 analogues.  

Biological assays: antibody competition, calcium signalling and anti-HIV 

activity 

Cellular binding assays of our AMD3100 analogues to the CXCR4 receptor were 

investigated in a competition assay with an anti-CXCR4 monoclonal antibody (mAb) (12G5 

conjugated to Phycoerythrin). A T-lymphocyte cell line (Jurkat) that expresses high levels of 

the CXCR4 receptor was used and the binding of compounds 5, 6, 7 and 8 to the cells are 

analysed by flow cytometry. The binding assay is carried out by saturation of the cells’ 

receptors with a high concentration of analogues (ca. 20 μM). After incubating with a 

saturating concentration of the antagonist, cells are washed to remove the excess of unbound 

compound and the specific fluorescent antibody is introduced. After a second incubation, 

cells are washed to remove the excess of antibody and compound displaced by the antibody. 

Then, cells are analysed by flow cytometry. The Mean Fluorescent Intensity (MFI) is used as 

a measure of binding and a quantitative way of calculating the inhibition percentage of mAb 

binding. AMD3100 is used as a reference compound. The non-metallated ligands 5 and 6 

both show a significant decrease in the inhibition percentage compared to AMD3100 with 

45% and 46% respectively (Table 1) (Fig. 2). Incorporation of a metal ion into the 

macrocyclic rings of AMD3100 analogues increases binding affinity to CXCR4, complexes 7 

and 8 show higher inhibition percentages, 73% and 84% respectively, than the non-

metallated ligands (Table 1) (Fig. 2). This is in agreement with Bridger and co-workers 

studies.22 A mutational analysis of the CXCR4 binding site for AMD3100 has identified 

http://pubs.rsc.org/en/content/articlehtml/2015/dt/c4dt02972k#tab1
http://pubs.rsc.org/en/content/articlehtml/2015/dt/c4dt02972k#imgfig2
http://pubs.rsc.org/en/content/articlehtml/2015/dt/c4dt02972k#tab1
http://pubs.rsc.org/en/content/articlehtml/2015/dt/c4dt02972k#imgfig2
http://pubs.rsc.org/en/content/articlehtml/2015/dt/c4dt02972k#cit22
http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2015/DT/c4dt02972k/c4dt02972k-s4_hi-res.gif


amino acid Asp171 and Asp262 as key residues involved in the binding to the CXCR4 receptor.11 

The carboxylate groups of the receptor residues form three (one strong, one intermediate and 

one weak) hydrogen bonds with protonated cyclam of AMD3100. It was later determined 

that the increased binding affinity of the metal ion substituted AMD3100 is obtained through 

enhanced interaction of one of the cyclam ring systems with carboxylate group of Asp262.22 

With metal complexes, coordination of the carboxylate oxygens to the metal centre can occur 

while one weaker hydrogen bond to a nitrogen atom in the cyclam ring remains. Coordination 

interactions are stronger interactions than hydrogen bonding. Hence they are thought to be the 

dominant interactions for metal complexes. Complexes 7 and 8 should have stronger 

interactions with the CXCR4 receptor as aspartate residue coordinates nickel(II), resulting in 

higher inhibition percentages compared to their unmetalated ligands 5 and 6. Even if the 

functionalisation of our AMD3100 analogues disrupted the affinity towards CXCR4, the 

incorporation of nickel(II) in the cyclam cavities has a positive effect resulting in inhibition 

percentages close to those observed for the reference compound AMD3100. If we compare 

the different functionalisations of the complexes 7 and 8, the ethylenediamine analogue has a 

slightly higher inhibition percentage, which may be due to more flexible pendant arm that can 

form hydrogen bonds more easily.  

 

 

Fig. 2 Flow cytometric histogram plots for the 

binding of 12G5 mAb in competition with 

compound 5 (light green) and 6 (dark green) 

(A) and with compounds 7 (light blue) and 8 

(dark blue) (B). Negative control (purple), 

positive control (red) and binding of 12G5 

mAb in competition with AMD3100 (orange) 

are shown. 

 

Table 1 Inhibition of anti-CXCR4 mAb (clone 12G5) binding to CXCR4+ jurkat cells  

Compound Control MFIa Inhibition percentage 
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Compound Control MFIa Inhibition percentage 

a Mean fluorescent intensity used to calculate the amount of antibody bound to CXCR4.  

 Negative 344.67  

5   708.57 45% 

6   704.29 46% 

7   524.78 73% 

8   451.59 84% 

AMD3100  413.90 90% 

 Positive 1005.00  

 

 

Further biological characterisation was carried out to determine the impact of the 

antagonism of the receptor in signalling processes and the use of the receptor for viral cell 

entry. Prevention of signal transduction by the natural ligand is a useful indicator of cellular 

targeting and would inhibit activation of cell recruitment. Signal inhibition was validated by 

measurement of the intracellular calcium concentration increase, which is a downstream 

effect of CXCR4 receptor activation by its specific chemokine ligand CXCL12.26 AMD3100 

and the copper(II) complex of AMD3100 were included as controls, see Table 1. The anti-

HIV assay was used to co-validate the signalling data, as this is a well-established assay, 

which provides further information on the antagonist characteristics. The anti-HIV-1 (X4 

HIV-1 NL4.3) activity of these compounds was determined in CD4+CXCR4+ human T cells 

using the well-documented HIV-1 infection assay (see Table 2).27 

Table 2 Anti-HIV X4 activity and inhibition of CXCL12-induced calcium signalling (in μM)  

Compound Anti-HIV-1 (EC50)a Ca2+ flux CXCR4 (IC50)b 

a EC50 is the effective concentration (in μM) to reduce the cytopathic effect of the CXCR4-using (X4) HIV-1 

strain NL4.3 by 50% in MT-4 cells. b IC50 is the inhibitory concentration of the compound (in μM) required to 

inhibit 50% of the CXCL-12 (SDF-1) induced Ca2+ signalling in the CXCR4-transfected U87 cell line.  

