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ABSTRACT 

In oil and gas industry, drilling provides the path to exploit underground resources. 

Increasing rate of penetration (ROP) is one of the goal of drilling engineers to build this 

path. This dissertation focuses on study of a novel drilling technique, i.e. passive Vibration 

Assisted Rotary Drilling (pVARD) technique, and characterization of drilling mechanisms 

in comparison to the other two widely used drilling techniques, i.e. rotary drilling and 

rotary-percussion drilling (RPD). In terms of the fundamental differences between drill bit 

vibrations from three drilling techniques, seismic while drilling (SWD) and acoustic 

emission (AE) technologies are used to study drill bit sources and corresponding drilling 

mechanisms.  

 

First, geomechanics response of synthetic rock is studied using AE technique based on 

standard confined compressive strength (CCS) tests. This research aims to compare 

synthetic to natural rock in terms of deformation properties and provides support for the 

following drill-off test (DOT).  

 

Second, pVARD tool drillings are conducted in comparison to rotary drilling both in 

laboratory and field tests using AE and SWD techniques, respectively. In laboratory, AE 

signal energy and cutting size distribution are correlated to polycrystalline diamond 

compact (PDC) bit drilling performance. Results show that micro crack is generated from 

drag bit shearing action and the higher AE energy, coarser cuttings and higher ROP are 
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obtained. In field test, surface wave energy and frequency bandwidth are correlated to drill 

bit vibration and drilling performance. 

 

Third, laboratory active vibration DOTs are conducted to study the penetration mechanisms 

from a diamond coring bit using AE technique. Spectral and energy analysis of the AE 

signals indicate that the higher ROP and larger cutting size are correlated with a higher AE 

energy and a lower AE frequency, indicating larger fractures are being created to generate 

the larger size of cuttings. 

 

Fourth, rotary-percussion drilling sources are studied by two field experiments on weak 

shales and hard arkose using SWD technique. Characterization of these sources consist of 

spectral analysis and mean power study, along with field measurements of the source 

radiation patterns. In addition, polarization analysis is conducted on P-waves recorded at 

surface geophones for understanding the particle motions.  
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Chapter 1   Introduction and Overview 

 

1.1   Introduction 

Drilling is essential to exploration of oil and gas, especially for deep formation resources. 

Increasing the rate of penetration (ROP) has been of major interest for drilling communities 

in the oil and gas industry, and over the last century technologies have been developed to 

achieve this target. These technologies have widely employed natural bit vibration or 

incorporated extra vibration into drilling. There are three types of drilling technologies: 1) 

Rotary drilling is driven by a rotary table and kelly system, in which natural bit vibration 

is generated during a drill-off test (DOT); 2) Rotary-percussion drilling (RPD) was first 

proposed in 1902 by adding percussive blows to the conventional rotary drilling for the 

purpose of significantly improving the ROP. This type of drilling uses active vibrating 

forces applied on a drill bit and is widely used in blast hole drilling in hard rock mining; 3) 

A novel drilling tool, referred to here as a passive Vibration Assisted Rotary Drilling 

(pVARD) tool, has been designed and fabricated at the Drilling Technology Laboratory of 

Memorial University of Newfoundland, Canada. A pVARD tool mounted behind a drill bit 

is designed to incorporate a particular compliance from a group of springs, and possibly 

also mass and damping. It is chosen so that natural vibration occurring at the bit face during 

rotation of the drill bit is of a direction, frequency and magnitude, which is intended to 

increase the ROP without enhancing wear/damage to the bit. This tool consists of an inner 

hollow shaft and an outer shell, between which relative motions occur. One group of 

springs and dampening rubbers included in the inner shaft absorb and convert natural bit 
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vibrations to axial displacement. This pVARD technology, incorporating spring 

compliance into the drill string, improves bit-rock interaction and increases ROP. This tool 

passively employs natural bit vibration and shows promising improvement in drilling 

performance from both laboratory and field tests. 

 

The main focus of this thesis is a study of seismic while drilling (SWD) or acoustic emission 

(AE) technologies as a feasible and indirect way of studying the drilling mechanism in all 

three modes of drilling.  

 

1.2    Statement of the Problem 

The pVARD tool has not been tested before and thus is a compelling technology to study. 

As described before, compliance components are included in the pVARD tool which makes 

pVARD drilling distinct from rotary drilling and RPD. Initial laboratory and field tests 

show that pVARD technology is promising compared to rotary drilling. Some empirical 

relations have been proposed to describe ROP related parameters such as: weight-on-bit 

(WOB), rotary speed, and rock strength, which is designated as ‘The Perfect-Cleaning 

Theory’ [1,2]. A Distinct Element Model (DEM) numerically simulated the cutting process 

of a polycrystalline diamond compact (PDC) bit in both rotary drilling and RPD [3]. 

However, a study is required of the root cause of the increase of ROP and drilling 

mechanism in rotary drilling, pVARD, and RPD. This includes the following: 
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1) Measurement of bit vibration is essential for understanding the bit-rock interaction and 

the bit drilling mechanism. For rotary and pVARD drillings, bit vibration is measured by 

accelerometers mounted on drill strings. In the pVARD tool, multiple springs are stacked, 

providing compliance for the whole drill string, but the final bit vibration has never been 

determined. In RPD, strong and high frequency of hammer blowing makes it difficult to 

directly measure bit vibration. An alternative way is to characterize seismic waves radiated 

from bit-rock interaction. 

 

2) Seismic waves and acoustic emissions that radiate from bit-rock interaction correlate 

with bit vibration modes and drilling mechanisms. The drilling industry greatly benefits 

from studying the characteristics of seismic waves while drilling. This facilitates the chance 

of predicting formations about to be encountered. This also provides indications of drill bit 

condition. Limited research has been conducted to correlate seismic radiation to drilling 

mechanism and drilling performance.  

 

3) Seismic source radiation from bit-rock interaction has been comprehensively studied 

both in theory and practice. Based on axial and torsional motions of a drill bit, seismic wave 

energies from single modes of motion and a combination of modes of motions have been 

theoretically calculated and observed in some experiments. However, radiated seismic 

wave energy distribution for hard rock drilling has not yet been reported. Elastic wave 

velocities are greater when rock strength is stronger. Also, seismic source energies could 

dramatically vary on different rock types.  
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1.3   Research Plan and Objectives 

The objective of this thesis is to uncover drilling mechanisms for rotary, pVARD and RPD 

using SWD or AE technologies. In this way, drilling performance and drilling conditions 

are assessed from DOTs. This research was conducted at Memorial University of 

Newfoundland and divided into the following five projects. 

 

1.3.1   Micro-seismic evaluation of fracturing in cores during triaxial compression 

tests 

This project aimed to provide a geotechnical evaluation of synthetic rock using AE 

technology. The purpose of studying synthetic rock is to confirm that this synthetic rock is 

comparable to natural rock for the following DOTs. In the Drilling Technology Laboratory, 

synthetic rock is casted using fine aggregate and Portland cement and specimens are cored 

as the standard NQ size, i.e. a standard “Q” wireline bit size. Standard confined 

compressive strength (CCS) tests are conducted on these cores with two AE transducers, 

one mounted at each end. Received AE events are used to investigate the deformation 

process of core samples. Acoustic properties of these events are interpreted as emission 

rate, cumulative event number, event energy and dominant frequency (DF). Core cracks 

were visually shown and cracking mechanism was determined to be a shearing type. A 

comparison was conducted on three groups of core samples with different strengths. In this 

manner, AE technology provides a way to characterize real-time deformation process in 

rock. 
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1.3.2   Micro-seismic monitoring of PDC bit drilling performance during vibration 

assisted rotational drilling 

This project evaluated drilling performance and drilling mechanism using AE technology 

on rotary and pVARD drillings. In the Drilling Technology Laboratory, a two-cutter PDC 

bit was mounted on a laboratory-scale drill rig, along with four AE transducers for real time 

monitoring. Rotary speed was kept constant for all DOTs. Drilling cuttings were also 

collected for each test and a particle size distribution chart was obtained. A ROP was 

obtained for every WOB, and a corresponding AE energy level was obtained.   

 

ROP was correlated with AE energy and the size distribution of cuttings. There was an 

increase of ROP from pVARD drilling compared to that from rotary drilling. 

 

1.3.3   A novel method for assessment of rock-bit interaction and drilling 

performance using elastic waves propagated by the drilling system 

This project studied drilling performance and drilling mechanisms using SWD technology. 

Field DOTs were conducted using both rotary and pVARD drilling. Bit vibration was 

measured for each test by one sensor sub downhole of the ground. An array of one-

component (1C) geophones measured seismic waves. Those seismic waves were studied 

by characteristics such as frequency spectrum and amplitude.   
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ROP was correlated with the bit vibration level which also affected seismic wave 

characteristics. In this way, drilling performance can be indirectly studied using seismic 

analysis. Compared to rotary drilling, the improvement in drilling performance from 

pVARD drilling was also studied regarding these characteristics.  

 

1.3.4   Investigation of active vibration drilling using acoustic emissions and cuttings 

size analysis 

This project used AE technology to study penetration mechanisms and bit-rock interaction 

in active vibration DOTs. In the Drilling Technology Laboratory, active bit vibration was 

indirectly provided by one external electromagnetic vibrating table for the purpose of 

studying the effect on ROP. One impregnated diamond coring bit is mounted on a 

laboratory-scale drill rig, along with four AE transducers for real time monitoring. 

Vibration displacement of the rock sample was measured by one laser sensor attached to 

the stationary rig frame. Rotary speed was kept constant for all DOTs. Drilling cuttings 

were also collected for each test and a particle size distribution chart was obtained. The 

three drilling settings were comprised of 60 Hz vibration with two amplitudes, and one 

passive drilling setting, i.e. there was no vibration source.  

 

Changes in ROP were correlated with changes in AE energy and the size distribution of 

cuttings. There was an increase of ROP from RPD compared to that from rotary drilling. 

This was studied in relation to corresponding AE energies and size distribution of cuttings. 

The spectral analysis was conducted on recorded AE signals and spectral characteristics 



7 
 

 
 

were used to correlate crack sizes. A comparison was conducted on ROPs from drilling 

using varying vibration settings. 

 

1.3.5   Characterization of rotary-percussion drilling as a seismic while drilling 

source 

This project was a comprehensive evaluation of the RPD source using SWD technology. 

