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ABSTRACT 

We previously reported that high levels of tissue factor (TF) can induce cellular apoptosis 

in endothelial. In this study, TF-mediated mechanisms of induction of apoptosis were 

explored. Endothelial cells were transfected to express wild-type TF. Additionally, cells were 

transfected to express Asp253-substituted, or Ala253-substitued TF to enhance or prevent TF 

release respectively. Alternatively, cells were pre-incubated with TF-rich and TF-poor 

microvesicles. Cell proliferation, apoptosis and the expression of cyclin D1, p53, bax and p21 

were measured following activation of cells with PAR2-agonist peptide. Greatest levels of 

cell proliferation and cyclin D1 expression were observed in cells expressing wild-type or 

Asp253-substituted TF. In contrast, increased cellular apoptosis was observed in cells 

expressing Ala253-substituted TF, or cells pre-incubated with TF-rich microvesicles. The 

level of p53 protein, p53-phosphorylation at ser33, p53 nuclear localisation and 

transcriptional activity, but not p53 mRNA, were increased in cells expressing wild-type and 

Ala253-substituted TF, or in cells pre-incubated with TF-rich microvesicles. However, the 

expression of bax and p21 mRNA, and Bax protein were only increased in cells pre-

incubated with TF-rich microvesicle and in cells expressing Ala253-substituted TF. 

Inhibition of the transcriptional activity of p53 using pifithrin-α suppressed the expression of 

Bax. Finally, siRNA–mediated suppression of p38α, or inhibition using SB202190 

significantly reduced the p53 protein levels, p53 nuclear localisation and transcriptional 

activity, suppressed Bax expression and prevented cellular apoptosis. In conclusion, 

accumulation of TF within endothelial cell, or sequestered from the surrounding can induce 

cellular apoptosis through mechanisms mediated by p38, and involves the stabilisation of 

p53. 
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INTRODUCTION 

Denudation of endothelial layer occurs as a consequence of endothelial cell apoptosis and 

is often associated with chronic inflammatory diseases. The association of tissue factor (TF) 

with apoptotic vascular endothelial cells has long been established [1,2]. Moreover, the 

release of TF-containing microvesicles by activated endothelial cells has been reported in 

vitro and in vivo [3-6]. The ability of TF to initiate endothelial cell proliferation has 

previously been demonstrated [7-9]. This function appear to arise from the interaction of TF 

with integrins [9-14] resulting in the activation of proliferative signalling mechanism 

including ERK-MAPK pathway [9]. In contrast, at high concentrations of TF, this is 

accompanied with the arrest of the progression through cell cycle, leading to apoptosis [7] 

through a mechanism which involves the upregulation of the pro-apoptotic protein Bax. In 

our previous study [3] we showed that alanine-substitution of serine 253 significantly reduced 

the release of TF as endothelial cell-derived microvesicles while aspartate-substitution of this 

residue accelerated the release process. We also observed that the prevention of TF release 

within cell-derived microvesicles, either through overexpressing an alanine 253-substituted 

form of TF, or by transfection of the cells with a synthetic peptides analogues to phospho-

ser258 form of the cytoplasmic domain of TF, induced cellular apoptosis but only in 

activated endothelial cells. In addition, we recently reported the prolonged activation of p38 

MAP kinase in response to overexpression of wild-type TF in endothelial cells which was 

further enhanced by the prevention of TF release through alanine 253-substitution [15]. 

Although there is some evidence that endothelial cells may express TF in response to 

inflammatory modulators in vitro [16-18], the ability of these cells to produce TF in vivo 

remains a subject of debate [19]. Moreover, endothelial cells may acquire and recycle TF 

carried by circulating microvesicles, or store the TF moiety [19-24]. High levels of TF stores 

may then be incompatible with the physiological release of TF by endothelial cells. 
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Consequently, activation of the endothelial cells through injury or inflammation may in turn 

promote the pro-apoptotic mechanisms which manifest as endothelial dysfunction associated 

with disease conditions. Recently, there has been a number of studies which report the 

participation of procoagulant microvesicles from different sources in endothelial apoptosis 

and dysfunction [25-28] and highlight the importance of the composition of these 

microvesicles. Moreover. since TF expression is induced as a consequence of alterations in 

shear stress on endothelial cells [29], hypertensive conditions may also induce the release of 

TF-rich microvesicles leading to downstream vascular denudation [30]. The aim of the 

present study was to investigate the mechanisms linking the disruption of TF release with 

cellular apoptosis using wild-type and mutant forms of TF as tools to manipulate the release 

of TF. The level and activity of apoptotic modulators was then measured in these cells, and 

also compared to cells that were pre-incubated with microvesicles containing high and low 

levels of TF. 

MATERIAL AND METHODS 

Cell culture, DNA transfection and microvesicle isolation 

Human coronary artery endothelial cells (HCAEC) which are isolated primary 

endothelial cells from healthy bodies (individuals who suffered acute death) and without 

previous indications of chronic disease or infections, were purchased from PromoCell 

(Heidelberg, Germany). The cells were cultured in MV media containing 5% (v/v) foetal calf 

serum (FCS) and growth supplements (PromoCell). The breast cancer cell lines MDA-MB-

231 which expresses high levels of TF, and MCF-7 (both cell lines from LGC-ATCC, 

Teddington, UK) which has negligible TF expression were used throughout to obtain TF-rich 

and TF-poor microvesicles, respectively. The breast cancer cell lines were cultured in 

Dulbecco’s minimal essential medium containing 10% (v/v) FCS. The cells were adapted to 

serum-free media and the microvesicles were purified from conditioned media according to 
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established procedures [3,21]. Additional samples of microvesicles were isolated from the 

plasma of patients with cardiovascular complications and healthy plasma subjects (Innovative 

Research, Novi, USA), as previously described [31] and used in particular experiments. 