AMD3100 0.011 0.120 

Cu2AMD3100 0.062 0.113 

5  0.150 0.340 

6  0.295 0.929 

7  0.710 1.20 
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Compound Anti-HIV-1 (EC50)a Ca2+ flux CXCR4 (IC50)b 

8  0.095 0.016 

10  0.845 — 

11  4.50 — 

12  0.800 — 

 

 

As already mentioned, the chelator units would be expected to interact with aspartate 

residues on the CXCR4 chemokine receptor surface via H-bonding and electrostatic 

interactions and the metal complexes would form coordinate bonds.22 In the signalling assay 

we can compare compounds 5 and 7 showing in this case that the coordination of nickel(II) 

does not increase the affinity of our compounds for CXCR4 as was observed for the same 

compounds in the flow cytometry study. This result correlates with the anti-HIV infection 

assay although both still demonstrate sub-μM values. Compounds 6 and 8 show increased 

potency of the nickel(II) complex in both calcium signalling and antiviral assays, which is 

consistent with antibody competition assay. With an IC50 of 16 nM, 8 presents a higher 

potency, compared to both AMD3100 and its copper(II) complex which both have IC50 values 

>100 nM. The presence of the appended amino group may be responsible for this bonding 

impact as it will be an effective hydrogen bond donor for interaction with the 

aspartate/glutamate rich surface of the CXCR4 receptor. 

Overall, although the AMD3100 type structure has been modified by the introduction of 

functional groups on the phenyl moiety, compounds 6 and 8 can be considered as highly 

effective CXCR4 antagonists and we can now consider the introduction of a probe 

component for molecular imaging into these structures. 

Towards molecular imaging: introduction of an imaging probe 

component 

Efficient syntheses towards functionalised AMD3100 were developed whilst maintaining 

strong anti-HIV potency and CXCR4 affinity. Both amine analogues 6 and 8 can be used to 

conjugate the AMD3100 moiety to an imaging probe as the primary amine enables coupling 

reactions with carboxylic acid, active ester or anhydride. Two different imaging probe 

components were attached, a fluorescent moiety and a PET isotope radiolabelling precursor. 
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The main advantage for PET imaging here is to introduce the radiolabelling site by 

AMD3100 functionalisation rather than using the cyclam cavity to chelate a radiometal as it 

has already been described and shows low in vivo stability.17 Cyclam can form complexes that 

are thermodynamically stable in vitro but it has been shown that transchelation of the 

radiometal to ceruloplasmin and ultimately superoxide dismutase (SOD) can occur in vivo in 

the case of 64Cu,28 resulting in accumulation of the radioisotope in the blood and liver.17c  

Introduction of a BODIPY dye 

Amongst the options for fluorescent imaging components, borodipyrromethane type dyes 

(4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacene, abbreviation BODIPY®) exhibit high 

stability, high extinction coefficients, sharp emission bands and high quantum yields.29 

Additionally, BODIPYs emission can be shifted to the red-NIR region by extending the π-

conjugation of the central core30 and water soluble dyes can be obtained by addition of 

sulfonic acid moieties31 or coupling to an azamacrocycle.32 With all of these attractive 

properties, BODIPYs appear to be an excellent choice as an optical imaging component and a 

BODIPY carrying an activated ester was prepared to couple to the amine AMD3100 

analogue 6.  

Starting from BODIPY-acid, the corresponding N-hydroxysuccinimidyl ester was 

obtained upon reaction with NHS in the presence of EDCI in dichloromethane at room 

temperature in 70% yield (Scheme 5).33 The subsequent coupling of the activated ester with 6 

yields 10 in a 65% yield after purification by column chromatography. Compound 10 was 

labelled with Ni2+ and Zn2+ by adding two equivalents of appropriate metal salts. It has to be 

noted that, in this case, the zinc complex was also synthesised, in order to study the influence 

of the metal on the fluorescence of the compound. Moreover, Zn2+ also strongly increases the 

affinity of AMD3100 for the CXCR4 receptor.22 Both complexes 11 and 12 were isolated in 

almost quantitative yield. One important point is that these BODIPY-AMD3100 analogues 

are water-soluble without the requirement for any solubilising agent (such as DMSO), which 

is crucial for biological applications such as molecular imaging. Indeed, one main drawback 

for the use of BODIPY dyes in medical imaging is their very poor solubility in water. It is 

still currently challenging to introduce, in a simple synthetic manner, solubilising groups for 

biological applications. 
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Scheme 5 Synthesis of Bodipy-AMD3100 

analogues.  

Anti-HIV assays were carried out with compounds 10, 11 and 12. These experiments 

showed that the introduction of the fluorescent probe induced a reduction of the anti-HIV 

activity, although 10 and 12 still maintained sub-μM activity levels, see Table 2. It was 

interesting to note that the nickel(II) complex (11) was again less active than the metal-free 

chelator 10. This suggests that the geometric preferences of the nickel(II) ion on binding to 

CXCR4 protein aspartate/glutamate side chains may be disrupted by functionalisation of the 

central phenyl ring. Zinc(II) is d10 and is more flexible in its coordination geometry. This may 

account for the higher activity of 12 compared to 11, which is more similar to the metal-free 

chelating unit 10. 

The photophysical properties of the different BODIPY-AMD derivatives were studied in 

PBS at room temperature. The data are collected in Table 3. All compounds exhibit two 

absorption bands characteristic of the BODIPY signature, which consists of the S0–S1 feature 

placed near 525 nm and the S0–S2 one located near 380 nm, both readily assigned to spin-

allowed π–π* transitions. It is important to note that no aggregation can be observed in PBS, 

which is mainly characterised by a broadening of the absorption band as well as a dual 
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absorption. The ε (λ) values of the Ni(II) and Zn(II)-AMD3100-BODIPY 11 and 12, are 

relatively high, ranging from 30 200 to 53 900 M−1 cm−1, those of free ligand 10 is a little 

lower (16 500 M−1 cm−1). 

Table 3 Photophysical properties of the BODIPY derivatives in PBS at 298 K  

Compound λ abs (nm) λ em (nm) ε (M−1 cm−1) Φ  Brightnessb (M−1 cm−1) 

a The quantum yields, ΦF, were measured at 298 K, using rhodamine 6G (ΦF = 0.78 in water, λexc = 488 nm). b 

Brightness = Φ × ε.  