Three objectives are described: 1) A study was conducted on frequency spectra of seismic 

waves from RPD in response to rock strength. A comparison was done on mean powers of 

seismic waves from RPD and that from conventional drilling using a PDC bit and a roller 

cone bit; 2) A measurement was conducted on P-wave energy radiation patterns from a 

hard arkose using both cross-hole survey hydrophones and surface 3C geophones. These 

geophones included three orthogonal components, i.e. vertical (V), horizontal in-line (H-I) 

and out-of-line (H-O); 3) A calculation was finished on P-wave particle motion directions 

of seismic waves recorded by 3C geophones. In addition, polarization analysis is conducted 

on P-waves recorded at surface geophones for understanding the particle motions. 

 

1.4   Literature Review 

This section is a detailed literature review of drilling as a seismic source and introduction 

to SWD and AE technologies. First, three different drilling technologies are introduced, 

especially the newly developed pVARD technology. Second, drill bit vibration is analyzed, 

as bit-rock interaction is the source of seismic radiation. Third, SWD technology 



8 
 

 
 

applications are introduced, along with a comparison of seismic sources from three types 

of drilling. Then, AE technology applications are introduced. Finally, drill cutting size 

analysis is introduced which provides another way of studying drilling mechanisms and 

drilling performance. 

 

1.4.1   Drilling techniques 

1.4.1.1   Rotary drilling 

As the most widely used drilling technique to date, rotary drilling largely contributes to 

exploration and production in the oil and gas industry. The rotary drilling process is 

demonstrated in Figure 1.1. The key components for rotary drilling are the combination of 

a rotary table and a kelly. A drill pipe is connected to the kelly which is driven by the rotary 

table, and torque is transferred from the surface down the drill pipe to a drill bit. Weight is 

applied on the drill bit which is designated as WOB and rock is cracked by the bit-rock 

interaction. Drilling mud, circulating from the mud tank, is elevated in pressure by the mud 

pump travelling through the inner hole of drill pipe to the bit, through the nozzle of the bit 

and up through the annulus between drill pipe and wellbore back to the mud tank. Thus, 

drilling cuttings are taken by drilling mud circulating through annulus from bottom to 

surface and the bottom hole is cleaned, which makes the drilling smooth [2].  
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Figure 1.1: Sketch of rotary drilling process modified from Bourgoyne et al. [2] 
 

ROP, or drilling performance, is a key parameter to evaluate the whole drilling process. 

Increasing ROP has been a goal to be achieved by drilling communities. An empirical 

relation was proposed by other researchers to describe ROP related factors such as rotary 

speed, rock strength, WOB, and bit diameter, known as ‘The Perfect-Cleaning Theory’ [1]. 

This theory is based on the assumption that bottom-hole cuttings are immediately cleaned 
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after they are generated. In fact, this empirical relation is not perfect as other drilling 

parameters are not included such as bottom-hole-pressure (BHP), flow rate, and cutting 

cleaning efficiency. In this manner, another empirical relation has been developed 

considering both initial chip formation and a cutting removal process. This is known as 

‘The Imperfect-Cleaning Theory’, i.e. the bit nozzle hydraulic force and fluid viscosity are 

added to demonstrate cutting removal [4].  

 

Extensive research has been conducted regarding the effect of BHP, flow rate and cutting 

cleaning efficiency on drilling performance. In laboratory drilling tests with a single-

diamond bit, an elevated BHP tends to inhibit the removal of crushed cuttings which makes 

new penetration harder. An increase of BHP decreases the volume of cut and ROP [5]. 

Numerical simulations have also been conducted to study the effect of BHP on the rock 

cutting process using a Particle Flow Code (PFC2D) model. Under a constant rotary speed, 

simulation results indicate that ROP decreases in proportion to the logarithm of BHP [6]. 

The effect of flow rate on drilling performance has been investigated in high velocity jet 

DOTs. Flow rate is increased when other drilling conditions remain constant. The ROP was 

increased with the increase of flow rate to its maximum value, and thereafter the ROP 

decreased [7]. Drilling fluid largely functions in drilling processes and one of its most 

important roles is cleaning the bottom hole to ensure a smooth bit penetration process [2]. 

 

1.4.1.2   Rotary-percussion drilling 

In 1902, an RPD was first proposed by adding percussive blows to a rotary drilling as a 

means to improve ROP [8]. Since then, RPD has evolved into one of the most efficient 
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drilling methods using both top-hammer and down-the-hole hammer configurations. In 

particular, it is used to rapidly penetrate hard igneous and metamorphic rocks in the mining 

and construction industries. A percussion tool or hammer is demonstrated in Figure 1.2, 

and the mechanism is described as follows. First, in position ‘A’, both a hammer piston and 

control sleeve are located at the top position of one stroke when the control sleeve spring 

is extended to its maximum displacement. Then, mud circulation inside the percussion tool 

is shut off and a high mud pressure is instantaneously built up above the tool. This drives 

the hammer piston down as shown in position ‘B’. Finally, in position ‘C’, the hammer 

piston strikes an anvil and corresponding kinematic energy is transferred through the anvil 

to a drill bit, causing percussive blows to the rock. Thereafter, the hammer piston returns 

from the bottom due to the rebound of the anvil and the contraction of the hammer spring, 

until the piston reaches the position ‘A’. A full stroke is then finished by a control of the 

sleeve spring, hammer spring and momentary shut off of fluid circulation.  

 

In the 1950s, RPD was further developed as a resonant sonic technology by applying high-

frequency and continuous forces on drill bits, which was extensively tested to successfully 

increase bit cutting efficiency and improve drilling performance [9]. A percussion tool can 

be used in both onshore and offshore drillings [10].  
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Figure 1.2: Bassinger percusslon tool (from Guarin et al. [8]) 
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RPD takes the advantage over rotary drilling by promoting rock failure and dramatically 

increasing ROP. In RPD, rock fails due to a high frequency of dynamic loads from a drill 

bit instead of crushing from a stationary force as in rotary drilling. A Fast Lagrangian 

Analysis of Continua 3D (FLAC3D) model numerically simulated RPD and showed rock 

failure as aggressive tensile failure due to wave reflection, as well as compressive failure 

and rock fatigue due to cyclic loading [11]. In this way, the ROP is commonly reported to 

be higher than that from rotary drilling. In the testing of a percussion tool modified by J.A 

Wanamaker, it was found that in comparison to rotary drilling, ROP was elevated by 48% 

and bit life was extended by 120% [12]. Under the same conditions of WOB and rotary 

speed, RPD was reported to be 7.3 times faster than conventional rotary drilling [13].  

 

Hammers are classified into two types according to the medium used to drive the hammer 

piston, i.e. hydraulic and pneumatic. A fluid hammer was first applied in the 1990s; 

thereafter improvement of hammers consisted of changes to hammer design, performance 

and reliability [14]. Hydraulic hammers have been used to conduct drilling in hard rock 

formations. Air hammers are limited by penetration depth [13]. Challenges exist when hard 

rock formations are interbedded with softer and fractured formations. A novel drilling 

solution was proposed to combine drag bit, percussive hammer and high-pressure fluid jet, 

known as “Jet Assisted Rotary-Percussion Hammer” [15]. 

 

1.4.1.3   pVARD drilling 

As previously described, RPD and resonant sonic drilling have been successfully applied 

to rapid drilling in hard rocks, soils and similar unconsolidated materials respectively. 
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However, for various reasons, neither percussive nor resonant sonic drilling technology is 

suited for oil and gas drilling in sedimentary formations where well control must be 

maintained to prevent kicks and blowouts. At the Drilling Technology Laboratory of 

Memorial University of Newfoundland, one group investigated the possibilities of using 

natural bit vibration to improve drilling performance for rotary drilling. By drilling with a 

PDC bit and adding dampening rubbers beneath rock specimens in combination with pulse 

cavitation, the dampening compliance enhanced the oscillatory bit-rock interaction and 

resulted in improved cutting efficiency and overall ROP [16]. Thereafter, the idea was 

further developed to incorporate axial compliance directly into a drill string which also 

improved ROP. These concepts were progressively investigated, refined and incorporated 

in both laboratory- and field-scale versions of the pVARD tool, which demonstrated 

improved ROP under both sets of conditions [17,18]. 

 

This pVARD tool (Figure 1.3) consists of an inner hollow shaft and an outer shell, between 

which relative motions occur. One group of springs and dampening rubbers are included 

on the inner shaft absorbing and converting natural bit vibrations to axial displacement. 

This tool is placed above a drill bit adding compliance to the whole drill string. An increase 

was reported on the bit-rock contact time per revolution and ROP compared to rotary 

drilling in both laboratory and field tests [17]. The pVARD drilling differs from RPD 

because natural bit vibration is passively utilized rather than providing active bit vibration. 
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Figure 1.3: (a) Demonstration of pVARD drilling; (b) Laboratory scale pVARD tool. 
Modified from Rana et al. [17] 

 

1.4.2   Bit vibration and bit-rock interaction 

In drilling engineering, drill string vibrations can be considered in terms of axial, lateral 

and torsional vibrations [19], which are illustrated in Figure 1.4. Axial vibration causes bit 

bounce. Torsional vibration indicates irregular torsion of the downhole drill string and the 

stick/slip phenomenon can be observed. Lateral vibration is the most destructive and can 

cause a strong shock of drill string on the borehole wall. As the drill bit is connected to the 

drill string, the drill bit vibrates accordingly.  
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Figure 1.4: Drill string vibrations (from Schlumberger Ltd. [19]) 
 

Drilling performance is strongly influenced by bit motions and bit-rock interaction. This 

has been extensively studied using roller cone and PDC bits. Theoretical models have been 

developed to study forces applied to roller cone bits as well as the correlation to ROP and 

drilling conditions [e.g. 20,21]. Empirical relations have been proposed to correlate drag 

forces on a single-cutter PDC bit to rock type, depth-of-cut (DOC) and bit wear state [e.g. 