TF was introduced into the cells by two separate means. First, endothelial cells were 

incubated with TF-poor or TF-rich microvesicles (<0.05 and 14 ng/ml TF) in line with those 

representing conditions encountered in vivo [32,33], and in some cases also with patient and 

normal microvesicles. Additionally, endothelial cells were transfected to express wild type 

TF, or mutant forms that are either readily released or strictly retained by cells [3]. The 

pCMV-XL5-TF plasmid for the expression of full-length human TF was obtained from 

OriGene (Rockville, USA). Mutant plasmids containing aspartate and alanine substitutions at 

ser253 were as described before [3]. HCAEC were transfected with 1 µg of plasmid DNA 

using Lipofectin (Invitrogen, Paisley, UK), in order to express wild-type TF or mutant forms 

of TF [3]. This procedure permits the attainment of controllable and reproducible high and 

low levels of TF within the cells [3]. Following transfection, the cells were incubated for 48 h 

at 37°C to allow the expression of TF. The presence of TF in cells was monitored and was 

measured to be in line with those previously described for each of the two procedures [3,21]. 

HCAEC were adapted to serum-free medium (SFM) and activated by incubation with 

protease activated receptor 2-agonist peptide (PAR2-AP; 20 µM) as described before [3]. The 

expression of PAR2 and the lack of detectable TF in HCAEC was established previously 

[3,9]. The microvesicles were characterised as before [21]. Cell number was determined in 

each sample by staining with crystal violet as previously described [34,35]. 

Western blot analysis of p53, Cyclin D and Bax proteins and p53 phosphorylation 

HCAEC (2×105) were seeded out in 12-well plates and transfected to overexpress the 

wild-type or mutant forms of TF, or EGFP. Alternatively, cells were incubated with high (14 

ng/ml) or low (<0.05 ng/ml) levels of TF-containing microvesicles. Samples of cells were 
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also used untreated. In some experiments, the cells were co-transfected with p38α-siRNA or a 

control siRNA. Other sets of cells were pre-incubated with either SB202190 (100 nM), 

pifithrin-α (100 nM) or equivalent amounts of DMSO-vehicle. Cells were activated with 

PAR2-AP (20 µM) and incubated for 4 to 18 h. The cells were then lysed in Laemmeli’s 

buffer containing a protease inhibitor cocktail (Sigma Chemical Co Ltd, Poole, UK). When 

determining p53 phosphorylation levels a phosphosafe-lysis buffer was used initially (100 µl; 

Merck-Millipore, Nottingham, UK). The concentrations of total protein in the samples was 

determined using Bradford protein-estimation assay and samples (10 µg unless otherwise 

stated) were separated by 12% (w/v) SDS-PAGE. The protein bands were transferred onto 

nitrocellulose membranes and blocked with TBST (10 mM Tris-HCl pH 7.4, 150 mM NaCl, 

0.05% Tween-20). Total amount of p53 protein was determined by probing the membranes 

with a rabbit polyclonal anti-human p53 antibody (Santa Cruz Biotechnology, Heidelberg, 

Germany) diluted 1:1000 (v/v) in TBST. Phosphorylation of p53 at ser33 and ser46 were 

assessed by probing the membranes with a rabbit polyclonal anti-human p53 (phospho-ser33) 

antibody (Insight biotechnology, Middlesex, UK) diluted 1:1000 (v/v) in TBST, or a rabbit 

polyclonal anti-human p53 (phospho-ser46) antibody (New England Biolabs, Hertfordshire, 

UK) diluted 1:1000 (v/v) in TBST. To avoid discrepancies due to the amount of total p53 in 

the samples, in these experiments excess amounts were loaded onto the gels. The membranes 

were then washed with TBST and probed with a goat anti-rabbit alkaline phosphatase-

conjugated antibody (Santa Cruz Biotechnology) diluted 1:1000 (v/v), incubated for 90 min. 

The TF bands were then visualised using the Western Blue stabilised alkaline phosphatase-

substrate (Promega Corp. Southampton, UK) and recorded. To analyse the level of Bax and 

cyclin D1 proteins, the membranes were probed with a mouse monoclonal anti-human Bax 

antibody (2D2; Santa Cruz Biotechnology) diluted 1:1000 (v/v) in TBST, or a mouse 

monoclonal anti-human cyclin D1 (DCS6; New England Biolabs) diluted 1:1000 (v/v) in 
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TBST. The membranes were then washed with TBST and probed with a goat anti-mouse 

alkaline phosphatase-conjugated antibody (Santa Cruz Biotechnology) diluted 1:1000 (v/v) 

and incubated for 90 min. The bands were then visualised using the Western Blue stabilised 

alkaline phosphatase-substrate (Promega) and recorded. As loading controls, the level of 

GAPDH was measured using a goat anti-human GAPDH antibody (V-18; Santa Cruz) 

followed by a donkey anti-goat alkaline phosphatase-conjugated antibody (Santa Cruz 

Biotechnology) diluted 1:1000 (v/v) and incubated for 90 min. The TF bands were then 

visualised using the Western Blue stabilised alkaline phosphatase-substrate and recorded. 