10  525 539 16 452 5 822 

11  524 540 53 872 7 3771 

12  524 540 30 167 27 8145 

 

 

As an example, Fig. 3 exhibits the absorption, emission and excitation spectra of 

compound 12 (see ESI† for all spectra). The ΦF value of the AMD3100-BODIPY 10 is 

relatively low, mainly because of the presence of several amine functions and a flexible 

linker between the BODIPY and the AMD3100 part (“loose bold effect”). Complexation of 

the Bodipy-AMD3100 analogue with Zn2+ (which naturally occurs when injecting AMD3100 

in vivo), resulted in a consequent enhancement of the fluorescence, yielding to a quantum 

yield of 27% and a brightness of 8200 M−1 cm−1, which is sufficient for at least in vitro 

fluorescence imaging.34 Concerning the nickel complex 11, the fluorescence is still relatively 

low (Φ = 7%). Further investigations would be needed to explain this phenomena, which may 

be due to a paramagnetic character of NiII. Nevertheless, the brightness of the compound 

(almost 4000 M−1 cm−1) is sufficient for biological applications. 
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Fig. 3 Absorption (plain line), emission (large 

dashed line) and excitation (small dashed line) 

spectra of compound 11. 
 

Introduction of a precursor for radiofluorination 

Fluorine-18 has gained prominence in PET imaging in the last decades due to its widespread 

availability, relatively low cost of production and its optimal nuclear and chemical properties, 

i.e. low positron energy (635 keV), high abundance, and relatively long half-life (109.7 min) 

when compared to 11C.35 Nevertheless with a half-life of 109.7 min, the synthesis of labelled 

imaging agents needs to be rapid and efficient. The B–F bond is one of the strongest bonds 

known, Ting et al. developed a pinacol phenylboronate diester able to react with F− in a 

single, rapid and high-yielding step at pH 4–7 in aqueous solvents and at temperatures that 

are unlikely to denature biomolecules.36 Inspired by this work, the pinacol phenylboronate 

diester PET precursor was coupled to the functionalised compounds 6 and 8 (Scheme 6).  
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Scheme 6 Synthesis of AMD3100 pinacol 

phenyl boronate analogues as PET precursors 

and AMD3100 trifluoroborate. 
 

Starting from a commercially available product, 4-(4,4,5,5-tetramethyl-1,3-2-

dioxaborolan-2-yl)benzoic acid, an activated ester 13 of the pinacol phenylboronate diester is 

synthesised by reaction with N,N′-disuccinimidyl carbonate and triethylamine in a 56% yield. 

Nucleophilic attack of 6 and 8 gives the resulting AMD3100 analogues 14 and 15 that 

constitute two precursors for 18F radiolabelling. It has to be noted that 15 was synthesised 

starting from compound 8 and not by metallation of 14, because the pinacol boronate 

intermediate was subject to hydrolysis during the metallation step. 

Fluoride treatment was performed on 14 to validate our concept. Following a previous 

reported protocol,3514 was dissolved in a small volume of deuterated methanol and an 

aqueous solution of KHF2 (3.3 eq.) was added. The solution turned immediately cloudy and 

further deuterated methanol was added to dilute the solution. The reaction mixture was stirred 

for 30 min at room temperature and the reaction was followed by 11B and 19F NMR. The 11B 

signal was shifted from 31.6 ppm to 0.4 ppm and appeared as a quadruplet due to the 

coupling between boron and fluorine. In the 19F NMR, the consumption of KHF2 was 
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evidenced by the disappearance of the signal at −170 ppm and the presence of a signal at 

−142.7 ppm, characteristic of a –BF3. Fluorination was also confirmed by mass spectrometry. 

This experiment confirms the high reactivity of the pinacol phenylboronate derivatives and 

their potential as precursors for the synthesis of 18F radiopharmaceuticals. 

Conclusion 

A series of novel CXCR4 antagonists have been synthesised in this work and it has been 

demonstrated that functionalisation of the central bridging phenyl group in AMD3100 can be 

carried out without significant loss in the affinity for the CXCR4 receptor. The compounds 

have been characterised as sub-μM antagonists in a series of assays demonstrating effective 

binding to the receptor in vitro. They have then been modified for imaging applications via 

addition of a prosthetic group for radiofluorination or a fluorescent dye molecule to delineate 

the route to application. This design separates out the targeting and imaging components of 

the molecule, which is in contrast to the previously described complexes of AMD3100 with 

radiometals. The modular approach is advantageous in tuning for different modalities and 

optimum receptor ‘on’ and ‘off’ binding rates. There is also the potential for multimodal 

imaging to allow evaluation of the compounds by a range of imaging techniques to more 

precisely characterise the interactions from a cellular level up to in vivo studies. The next 

steps for this study are to select the optimal candidates, optimise the radiolabelling conditions 

and carry out preliminary in vivo studies. In addition, the affinity towards CXCR7 of the 

novel compounds is under evaluation to determine the binding profile with this important and 

related chemokine receptor target.  

Experimental section 

Synthetic procedures 

General information. Additional experimental details, data for compounds 1–16 (NMR, 

MS spectra and HPLC chromatograms) are given in ESI.†  

Material. TriBocCyclam was generously donated by CheMatech and all other chemicals 

were purchased from Acros and Aldrich and were used without further purification. Organic 

solvents were removed under reduced pressure using rotary evaporator. Water was removed 

by lyophilisation.  
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Methyl-2,5-dimethylbenzoate (1). A mixture of 2,5-dimethylbenzoic acid (10.0 g, 66.6 

mmol), sulphuric acid (14 mL, 13.3 mmol), and methanol (27 mL) was heated at reflux for 4 

h. The mixture was poured into water (250 mL) and extracted with ethyl acetate (2 × 200 

mL). The pooled organics were washed with saturated sodium bicarbonate (2 × 50 mL) and 

brine (50 mL), dried over MgSO4, and concentrated in vacuo to give 1 (10.1 g, 92%) as a 

colorless oil. 1H NMR (300 MHz, CDCl3, 300 K): δ = 7.70 (d, 4J (H,H) = 1.7 Hz, 1H; CH), 

7.18 (dd, 3J (H,H) = 7.9 Hz, 4J (H,H) = 1.4 Hz, 1H; CH), 7.10 (d, 3J (H,H) = 7.9 Hz, 1H; CH), 

3.86 (s, 3H; OCH3), 2.53 (s, 3H; CH3), 2.32 ppm (s, 3H; CH3); 13C{1H} NMR (75 MHz, 

CDCl3, 300 K): δ = 168.4 (C O), 137.2 (Car), 135.4 (Car), 132.9 (CHar), 131.8 (CHar), 

131.2 (CHar), 129.6 (Car), 51.9 (OCH3), 21.4 (CH3), 20.9 ppm (CH3); ESI-MS: m/z: 165.31 

[M + H]+.  