22]. Some researchers have reported on bit-rock interactions through measurement and 

evaluation of the three modes of drill string vibrations (i.e. axial, lateral and torsional) 

recognizing that these drill string vibrations are excited by bit-rock interactions [23]. For 

example, a numerical study of coupled axial and torsional vibrations identified the root 

cause of self-excited vibration as the delay in axial position of the bit, during the bit-rock 

interaction [24]. These bit vibrations were experimentally measured as accelerations with 

a down-hole sensor sub [25]; interpretation of the acceleration data was used to correlate 
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bit vibrations to drilling conditions such as: rock type and WOB [26]. In laboratory tests, 

axial bit vibration generated from the pVARD tool was recorded by a laser sensor, showing 

that the vibration largely contributed to improving drilling performance [17,18], and peaks 

in the frequencies of axial bit vibrations were found around the angular velocity and its 

multiples [23]. 

 

1.4.3   Seismic While Drilling 

1.4.3.1   Introduction 

The Seismic While Drilling (SWD) method uses the noise or pulse generated during the 

bit-rock interaction as a seismic source, which is detected by geophones located at the 

surface. Figure 1.5 is a schematic overview of the SWD method. This is contrary to the 

conventional borehole seismic method, in which geophones are lowered down into a 

borehole receiving seismic waves radiated from sources placed at the surface. This seismic 

data is used to identify reflections caused by the geological structures and to give 

information on properties about drilled and to-be-drilled rocks, which is known as the 

conventional Vertical Seismic Profile (VSP). In this way, the term Reverse VSP (RVSP) is 

used to indicate a SWD method, in which the seismic source is located in a borehole and 

receivers are at surface [27].  
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Figure 1.5: Basic concept of seismic while drilling (from Poletto and Miranda [27]) 
 

The history of SWD technology dates back to the 1930s. In 1936, a cable tool drilling, an 

early form of percussive drilling (without rotation), was first proposed to generate discrete 

signals received by ground geophones, for the purpose of monitoring drill bit location 

without interrupting normal drilling activities [28]. Unfortunately, this technique failed to 

mature when rotary drilling became the norm [29]. In 1968, the stiffness of rock was 

investigated by a geologist from the French Institute of Petroleum (IFP) by exploiting drill 

bit signals [30]. SWD was intensively studied during the 1980s and 1990s [31]. In 1988, 

seismic data was recorded from a drill bit and was correlated to the signal recorded by an 

accelerometer at the top of a drill string. This cross-correlation technique was patented by 

Societe Nationale Elf Aquitaine, Paris, France [32]. In 1999, BP and Schlumberger built 

tools to test techniques for seismic measurements while drilling at the Rocky Mountain 

Oilfield Test Center [33]. 
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1.4.3.2   Use of drill bit signal as seismic source 

The use of SWD technology has largely expanded its original purpose from locating the 

drill bit position to others applications. They include positioning the drill bit, real-drill-time 

imaging ahead of the bit, guiding the bit to a target, and predicting overpressure intervals 

ahead of the bit etc. [31]. Early studies focused on locating drill bit positions. In 1977, a bit 

position monitoring method was patented to obtain a precise bit position based on 

differences in arrival times of seismic signals recorded at ground geophones. For reference, 

a motion sensor (commonly called a ‘pilot sensor’) was attached on the drilling apparatus 

to record signals arriving directly along the drill pipe. Discrete elastic waves were generated 

when the drill bit was raised and suddenly released to impact the bottom-hole [34]. In 1984, 

a new method of determining drill bit positions was patented by analyzing coherent drill 

bit signals. During drilling, the bit-rock interaction generated seismic signals recorded by 

a group of geophones. First, a bit location was assumed. Then, a signal received by a 

geophone was time shifted by the time of elastic wave travelling from the assumed bit 

location to this geophone. Furthermore, the rest of the signals were time shifted by an 

appropriate time from this bit location to a specific geophone. Finally, the coherency about 

this bit location was determined by adding or multiplying those time shifted waveforms. 

This procedure was repeated on multiple possible bit locations. The drill bit position was 

precisely determined by the highest coherency [35]. After that, a method of cross 

correlation was used, i.e. continuous seismic signals were correlated based on a reference 

geophone at top of the drill string. Seismic signals were obtained from offshore SWD 

surveys using the TOMEX® SWD system (Baker Atlas). A time-depth (T-D) curve was 

obtained to continuously monitor drill bit position [36]. 
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The drilling community has expressed great interest in using SWD technology to study the 

bit-rock interaction and drilling conditions. The spectral content analysis is a frequently 

used method for analyzing properties of rocks drilled and drill bit conditions. In 1972, the 

Société nationale des pétroles d'Aquitaine (SNPA) developed a dynamic model for 

estimating the vibration state along a drill string based on the longitudinal vibration theory. 

The vibration originated from the bit-rock interaction based on a tricone bit. In this way, 

this technology allows us to predict rock properties, especially the hardness by means of 

measuring the vibration state at the kelly [37]. In 1990, frequency peaks of bit accelerations 

recorded from laboratory drillings shifted with varying wear state of a roller cone bit teeth 

as defined by the International Association of Drilling Contractors (IADC). Thus, the 

signature of bit vibration provided a way of predicting bit wear states [38]. From a field 

test, frequency spectra of seismic signals showed a relation to bit geometries of both coring 

bits and roller cone bits, i.e. seismic frequency peaks were at multiples of the blades of bits 

[39]. In addition, frequency spectra from RPD sources showed relationships between 

specific frequency bands to varying drilling conditions [40], bit types [41] and rock types 

[42]. 

 

1.4.3.3   SWD sources in rotary drilling, rotary-percussion drilling and pVARD drilling 

For the purpose of SWD, seismic sources in the three drillings differ due to differences in 

both bit vibration and bit-rock interaction. For rotary drilling, roller cone bits and PDC bits 

are most widely used. Characteristics of seismic waves from them will be described in the 

following two paragraphs. RPD sources will also be detailed due to its wide application in 
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mining drilling. Seismic radiation generated in the pVARD drilling has not been studied 

before, but the bit vibration level is more comparable to that of rotary drilling, than to that 

of RPD. 

 

A roller cone bit (e.g. tricone) mainly works through an indentation and gouging 

mechanism during drilling. When a roller cone bit interacts with a hard rock formation, 

axial vibration mainly comes from two aspects: the high frequency vibration caused by 

teeth indentation and the low frequency vibration caused by the lobed pattern. Figure 1.6 

shows the tooth indentation of a roller cone along with samples of teeth forces measured 

from experiments. Periodic forces indicate a periodic vibration from the indentation of 

roller cone teeth. Figure 1.7 shows three lobes of a tricone bit along with three samples of 

bit forces. The combination of two periodic vibrations generates a new periodic vibration. 

Those periodic forces from the lobed pattern show a lower frequency of vibration than that 

from the tooth indentation. Every tooth of the roller cone bit generates a percussive pulse 

and each pulse can be regarded as wideband [43]. Downhole measurements have shown 

that axial and torsional vibrations are largely quasi-random due to the unevenness of 

formation strength and random breakage process [44]. In this way, the spectrum of seismic 

waves radiated from a roller cone bit becomes wideband, which makes it ideal as a seismic 

source [27]. 
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Figure 1.6: Roller tooth indention and gouging action are demonstrated on left column; 
Measured cone teeth forces in right column: (a) cone outer row, (b) cone inner row, (c) 

particular of outer row, (d) particular of inner row which is modified from Sheppard and 
Lesage [21]  

 

 

Figure 1.7: (a) Lobed pattern of one tricone bit; Vibration forces from modeling when (a) 
average vertical force Fm = WOB and (b) maximum force Fmax = 2WOB, (c) downhole 

real data. Modified from Poletto and Miranda [27] 
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A PDC bit has cutting and grinding mechanisms. Figure 1.8 shows a force analysis for a 

cutter on a multi-cutter PDC bit. In the cutting action, a concentration zone of high 

compressive stresses occurs before the cutter with a certain clearance angle in (a) while (b) 

shows a cutter with zero clearance angle. This compression zone exists in the direction of 

the resultant force, and a high tensile stress zone exists around the cutter edges. In the 

grinding action, tensile stresses exist behind the cutter and compressive stresses occur 

ahead of it. In this manner, it is found that forces on cutters are usually constant. This 

penetration mechanism differs from that of a roller cone bit which incorporates both 

percussive and gouging actions. In comparison of the roller cone bit drilling, seismic waves 

radiated from the PDC bit drilling are lower in magnitude. This shows that PDC bits are 

less favorable than roller cone bits for SWD purposes [27].  

 

Figure 1.8: (a) Forces applied on single PDC cutter; (b) Wear flat area. Modified after 
Guyen Minh Duc et al. [45] 

 

The RPD drilling is ideal for SWD analysis due to a high magnitude and wideband 

frequency spectrum of seismic waves radiated from its percussive action. Some 
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applications (see below) show RPD a great potential for SWD purposes. In an RPD test, 

frequency spectra and energy levels of RPD sources were successfully correlated to varying 

percussion rates [40]. A new Rotary-Percussion Sounding System (RPSS) monitored 

drilling parameters in an RPD drilling. These parameters were successfully used to estimate 

the strength of in-situ rock. Applications of this system showed that RPD was a potential 

for SWD due to its high density and broad frequency spectrum in recorded seismic waves 

[46,47]. In hard rock environments, a reverse circulation percussion drilling provided 

stronger and wider band seismic sources than most standard active sources [41]. RPD 

drilling in simulated lunar rocks in the laboratory has been performed to assist lunar 

exploration [42]. 

 

Generally, the seismic source from a roller cone bit is wideband, and higher in magnitude 

than that from a PDC bit. RPD source is wideband with strong magnitude. Both roller cone 

bit sources and RPD sources are more favorable for SWD drilling purposes than PDC bit 

sources. 

 

1.4.3.4   Wave radiation patterns at drill bit sources 

The geotechnical and engineering communities have expressed a great interest in the study 

of radiation patterns of drill-bit seismic sources. For the simplified situation of a 

homogeneous and isotropic medium, the source radiation from a single force has been 

theoretically studied. A mathematical model of radiation has been proposed when three 

types of stresses are applied at one cylindrical hole which is embedded in an infinite solid 

medium (Figure 1.9). The radiated waves were interpreted as P-waves and S-waves. The 
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latter waves can be vertically polarized SV, or horizontally polarized SH. P-wave amplitude 

was maximized parallel to the stress direction and minimized perpendicular to the stress 

direction [48]. Another theoretical model calculated the radiation patterns of P-wave and 

SV wave under a harmonic vertical force applied to an infinite, homogeneous, and isotropic 

medium. These patterns resembled that under a single force [49,50]. In realistic situations, 

inhomogeneity and anisotropy of a medium significantly complicate the radiation pattern. 