Inhibition of p38 kinase activity, p53 transcriptional activity, and siRNA-mediated 

knockdown of p38α 

In some experiments, the cells were pre-incubated for 30 min with a specific p38 

inhibitor SB202190 (100 nM) to inhibit the activity of p38. The inhibition of p38 was 

previously optimised by measuring the phosphorylation of ATF2 [15]. To suppress the 

expression of p38α, HCAEC were transfected with p38α-specific siRNA or a control siRNA 

(Santa Cruz Biotechnology) using Lipofectin (Life Technologies, Paisley, UK). The p38α-

specific siRNA consisted of a pool of 4 target-specific 19-25 nt siRNAs designed to knock 

down gene expression and the optimal concentration of siRNA (45 nM) and the time-point of 

maximal silencing (48 h) were optimised previously [15]. In some experiments, cells were 

co-transfected with pCMV-XL5-TF, pCMV-XL5-TFAsp253, pCMV-XL5-TFAla253 or pCMV-

EGFP, together with either p38α-siRNA or control-siRNA. To measure the transcriptional 

activity of p53, cells were co-transfected with 1 µg of Pathdetect p53-Luc cis-reporting 

plasmid (Agilent Technologies, Wokingham, UK), together with TF or EGFP expressing 

plasmids as above, and incubated for 48 h to permit TF/EGFP protein expression. The cells 

were then adapted to serum-free medium and activated with PAR2-AP (20 µM) together with 

one untreated set. The cells were harvested at 8 h, washed and lysed and the luciferase 



 9 

activity measured using the luciferase measurement system (Promega) as described before 

[36]. The readings were expressed as compared to a positive control treated with TNFα (10 

µg/ml) in each case. In order to suppress the transcriptional activation of p53-responsive 

genes [37] without influencing non-p53 dependent apoptosis [38,39], the cells were pre-

incubated with pifithrin-α (1-(4-Methylphenyl)-2-(4,5,6,7-tetra-hydro-2-imino-3(2H)-

benzothiazolyl)ethanone hydrobromide) (100 nM; R&D Systems Europe Ltd., Abingdon, 

UK) for 30 min prior to activation. The effective concentration of pifithrin-α was optimised 

prior to the experiments, by incubating HCAEC with a range of concentrations of pifithrin-α 

(0-200 nM) prior to activation using TNFα and measuring the expression of bax protein at 4 h 

post-activation (Supplemental Fig. I). 

Quantification of TF mRNA expression by quantitative real-time RT-PCR 

Total RNA was isolated from HCAEC (2×105) using the TRI-reagent system (Sigma). 

Real-time RT-PCR was carried out in triplicates using 100 ng of total RNA from each sample 

using primer sets designed to amplify p53, cyclin D1, bax, p21 and β-actin mRNA. The 

amounts of TF mRNA were measured by real-time RT-PCR and the ratios compared to the 

untreated or control samples, calculated using the 2-ΔΔCT method [40]. The reaction was 

carried out at an annealing temperature of 60°C using the GoTaq® 1-Step RT-qPCR System 

(Promega) on an iCycler thermal cycler (Bio-Rad, Hemel Hempstead, UK). The primers used 

were: 

p53-forward: 5'-GTTCCGAGAGCTGAATGAGG-3' 

p53-reverse: 5'-TTATGGCGGGAGGTAGACTG-3' 

cyclin D1-forward: 5'-CCGTCCATGCGGAAGATC-3' 

cyclin D1-reverse: 5'-ATGGCCAGCGGGAAGAC-3' 

bax-forward: 5'-CCATCATGGGCTGGACATTGG-3' 

bax-reverse: 5'-AGCACTCCCGCCACAAAGATG-3' 
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p21-forward: 5'-GGAAGACCATGTGGACCTGT-3' 

p21-reverse: 5'-GGCGTTTGGAGTGGTAGAAA-3' 

β-actin-forward: 5'-TGATGGTGGGCATGGGTCAGA-3' 

β-actin-reverse: 5'-GTCGTCCCAGTTGGTGACGAT-3' 

Analysis of p53 nuclear localisation by confocal microscopy 

HCAEC (3×104) were seeded out into glass 35 mm base dishes and transfected to 

overexpress the wild-type or mutant forms of TF, or alternatively EGFP. Samples of cells 

were also used untransfected. In some experiments, the cells were co-transfected with p38α-

siRNA or a control siRNA as above. Other sets of cells were pre-incubated with either 

SB202190 (100 nM) or equivalent amounts of DMSO-vehicle. Cells were activated with 

PAR2-AP (20 µM) and incubated for 6 or 18 h. The cells were then washed three times with 

PBS (2 ml), fixed with 3 % (v/v) formaldehyde for 30 min, permeabilised using 0.2 % (w/v) 

Triton X-100 for 4 min and blocked with 5 % (v/v) donkey serum (Sigma) for 30 min. The 

cells were labelled with a rabbit polyclonal anti-human p53 antibody diluted 1:200 (v/v) in 

PBS (Santa Cruz Biotechnology) for 2 h at room temperature and then washed a further three 

times with PBS (2 ml). The cells were then probed with a NorthernLights donkey anti-rabbit 

IgG-NL637 (R&D system) diluted 1:200 (v/v) in PBS. After three further washes with PBS 

the nuclei were then labelled by incubation with DAPI (2 µg/ml) (Sigma) for 15 min. All 

samples were analysed by confocal microscopy at room temperature using a Zeiss LSM 710 

confocal microscope with a ×20 objective and images were acquired using the ZEN software 

(Carl Zeiss Ltd, Welwyn Garden City, UK). Co-localisation coefficients were determined 

using the ImagePro Plus software (Media Cybernetics, Bethesda, USA). In some cases the 

change in nuclear localisation was determined by subtracting the coefficients of the samples 

from that of the untreated sample. 
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Measurement of cell apoptosis 