Methyl-2,5-bis(bromomethyl)benzoate (2). To a solution of 1 (10.1 g, 61.6 mmol) in 

carbon tetrachloride (300 mL) were added N-bromosuccinimide (23.0 g, 129.3 mmol) and 

benzoyl peroxide (1.0 g, 4.1 mmol). The reaction mixture was heated at reflux for 4 h. The 

resulting suspension was filtered, and the residue was washed with chloroform (3 × 150 mL). 

The pooled organics were concentrated in vacuo to give a mixture of product and succinimide 

as determined by 1H NMR. The mixture was dissolved in dichloromethane (600 mL) and 

washed with water (3 × 150 mL). The dichloromethane phase was dried over MgSO4 and 

concentrated in vacuo, and the resulting residue was purified by reverse phase flash 

chromatography on C18. After evaporation of acetonitrile, the aqueous solution was freeze 

dried to give 2 (13.9 g, 70%) as a white solid. 1H NMR (500 MHz, CDCl3, 300 K): δ = 8.00 

(d, 4J (H,H) = 1.8 Hz, 1H; CH), 7.53 (dd, 3J (H,H) = 7.8 Hz, 4J (H,H) = 1.8 Hz, 1H; CH), 7.46 

(d, 3J (H,H) = 7.8 Hz, 1H; CH), 4.94 (s, 2H; CH2), 4.49 (s, 2H; CH2), 3.98 ppm (s, 3H; 

OCH3); 13C{1H} NMR (75 MHz, CDCl3, 300 K): δ = 166.6 (C O), 139.6 (Car), 138.5, 133.2 

(CHar), 132.5, 132.0, 129.7 (Car), 52.6 (OCH3), 32.0 (CH2), 31.0 ppm; ESI-MS: m/z: 322.54 

[M + H]+.  

AMD3100 Boc-ester (3). To a solution of tris-tert-butyl-1,4,8,11-tetraazacyclotetradecane-

1,4,8-tricarboxylate (2.00 g, 3.98 mmol) in acetonitrile (20 mL) was added K2CO3 (1.38 g, 

9.99 mmol) and compound 2 (0.63 g, 1.99 mmol). The reaction mixture was heated at 40 °C 

overnight. After cooling, the solution was filtered on celite. The solvent was evaporated and 

the resulting oil was taken up in 200 mL of diethylether, washed with 2 × 50 mL of water, 

dried over MgSO4 and concentrated in vacuo. The resulting residue was purified by flash 

chromatography (A: CH2Cl2, B: CH3OH, B 35%) to give 3 (1.89 g, 82%) as a white foam. 

m.p. 89 ± 1 °C; 1H NMR (300 MHz, CDCl3, 300 K): δ = 7.66 (s, 1H; CH), 7.43 (d, 3J (H,H) = 



7.7 Hz, 1H; CH), 7.31 (d, 3J (H,H) = 7.7 Hz, 1H, CH), 3.85 (s, 3H; OCH3), 3.81 (s, 2H; 

CH2Ph), 3.51 (s, 2H; CH2Ph), 3.45–3.14 (m, 23H), 2.67–2.52 (m, 4H), 2.45–2.28 (m, 4H), 

1.94–1.77 (m, 4H; CH2β), 1.70–1.61 (m, 4H; CH2β), 1.50–1.24 ppm (m, 54H; CH3); 13C{1H} 

NMR (125 MHz, DMSO, 343 K): δ = 167.4 (C O), 154.5 (*2), 154.4, 154.3 (*2), 154.2, 

138.1 (Car), 137.5 (Car), 131.3 (Car), 130.3 (CHar), 129.7 (CHar), 129.6 (CHar), 78.4, 78.3, 

78.2, 78.1, 78.0 (*2), 57.8, 56.2, 52.7, 52.5, 51.3, 51.1, 46.7, 46.6, 46.5(*3), 46.2, 46.0, 45.9 

(*2), 45.8, 45.7, 45.5, 45.4, 27.8 (*12) (CH3), 27.7 (*3) (CH3), 27.6 (*3) (CH3), 25.9 (*2) 

(CH2β), 25.6 pm (*2) (CH2β); ESI-MS: m/z: 1183.76 [M + Na]+, 1199.73 [M + K]+; HRMS 

(ESI): m/z calcd for C60H104N8O14 + Na+: 1183.7571, found 1183.7564; elemental analysis 

calcd (%) for C60H104N8O14: C 62.04, H 9.02, N 9.65; found: C 61.62, H 8.98, N 9.55; HPLC: 

tr = 8.13 min, purity 98%.  

AMD3100 Boc-ethylenediamine (4). Compound 3 (1.89 g, 1.63 mmol) was dissolved in 

distilled ethylenediamine (6.5 mL). The mixture was stirred at 40 °C for 7 days. The mixture 

was concentrated by evaporation and the resulting oil was taken up in acetone (200 mL). 

After filtration, the pooled organics were concentrated in vacuo to give a yellow foam. The 

resulting residue was purified by flash chromatography on silica gel (A: CH2Cl2, B: CH3OH, 

B 15%) to furnish 4 (0.77 g, 40%) as a white foam. m.p. 98 ± 1 °C; 1H NMR (500 MHz, 

CDCl3, 324 K): δ = 8.17 (br.s, 1H; NHC O), 7.49 (s, 1H; CH), 7.25 (d, 3J (H,H) = 7.3 Hz, 

1H; CH), 7.20 (d, 3J (H,H) = 7.6 Hz, 1H; CH), 3.64 (s, 2H, CH2Ph), 3.50 (s, 2H, CH2Ph), 3.46 

(q, 3J (H,H) = 6.0 Hz, 2H; CH2NHC O), 3.40–3.16 (m, 24H), 2.93 (t, 3J (H,H) = 6.0 Hz, 2H; 

CH2NH2), 2.66 (t, 3J (H,H) = 6.5 Hz, 2H), 2.60–2.52 (m, 2H), 2.46 (t, 3J (H,H) = 6.5 Hz, 2H), 