A theoretical model was proposed to study source radiation patterns in a finely stratified 

medium with randomly distributed elastic parameters. The radiation patterns significantly 

differed from those calculated in an isotropic and homogeneous medium [51].  

 

Field measurements of radiation patterns from drillings have shown a good agreement with 

the theoretical radiation patterns. In a roller cone bit drilling (Figure 1.10), measurements 

of P-wave amplitudes decreased with increasing angles which are measured relative to the 

direction of axial drill-tooth impact. SV wave amplitudes were reported higher than that for 

SH wave. These measurements confirmed the theoretical radiation patterns [52,53]. In 

another field cross-hole survey, SV wave amplitudes were measured for different depths in 

a tricone bit drilling. Measurements were analogous to the theoretical SV wave radiation 

patterns [54]. 
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Figure 1.9: Source radiation and wave amplitudes in solid medium radiated from a 
cylinder hole wall subjected to (a) vertical shearing stress, (b) radial stress and (c) 

torsional shearing stress. Modified from Heelan [48] 
 



27 
 

 
 

 

Figure 1.10: Available elastic waves in drilling, i.e. head wave, direct arrival, rig-related 
arrival as surface wave (from Rector and Hardage [53])  

 

 

 



28 
 

 
 

1.4.3.5   Polarization analysis 

The purpose of polarization analysis is to determine the actual particle motion 

(displacement) direction of seismic waves. In this manner, the true wave motion can be 

understood. A particle motion direction is calculated by the following procedures. First, the 

original components of a hodogram, i.e. a cross-plot of seismic wave amplitudes recorded 

by two components, are projected to a new coordinates system which is rotated within that 

plane. Second, the power of projected components are calculated. Third, the maximum 

power is found from all rotated coordinates; the angle of rotation for the maximum value 

is then taken as the polarization angle and the corresponding direction is defined as the 

particle motion direction [55]. In Figure 1.11, the two original components are projected to 

a new coordinate X’-Y’ and the corresponding energy is calculated for the angle of rotation. 

The direction with the maximum power, i.e. at the rotation angle of θmax is defined as the 

polarization direction. The polarization analysis has been used to investigate polarization 

angles. In a roller cone bit drilling, 3C geophones recorded seismic waves. It was found 

that polarization angles were in correlation with varying azimuths and offsets of these 

geophones [56]. Seismic event types (P-refracted, converted shear, ground roll) were 

discriminated by comparing polarization angles, which were highly correlated to the 

source-geophone geometry. This correlation has been successfully used to confirm the 

actual geophone orientation [57].  
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Figure 1.11: (A) Two components signals at a 3C geophone; (B) Corresponding 
hodogram from the time window 209-220 ms with a polarization angle oriented to the 

maximum energy direction, which is modified after DiSiena et al. [55] 
 

1.4.4   Acoustic emission 

1.4.4.1   Introduction 

There are commonly two acoustic technologies used in the geotechnical area: sonic 

technology and AE technology. Figure 1.12 demonstrates basic principles of the two 

acoustic technologies. Sonic technology utilizes two transducers: one transmitter which 

generates mechanical signals, and one receiver which monitors signals as transmitted 
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through a geological structure. AE technology uses one transducer (or receiver) to passively 

monitor self-generated signals within this structure [58]. In the early 1940s, the sonic 

technology was utilized by two researchers from the U.S. Bureau of Mines (USBM) to 

study underground mining. Rock bursts and mine failures were predicted by a success in 

recording micro-level ‘sounds’ when a transmitter was turned off [59,60]. The utilization 

of AE technology was generally regarded as starting in the late 1940s from the work 

conducted by Kaiser on metals [61]. During the 1950s and 1960s, AE monitoring was 

concentrated on studying underground mining [62,63], and tunnel roof safety [64,65]. After 

the 1970s, numerous laboratory AE studies were conducted on the failures in physical 

models of pressured cavities [66], an estimation of in-situ stress [67,68], the creep behavior 

of rock salt [69,70], the phenomenon of hydraulic fracturing [71], and the mechanical 

deformation behavior of rock [72,73].  

 

Figure 1.12: Two acoustic technologies used to study geological structure: sonic 
technology (left) and AE technology (right) (after Hardy [58]) 

 

There are two types of signals received by AE transducers: burst and continuous signals 

(Figure 1.13). A burst of signal is commonly correlated to a short time crack or deformation 
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such as crack initiation. It is readily identified because the beginning and end are easily 

recognized. While, this situation does not apply to a continuous signal which is related to 

external noises [74]. Burst signal amplitudes are significantly larger than that of both 

background noises and continuous signals. A high frequency is commonly found in a 

continuous signal [75]. The frequency distribution of an AE signal depends on a source and 

the distance between the source and a receiver. Figure 1.14 shows the typical frequency 

ranges of AE signals and application areas. AE signals were observed with frequencies 

lower than 1 Hz in the field; they were also reported to be of high frequencies more than 

500 kHz in laboratory [58]. 

 

Figure 1.13: Two types of AE signals: (a) burst and (b) continuous (after Ríos-Soberanis 
[74]) 
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Figure 1.14 Typical AE signal frequency ranges (after Hardy [58]) 
 

1.4.4.2   Rock deformation and failure 

In geotechnical testing, piezoelectric transducers are commonly used in the study of rock 

deformation and fracturing processes. In a laboratory test, four different deformation stages 

were identified from a standard strength test on rock samples under triaxial stresses (Figure 

1.15). AE transducers were commonly put on both top and bottom ends of rock specimens 

to monitor the whole deformation process until rock failure [73,76,77]. A sequence of burst 

of signals were commonly recorded and some AE parameters were interpreted such as DF, 

energy, hit rate, and cumulative AE count. The cumulative count dramatically increased 

when a new crack initiated at the end of elastic deformation stage II. AE source locations 

were commonly calculated to track the crack propagation to map failures in one dimension 

[78], two dimensions [79], and three dimensions [80]. In addition, numerical models have 

simulated the seismicity of the rock deformation and failure [81,82].  
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Figure 1.15: Stress-strain diagram showing the deformation process of rock (after Martin 
[83]) 

 

1.4.4.3   Drilling using AE technique 

In the drilling area, most studies refer to SWD technique, while some uses of AE technique 

are relevant to geotechnical drilling. AE studies on drilling commonly concentrate on the 

study of coal exploitation due to a high risk of exposure to dust illness. In a drilling test on 

coal samples, a single-cutter bit was used under varying advance rates. AE signals were 

monitored. Their characteristics were successfully correlated to size and shape distributions 
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of coal cuttings, and bit wear states [84,85]. Drill bit wear states were reflected significantly 

by AE characteristics [86,87]. For the drilling with a impregnated diamond bit, the 

dominant bit action consisted of cutting and friction processes [88], and the processes were 

investigated by monitoring AE signals. From the experimental results, AE signal 

amplitudes were used to show the change of DOC [89]. 

 

1.4.5   Cutting size and drilling performance 

The particle size is of great importance for studying characteristics of rock debris in the 

geotechnical area. In 1933, a particle size distribution (PSD) function was first proposed 

from a sieving analysis on powdered coal, known as the Rosin-Rammler (RR) model [90], 

or Rosin-Rammler-Sperling-Bennett (RRSB) model [91]. Later, this model was widely 

used to describe the PSD of powders of various types and sizes, and was specifically suited 

to representing powders from operations such as grinding, milling, and crushing [92]. This 

two-parameter model is described in Equation 1.1. 

 

�(�) = 100 exp [−(
�

��
)]�                                                           (1.1) 

 

�(�) = retained weight fraction or cumulative weight percent (%); � = particle size or mesh 

size (µm); �� = mean particle size (µm); and � = measure of the spread of particle sizes 

distribution parameter. Calculations of the two parameters are commonly done by linear 

regression of data represented as { log[ -log(cumulative percentage oversize) ] } versus [ 

log(retaining powder sieve size) ]. This linear regression is facilitated by a routine use of 



35 
 

 
 

Matlab® codes, in which 36.79% of cumulative percentage oversize corresponds to a sieve 

size, i.e. mean particle size [93]. 

 

A PSD is commonly obtained from a sieving test, which is one of the major methods used 

to physically divide a collection of cuttings into sub-classes. Separated fractions are 

retained by test sieves with apertures allowing cuttings undersize to pass through, and then 

weighted. Principles of the selection of test sieves, operations, and reporting of results are 

detailed in a book [91]. An operational standard from American Society for Testing and 

Materials (ASTM) governs sieving in the range from 75 µm to 75 mm [94]. For particles 

finer than 75 µm, a sedimentation method using the hydrometer is recommended to 

quantitatively calculate soil particle sizes [95]. The PSD can be presented by three ways: 

tabular listing fraction of specific size, mathematical expression using formulae, and 

graphical means. The typical way is to express PSD as a normal-logarithmic relationship. 

A new bar particle size distribution (BPSD) diagram was proposed to be more directly 

compare different size ranges of cutting particles [96]. 

