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Abstract 

We use density functional theory in the generalized gradient approximation to study the 

adsorption of imidazole on the Au(111) surface and account for dispersion effect using Grimme’s 

empirical dispersion correction technique. Our results show that the adsorption energy of imidazole 

depends on the slab size and on the adsorption site. In agreement with other studies, we find the 

largest adsorption energy for imidazole on a top site of Au(111). However, we also note that the 

adsorption energy at other sites is substantial. 
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1. Introduction

In the present study, we investigate the interaction between imidazole and the Au(111) surface.

This surface is often used in experimental investigations as it is easy to prepare and clean using 

standard annealing methods and sputtering techniques (see ref.1 for example), making it an ideal 

prototype metal substrate. The interaction of imidazole building blocks with metal surfaces is also 

of particular interest to the zeolite community as there has been a growing trend in coupling porous 

materials, such as zeolitic imidazolate frameworks (ZIFs), with metallic supports to create a new 

type of functional materials.2,3 These meta-materials are developed to improve on the current 

properties of ZIFs for gas separation,4,5 gas storage6 and catalysis.7 

In this paper, we explore the applicability of two slab models for the Au(111) surface and 

investigate the adsorption of an imidazole molecule using periodic density functional theory (DFT) 

in the Gaussian plane wave pseudo potential formalism. More specifically, we assess the impact of 

large unit cells to evaluate the effectiveness of  Γ-point only calculations for metal surfaces, as those 
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are often seen in the literature for a number of periodic DFT programs. Increasing the unit cell is a 

computationally more expensive alternative to the use of k-points but offers a simple conceptual 

approach that can be applied to any periodic code. We also investigate the adsorbate image 

interaction effect that is often pervasive in all periodic DFT adsorption calculations but that is 

traditionally neglected in most studies. 

Finally, even though pure DFT calculations have greatly contributed to understanding interaction 

between adsorbate molecule and surfaces, it is vital to include dispersion effects in order to take 

into account the weak forces at play that can prove to be significant. In this study we choose to use 

Grimme’s latest empirical dispersion correction scheme (DFT-D3),8 as implemented in the 

CP2K/Quickstep module.9 

This paper is organised as follows: we describe the details of our computational approach in 

section 2 and present our results in section 3. This section is divided in three parts: section 3.1 

discusses our two models for the Au(111) surface, section 3.2 reports our DFT and DFT-D3 

calculations for adsorbed imidazole on Au(111) and section 3.3 shows an analysis of the charge 

density difference between imidazole and the surface. We present our conclusions in section 4. 

2. Computational methods

Calculations are performed using the QUICKSTEP module9 tightly integrated in the CP2K

program package.10 The QUICKSTEP module is a very efficient implementation of density 

functional theory (DFT)11,12 using a hybrid Gaussian and plane wave method (GPW).13 This 

implementation allows an efficient treatment of electrostatic interaction and leads to a linear scaling 

of the computational time for the total energy with respect to system size. QUICKSTEP uses 

Geodecker–Teter–Hutter (GTH)14 relativitic pseudo potentials, which provide a compact and 

efficient description of the core electrons. The GTH pseudo potentials are	generated	using		fully	

relativistic	all-electron	calculations	for	each	atom.	

Otherwise, we use the generalized gradient approximation (GGA) to treat exchange-correlation 

effects in the form of the Perdew–Burke–Ernzerhof (PBE) functional.15 For each atom, we use the 

TZV2P-MOLOPT-GTH16 basis set, except for Au where we use the DZVP-MOLOPT-GTH16 basis 

set. We use the orbital transformation method (OT)17 to minimise the total ground state energy. All 

calculations were performed at the Γ -point of the Brillouin zone. The two-dimensional periodic 

boundary conditions are applied in two directions x and y (i.e., no periodicity along z direction). The 

BFGS optimisation method has been used for all the calculations with an energy convergence 
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criterion of 10-7 Hartree and a largest force allowed upon geometrical relaxation of 4.5 10-6 

Bohr/Hartree. 

Furthermore, to improve the description of long-range dispersion interactions, we use an empirical 

vdW correction of the DFT energy as suggested by Grimme8 in his revised DFT-D3 approach. 