2.40 (t, 3J (H,H) = 5.7 Hz, 2H), 2.10 (s, 2H), 1.89–1.77 (m, 4H; CH2β), 1.71–1.61 (m, 4H; 

CH2β), 1.44–1.39 (m, 36H; CH3), 1.37–1.24 ppm (m, 18H; CH3); 13C{1H} NMR (125 MHz, 

CDCl3, 324 K): δ = 169.9 (C O), 156.1, 156.0, 155.9 (*2), 155.7 (*2), 138.7 (Car), 137.4 

(Car), 135.1 (Car), 131.2 (CHar), 130.5 (CHar), 129.3 (CHar), 80.0, 79.9 (*2), 79.8 (*2), 79.7, 

59.6 (CH2), 58.0, 53.5, 52.5, 52.4, 52.1, 51.1, 50.9, 48.1 (*2), 48.0, 47.5, 47.3 (*2), 46.9, 

46.5, 43.1 (*2), 42.1 (*2), 28.9 (*3) (CH3), 28.8 (*9) (CH3), 28.7 (*3) (CH3), 28.6 (*3) (CH3), 

27.2 (*2) (CH2β), 26.1 ppm (*2) (CH2β); ESI-MS: m/z: 1189.82 [M + H]+; HRMS (ESI): m/z 

calcd for C61H108N10O13 + H+: 1189.8170, found 1189.8212; elemental analysis calcd (%) for 

C61H108N10O13: C 61.59, H 9.15, N 11.77; found C 61.17, H 9.43, N 11.51; HPLC: tr = 8.48 

min, purity 96%.  

AMD3100-ester (5). A solution of 3 M HCl (3.0 mL) was added to 3 (100.0 mg, 0.08 mmol) 

and the reaction mixture was stirred for one hour. The resulting product was left one night at 

room temperature. The acid was evaporated in vacuo giving 5 + 6HCl +10H2O. (60.7 mg, 



yield = 73%) as a white foam. 1H NMR (300 MHz, D2O, 300 K): δ = 8.32 (d, 4J (H,H) = 1.8 

Hz, 1H), 7.88 (dd, 3J (H,H) = 7.8 Hz, 4J (H,H) = 1.8 Hz, 1H), 7.76 (d, 3J (H,H) = 7.8 Hz, 1H), 

4.46 (br.s, 2H), 3.98 (s, 3H; OMe), 3.92–3.81 (m, 2H), 3.76–3.53 (m, 17H), 3.49–3.28 (m, 

15H), 2.29–2.12 ppm (m, 8H); 13C{1H} NMR (75 MHz, D2O, 300 K): δ = 168.1, 135.9, 

134.9, 134.2, 133.4, 131.2, 131.0, 48.2, 47.9, 45.5, 44.8, 42.1, 41.6, 41.5, 40.8, 40.7, 38.44, 

38.38, 38.0, 37.2, 36.8, 19.1 (CH2β), 19.0, 18.5, 17.9 ppm; HRMS (ESI): m/z calcd for 

C30H56N8O2 + H+: 561.4599, found 561.4573; elemental analysis calcd (%) for C30H56N8O2 + 

10H2O + 6HCl: C 37.54, H 8.61, N 11.68; found C 37.82, H 8.05, N 11.65; HPLC: tr = 5.53 

min, purity 97%.  

AMD3100-ethylenediamine (6). Compound 4 (0.47 g, 0.40 mmol) was dissolved in a 

solution of 3 M HCl (10 mL). The mixture was stirred overnight at room temperature. The 

mixture was evaporated, taken up in acetone (50 mL) and then stirred overnight. The 

precipitate was filtered, washed with acetone and ether and finally dried in vacuo. The 

compound 6 + 9HCl + 5H2O was obtained as a white solid (400 mg, yield = 100%). 1H NMR 

(300 MHz, D2O, 300 K): δ = 7.93–7.91 (s, 1H), 7.81–7.74 (m, 2H), 4.51 (s, 2H; CH2Ph), 4.29 

(s, 2H; CH2Ph), 3.82–3.78 (m, 2H), 3.67–3.34 (m, 32H), 3.18–3.14 (m, 2H), 2.27–2.16 ppm 

(m, 8H; CH2β); 13C{1H} NMR (75 MHz, D2O, 300 K): δ = 171.0 (C O), 135.7 (CHar), 134.5 

(CHar), 134.4 (CHar), 133.4 (Car), 131.6 (Car), 130.2 (Car), 58.1, 57.5, 48.4, 47.9, 47.8, 

45.6, 45.3, 45.0, 42.1, 41.8, 41.7, 41.2, 41.0, 38.9, 38.7, 38.5, 38.1, 37.8, 37.7, 37.6, 19.3 

(CH2β), 19.2 (CH2β), 18.8 (CH2β), 18.5 ppm (CH2β); HRMS (ESI): m/z calcd for C31H60N10O 

+ H+: 589.5024, found 589.5034; elemental analysis calcd (%) for C31H61N10O + 9HCl + 

5H2O: C 36.97, H 7.91, N 13.91; found C 37.13, H 8.06, N 14.33.  

Few drops of NaOH (16 mol L−1) were added on compound 6 + 9HCl + 5H2O in order to 

obtain a viscous solution and chloroform (100 mL) was added quickly. The two layers were 

separated and the organic layer was dried over magnesium sulfate. After evaporation of the 

solvent, 6 + 9.5H2O (276 mg, yield = 91%) was obtained as a light yellow oil. 1H NMR (300 

MHz, CDCl3, 300 K): δ = 8.64 (t, 3J (H,H) = 5.4 Hz, 1H; NHC O), 7.41 (d, 3J (H,H) = 7.8 

Hz, 1H), 7.37 (d, 4J (H,H) = 1.7 Hz, 1H), 7.12 (dd, 3J (H,H) = 7.8 Hz, 4J (H,H) = 1.7 Hz, 1H), 

3.51 (s, 2H; CH2Ph), 3.37 (s, 2H; CH2Ph), 3.32 (q, 3J (H,H) = 5.9 Hz, 2H; CH2NHC O), 2.76 

(t, 3J (H,H) = 6.2 Hz, 2H; CH2NH2), 2.71–2.19 (m, 40H), 1.72 (quint, 3J (H,H) = 5.5 Hz, 2H; 