 

In drilling, ROP has been previously correlated to the cutting size. Extensive drilling tests 

showed a positive relation between ROP and the cutting size, i.e. the higher the penetration 

rate, the higher magnitude of the mean particle size in a diamond core bit drilling [97,98], 

RPD [99] and a PDC bit drilling [96]. Limitations of those research works are a lack of 

direct measurement of crack related energy, to facilitate the interpretation of the mechanism 

of higher ROP. Although AE technology has been used in studying the bit advance rate and 

corresponding cutting size distribution with a single-cutter bit in the lab [84,85], drillings 
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in real world are more complicated due to multiple drag cutters and varying drill bits such 

as roller cone and hammer.  
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2.2   Abstract 

This study is an evaluation of rock cracking and failure by means of laboratory standard 

strength tests and real time micro-seismic or acoustic emission (AE) monitoring. Three 

groups of rock-like materials were cast using fine aggregate and Portland cement, out of 

which standard test specimens were cored. Confined compressive strength (CCS) tests were 

conducted on those cores while two non-destructive testing (NDT) sensors were placed in 

end platens used to compress the core. Conventional rock mechanics results were obtained 

such as stress-strain response. Hundreds of micro-seismic events were recorded in the 

process of rock deformation and especially when the core failed. Seismic data processing 

indicated the synchronization of event occurrence rate with correlated material 

deformation. Also, micro-seismic properties were analyzed such as dominant frequency 

(DF), event energy and cumulative AE counts. Event energy was found closely related to 

the peak amplitude of seismic waves. Under the same confining pressure, DF was prone to 

decrease with increase of deformation until the core failed. This correlated with the higher 

AE event rate when deformation increased. High strength material tended to generate 

higher DF than that of low strength material. For the same strength material, increasing 

confining pressure played different roles on the dominant frequency. Finally, AE event 

occurrence locations were determined along the core length which was compared with the 

observation of core surface cracks.  
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2.3   Introduction 

Micro-seismic events or AE are the elastic waves produced when rock undergoes internal 

change, such as micro-crack initiation and propagation. Piezoelectric transducers are 

commonly employed in detecting and monitoring micro-crack propagation [1]. As an 

alternative way to ‘see’ micro-crack initiation and propagation, AE detection was applied 

in triaxial compression tests to monitor the whole deformation process [2]. Some AE 

parameters such as DF, event energy and cumulative AE counts are related to the different 

deformation stages [3,4]. AE events were located in hydraulic fracturing researches [5-7]. 

Numerical simulation was used to simulate the deformation process and predict the failure 

[8,9]. Crack type was also classified based on detected acoustic emissions for failure 

prediction [10-13]. 

 

2.4   Experimental Setup 

Monitoring AE during the CCS test was scheduled. The CCS tests were conducted using a 

servo-controlled axial loading frame and a Hoek triaxial pressure cell. AE were recorded 

using a two-sensor AE system. 

 

2.4.1   Axial loading frame 
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During the CCS test, axial load was applied by the Instron load frame (Figure 2.1). The 

maximum loading could be 250 kN. By setting the loading rate of 1 mm/min, displacement 

and load were recorded until the core specimen failed. The core was put into the Hoek 

triaxial cell and specific confining pressure was loaded by a manually operated pump.      

 

Figure 2.1: Strength test apparatus with the Hoek triaxial cell (left) and working 
schematic (right) 

 

2.4.2   Monitoring acoustic emission 

Two Panametrics P-wave sensors were placed into steel platens on both ends of core 

specimens (Figure 2.1). Sponge material was put between the sensors and the loading frame 

for complete contact assurance and P-wave couplant was put between the steel platens and 

core ends and between sensors and steel platens to make better signal transmittal. The 

central frequency of the P-wave sensors was 1.14 MHz with working bandwidth of from 
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0.65 to 1.63 MHz at -6dB attenuation. Two 2/4/6 preamplifiers from Physical Acoustics 

Corporation (PAC) were utilized and the gain was selected to be 40dB. Two customized 

power supply adapters were connected to the preamplifiers with output voltage of 20 volt. 

The DAQ system was comprised of GaGe CompuScope 8280 eight-channel board and its 

included DAQ software. The trigger sensor was always located on the top of cores. Inputs 

for AE detection are listed in Table 2.1. 

 

Table 2.1: Inputs for monitoring acoustic emission 

Sampling frequency P-wave sensors # Gain Peak-peak input Trigger level 

10 MHz 2 40 dB 10 V 0.15 V 

 

2.4.3   Test materials 

Three groups of rock-like materials were used with UCS (0 confining pressure) at 20, 55.5 

and 87.5 MPa, designated as low, medium and high strengths (L, M and H) in Figure 2.2. 

These materials were made of fine aggregate, Portland cement and water. This type of rock-

like materials has been used in all previous lab tests in this project based on the ability of 

the reproducibility. Such tests were performed to study the drill-ability including AE. In 

this paper, AE tests were conducted to investigate the deformation and cracking properties 

which were valuable for future bit-rock interaction investigation, but petroleum cores were 

not involved. Standard NQ cores were drilled with core diameter of 47.6 mm and the 

minimum ratio of height to diameter was 2:1. All the coring process and requirements were 

done in accordance to ASTM D4543 [14]. Averaged core dimensions and the loading plan 

are given in Table 2.2. To be consistent with the investigation of rock-like material’s 
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properties and mechanical response, confining pressures were chosen in accordance to 

previous rock characterization tests. 

 

Figure 2.2: Tested concrete cores (low, medium and high strength) 
 

Table 2.2: Loading plan for triaxial compression test and CCS results 

Core 
# 

Length 
(mm) 

Diameter 
(mm) 

P-wave velocity 
(m/s) 

Confining 
pressure 
(MPa) 

CCS 
(MPa) 

L1 111.64 47.23 4304.0 2 33.90 

L2 105.04 47.22 4304.0 4 41.48 

M1 100.79 47.38 4785.4 2 59.84 

M2 103.47 47.18 4785.4 4 75.36 

H1 108.39 47.43 4710.4 2 105.65 

H2 104.88 47.51 4710.4 4 116.11 

 

2.4.4   Overall workflow 

The overall flow chart for this test is shown in Figure 2.3. Acoustic emission signals from 

cracking were automatically detected and saved to the AE computer disk. At the same time, 
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CCS test was being conducted and the stress and strain data were recorded into the other 

computer. Both the computers were synchronized before each test began. 

 

Figure 2.3: Flow chart of CCS test with monitoring acoustic emissions 
 

2.5   Results 

The CCS tests [15] were conducted with the results in Table 2.2 and acoustic responses 

were also obtained. Analysis of AE signals resulted in characteristics such as DF, event 

energy, peak amplitude, cumulative AE number. AE event location is calculated from the 

relative difference of arrival times and P-wave velocity. The whole processing is facilitated 

by Matlab® codes demonstrated in Appendix 1. 

 

2.5.1   Single acoustic emission 

Figure 2.4 shows a single event from a CCS test. The top sensor was always set as the 

trigger channel and two bursts of signals were captured at both sensors. The different first 
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arrival time demonstrated that the AE source located closer to the top sensor. AE 

parameters were calculated based on methodology previously developed [3]. 

 

Figure 2.4: One burst event from top sensor (upper) and bottom sensor (lower) detected 
from the high strength material with 4 MPa confining pressure 

  

2.5.2   Single test inspection 

AE event locations were determined and only those from inside the cores were kept. The 

mechanical response and acoustic properties of low, medium and high strength cores were 

plotted together for comparison from Figure 2.5 to Figure 2.7. Stress and cumulative AE 

counts were plotted on the same time base. Few AE events were detected during the linear 
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elastic response. AE events initiated at the end of the linear loading sections and the number 

increased within non-linear ductile deformation section. This is explained by the initiation 

of micro-cracks and micro-crack connection. AE rate dramatically increased before and 

after the core failed. This was due to the micro-crack propagation and crack nucleation that 

was continuously generated. Event energy and peak amplitude were also investigated from 

both sensors. Event energy was found closely correlated with peak amplitude. And energy 

from both sensors correlated with each other. This indicated that a single channel of signals 

could be used for AE analysis. For medium strength cores, limited AE events were detected 

due to less capability of signal transmittal between core surfaces and sensors. 

 

Figure 2.5: Mechanical and acoustic responses of low strength cores with acoustic 
properties comparison from both sensors 
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Figure 2.6: Mechanical and acoustic responses of medium strength cores with acoustic 
properties comparison from both sensors 
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Figure 2.7: Mechanical and acoustic responses of high strength cores with acoustic 
properties comparison from both sensors 
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AE event energy generally decreases with increased DF under the same confining pressure. 

An exception exists that event energy increases with increased DF for the medium strength 

material under the confining pressure of 2 MPa.  

 

Figure 2.8: DF versus time for low, medium and high strength cores under confining 
pressure of 2 MPa (upper) and 4 MPa (lower). Linear fit was provided for each group of 

scattered points 
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Figure 2.9: AE energy versus dominant frequency for low, medium and high strength 
cores under confining pressure of 2 MPa (upper) and 4 MPa (lower). Linear fit was 

provided for each group of scattered points 
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sensor contact. For high strength material, AE sources were distributed more uniformly 

along the length of the core.  

 

The cores failed due to shear cracking and macroscopic cracks propagate along all the 

length of the cores. Cracks mainly distributed along one portion of core length for low 

strength material, which was possibly due to unevenly distributed axial stress.  

 

Figure 2.10: One dimensional acoustic source distribution versus test time for low, 
medium and high strength cores. Vertical axes were scaled to actual core heights 
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Figure 2.11: Post failure illustration for low, medium and high strength cores under 
confining pressure of 2 MPa 

 

2.6   Conclusions 

1) AE provides one feasible technique of characterizing rock deformation and failure in the 

laboratory. AE event rates correlate with the rock failure.  

 

2) AE event DF tends to decrease with increased deformation. Also, event energy tends to 

decrease with increased dominant frequency. There is no evident relationship between DF 

and CCS. 

 

3) AE source location was plotted versus time along the length of the cores. For low 

strength cores, AE sources were mainly distributed on one end which was observed in the 
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failed specimens. For medium strength and high strength cores, AE sources were more 

uniformly distributed along the core length.  
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3.2   Abstract 

This study is an evaluation of the feasibility of real-time drilling performance monitoring 

using a near-bit AE detection tool in drilling with PDC drag bits under laboratory 

conditions to investigate an improved drilling performance with a new Vibration Assisted 

Rotational Drilling tool. This paper focuses on calibrating the micro-seismic response to 

rock failure mechanisms, improved Rate of Penetration (ROP) and cutting particle-size 

distribution. Concrete cylinders with comparable properties to natural rock were fabricated 

in the laboratory. Drill-Off Tests (DOT) were conducted under rigid and compliant drilling 

with a two-cutter PDC bit. Simultaneously, micro-crack Acoustic Emissions (AE) from the 

bit-rock interaction process were monitored by four symmetrically mounted Non-

Destructive Testing (NDT) sensors. The fracture characteristics were investigated by 

analyzing acoustic events in terms of event occurrence rate, and average event energy. 

Analysis from the DOT indicates that some factors are correlated with improved drilling 

performance, including particle-size distribution, vibration compliance setting and acoustic 

emission. A stronger vibration compliance setting increases ROP by increasing cutting 

depth per revolution and bigger cuttings are generated. Higher average event energy 
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corresponds to bigger cracking when cracking event rate increases. All of this has 

contributed to our understanding of the mechanisms of improved drilling performance. 