HCAEC (3×104) were seeded out into glass base 35 mm dishes and transfected to 

overexpress the wild-type or mutant forms of TF. Alternatively, cells were incubated with 

high (14 ng/ml) or low (<0.05 ng/ml) levels of TF-containing microvesicles for 90 min to 

permit uptake, as previously described [21]. Other cell samples were also pre-incubated with 

microvesicles from patient and normal plasma. The cells were then adapted to SFM and 

stimulated with PAR2-AP (20 µM) for up to 18 h. The cells were fixed using 4% (v/v) 

formaldehyde and measured using the DeadEnd fluorescence-based TUNEL assay (Promega) 

and analysed by confocal microscopy at room temperature using a Zeiss LSM 710 confocal 

microscope with a ×20 objective as above. Due to the fragility of the apoptotic cells flow 

cytometric quantification was not possible using this technique. Therefore the level of cell 

apoptosis (5×104 cells in 48-well plates) was quantified directly using the TiterTACS™ 

Colorimetric Apoptosis Detection Kit (AMS Biotechnology Ltd., Abingdon, UK) according 

to the manufacturers instructions. Other methods of analysis of apoptosis, including 

measurements of caspase activity and annexin V exposure were not used, since both these 

events occur when cells are activated and therefore these procedures do not distinguish 

between cell activation which occurs in response to PAR2 induction, and cellular apoptosis. 

Statistical analysis 

All data represent the calculated mean values from the number of experiments stated in 

each figure legend ± the calculated standard error of the mean. Statistical analysis was carried 

out using the Statistical Package for the Social Sciences (SPSS Inc. Chicago, USA). One-

Way ANOVA procedure was used for the analysis of variance of data against the control 

with Tukey's honestly significant difference test to highlight statistically significant 

differences. 
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RESULTS 

Sets of human coronary artery endothelial cells (HCAEC) were transfected to 

overexpress TFWt, TFAsp253, TFAla253 or EGFP and the level of expression compared and 

characterised as before [3]. These cells were compared to untransfected cells in particular 

experiments and are stated throughout. Alternatively cells were pre-incubated with TF-rich or 

TF-poor microvesicles for 90 min, to permit accumulation of TF [21]. Unless otherwise 

stated, no differences between cells expressing EGFP and untransfected cells were detectable. 

Similarly, cells pre-incubated with TF-poor microvesicles and untreated cells exhibited 

identical measurable properties. Prior to the study, the effective concentration of pifithrin-α 

and time-points of maximal cyclin D1 expression and maximal p53 levels were optimised 

(Supplemental Figs. I-III). In agreement with other published data [41,42], no de novo 

expression of TF was detected following the activation of cells for the duration of these 

experiments, although induction of TF at later time-points has been reported [43]. 

PAR2-activation of cells overexpressing TF leads to cyclin D1 upregulation and cell 

proliferation 

Activation of cells with PAR2-AP resulted in increased cell proliferation rate 

(approximately 11% within 24 h) in cells expressing TFWt, TFAsp253 and to a lower extent in 

EGFP-expressing cells compared to non-activated cells (Fig. 1A). In contrast, a small 

reduction in cell proliferation was observed in TFAla253-expressing cells. Semi-quantitative 

analysis [40] of cyclin D1 mRNA showed maximal expression to be at 8 h post-induction 

with PAR2-AP (Supplemental Fig. II). Semi-quantitative RT-PCR analysis showed increases 

in cyclin D1 mRNA in cells expressing TFWt, TFAsp253 at 8 h post-activation compared to 

non-activated cells but less in cells expressing TFAla253 (Fig. 1B). This was also reflected in 

increased Cyclin D protein levels in cells expressing TFWt and TFAsp253 (Figs. 1C&D). 

Interestingly, although activation of cell expressing TFAla253 induced the upregulation of 
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cyclin D1 mRNA expression, this did not lead to increased expression of Cyclin D protein, or 

cell proliferation. 

Activation of PAR2 in cells overexpressing TFAla253, or cells pre-incubated with TF-rich 

microvesicles induces cellular apoptosis through increased p53 activity and Bax 

expression 

In order to assess the rate of cell apoptosis, cells were transfected to overexpress TFWt, 

TFAsp253, TFAla253 or EGFP 48 h prior to testing. Alternatively, cells were incubated with 

microvesicles containing high levels of TF or deficient in TF. Following activation with 

PAR2-AP, DNA fragmentation was measured using two different TUNEL-based apoptosis 

assays, at 24 h post-activation. Due to fragility of the apoptotic cells quantification using flow 

cytometry, was not feasible at this point. Therefore, qualitative analysis carried out using a 

fluorescence-based TUNEL assay indicated increased levels of DNA fragmentation in cells 

expressing TFAla253 (Fig. 2A). Furthermore, these alterations were confirmed using a 

quantitative TUNEL assay based on HRP-end labelling, and also shown in cells incubated 

with TF-rich or patient-derived microvesicles (Figs. 2B&C). The differences between the 

rates of apoptosis, in cells transfected to express EGFP and untransfected cells, or any of the 

non-activated cells were not significant. Other methods of analysis of apoptosis, including 

measurements of caspase activity and annexin V exposure were not used since these 

procedures do not distinguish between cell activation which occurs in response to PAR2 

induction, and cellular apoptosis. 

To examine the mechanism of the induction of cell apoptosis, the levels of p53 mRNA 

and protein, the phosphorylation of p53 at ser33 and ser46, and the nuclear localisation of the 

p53 were analysed. Prior to the experiments, maximal protein level of p53, in response to 

TNFα (2 µg/ml) was determined to be attained at around 4 h (Supplemental Fig. III). Semi-
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quantitative RT-PCR analysis of p53 mRNA levels showed no significant change at 4 h post-

activation of cells with PAR2-AP (Fig. 3A) or at any time prior to this (not shown). 