Using this dispersion correction, the total energy is obtained as a sum of the self-consistent Kohn-

Sham total energy, , and the dispersion correction expressed as a sum of two- and three-

body energies, , therefore: 

 

Note that the correction depends primarily on the inter-nuclear distance between all atom pairs in 

the system. 

3. Results and discussion 

3.1. Au(111) surface models 

Our two model surfaces are based on a unit cell of three (111) layers (12 Au atoms per layer) 

with a vacuum of five layers along the z-axis; the uppermost layer is allowed to relax in the 

calculation, but the lower two layers are kept fixed. M. Mavrikakis et a.l18 have investigated 

particle-size-dependent gold reactivity and found that the adsorption energy of small molecules (O 

and CO) does not depend on the number of Au layers if there are more than two layers present in 

the simulation. 

The lattice constant used to generate our model is that calculated at the PBE/PAW Level of 

theory by Dal Corso,19 a0 = 4.1628 Å. 

 
Fig. 1 Top and side view of our Au(111) surface model. Yellow, tan and silver colour represent the top, 

second and third Au(111) layer, respectively. 

Fig.1, show the initial geometry that has been chosen for the smaller Au(111) surface model: A 

slab of three layers with 12 Au atoms per layer. Careful testing of the effect of the density cut off 

energy on the total energy is shown in Fig.2. We find that 500 Ry is suitably close to convergence 
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for our calculation of the Au(111) surface while keeping the computational cost manageable. Note 

that this is also valid for our larger 30 atoms/layer model. 

	
Fig. 2 Energy per atom of our Au(111) surface models as a function of the density cut off energy.  Blue and 

green colour represent the Au(111) small surface of model 12 atoms/ layer and  the Au(111) larger surface 

model  of 30 atoms/layer respectively.  

Using Dal Corso’s lattice constant, we compute an ideal bulk inter-atomic distance ( ) of 

2.95 Å since for a cubic closed packed lattice we have:   

The geometry optimisation of the initial geometry of the Au(111) model surface results in a 

planar zigzag arrangement of gold atoms in the relaxed layer, as can be seen from Fig.3. This bond 

alternation effect is likely caused by symmetry breaking20 and lack of k-point sampling. 
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Fig. 3 Au–Au bond length and Au–Au–Au angles for the relaxed top layer of our Au(111) surface model. 

Yellow, tan and silver colour represent the top, second and third layer, respectively.  

In order to reduce any intrinsic surface stress observed in the relaxed layer of our initial Au(111) 

surface model, we create a  supercell (increasing xy directions only) which generates a 

slab model with 30 atoms per layer. This second surface model is shown in Fig.4. 

 
Fig.4 Optimised geometry of the second Au(111) surface model with 30 atoms per layer. Note that only the 

top layer is relaxed while the other two layers are kept fixed. 

The extended  surface model is more regular and does not present any significant bond 

length alternation, unlike the smaller surface model (see Fig. 3 and Fig. 4). We observe that moving 

from a 12 atoms/layer model to a 30 atoms/layer model enables the top layer to relax to a regular 

array of Au atoms with consistent inter-atomic distances that are in good agreement with what 

would be expected from the computed bulk lattice constant. Thus increasing the number of atoms 

leads to a much more suitable Au surface model, despite performing Γ-point only calculations. 

3.2. Adsorbed imidazole molecule on the Au(111) surface 

 We investigate the suitability of each Au(111) surface model for describing interactions with 

adsorbents by considering the adsorption energy of the imidazole molecule. This is also of 

importance for catalysis, as for surface reactions there is usually a close correlation between binding 

energies and activation energies.21,22 For the imidazole molecule, the lone pair of the deprotonated 

nitrogen atom that is not involved in the aromatic system is the most reactive site23,24 and thus the 

most likely site to bind to Au. 

 After optimising the imidazole/Au(111) interface (both adsorbate and first Au layer), we obtain 

an N–Au distance of 2.30 Å for the smaller Au(111) surface model (12 atoms/layer) shown in Fig.5. 
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This distance is in agreement with the results obtained by Iori et al.25 (dN–Au = 2.30 Å) who used a 

similar 12 atoms/layer model along with the PBE exchange–correlation functional, ultra-soft pseudo 

potentials and 4x4x1 k-point sampling. We note that, in our model, the Au atom interacting with 

imidazole moves out of plane from its initial position by 0.05 Å.		