CH2β), 1.63 (quint, 3J (H,H) = 5.5 Hz, 2H; CH2β), 1.55–1.45 ppm (m, 4H; CH2β); 13C{1H} 

NMR (75 MHz, D2O, 300 K): δ = 170.5 (C O), 137.9 (Car), 137.6 (Car), 135.7 (Car), 130.6 

(CHar), 130.4 (CHar), 128.0 (CHar), 57.9 (CH2Ph), 55.8 (CH2Ph), 54.6, 54.2, 53.3, 53.2, 

50.9, 50.5, 49.3, 49.1, 48.7, 48.6, 48.5, 48.3, 48.2, 47.8, 47.7, 47.3, 43.1, 41.9, 28.6 (CH2β), 



28.4 (CH2β), 26.5 (CH2β), 26.1 ppm (CH2β); elemental analysis calcd (%) for C31H61N10O + 

9.5H2O: C 48.99, H 10.48, N 18.43; found C 49.00, H 10.57, N 18.33; HPLC: tr = 5.36 min, 

purity 99%. 

Ni2AMD3100-ester (7). 0.60 mL (0.06 mmol) of a titrated solution of Ni(NO3)2, 6H2O (c = 

0.106 mol L−1) in water were added to a solution of 5 (17.3 mg, 0.03 mmol) in a 3 mL 

mixture of MeOH–H2O (9 : 1). The reaction was stirred at 50 °C overnight. After completion, 

reverse phase C8 semi-preparative HPLC (A: H2O) was performed to furnish 7 (3.7 mg, 18%) 

as a light orange foam. HRMS (ESI): m/z calcd for C30H54N8Ni2O2 − 2H2+: 337.1533, found 

337.1529; HPLC: tr = 5.88 min, purity 95%.  

Ni2AMD3100-ethylenediamine (8). 15.0 mL (1.59 mmol) of a titrated solution of Ni(NO3)2, 

6H2O (c = 0.106 mol.L−1) in water were added to a solution of 6 + 9.5H2O (568 mg, 0.79 

mmol) in a 110 mL mixture of MeOH–H2O (9 : 1). The reaction was stirred at 50 °C 

overnight. After completion, reverse phase C18 flash chromatography (A: H2O) was 

performed to furnish 8 + 4NO3 + 7H2O (332 mg, 39%) as a light orange foam. UV-Vis 

(PBS), λ (nm): 460; HRMS (ESI): m/z calcd for C31H58N10Ni2O − 2H2+: 351.1746, found 

351.1740; elemental analysis calcd (%) for C31H58N10Ni2O + 4NO3 + 9.5H2O: C 34.59, H 

6.56, N 18.22; found C 34.24, H 6.30, N 18.88; HPLC: tr = 5.77 min, purity 88%.  

Bodipy-NHS-ester (9)30. 54 mg of N-hydroxysuccinimide (0.48 mmol), 58 mg of 

dimethylaminopyridine (DMAP) (0.48 mmol) and 92 mg of 1-(3-dimethylaminopropyl)-3-

ethylcarbodiimide hydrochloride (EDCI) (0.48 mmol) were added to a solution of 4,4-

difluoro-8-(4-carboxyphenyl-)1,3,5,7-tetramethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene 

(100 mg, 0.24 mmol) in CH2Cl2 (50 mL). The reaction was stirred at 35 °C. After complete 

activation of the acid function (2 h) followed by TLC, the mixture was washed with 2 × 10 

mL of water, the organic phase was dried over MgSO4 and the solvent was evaporated to give 

a red oil. The crude product was purified by chromatography on silica gel (AcOEt–Hexane 

50 : 50). Upon concentration of the pure fraction, recrystallisation in a mixture of 

dichloromethane and hexane gave 9 as a red solid (88 mg, yield = 70%). 1H NMR (300 MHz, 

CDCl3, 300 K): δ = 8.23 (d, 3J (H,H) = 8.3 Hz, 2H; CHarBod), 7.47 (d, 3J (H,H) = 8.3 Hz, 2H; 

CHarBod), 2.92 (bs, 4H; CH2C O), 2.51 (s, 6H; CH3), 2.27 (q, 3J (H,H) = 7.5 Hz, 4H; 

CH2CH3), 1.25 (s, 6H; CH3), 0.96 ppm (t, 6H, 3J (H,H) = 7.5 Hz; CH2CH3); 13C{1H} NMR (75 

MHz, CDCl3, 300 K): δ = 169.2 (*2) (NC O), 161.4 (CO2), 154.6 (*2) (Cpyrrole), 143.0 

(CarBod), 138.7 (CBod), 138.0 (*2) (Cpyrrole), 137.7 (*2) (Cpyrrole), 133.3 (*2) (CHarBod), 131.2 (*2) 

(Cpyrrole), 129.3 (*2) (CHarBod), 125.6 (CarBod), 25.7 (*2) (CH2C O), 17.3 (*2) (CH2CH3), 14.6 

(*2) (CH2CH3), 12.7 (*2) (CH3), 12.1 ppm (*2); 11B{1H} NMR (192.5 MHz, CDCl3, 300 K): δ 
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= 0.79 ppm (t, 1J (B,F) = 33.1 Hz); ESI-MS: m/z = 544.21 [M + Na]+; UV-Vis (CH3CN), λ 

(nm) (ε, M−1 cm−1): 525 (73 000), 492 (sh, 23 200), 378 (7940); elemental analysis calcd (%) 

for C28H30BF2N3O4: C 68.50, H 6.67, N 6.39; found C 68.78, H 6.87, N 5.95.  