 

3.3   Introduction 

One of the major problems for field drilling engineers is how to drill to target formations 

fast and safely. In drilling subsurface formations a vertical oscillation generator was found 

to increase penetration rate [1] and this early stage of oscillation vibrator drilling was called 

ResonantSonic Drilling. After that, both surface and offshore mechanical vibrator were 

introduced [2]. Vertical vibration applied to a bit leads to variation of WOB. A new 

vibration tool developed in the Drilling Technology Laboratory (DTL) at Memorial 

University was tested for improving ROP [3,4]. Laboratory tests have shown that controlled 

amplitude and frequencies of vibration were available from this vibration tool. This tool 

was tested to influence drilling efficiency and rate of penetration. 

 

Micro seismic events, or acoustic emission (AE), are the elastic waves produced when rock 

undergoes internal change, such as micro crack initialization and propagation. In non-

destructive testing (NDT), piezoelectric transducers are commonly employed in detecting 

and monitoring micro crack propagation. As an alternative way to ‘see’ micro crack 

initiation and propagation, AE detection has been applied in triaxial compression tests to 

monitor the whole deformation process [5,6]. Some AE parameters such as dominant 

frequency, event energy and cumulative emission counts are related to the different 

deformation stages. Numerical models from Particle Flow Code (PFC2D) has been used to 
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simulate UCS tests to predict rock failure [7]. In this PFC2D model of tri-axial compression 

tests, the number of cracks was taken as the hit number. In addition, AE detection is 

commonly used in hydraulic fracturing (HF) researches. In a physical model, high 

pressurized fluid was injected to cylindrical rocks to simulate hydraulic fracturing 

processes. The AE technique was used to characterize crack initiation and propagation [8].  

 

3.4   Experimental Setup 

Acoustic emissions were monitored during drill-off tests and cuttings were also collected. 

DOT utilized a small drilling simulator which has been used before [9].  Modification was 

made to this drilling system to monitor acoustic emissions and collect cuttings.  The drilling 

system is shown in Figure 3.1.  

 

Figure 3.1: Generic view of small drilling simulator (left) and cutting collection and 
acoustic emission setup (right) 
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3.4.1   Test materials 

The drill-off tests were conducted on one synthetic concrete with the unconfined 

compressive strength (UCS) of about 40 MPa. This concrete was made of aggregate, 

cement, and water with the mass ratio of 4:1:0.6. The dimensions of the concrete cylinders 

were 4 inch outer diameter by 6 inch height.  One test sample was required for each 

variation in drilling parameters. Before the test, portions of the cylindrical surfaces are 

ground to flat for attachment of acoustic emission sensors. 

 

3.4.2   Small drilling simulator 

The atmospheric drilling is simulated by one small drilling simulator (Figure 3.1). WOB is 

applied by a mass suspended on a wheel and torque by motor acting through gears. There 

are two settings for the rotary speed, 300 RPM and 600 RPM. In the paper, only tests at 

300 RPM are reported. A constant flow rate of tap water is used for bottom-hole cleaning.  

 

A two-cutter PDC bit with an outer diameter of 35 mm was used. A laser sensor was 

attached on the moving part of the rig which can measure the bit vibration within a working 

amplitude range of 20 mm.  

 

A pVARD vibration tool is applied on the top of drill string with two compliance settings 

labeled medium and strong compliance [10]. The compliant section converts bit vibration 

into the axial displacement. And the damping part absorbs harmful vibrations for the sake 
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of preventing the drill-string from damage. In this paper, three different settings of 

compliance are utilized. The proposed scheme for each compliance setting of drill-off test 

is listed in Table 3.1.  

 

Table 3.1: Scheme for drill-off test with AE detection 

Compliance 
setting 

Rated rotary speed 
(RPM) 

Flow rate 
(US gpm) 

Depth for each run 
(mm) 

Rigid 300 0.68 ~15 

Medium 300 0.68 ~15 

Strong 300 0.68 ~15 

 

3.4.3   Monitoring acoustic emission 

Four Panametrics P-wave sensors were placed symmetrically around the cylindrical 

concrete samples (Figure 3.2). Shear wave couplant was put between sensor and concrete 

surfaces to optimize signal transmission. The central frequency of P-wave sensors was 1.14 

MHz with working bandwidth of from 0.65 to 1.63 MHz at -6dB attenuation. From the 

frequency spectrum calibration report, the wide range of bandwidth guarantees reliable 

signals obtained from concrete even if the dominant frequency of signal is not located 

exactly inside the best working bandwidth. Four PAC 2/4/6 preamplifiers were utilized and 

gain selection of 20dB is applied in the laboratory drilling tests. Four customized power 

supply adapters are connected to these preamplifiers with output voltage of 20 volt. The 

DAQ system was comprised of GaGe CompuScope 8280 eight-channel board and its 

included DAQ software. The on-board memory of 128 MB allows to save up to 250 
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triggered events per channel to the computer disk. The trigger sensor was always put closest 

to the drilling source. 

 

Figure 3.2: Top view of p-sensors distribution around synthetic concrete cylinder 
 

The overall working flow chart for monitoring acoustic emissions is displayed in Figure 

3.3. All signals are automatically saved to computer disk when all settings are set well 

before each run of test. All settings for acoustic emissions detection are displayed in Table 

3.2.  

 

Table 3.2: Inputs for monitoring acoustic emission 

Sampling 
frequency 

P-wave 
sensors # 

Gain Peak-peak input Trigger level 

10 MHz 4 20 dB 10 V 0.05  
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Figure 3.3: Flow chart for monitoring acoustic emissions 
 

3.4.4   Cutting analysis overview 

For each run of drill-off test, all cuttings were collected from the fluid flow outlet. The 

concrete top surface was sufficiently cleaned for next run of test. Following ASTM 

standard D6913−04 [11] and cutting analysis procedure from researchers in DTL [12], 

collected cuttings were fully dried and different range of cutting size was analyzed with 

sieves with apertures 2000, 850, 630, 590, 420, 300, 160, 75, and 37 micron. The smallest 

size of cutting was assumed to be 10 micron which was convenient for calculating particle-

size distribution. 

 

For smaller size of cuttings than 37 micron, no more sieve analysis was done due to the 

small amount of mass. Furthermore, cutting size analysis whose sizes were smaller than 37 

micron could be done with hydrometers [13]. 
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3.5   Results 

During the drill-off tests, drilling related and acoustic emission data were monitored and 

saved automatically. Drilling performance parameters included penetration depth, duration, 

WOB, flow rate, bit vibration magnitude. Synchronized acoustic emission data obtained 

included trigger time, events, event number. During each test, cuttings were collected 

which were used to characterize drilling performance.  

 

3.5.1   Review of drilling conditions 

 

Figure 3.4: Rigid drilling when WOB = 100.0 kg. PDC bit penetrates around 20 mm on 
medium strength concrete (upper left) and axial vibration magnitude varies with time 
(upper right). Vibration is converted from time domain to frequency domain (Lower) 
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Drill-off tests were conducted on the medium strength concrete with rated rotary speed of 

300 RPM. Figure 3.4 shows an example of the penetration time and depth. By converting 

axial vibration magnitude from time domain to frequency domain, the dominant frequency 

was found to be 4.5 Hz. Processing of AE parameters are finished by Matlab® codes which 

are accessible from Appendix 1. 

 

3.5.2   Rock penetration characterization 

Under laboratory conditions, a series of WOB was confirmed from 100.0 to 234.6 kg. 

Resultant ROPs were shown in Figure 3.5. From this figure, ROP increases with increasing 

WOB for each setting. For the high WOB situation, the penetration rate with the strong 

compliance setting was the highest while the penetration rate under rigid setting was the 

lowest. The intersection of the curves for rigid and medium compliance settings indicates 

that there is little difference in penetration rate under low WOB situations. 

 

Figure 3.5: Laboratory rate of penetration (ROP) versus WOB under three different 
compliance settings 
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To eliminate the effect of rotary speed on penetration rate, both rate of penetration and 

rotary speed were normalized to 300 RPM. Normalized ROP was obtained from the actual 

ROP multiplied by the ratio of the rated rotary speed over the actual one. The normalized 

rotary speed was the ratio of the actual rotary speed over the rated one. Normalized results 

are shown in Figure 3.6. The rotary speed decreases with increased WOB and 

corresponding drag force on PDC bit cutter increases. The normalized ROP is higher than 

actual ROP for all WOB situations due to the slight decrease of rotary speed from the rated 

one. 

 

Figure 3.6: ROP is normalized to 300 RPM situation for eliminating the effect of different 
rotary speed (upper) and actual rotary speed normalized to 300 RPM (lower) 
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3.5.3   Cutting analysis results 

 

Figure 3.7: Particle-size distribution from drilling with rigid compliance (upper), medium 
compliance (middle) and strong compliant setting (lower) 
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Particle-size distribution charts are obtained for three different drilling settings in Figure 

3.7 in ranges from 10 micron to 2 millimeters. The vertical axis stands for the cumulative 

percentage that cuttings are less than indicated size. For any indicated sieve size, the lower 

the cumulative percentage, the higher percentage of cuttings are left in sieves. For any 

cumulative percentage, the higher of the size indicates bigger cuttings are obtained. 

 

From Figure 3.7, cuttings size is generally bigger with increasing of WOB for all rigid, 

medium and strong compliance settings. There is exemption on drilling with strong 

compliance setting. Cutting size with WOB of 100.0 kg is bigger than that with WOB of 

133.6 kg. The general trend indicates that higher WOB tends to generate bigger cutting 

size. 

 

Cutting size is also investigated for three compliance settings under the same WOB in 

Figure 3.8. In these figures, cutting size distribution is investigated for all applied five 

WOBs. For lower WOB situations such as 100.0 and 133.6 kg, strong compliance setting 

tends to generate bigger cuttings while rigid compliance setting generates bigger cutting 

than medium compliance. For larger WOB situations, stronger compliance settings tends 

to generate bigger cuttings.   
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Figure 3.8: Particle-size distribution from different WOB 
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The dependence of the cutting size distribution on compliance setting is explained as 

follows. The compliance system gives different response to different axial force, i.e. WOB. 

The compliance system absorbs and converts the bit motion into axial displacement with 

little effectiveness at low WOB. And it works with higher effectiveness at higher WOB. 