Furthermore, no significant difference between any of the activated-transfected cell samples 

was detected (Fig. 3B). In contrast, western blot analysis of p53 protein indicated 

significantly higher levels of p53 protein at 4 h post-activation, in cells expressing TFWt, 

TFAsp253 and particularly TFAla253 (Figs. 3C&D). Similarly, pre-incubation of cells with TF-

rich microvesicles resulted in increased levels of p53 while pre-incubation with TF-poor 

microvesicles did not have any significant influence (Figs. 3E&F). Western blot analysis of 

the phosphorylation state of p53 was carried out using excess amounts of sample to overcome 

differences in protein quantities and showed increased p53-phosphorylation at ser33, in cells 

overexpressing TFAla253, and to a lesser extend in cells expressing TFWt, following activation 

(Figs. 4A&B) but phosphorylation of ser46 was barely detectable in any of the samples 

(Supplemental Fig. IV). In addition, pre-incubation of cells with TF-rich microvesicles 

resulted in increased phosphorylation of p53 at ser33, while pre-incubation with TF-poor 

microvesicles did not have any significant influence (Figs. 4C&D). Furthermore, analysis of 

the nuclear localisation of p53 using confocal microscopy indicated the accumulation of p53 

within the nucleus, in cells overexpressing TFWt and TFAla253 following activation of PAR2 

(Fig. 4E & Fig. 5). Finally, analysis of the p53-mediated expression using a luciferase-

reporter vector demonstrated enhanced transcriptional activity of p53, in cells overexpressing 

TFAla253 following activation of PAR2 (Fig. 4F). As a more representative indicator, the pre-

incubation of cells with patient-derived microvesicles, but not normal plasma microvesicles 

also resulted in increased phosphorylation of serine 33 on p53 (Figs. 4G&H). 

Activation of PAR2 in cells transfected to overexpress TFAla253, or cells pre-incubated 

with TF-rich microvesicles resulted in the upregulation of both bax mRNA at 4 h post-

activation (Figs. 6A&B). Furthermore, the expression of Bax protein was increased in at 18 h 
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post-activation in cells transfected to overexpress TFAla253 (Figs. 6C&D), cells pre-incubated 

with TF-rich microvesicles (Figs. 6E&F), or cells pre-incubated with patient-derived 

microvesicles (Figs. 6G&H). The expression of p21 mRNA was also increased in cells 

expressing TFAla253 at 4 h post-activation (Fig. 6I). Moreover, pre-incubation of the cells with 

an inhibitor of the transcriptional activity of p53 (pifithrin-α) suppressed the upregulation of 

bax mRNA (Fig. 7A) and prevented apoptosis in PAR2-AP activated cells, expressing 

TFAla253 (Fig. 7B). Pifithrin-α is known to prevent cell apoptosis specifically through 

inhibiting the transcriptional activity of p53 [37] and without affecting other mechanisms 

involved in apoptosis [38,39]. 

Inhibition of p38 suppress the induction of apoptosis in cell overexpressing TFAla253 

HCAEC were transfected to overexpress TFWt, TFAla253 or EGFP, together with a 

specific siRNA to suppress p38α or a control siRNA. Alternatively, the cells were pre-

incubated with SB202190 (100 nM) to specifically inhibit p38 activity [15]. The cells were 

activated with PAR2-AP as before. Inhibition of p38 significantly reduced cellular apoptosis 

in cells expressing TFAla253 while restoring the level of apoptosis in cells expressing TFWt 

(Fig. 8A). siRNA-mediated suppression of p38α expression in cells expressing TFWt, TFAla253 

or EGFP significantly reduced the amount of p53 protein compared similar samples co-

transfected with the control siRNA (Fig. 8B). Measurement of p53 phosphorylation by 

western blot analysis also showed the reduction in the phosphorylation of ser33 in cells 

expressing TFAla253 (Figs. 8C&D) which was also achievable by inhibition of p38 using 

SB202190 (Fig. 4F). These were accompanied with lower nuclear localisation (Fig. 5 & Fig. 

8E) and p53 transcriptional activity in TFAla253-expressing cells (Fig. 8F). Finally the 

expression of Cyclin D in cell samples expressing TFAla253 increased following suppression 

of p38α (Figs. 8G&H). 
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DISCUSSION 

We previously showed that while incubation of endothelial cells [7,9] and cardiomyocyte 

cell line H9c2 [44] with moderate amounts of recombinant or microvesicle-derived TF results 

in cell proliferation, higher concentrations of TF, representative of those observed in severe 

disease can cause cellular apoptosis [7,44]. In addition, it has been reported that the 

prolonged exposure of HUVEC to microvesicles obtained from activated THP-1 cells can 

result in apoptosis [45]. Our previous data indicated that the disruption of TF release into 

microvesicles can also lead to increased levels of apoptosis in endothelial cells [3]. In our 

studies, the concentration of overexpressed TF was in line with, but lower than that observed 

in TNFα-treated endothelial cells and lower than in cells treated with IL-1β [3]. Therefore it 

is likely that the activated endothelial cells would be capable of releasing sufficient amounts 

of wild-type TF to prevent apoptosis. However, protein components of microvesicles may 

accumulate within endothelial cells by uptake of microvesicles [20-22]. In order to use a 

consistent model during the current study, we examined these mechanisms in cells 

overexpressing alanine 253-substituted TF which is not released by the cells, and compared 

these to cells expressing wild-type TF and aspartate 253-substituted TF. These were also 

compared to cells that were pre-incubated with TF-rich or TF-poor microvesicles [9,21]. 