	
Fig.5 Top and sides views of the optimised geometry of imidazole/Au(111) for the smaller 12 atoms/layer 

model: the N atom is above a top site of the 111 surface and is one-fold coordinated. 

We then perform a similar optimisation for imidazole adsorbed on the larger Au(111) surface 

model (30 Au atoms/layer) and obtain again an N–Au distance of 2.30 Å, in perfect agreement with 

the smaller surface model and Iori et al..25 However, this time the Au atom interacting directly with 

imidazole only slightly displaced out of plane (0.02 Å) for the larger surface model. The resulting 

adsorption geometry is shown in Fig.6.  

For both surface models, the N–Au distance is slightly longer than the sum of the corresponding 

covalent radii, ,26 and considerably shorter than the sum of the 

van der Waals radii, .27 

	

Fig.6 Top and side views of the optimised geometry of imidazole/Au(111) for the larger 30 atoms/layer 

surface model: the N atom is above a top site of the 111 surface and is one-fold coordinated. 
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We compute the adsorption energy, Eads, for the imidazole molecule (Im) on the Au(111) surface 

as follows: 

Eads = EIm@Au(111) – EIm – EAu(111) 

where EIm@Au(111) is the total energy for the optimised adsorbed imidazole molecule on the relaxed 

Au(111) surface model, EIm is the total energy of the optimised isolated imidazole and EAu(111) is the 

total energy of the optimised clean Au(111) surface. We obtain an adsorption energy of –

71.59 kJ mol–1 and –73.98 kJ mol–1 for the small and large slab model, respectively. Our adsorption 

energies are about twice as large as the value computed by Iori et al.25 (–45.6 kJ mol–1) but the latter 

was computed without accounting for relaxation of the isolated systems. Another difference is that 

Iori et al. did not impose any constraints on the position of the Au atoms in the layers during 

optimisation, however is usually recommended that at least one layer is kept frozen to maintain bulk 

structure (see for example the method outlined in ref.28). Finally, it is also worth noting that our 

calculations use an atom-centerer basis set which could also lead to basis set superposition error 

(BSSE) in the calculation of adsorption energy. However, the basis set we used (MOLOPT-GTH16) 

is designed to limit the extent of BSSE but yet does not completely remove BSSE contributions in 

the computed adsorption energy. This could also explain our larger adsorption values compared to 

those determined using a plane-wave technique, for example.  

As an alternative point of comparison, Kovacevic and Kokalj28 computed an adsorption energy of 

similar magnitude (–66.57 kJ mol–1) for imidazole adsorbed on Cu(111) using the PBE exchange–

correlation functional, ultra-soft pseudo potentials and a plane waves basis set with 30 Ry cut off 

energy. While adsorption on a Cu(111) surface does not behave identically to an Au(111) surface, it 

has been shown that adsorption energy on both surfaces is similar for benzene at the dispersion 

corrected DFT level of theory.29 

We also observe that the adsorption energy determined using the 30 atoms/layer slab model is 

slightly larger than that determined using the 12 atoms/layer model. One interesting point is that the 

orientation of the adsorbed imidazole molecule changes with the size of the slab model. This is 

apparent if we compare Fig. 5 to Fig. 6, as the imidazole molecule is at a –45˚ tilt with respect to the 

a cell vector for the 12 atoms/layer slab model but is parallel with the a cell vector for the larger 30 

atoms/layer model. This change of orientation is likely due to lateral dipole-dipole interactions 

caused by the large dipole moment of the imidazole molecule. This type of interactions is very 

effective at long-range and can influence nearest neighbours over several Angstroms.28 To illustrate 

the close proximity of imidazole images in connection with this point, we show in Fig.7 the electron 

density of the system using two different isosurface values. We see that for an isovalue of 0.025 e Å–

3 both slab models exhibit a similar density distribution around the imidazole molecule apart from 
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the –45˚ tilt mentioned earlier for the small slab model. When we decrease the value of the 

isosurface to 10–5 e Å–3, we notice that the electron density of the imidazole molecule adsorbed on 

the small slab model is perturbed/influenced by the presence of its image in the neighbouring cells. 