AMD3100-bodipy (10). Diisopropylethylamine (172 μL, 1.04 mmol) was added to a 

solution of 6 (408 mg, 0.69 mmol) in acetonitrile (40 mL). A solution of bodipy 9 (694 mg, 

0.69 mmol) in acetonitrile (10 mL) was then added and the mixture was stirred at room 

temperature during 6 h, until total consumption of the starting materials was observed by 

TLC. Solvent was evaporated, and the resulting red oil was purified by column 

chromatography on silica gel (eluent: CH2Cl2–EtOH–NH4OH 20 : 60 : 20). Precipitation from 

CH2Cl2–hexane gave the desired compound 10 as a red solid (446 mg, yield = 65%) Mp: 

>200 °C; 1H NMR (300 MHz, CDCl3, 300 K): δ = 9.80–9.67 (bs, 1H), 8.62–8.49 (bs, 1H), 

8.12 (d, 3J (H,H) = 8.2 Hz, 2H), 7.55 (d, 3J (H,H) = 7.7 Hz, 1H), 7.43 (s, 1H), 7.33 (d, 3J 

(H,H) = 8.2 Hz, 2H), 7.20 (d, 3J (H,H) = 7.7 Hz, 1H), 3.73–3.46 (m, 12H), 2.79–2.31 (m, 

37H), 2.26 (q, 4H, 3J (H,H) = 7.5 Hz; CH2CH3), 1.92–1.52 (m, 8H), 1.32–1.24 (m, 9H), 0.94 

ppm (t, 3J (H,H) = 7.5 Hz, 6H; CH2CH3); 13C{1H} NMR (75 MHz, CDCl3, 300 K): δ = 173.0 

(NHC O), 166.6, 154.3 (*2) (Cpyrrole), 139.8 (Car), 139.3 (CarBod), 139.2 (CBod), 138.3 (*2) 

(Cpyrrole), 138.2 (Car), 136.1, 134.5 (CarBod), 133.2 (*2) (Cpyrrole), 131.5 (CHar), 130.6 (*2) 

(Cpyrrole), 130.5 (CHar), 128.8 (*2) (CHarBod), 128.3 (*2), 127.2 (CHar), 58.3 (CH2), 55.2, 54.9, 

54.6, 54.2, 53.8, 53.2, 51.3, 51.1, 49.9, 49.4 (*2), 48.8, 48.6, 48.5, 48.4, 48.1, 47.1, 42.8, 

39.7, 28.7 (CH2β), 28.6, 26.6, 26.2, 17.2 (*2) (CH2CH3), 14.8 (*2) (CH2CH3), 12.7 (*2) 

(CH3), 12.0 ppm (*2); 11B{1H} NMR (96 MHz, CDCl3, 300 K): δ = 0.76 ppm (t, 1J (B,F) = 

33.6 Hz); ESI-MS: m/z = 995.7 [M + H]+, 1021.7 [M + Na]+, 1033.7 [M + K]+; HRMS (ESI): 

m/z calcd for C55H85BF2N12O2 + H+: 995.7062, found 995.7012.  

Ni2AMD3100-bodipy (11). 3.1 mg of NiCl2 (0.023 mmol) was added to a solution of 10.4 

mg of compound 10 (0.012 mmol) in 6 mL of methanol. The mixture was stirred at 50 °C for 

2 h. After evaporation, compound 11 was obtained as a red solid (14.2 mg, yield = 95%). 

ESI-MS: m/z = 555.27 [M − 2H − 4Cl]2+; HRMS (ESI): m/z calcd for C55H85BCl4F2N12Ni2O2 − 

2H − 4Cl2+: 555.2740, found 555.2699.  

Zn2AMD3100-bodipy (12). 4.7 mg of Zn(OAc)2, 2H2O (0.021 mmol) was added to a 

solution of 9.5 mg of compound 10 (0.011 mmol) in 6 mL of methanol. The mixture was 

stirred at 50 °C for 2 h. After evaporation, compound 12 was obtained as a red solid (27.7 

mg, yield = 97%). ESI-MS: m/z = 592.28 [M − H − 3(OAc)]2+; HRMS (ESI): m/z calcd for 

C63H97BF2N12O10Zn2 − H − 3(OAc)2+: 592.2783, found 592.2780.  



Pinacol phenylboronate activate ester (13). Triethylamine (340 μL, 2.43 mmol) and 

N,N′-disuccinimidyl carbonate (310 mg, 1.21 mmol) were added to a solution of 4-(4,4,5,5-

tetramethyl-1,3-2-dioxaborolan-2-yl)benzoic acid (200 mg, 0.81 mmol) in acetonitrile (20 

mL). The reaction mixture was stirred at room temperature for 5 h. The solvent was 

evaporated in vacuo with a bath temperature lower than 35 °C. The resulting product was 

dissolved in dichloromethane and washed with a saturated solution of sodium bicarbonate. 

After drying over magnesium sulfate, the organic layer was evaporated in vacuo with a low 

temperature bath >35 °C. Chromatography on silica gel (A: Pentane, B: EtOAc, B 50%) gave 

13 (0.157 g, 56%) as a white powder. 1H NMR (300 MHz, CDCl3, 300 K): δ = 8.09 (d, 3J 

(H,H) = 8.1 Hz, 2H; CHarBpinacol), 7.90 (d, 3J (H,H) = 8.1 Hz, 2H; CHarNHS), 2.86 (s, 4H; CH2 

NHS), 1.33 ppm (s, 12H; CH3); 13C{1H} NMR (75 MHz, CDCl3, 300 K): δ = 169.4 (*2) (CC

O NHS), 162.1 (CC O), 135.1 (Cpinacol), 129.6 (*4) (CH), 127.3 (CNHS), 84.6 (*2) (CMe2), 

25.9 (*2) (CH2), 25.0 ppm (*4) (CH3); HRMS (ESI): m/z calcd for C17H20BNO6 + Na+: 

368.1279, found 368.1274.  

AMD3100-pinacol phenylboronate (14). 6 (26 mg, 0.04 mmol) was dissolved in a 

mixture of acetonitrile (600 μL) and DMF (20 μL), triethylamine (77 μL) was then added. 

The solution was stirred at room temperature for 10 min and 13 (15 mg, 0.04 mmol) was 

added to the reaction. After one night stirring at 40 °C, the solvent was evaporated under a 

nitrogen flux to give 14 which still contains traces of DMF and was directly used without any 

further purification step. 1H NMR (500 MHz, CDCl3, 500 K): δ = 9.79–9.63 (bs, 1H; NH), 

8.77–8.65 (bs, 1H; NH), 8.07 (dd, 3J (H,H) = 5.2 Hz, 4J (H,H) = 1.5 Hz, 2H), 7.75 (d, 3J 

(H,H) = 8.1 Hz, 1H), 7.72–7.65 (m, 1H), 7.63 (d, 3J (H,H) = 8.1 Hz, 1H), 6.63 (dd, 3J (H,H) = 

5.1 Hz, 4J (H,H) = 1.5 Hz, 2H), 3.70–3.31 (m, 7H), 2.90–2.85 (m, 7H), 2.73–2.20 (m, 35H), 

1.79–1.52 (m, 6H), 1.19 ppm (s, 12H); 11B (160 MHz, CDCl3, 300 K): δ = 31.6 ppm; ESI-

MS: m/z = 819.6 [M + H]+; MALDI-TOF: m/z = 819.63 [M + H]+.  