Consistent with our previous data, activation of cells resulted in increased cyclin D1 

expression and entry into the cell cycle (Fig. 1). However, increased cell apoptosis was only 

observable in cells expressing TFAla253 or cells incubated with TF-rich microvesicles (Fig. 2). 

Therefore, it is plausible that the entry into cell cycle, following PAR2 activation, is 

enhanced by the presence of TF. However, the prolonged presence of TF and/or inability of 

the cell to release TF within microvesicles results in cell cycle arrest. Our previous evidence 
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suggests that the arrest of cells on incubation of cells with high concentrations of TF occurs 

within the G1-checkpoint [7]. 

One feature of PAR2 activation in TF-expressing endothelial cells is the prolonged 

phosphorylation of p38 in cells expressing TFWt which is augmented in cells expressing 

TFAla253 but is absent in cells expressing TFAsp253 [15]. In addition, we have shown that 

ser258 within the cytoplasmic domain of TF is itself a target for p38α activity [15]. p38 is 

also capable of phosphorylating ser33 and ser46 within the trans-activation domain of p53 

protein following various stress signals to the cell [46-48]. Phosphorylation of ser33 and/or 

ser46 are pre-requisite for the stabilization of p53 within the nucleus, by dissociating its 

negative regulator, Mdm2. The resultant induction of p53-mediated transcription initiates the 

upregulation of the expression of number of genes including p21 [49,50] and bax [50] which 

lead to cell cycle arrest and apoptosis, respectively. Our data showed an increase in p53 

protein but not mRNA, in cells expressing either the wild-type or mutant forms of TF (Figs. 

3A-F) suggesting that the increase was due to stabilization of p53 rather than de novo 

expression. This was concurrent with increased p38-dependent phosphorylation of p53 at 

ser33 but not ser46 in these samples (Figs. 4A-D & Figs. 8C&D). However, the regulation of 

p53 activity may differ according to cell type and the stimulus [51] and therefore, 

phosphorylation of ser33 and ser46 within p53 may occur via different mechanisms [52] and 

independent of other residues [48,53]. The phosphorylation of ser33 is mediated by p38 

[46,48] while ser46 may also be phosphorylated by protein kinase Cδ [54]. Interestingly, the 

serine-proline-leucine motif is present around both ser258 within TF (KENSPLNVS) and 

ser33 within p53 (NVLSPLPSQ) which further agrees with our finding that the 

phosphorylation of ser258 within TF is mediated by p38α [15]. However, despite the 

increased nuclear localisation of p53 in cells expressing TFWt or TFAla253, p53 transcriptional 

activity was only observed in cells expressing TFAla253 and resulted in increased expression of 
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Bax and p21 proteins in these cells, leading to cellular apoptosis. This observation alludes to 

a mechanism by which the transcriptional activity of p53 is restrained in samples able to 

release TF. The prevention of apoptosis through the downregulation of p53 activity by 

serine/threonine-phosphatases has previously been demonstrated [55,56]. Moreover, 

following the phosphorylation of ser33, the action of peptidyl-prolyl isolmerase 1 (Pin1) 

protects p53 from de-phosphorylation, acting as a delay mechanism and enhancing the 

promotion of cell apoptosis [57,58]. Interestingly, this protection does not alter the amount of 

p53 protein but preserves the transcriptional activity of p53 [59]. Such a mechanism of 

protection explains why despite the increased levels and nuclear localisation of p53 in cells 

expressing TFWt no increase in Bax or cell apoptosis was observed in these cells. 

Furthermore, due to the similarity between the sequences surrounding ser33 in p53 and 

ser258 in TF, it is likely that Pin1 also protects the phosphorylation state of TF against 

phosphatase activity. This feedback mechanism may preserve the phosphorylation state of TF 

which may in turn permit the further release of wild type TF, but not TFAla253 and is currently 

under investigation in our laboratory. The TF-mediated up-regulation of Bax and the 

induction of cell apoptosis appear to be solely dependent on the transcriptional activity of p53 

and were abrogated by pre-incubation of cells with pifithrin-α (Figs. 7A&B). Therefore, the 

mechanism of TF-induced cell apoptosis appears to be mediated through the intrinsic 

pathway of apoptosis although our previous data suggest some cross-talk to the extrinsic 

pathway of apoptosis [44]. Therefore, in agreement with our previous reports, the activity of 

p38, following PAR2 activation of TF-bearing cells, may have a bi-functional outcome 

resulting in the induction of cell proliferation, or alternatively cell apoptosis depending on the 

duration and magnitude of p38 activity. 

The activation of cells in response to injury, trauma or inflammatory mediators results in 

the release of TF as cell-derived microvesicles. At lower concentrations of TF, cells respond 
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to injury in the form of increased proliferation. However, accumulation of large amounts of 

TF through high levels of pro-inflammatory factors, or through the sequestration of 

microvesicles from the bloodstream may compromise the ability of endothelial cells to 

release TF efficiently, resulting in induction of apoptosis. In conclusion, this study has shown 

that induction of cellular apoptosis by TF is mediated through the prolonged activation of 

p38, leading to the phosphorylation of ser33 and stabilization of the transcriptional activity of 

p53, localised within the nucleus. This in turn results in the expression of Bax and induction 

of cell apoptosis. 
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Figure Legends 

Figure 1 Induction of cell proliferation and Cyclin D expression in HCAEC expressing 

TF variants. HCAEC (2×105) expressing TFWt TFAsp253, TFAla253 or EGFP were adapted to 

SFM and activated with PAR2-AP (20 µM). An untransfected/non-activated sample was 

included for comparison. A) cell numbers were determined as a percentage of control cells 

using crystal violet staining (n=3, *=p<0.05 vs untransfected/non-activated sample; 

**=p<0.05 vs activated cell sample expressing TFWt). B) Total RNA was isolated from the 

cells at 8 h post-activation and the relative amount of cyclin D1 mRNA was determined by 

RT-PCR (n=3, *=p<0.05 vs respective non-activated sample). C) The amount of Cyclin D 

protein was determined by western blot analysis and D) quantified against GAPDH (n=3, 

*=p<0.05 vs untransfected/non-activated sample). 