This is evidenced by the “open” isosurface (see Fig. 7 bottom left) that indicate that there is a small 

degree of sharing of the adsorbed imidazole molecule with its own image in the next cell. This is 

not the case for the large model (see Fig. 7 bottom right) where the density isosurface of adsorbed 

imidazole molecule completely covers the molecule, thus indicating that there is less image-induced 

perturbations in this system. This observation correlates with our earlier remark regarding the long-

range dipole interactions that could influence adsorbate orientation for small slab models. 

 
Fig.7 Electronic density of imidazole molecule on top-site of both Au(111) slab models. Smaller slab model 

(12 atoms/layer) on the left and larger slab model (30 atoms/layer) on the right. The upper panel shows the 

density for an isovalue of 0.025 e Å–3 and the lower panel an isovalue of 10–5 e Å–3 

In order to assess the site preference of imidazole on Au(111) and the influence of the size of the 

slab model on energetic ordering, we optimise the structure of imidazole/Au(111) with starting 

geometries at various the possible adsorption sites on the Au(111) surface, namely: top, bridge, 

FCC and HCP sites (se also Fig.8). 
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Fig.8 Top view of four low energy adsorption sites of the Au(111) surface. 

 To aid the convergence of the geometry optimisation, the deprotonated nitrogen atom of the 

imidazole molecule is only allowed to move perpendicularly to the Au(111) surface (z direction 

only) while its x and y positions are fixed to be above top, bridge, FCC and HCP sites in turn. Our 

adsorption energies for both slab models are shown in the first two lines of Table 1. 

  Adsorption energy [kJ mol–1] 

Method Surface Model Top Bridge FCC HCP 

PBE 
12 Au/layer –71.60 –42.64 –35.45 –37.04 

30 Au/layer –73.97 –43.42 –36.79 –37.73 

PBE-D3 
12 Au/layer –112.42 –85.84 –74.35 –76.75 

30 Au/layer –117.04 –84.92 –74.16 –76.94 

 
Table 1 Adsorption energy of imidazole at top, bridge, FCC, and HCP sites on the Au(111) surface. The 

calculations use a small (12 atoms/layer) and a large (30 atoms/layers) surface model along with the PBE 

exchange–correlation functional without or with dispersion corrections (PBE-D3). 

We see that, for the pure PBE functional, the top site has the largest adsorption energy (–73.97 

kJ mol –1) and the larger surface model is slightly more binding than the small surface model. This 

trend is maintained for the other adsorption sites despite their binding energies being about half that 

of the top site. The energetic ordering of the adsorption sites is top > bridge > HCP > FCC for both 

small and large models. The slight increase of adsorption energy with the number of Au atoms in 

each layer is in agreement with the results found by Kovacevic and Kokalj,28 who studied the 

influence of dipole-dipole interaction of several azoles on Cu(111) and Al(111) surfaces. Indeed, 

they report that the adsorption energy of imidazole is a function of the nearest neighbour distance 

and that their computed adsorption energy becomes more negative as this distance increases. 

As mentioned earlier, long-range interactions play an important role in the adsorption energetics 

of the imidazole molecule on the Au(111) surface and thus an appropriate treatment of van der 

Waals forces is necessary for a correct description of adsorption. The DFT-D3 dispersion correction 

method8 is currently one of the most popular techniques to account for weak interactions in 

molecular systems due to its negligible computational cost, reliability and accuracy. 
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Thus, we re-optimised the structure of imidazole/Au(111) for each adsorption site using PBE-D3 

and the resulting adsorption energies are shown on the last two lines of Table 1. We note that 

dispersion corrections slightly alters the equilibrium distance between imidazole and the Au(111) 

surface for both small and large models. The N–Au distance for the top site shrinks from 2.30 Å to 

2.26 Å when using empirical corrections.  

However, the dispersion corrections have a much larger impact on the adsorption energies, as 

can be seen in Table 1. For both slab models, the magnitude of adsorption energy increases up to 

twofold for some sites (bridge, FCC and HCP). The top site remains the lowest energy adsorption 

site and the energetic ordering of the sites is preserved (top > bridge > HCP > FCC) for both slab 

models. This is in agreement with most previous theoretical studies.30-31We also note that going 

from a small slab model to a large model does influence the adsorption energy as was the case 

previously, but without the same consistent trend. As can be seen from Table 1, the top and HCP 

sites have larger adsorption energies while the bridge and FCC sites have slightly smaller 

adsorption energies for the large slab model. However, these remain small relative changes in all 

cases. 