Ni2AMD3100-pinacol phenylboronate (15). 8 (20 mg, 0.02 mmol) was dissolved in DMF 

(3 mL) and triethylamine (25 μL) was added. The solution was stirred at room temperature 

for 10 min and 13 (8 mg, 0.02 mmol) was added to the reaction. After one night stirring at 40 

°C, the solvent was evaporated in vacuo with a bath temperature lower than 35 °C to give 15. 

MALDI-TOF: m/z = 931.36 [M − 3H]+.  

AMD3100-phenyltrifluoroboronate (16). 14 (0.04 mmol) was dissolved in methanol-d4 

(150 μL) and a solution of KHF2 in D2O (35 μL, c = 4 M) was added. The solution 

immediately turned blurry and 1 mL of methanol-d4 was added. The mixture was stirred for 

30 min and NMR was recorded on the crude product. 1H NMR (500 MHz, CD3OD, 500 K): δ 



= 8.08 (d, 3J (H,H) = 7.5 Hz, 2H), 7.72–7.69 (m, 1H), 7.61–7.57 (m, 1H), 7.44 (bs, 1H), 6.87 

(d, 3J (H,H) = 6.9 Hz, 2H), 3.80–3.61 (m, 6H), 3.23–3.15 (m, 7H), 3.14–3.03 (m, 7H), 2.99–

2.87 (m, 10H), 2.76–2.54 (m, 12H), 2.02–1.76 ppm (m, 6H); 11B (160 MHz, CD3OD, 300 K): 

δ = 0.34 ppm (q, 1J (B,F) = 11.9 Hz); 19F (202 MHz, CD3OD, 300 K): δ = −142.7 ppm; ESI-

MS: m/z = 759.5 [M − H]−.  

Chemokine-induced calcium signalling assay 

Ca2+ mobilisation assays were performed by the use of a fluorometric imaging plate reader 

(FLIPR) (Molecular Devices, Sunnyvale, USA) as described previously.26 Briefly, 

U87.CXCR4- and U87.CCR5-transfected cells were loaded with the fluorescent calcium 

indicator Fluo-3 acetoxymethyl (Molecular Probes, Leiden, The Netherlands) in the 

appropriate culture medium for 45 min at 37 °C, after which the cells were washed three 

times in Hanks balanced salt solution buffer containing 20 mM HEPES and 0.2% bovine 

serum albumin (pH 7.4). The cells were then incubated in the dark at 37 °C for 15 min with 

the compounds. Changes in intracellular calcium concentration upon addition of CXCL-12 

(SDF-1), the specific ligand for CXCR4, were simultaneously measured in all 96 wells in a 

black-wall microtiter plate and in real time with the FLIPR. The data were expressed as 

fluorescence units versus time and were analysed using the FLIPR Control Software 

(Molecular Devices) and IC50 values were calculated using GraphPad Prism 4.0 software (San 

Diego, CA).  

Anti-viral assays 

Anti-HIV activity and cytotoxicity measurements in MT-4 cells were based on the viability 

of cells that had been infected or not infected with the CXCR4-using (X4) HIV-1 strain 

NL4.3 and exposed to various concentrations of the test compound. After the MT-4 cells 

were allowed to proliferate for 5 days, the number of viable cells was quantified by a 

tetrazolium-based colorimetric method as described by Pauwels et al.27,37  

Flow cell cytometry anti-CXCR4 antibody competition studies 

Cell culture. Human leukaemia T cell lymphoblasts (Jurkat) were obtained from MRL 

(University of Hull, UK). These cells were cultured in RPMI 1640 medium treated with 

sterile filtered fetal bovine serum (FBS) (10%) and penicillin and streptomycin (100 units per 

http://pubs.rsc.org/en/content/articlehtml/2015/dt/c4dt02972k#cit26
http://pubs.rsc.org/en/content/articlehtml/2015/dt/c4dt02972k#cit27


5 mL) antibiotics. The cells cultures were maintained at 37 °C in a humidified, CO2 (5%) 

controlled atmosphere with subculturing done every 2–3 days as appropriate.  

General procedure for binding assay with 12G-5 conjugated to 

phycoerythrin 

Phycoerythrin (PE)-conjugated mouse monoclonal anti-human CXCR-4 and Mouse IgG2A 

isotype control-PE were purchased from R&D systems Europe, Abingdon, UK.  

Cells are harvested at about 75% confluency, centrifuged, resuspended in 10 mL PBS and 

centrifuged again. Cells are kept on ice to prevent receptor internalisation. Cells are 

resuspended in 1.0 mL of PBS/0.25% BSA/0.01 M NaN3 and viable cells are counted using 

trypan-blue exclusion test. Cells at a density of 1–2 × 105 cells were aliquoted into 

polypropylene FACS tubes and preincubated with 20 μM of the compound (10 μL in 18.2 

mΩ water) for one hour at 4 °C. A high concentration of compound was used to ensure 

saturation of the receptors. Thereafter, cells were washed with 1 mL of the buffer 

(PBS/0.25% BSA/0.01 M NaN3) to remove the excess of compound that did not bind to the 

cells’ receptors. Cells were then incubated with the 12G-5 mAb conjugated to phycoerythrin 

for a further 60 min. The cells were washed with 1 mL of the buffer and put in suspension in 

300 μL of the buffer. Negative control was performed using the same protocol without the 

preincubation step. The binding of our compound was analysed by flow cytometry on a 

FACScan flow cytometer (BD Biosciences Europe, Erembodegem, Belgium) using the 

following FL channel FL-2 575/26 nm (PE/PI). 

The potency of compounds is reported as a concentration required to inhibit a specified 

amount (%) of the mABs. The Mean Fluorescent Intensity (MFI) was used as a measure of 

binding and a quantitative way of calculating the inhibition percentage of mAb. 
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