 

Figure 2 Analysis of cellular apoptosis in HCAEC expressing TF variants. A) HCAEC 

(3×104) were seeded out into 35 mm glass-base dishes and transfected to express TFWt 

TFAsp253, TFAla253 for 48 h, or used untransfected. The cells were adapted to SFM and 

activated with PAR2-AP (20 µM) for 18 h. The cells were then fixed, developed using the 

DeadEnd TUNEL assay and analysed by confocal microscopy with a ×20 objective. B) 

HCAEC (5×104) were seeded out into 48-well dishes and transfected to express TFWt 

TFAsp253, TFAla253 or EGFP for 48 h. The cells were adapted to SFM and activated with 

PAR2-AP (20 µM) for 18 h. The level of cell apoptosis was quantified using the 

TiterTACS™ Apoptosis Detection Kit. (n=3, *=p<0.05 vs EGFP-expressing sample). C) 

HCAEC (5×104) were seeded out into 48-well dishes and incubated with TF-rich and TF-

poor microvesicles, as well as microvesicles derived from patient and normal plasma, for 90 

min. Samples of cells were also treated with TNFα (10 ng/ml) or left untreated and used as 

positive and negative controls. The cells were adapted to SFM and activated with PAR2-AP 
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(20 µM) for 18 h. The level of cell apoptosis was quantified using the TiterTACS™ 

Apoptosis Detection Kit. (n=3, *=p<0.05 vs untreated sample). 

 

Figure 3. Analysis of the influence of expression of TF on p53 expression. HCAEC 

(2×105) expressing TFWt, TFAla253 or EGFP were adapted to SFM and activated with PAR2-

AP (20 µM). An untransfected/non-activated sample was included. Total RNA was isolated 

at 4 h post-activation and the relative amount of p53 mRNA A) in non-activated and 

activated cell samples, and B) in activated cells expressing TFWt, TFAla253 and EGFP was 

determined. C) The amount of p53 protein was analysed at 4 h post-activation by western blot 

and D) quantified against GAPDH (n=3, *=p<0.05 vs untransfected/non-treated sample). 

HCAEC (2×105) were pre-incubated with TF-rich or TF-poor microvesicles or left untreated. 

The cells were adapted to SFM and activated with PAR2-AP (20 µM). E) The amount of p53 

protein was analysed at 4 h post-activation by western blot and F) quantified against GAPDH 

(n=3, *=p<0.05 vs untreated sample). 

 

Figure 4. Analysis of the influence of expression of TF on p53 function. HCAEC (2×105) 

were transfected to express TFWt, TFAla253 or EGFP. Sets were treated with SB202190 

(100nM) or used untreated. The samples were adapted to SFM and activated with PAR2-AP 

(20 µM). Untransfected/non-activated sample were also included. A) The level of ser33-

phosphorylation in the transfected cells was measured using an anti-phosphoser33 p53 

antibody and B) normalised against the total p53 protein (n=3, *=p<0.05 vs EGFP-expressing 

sample without SB202190; **=p<0.05 vs respective untreated sample). HCAEC (2×105) 

were pre-incubated with TF-rich or TF-poor microvesicles. An untreated sample was also 

included. The samples were adapted to SFM and activated with PAR2-AP (20 µM). C) The 

level of ser33-phosphorylation in cells pre-incubated with TF-rich or TF-poor microvesicles, 
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was measured using an anti-phosphoser33 p53 antibody and D) normalised against the total 

p53 protein (n=3, *=p<0.05 vs untreated sample). E) HCAEC (3×104) were seeded out into 

glass 35 mm base dishes, transfected to express TFWt, TFAsp253, TFAla253 or EGFP. Samples 

of cells were also used untransfected. The samples were activated with PAR2-AP (20 µM). 

Additional cells were either treated with TNFα (10 ng/ml) or used untreated. The cells were 

then fixed, permeabilised and labelled with anti-human p53 antibody developed with a 

NorthernLights-donkey anti-rabbit IgG-NL637. The nuclei were then labelled with DAPI and 

analysed by confocal microscopy with a ×20 objective (Also see Fig. 5). Co-localisation 

coefficients were determined using the ImagePro Plus software and the change in localisation 

calculated (n=3, *=p<0.05 vs untransfected/non-treated sample). F) HCAEC (2×105) were 

co-transfected to express TFWt TFAsp253, TFAla253 or EGFP expressing plasmids, together with 

p53-Luc plasmid and incubated for 48 h. The cells were adapted to SFM and activated with 

PAR2-AP (20 µM). The cells were harvested 8 h, washed and luciferase activity measured as 

a percentage of the positive a sample treated with TNFα (10 µg/ml) (n=3, *=p<0.05 vs cells 

containing the reporter only; **=p<0.05 vs cell sample expressing TFWt). G) In addition, 

ser33-phosphorylation in cells pre-incubated with microvesicles derived from patient and 

normal plasma, was measured using an anti-phospho-ser33 p53 antibody and H) normalised 

against the total p53 protein (n=3, *=p<0.05 vs untreated sample). 