In a recent publication, Wright et al.32 computed a reference adsorption energy for imidazole 

adsorbed on a top site of Au(111) of –54.1 kJ mol–1 and a distance dN–Au = 2.51 Å using a 

dispersion-corrected functional (vdW-DF/revPBE), a plane waves basis set (25 Ry cut off) and 

ultra-soft pseudo potentials. The authors have noted that vdW-DFT does tend to overestimate 

equilibrium separations, which seem to be consistent with our calculations. However, their reported 

binding energy is roughly half the value we computed using PBE-D3, which could indicate an 

overestimation of the dispersion correction in the D3 approach. Reckien et al.33 also commented on 

noticeable overestimations of adsorption energies seen when using standard D3 corrections, and 

that three-body corrections could provide a more reliable estimate for this quantity. Unfortunately, 

this is currently beyond the scope of our present study.  

3.3. Charge density difference analysis 

In order to observe more clearly the interaction between the imidazole molecule and the Au(111) 

surface, we have calculated the charge density difference (CDD) for the imidazole molecule at 

different adsorption sites for the large Au(111) surface model (30 Au atoms/layer). The CDD is 

defined as: 

, 
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where  is the charge density of the adsorbate system; and  are the 

charge densities of the non-interacting slab and that of the adsorbate, respectively. In Fig.9 we show 

the CDD plots obtained for the four possible adsorption sites (top, bridge, FCC, HCP) where red 

and blue isosurfaces represent electron charge accumulation and depletion, respectively.  

 
Fig.9  Charge density difference plots for the imidazole molecule adsorbed on a top site (left), bridge site, 

FCC site and HCP site (right) of the large Au(111) surface model (30 Au atoms/layer). Regions of 

accumulation/depletion are marked in blue/red, respectively. Isosurface value = ± 0.006 e Å-3  

The patterns of the CDDs in Fig. 9 show two types of interactions: continuous density-rich zones 

between the N atom of imidazole and the Au surface (seen for the top site and the bridge site) and 

density-rich zones that exhibit a clear discontinuity along the N–Au axis (seen for FCC and HCP 

sites). Continuous zones are usually associated with strong directional bond formation, which is 

consistent with both top and bridge sites being stronger adsorption sites. Conversely, discontinuous 

CDDs are associated with less directional bonds that are usually weaker, again consistent with both 

FCC and HCP being less favourable adsorption sites for imidazole.  

We used the same isosurface value to compute all CDD in order to enable a fair comparison 

between each adsorption site. Interestingly, the CDD of the top site shows that imidazole has a 

strong influence on the Au(111) surface as each layer is contributing density towards the N–Au 

bond. This is less apparent for the CDDs from the other adsorption sites, and could further evidence 

the weaker bonding for the other three adsorption sites. Finally, there appears to be practically no 

change between the charge density difference plots of imidazole on the HCP site and on the FCC 

site. This might be one of the reasons why the adsorption energies on both sites are very close. 

 In summary, we can rationalise the stronger electronic interaction between the imidazole and 

Au(111) surface by analysing the CDD plots; while no significant energy difference between 

adsorbate hollow sites (FCC and HCP) can be observed. 

Conclusion 

We have studied the adsorption of an imidazole molecule at the four main adsorption sites of the 

Au(111) surface using two different surface models. We used periodic first-principles density 
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functional theory and the PBE exchange correlation functional to determine adsorption energies 

with and without dispersion corrections. We find that the adsorption energies determined using the 

large surface model do not differ much from those determined using the small surface model. 

However, we note significant qualitative differences for the adsorption geometry at the top site, 

where the small surface model shows artificial interactions between the adsorbed molecule and its 

periodic images that force the molecule to adopt an unusual –45˚ tilt. This indicates that large 

surface models should be preferred for artifact-free determination of single-molecule adsorption 

geometries. We further observe that the empirical D3 corrections nearly double the adsorption 

energy of imidazole compared to uncorrected PBE values, but that the energetic ordering of the 

sites is preserved. However, the standard D3 approach seems to overestimate adsorption energies 

compared to other van der Waals correction methods. Finally, charge density difference plots 

provide a useful analysis of bonding between imidazole and Au(111) and help rationalise the 

binding difference between the top/bridge adsorption sites and the FCC and HCP sites.  
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