This is observed and justified from the comparison of size distribution when WOBs are at 

the level of no higher than and higher than 133.6 kg. An obvious role of different 

compliance on cutting size distribution was observed when WOB is above 133.6 kg. 

 

Cutting size was analyzed with a microscope at 16 X magnification. Some of the magnified 

cuttings were identified in Figure 3.9. Cutting particles are comprised of aggregates such 

as siliceous siltstone and volcanic rocks, and concrete clump containing smaller aggregates. 

From these figures, particles sharpness decreases from large size to smaller cutting size. 

This indicates that bigger cuttings are re-grinded when bottom hole cleaning is not perfect.  
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Figure 3.9: Particles obtained from drilling when WOB=234.6 kg at strong compliance 
setting, whose size ranges from 850 to 2000 micron (upper) and from 420 to 590 micron 

(lower) 
 

3.5.4   Acoustic emission results 

Acoustic emission events were recorded during each run of drill-off test. A typical signal 

and its spectrogram analysis are displayed in Figure 3.10. The waveform shows transient 
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fluctuations of emissions power with respect to a background level. Each waveform lasts 

1.6384 millisecond and comprises of 16384 points. The spectral content of the transient 

signals ranges from 50 to 300 kilo Hertz. Considering the drilling process, acoustic 

emission signal is comprised of rock cracking, system noise, drill rig vibration, etc. The 

cracking signal will not be solely extracted from the continuous waveform in this paper.  

 

Figure 3.10: Single acoustic emission from rigid drilling when WOB=100.0 kg (upper) 
and spectrogram (lower) 

 

The acoustic emission event rate is calculated based on cumulative number of triggered 

events during a typical time window within each run of drill-off test. Also, the 

corresponding event energy is integrated from the event waveform on the time domain [5]. 

Then, the average event energy is obtained from this drilling window (demonstrated in 
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Figure 3.4). Both event rate and average energy for the trigger channel are shown in Figure 

3.11.  

 

The average event energy increases with increase of WOB for all three compliance settings, 

and event rate slightly increases. Under the same WOB, the average event energy of rigid 

compliance setting is the largest and smallest magnitude of event energy is emitted from 

strong compliance drilling. The reason is that higher rate of events are generated in strong 

compliance settings than that in rigid setting.  

 

 

Figure 3.11: Average event energy (upper) and event rate (number of triggered events per 
second, lower) from the trigger channel 
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3.5.5   Acoustic emission and ROP 

Some conclusions can be obtained by comparing the event rate and average event energy 

in Figure 3.12. With increasing ROP, the average event energy increases for all the three 

different complicane setting. This correlates with the previous cutting size distribution 

results. Bigger size of cutting is generated with increase of ROP. In this way, higher average 

event energy correlates with bigger size of cutting, or in other words,  larger crack surfaces 

during the drilling process. 

 

Under the same ROP, the highest average event energy occurs in the rigid complicane 

setting while the lowest average event energy occurs at the strong complicane setting. The 

higher average event energy mainly originates from a lower event rate generated with less 

compliant setting as shown in Figure 3.11.  

 

Figure 3.12: Average event energy versus ROP under three different compliant settings 
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3.6   Discussion and Conclusions 

1) Rate of penetration increases with increase of applied WOB. A stronger compliance 

setting helps to improve drilling performance compared to rigid drilling setting.  

 

2) Cutting size distribution correlates with improved rate of penetration. The higher the 

WOB, the higher the cutting size. Also, a stronger compliance setting drilling increases 

ROP by increasing cutting size for each size range.  

 

3) A higher average event energy correlates with higher ROP with increase of WOB, which 

corresponds to bigger cutting size and higher event rate.  

 

4) Under the same WOB condition, average event energy is reversely correlated to 

compliance setting. Stronger compliance tends to generate lower average event energy due 

to higher event rate.  

 

5) The future work of interest is the frequency content within the acoustic signal. 
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4.2   Abstract 

A novel passive Vibration Assisted Rotary Drilling (pVARD) tool was designed and tested 

to improve drilling performance or rate of penetration (ROP) both in laboratory and field 

trials. This paper focuses on characterizing drilling performance by means of seismic while 

drilling (SWD) method and bit vibration analysis. The field scale pVARD tool was applied 

in drill-off test (DOT) with an array of geophones (1C) spread along drill site. Rotary 

drilling using a PDC bit was conducted and bit-rock interaction acted as the seismic source 

for reverse vertical seismic profile (RVSP). The surface wave was selected for 

characterizing drilling performance due to limited body waves observed during the 

experiment. The frequency spectra of the surface waves were determined which provided 

two effective seismic parameters: surface wave energy and frequency bandwidth for 

drilling performance analysis. These spectra varied in response to variation in drilling 

conditions, i.e. weight on bit (WOB), pVARD tool use and configuration, and rock type. 

Bit vibration was assessed by means of vibration accelerations measured with one 

downhole SensorSub. The whole available data used for characterizing drilling 

performance included WOB, bit vibration accelerations, seismic energy and frequency 

bandwidth and rock type. Three groups of DOT tests were conducted: 1) conventional 
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drilling in red shale, 2) pVARD drilling and conventional drilling in red shale, and 3) 

pVARD drilling and conventional drilling in grey shale.  

 

Surface waves were used to indirectly characterize drill bit-rock interaction and drill-bit 

source. From reported RVSP analysis, observed surface waves were shown to be generated 

by rig-ground interaction coupled to the longitudinal wave travelling along the drill string 

to the drill rig. In this way, bit-rock interaction or drilling performance was indirectly 

characterized by the SWD method. Seismic energy and frequency bandwidth was closely 

correlated with bit vibration and drilling performance when WOB varied.  

 

Analysis of the data shows that the seismic energy and frequency bandwidth decreased with 

increase of drilling performance. This is explained as more energy being partitioned for 

improved drilling performance with less energy partitioned to longitudinal wave and rig-

ground motion. This phenomenon existed for both conventional drilling and pVARD tool 

drilling, independent of rock type. For comparable WOB, seismic energy and frequency 

bandwidth varied in response to drilling with or without pVARD tool, from which the 

pVARD tool mechanism was further investigated. The SWD method was successfully 

applied in studying drill-bit interaction and improved drilling performance from pVARD 

tool. This method is promising for characterizing real-time drilling in future. 

 

Keywords: Vibration drilling tool; seismic while drilling; surface wave; frequency 

bandwidth; bit-rock interaction, drilling performance. 
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4.3   Introduction 

A novel drilling tool, the passive Vibration Assisted Rotary Drilling (pVARD) tool, was 

designed and fabricated at Memorial University of Newfoundland, Canada. Field tests of 

this tool showed significant increase in rate of penetration (ROP) [1]. However, the 

relationship between the enhancement mechanism and bit-rock interaction is the subject of 

ongoing research. The goal of this paper is to characterize drilling performance and bit-

rock interaction using seismic while drilling (SWD) as one component of this ongoing 

work. SWD is a passive seismic recording method using the interaction of the drill-bit and 

the formation to generate seismic waves that are recorded by surface geophones. Drill-off 

tests (DOT) are drilling experiments where drilling parameters are systematically varied 

and the impact on ROP is measured. Varied parameters for the DOTs in this investigation 

include weight-on-bit (WOB), rotary speed, rock type (i.e. stronger red shale and softer 

grey shale) and use of and configuration of the pVARD tool. This paper discusses two 

DOTs in red shale and 1 DOT in grey shale, both comparing conventional drilling and 

pVARD drilling. Comprehensive assessment is based on drilling data, seismic data, and bit 

vibration data recorded using a downhole SensorSub. 

 

Improving ROP has been of paramount interest for drilling communities in oil and gas 

industry and technologies have been developed for achieving this target over the last 

century. Of all the technologies, utilization of natural bit vibration or addition of extra bit 

vibration on drill bit is one of the most effective and widely used. In 1902, rotary-percussion 

drilling was first proposed by adding percussive blows to the conventional rotary drilling 
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as a means to improve ROP [2]. Since then, rotary-percussion drilling has evolved into one 

of the most efficient drilling methods using both top-hammer and down-the-hole hammer 

configuration, in particular, for rapidly penetrating hard igneous and metamorphic rocks in 

the mining and construction industries. In the 1950s, resonant sonic technology was 

developed which applies sub-percussive axial vibrations to the bit to successfully increase 

bit cutting efficiency and improve drilling performance [3]. This technology has evolved 

into sonic drilling, which is widely used for rapid drilling in soils and similar 

unconsolidated materials. However, for various reasons, neither drilling technology is 

suited for oil and gas drilling in sedimentary formations where well control must be 

maintained to prevent kicks and blowouts. At the Drilling Technology Laboratory of 

Memorial University of Newfoundland, one group of drilling experts investigated the 

possibilities of using natural bit vibration to improving drilling performance for otherwise 

conventional rotary drilling. By drilling with one polycrystalline diamond compact (PDC) 

bit and adding dampening elements beneath rock specimens in combination to one pulse 

cavitation drilling tool, the dampening compliance enhanced the oscillatory bit-rock 

interaction and resulted in improved cutting efficiency and overall drilling ROP [4]. After 

this, the idea was further developed to incorporate axial compliance directly into the drill 

string which also improved drilling ROP. These concepts were progressively investigated 

and refined and incorporated in both laboratory and field scale versions of the pVARD tool, 

which demonstrated improved ROP under both laboratory and field conditions [5,6]. One 

set of pVARD field trials formed the basis of the investigation reported in this paper. 
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Drilling performance is strongly influenced by bit motions and bit-rock interaction which 

has extensively studied on widely used bits such as roller cone and PDC bits. Theoretical 

models have been developed to assess forces applied in roller cone bits and the correlation 

to ROP and drilling conditions [e.g. 7,8]. Empirical relations were proposed to correlate 

drag forces on one single-cutter PDC bit to rock type, depth-of-cut (DOC) and bit wear 

state [e.g. 9]. Some researchers have reported on bit-rock interactions through measurement 

and evaluation of the three modes of drill string vibrations (i.e. axial, lateral and torsional) 

recognizing that these drill string vibrations are excited by bit-rock interactions [10]. For 

example, one numerical study of coupled axial and torsional vibrations showed the root 

cause of self-excited vibration as the delay in axial position of the bit, during the drag bit-

rock interaction [11]. These bit vibrations were experimentally measured as accelerations 

with one down-hole SensorSub [12], and the acceleration data interpretation were used to 

correlate bit vibrations to drilling conditions such as rock type and WOB [13]. In the 

laboratory tests, axial bit vibration generated from the pVARD tool was recorded by a laser 

probe, showing the vibration played a great role in improving drilling performance [5,6], 

and frequency peaks of axial bit vibrations were found around the angular velocity and its 

multiples [10]. 