 

Figure 5 Analysis of nuclear localisation of p53 in activated HCAEC, expressing TF 

variants. HCAEC (3×104) were seeded out into 35 mm glass base dishes, transfected TFWt, 

TFAsp253, TFAla253 or used untransfected, and activated with PAR2-AP (20 µM). Sets of cells 

were also either treated with TNFα (10 ng/ml) or were not activated. Additionally, a set of 

cells expressing TFAla253 was incubated with SB202190 (100 nM). All cells were incubated 

for 4 h. The cells were then fixed, permeabilised and labelled with a rabbit anti-human p53 
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antibody and probed with a NorthernLights donkey anti-rabbit IgG-NL637. The nuclei were 

labelled with DAPI and analysed by confocal microscopy with a ×20 objective. 

 

Figure 6 Induction of Bax and p21 expression in HCAEC expressing TF variants or 

pre-incubated with microvesicles. A) HCAEC (2×105) expressing TFWt, TFAsp253, TFAla253 

or EGFP were adapted to SFM and activated with PAR2-AP (20 µM). An untransfected/non-

activated sample was included. Total RNA was isolated from the cells at 8 h post-activation 

and the relative amount of bax mRNA was determined by RT-PCR (n=3, *=p<0.05 vs 

untransfected/non-treated sample). B) HCAEC (2×105) were also pre-incubated with TF-rich 

or TF-poor microvesicles adapted to SFM and activated with PAR2-AP (20 µM), or used 

without activation. Total RNA was isolated from the cells at 8 h post-activation and the 

relative amount of bax mRNA was determined by RT-PCR (n=3, *=p<0.05 vs untreated 

sample). C) The amount of Bax protein in the transfected cells was determined by western 

blot analysis and D) quantified against GAPDH (n=3, *=p<0.05 vs EGFP-expressing cells). 

E) The amount of Bax protein in the pre-incubated cells was also determined by western blot 

analysis and F) quantified against GAPDH (n=3, *=p<0.05 vs untreated sample). G) 

Additionally, the amount of Bax protein in cells, pre-incubated with microvesicles derived 

from patient and normal plasma cells was also determined by western blot analysis and H) 

quantified against GAPDH (n=3, *=p<0.05 vs untreated sample). I) HCAEC (2×105) 

expressing TFWt, TFAsp253, TFAla253 or EGFP were adapted to SFM and activated with PAR2-

AP (20 µM). An untransfected/non-activated sample was included. Total RNA was isolated 

from the cells at 4 h post-activation and the relative amount of p21 mRNA was determined by 

RT-PCR (n=3, *=p<0.05 vs untransfected/non-treated sample). 
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Figure 7 The influence of pifithrin-α on the expression of bax and cellular apoptosis. A) 

HCAEC (2×105) were transfected to express TFWt, TFAla253 or EGFP but pre-incubated with 

pifithrin-α (100 nM) prior to activation and the level of bax mRNA compared to untreated 

samples (n=3, *=p<0.05 vs untransfected/non-treated sample; **=p<0.05 vs respective 

sample without pifithrin-α). B) HCAEC (5×104 cells) were transfected to express TFWt, 

TFAla253 or EGFP and pre-incubated with pifithrin-α (100 nM) prior to activation. Apoptosis 

was measured using the Apoptosis Detection Kit. (n=3, *=p<0.05 vs an EGFP-expressing 

cells). 

 

Figure 8 Induction of expression in HCAEC expressing TF variants. HCAEC (5×104) 

expressing TFWt, TFAla253 or EGFP and were pre-incubated with, or without SB202190 (100 

nM) for 30 min. Both sets of cells were then activated with PAR2-AP (20 µM) and apoptosis 

was measured at 18 h using the Apoptosis Detection Kit (n=3, *=p<0.05 vs 

untransfected/non-treated sample; **=p<0.05 vs respective untreated sample). B) HCAEC 

(2×105) were transfected to express TFWt but co-transfected with either p38 siRNA or a 

control siRNA. The cells were then adapted to SFM and activated with PAR2-AP (20 µM). 

An untransfected/non-activated sample was included for comparison. The amount of p53 

protein at 4 h post-activation was determined by western blot analysis and quantified against 

GAPDH (n=3, *=p<0.05 vs respective control-siRNA sample). C) The level of 

phosphorylation of ser33 was measured using an anti-phosphoserine-33 p53 antibody and D) 

normalised against the total p53 protein (n=3, *=p<0.05 vs sample with control siRNA). E) 

HCAEC (3×104) were seeded out into glass 35 mm base dishes and transfected to express 

TFWt but co-transfected with either p38 siRNA or a control siRNA. Cells were activated with 

PAR2-AP (20 µM) and incubated for 4 h. The cells were then fixed, permeabilised and 

labelled with anti-human p53 antibody developed with a NorthernLights donkey anti-rabbit 
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IgG-NL637. The nuclei were then labelled with DAPI and analysed by confocal microscopy 

with a ×20 objective. Co-localisation coefficients were determined using the ImagePro Plus 

software (n=3, *=p<0.05 vs untransfected/non-treated sample). F) HCAEC (2×105) were co-

transfected to express TFAla253 together with p53-Luc plasmid. The cells were adapted SFM 

and activated with PAR2-AP (20 µM) together with an untreated set. The cells were 

harvested 8 h, washed and luciferase activity measured as a percentage of the positive a 

sample treated with TNFα (10 µg/ml) (n=3, *=p<0.05 vs non-treated sample expressing 

TFAla253). G) HCAEC (2×105) were transfected to express TFAla253 but co-transfected with 

either p38 siRNA or a control siRNA. The cells were then adapted to SFM and activated with 

PAR2-AP (20 µM). The amount of Cyclin D protein was determined by western blot analysis 

and H) quantified against GAPDH (n=3, *=p<0.05 vs sample treated with control siRNA). 