 

Seismic while drilling was intensively studied during the 1980s and 1990s [14]. This 

technology had many applications such as positioning the drill-bit, real-drill-time imaging 

ahead of bit, guiding the bit to a target, predicting overpressure intervals ahead of bit. Of 

all the applications, characterization of bit rock interaction and drilling performance using 

SWD method was of greatest interest in the current discussion: spectral content analysis of 
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a radiated source is a frequently used method which helps to better understand drill bit 

conditions. For example, from accelerometers attached to the rig recording roller cone bit 

drilling source, frequency peaks showed the relationship to formation characteristics [15] 

and bit wear state [16]. Frequency peaks of the seismic sources showed the relation to bit 

geometries of both coring bit and roller cone bit [17]. Frequency spectra from rotary-

percussion drilling sources showed relationship between specific band to drilling 

conditions [18], bit types [19] and rock type [20]. 

 

4.4   Methodology 

4.4.1   Experimental methods 

Three shallow boreholes were drilled in September 2014 for testing the pVARD tool 

protocol at Greenslades Construction Quarry of eastern Newfoundland and Labrador, 

Canada (Figure 4.1). The SWD method utilized drill-bit rock interaction as a seismic source 

monitored by an array of 1C geophones (20) which were in-line spread. The space between 

geophones is 5 m. Three boreholes were drilled with an offset of approximately 7 m. The 

lithology of underground formations by cross section A-A’ is shown in Figure 4.2. The 

lithologic section is composed of the Manuels River Formation of the Harcourt Group 

which is black to dark grey shale with thin beds of grey limestone which is labelled as grey 

shale in this investigation. This formation is underlain by the Chamberlain’s Brook 

Formation of the Adeyton Group defined as green to grey shales with some red mudstones 
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and shales, and is labelled as red shale [21]. This lithology cross section was confirmed by 

analysing drill cuttings circulated back to surface.  

 

Figure 4.1: Spread of 1C geophones array (20) with three seismic source boreholes in 
Greenslades Construction Quarry of east Newfoundland (based on Google map) 
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Figure 4.2: Cross section of A-A’ showing the rock formation penetrated based on 
analysis of drill cuttings sampled while drilling 
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SWD recording took place during the drilling tests to evaluate if SWD data could be used 

to characterize rotary drilling performance. The drill rig used was an Ingersoll Rand T3W 

rig (Figure 4.3). The pVARD tool was installed above the downhole sensor-sub which was 

used to measure bit rotations and multi-axis accelerations. The pVARD tool utilized a series 

of springs and dampening material to modulate axial compliance which was shown to 

improve drilling performance [5]. A rotary-percussion hammer bit was used to penetrate 

the upper formations to the trial depths, followed by drilling using PDC and roller cone bits 

and with and without the pVARD tool. In this paper, the 152 mm PDC bit was used as the 

only bit for investigating drilling performance. A linear array of geophones at the surface 

was deployed as is typical in the reverse vertical seismic profile (RVSP) method. 

 

Drilling parameters were obtained from the drill rig, i.e. WOB, rotary speed, drilling depth 

and duration. Those parameters remained constant for each three meters drilling interval. 

The drilling rotary speed was nominally set to 100 revolutions-per-minute (rpm) but this 

fluctuated with WOB and the precise measurement of ROP was computed as DOC per 

revolution. To facilitate comparison with familiar values, this measurement was then 

normalized to ROP at 100 rpm. Water was used for circulating cuttings. Circulation flow, 

jet nozzle configuration and pressure drop across the bit were varied and optimized at the 

start of the field trials and then kept constant for the remainder of the trials. The effect of 

bottom-hole-pressure (BHP) on ROP was neglected due to the small variation in BHP over 

the depth range of the trials.  
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Figure 4.3: Onsite view of seismic while drilling at Greenslades Construction Quarry with 
(a): overview of drill site with in-line geometry of geophones; (b): 1C geophone; (c): 

front view of drill rig showing the drilling bottom-hole assembly, modified from Rana et 
al. [5] 

 

Excluding bit vibration, the drilling parameters that most significantly influenced ROP 

were WOB, rotary speed and rock type which effected ROP by means of rock strength. The 

relationship between WOB, rotary speed and rock strength is addressed by Maurer as the 

“Perfect-Cleaning Theory” and is expressed mathematically in Equation (1) [22,23].  

 

� =
�

�� [
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��
−

��

��
]��                                                      (1) 

Where  
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� = rate of penetration, 

� = constant of proportionality, 

� = compressive strength of rock, 

� = weight on bit, 

�� = threshold weight on bit, i.e. the minimum weight on bit to start effective penetration, 

��= bit diameter, 

� = rotary speed. 

 

The other important factors that caused variation of ROP were bit vibration and bit-rock 

interaction [5,6] which are detailed in the bit vibration and drilling performance analysis 

presented in this paper. 

 

4.4.2   Surface wave as a monitor of drilling performance 

Surface wave have been observed in SWD experiments while drilling using roller cone bits 

[24]. This indicates that not only direct waves but surface waves might be used to monitor 

drilling performance if the surface waves are at least in part generated by longitudinal 

vibrations in the drill string coupled with the drill rig [24]. To explicitly clarify this 

phenomenon, surface wave and body wave travel paths are shown in Figure 4.4. A portion 

of bit-rock interaction energy is transmitted through the drill string as a longitudinal wave. 

When the longitudinal waves interact with the drill rig, they modify the surface waves 

generated by the drill rig. In this way, observation of the modified surface waves can be 
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used to characterize the drill bit source by way of characterizing rig motion which is closely 

related to drill bit motion.  

 

In this research, both surface and body waves were confirmed in rotary-percussion hammer 

bit drilling, while only surface waves were observed from PDC bit drilling. Thus the surface 

wave was utilized to characterize the drill-bit source. 

 

Figure 4.4: Demonstration of direct wave and surface wave generated from rig-ground 
interaction, which was modified from Rector and Hardage [24] 

 

4.5   Properties of the Rocks 

The geomechanics and ultrasonic properties of the shales are essential for understanding 

the DOTs, elastic wave propagation and SWD. Outcrop blocks for the relevant lithologies 
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were obtained in an adjacent quarry. Then, geomechanics and ultrasonic tests were 

conducted on these rocks at Drilling Technology Laboratory. Table 4.1 shows test results. 

Results of red shale were reported by other researchers [5]. The unconfined compressive 

strength (UCS) was measured by the point load index method [25] and ultrasonic velocities 

were measured by the ultrasonic testing method [26]. From these results, it is evident that 

the red shale was comparatively stronger and more competent than the grey shale, and that 

the drilling trails were conducted in low to medium strength formations.  

 

Table 4.1: Geomechanics and ultrasonic properties of the shale formations oriented 
perpendicular to bedding 

 
UCS 

(MPa) 
Density 
(kg/m3) 

P-wave velocity 
(m/s) 

S-wave velocity 
(m/s) 

Red shale 56.0 2760.0 5154.0 3767.0 

Grey shale 32.3 2579.7 3394.9 2693.5 

 

4.6   Data Acquisition and Processing 

4.6.1   Data acquisition 

Figure 4.5 shows the 3D geometry of the array of 1C geophones with respect to the drill-

bit source for three boreholes whose depths were precisely shown in Figure 4.2. Onsite 

geophone array could be visualized in Figure 4.3. The dip of the ground surface was 

approximately 18° based on geophone GPS coordinates. Seismic signals were continuously 

recorded for 30 s with sampling frequency of 1000 Hz and multiple 30 s recordings were 

obtained for each 3 m run of the DOTs.   
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Figure 4.5: 3D Geometry of 1C geophone array with regarding to the three boreholes 
(looking north) 

 

Based on the objective of studying drilling performance of the pVARD tool using SWD, 

the plan for conducting the DOTs is listed as follows:  

 

1) Characterization of rigid drilling in red shale, 

 

2) Comparison of pVARD tool and rigid drilling in red shale, 

 

3) Comparison of pVARD tool and rigid drilling in grey shale. 
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4.6.2   Seismic data processing 

Raw seismic data were processed using the GEDCO Vista 2D/3D Seismic Data Processing 

package. The processing workflow sequentially included notch filtering to remove 60 Hz 

noise, spiking deconvolution, and then cross correlation with the reference channel #20. 

Channel #20 was selected as the reference channel because it was the closest geophone to 

the drill rig. In Figure 4.6, sample cross correlated seismic data are shown from Borehole 

2. Twenty traces were grouped as one drill-bit source and apparent difference of amplitude 

were shown between hammer bit drilling and PDC bit with pVARD tool drilling.  

 

In Figure 4.7, seismic data are assembled into a RSVP by assembling traces from the same 

geophone at different bit depths. Hammer bit drilling was followed by PDC bit drilling with 

the pVARD tool. From the arrival time and apparent velocity, the vertically polarized shear 

wave (SV) was identified. In the RSVP, the SV wave arrival time decreases as drilling 

depth increases due to the time shift introduced by the correlation with the reference 

channel. Seismic wave frequency spectra have been demonstrated to be useful to 

characterize drilling parameters [18]. However, because we did not reliably observe the 

body waves (SV) with all of the drill bits used, we chose to use the surface wave to 

characterize drilling performance.  
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Figure 4.6: Sample seismic data cross correlated on channel #20. In borehole 2 from 79.2 
to 85.3 m, red shale was drilled by a hammer bit and a PDC bit with the pVARD tool. 

Every twenty traces were assembled in one group recorded by 20 geophones. The space 
between traces is 5 m. No scaling was applied 
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Figure 4.7: Assembly of cross correlated traces from channel #3 in borehole 2. Drilling 
depths ranged from 0 to 91.4 m. Trace was individually scaled at its peak amplitude 

 

Figure 4.8 shows the frequency spectra recorded when there was no drilling. This is 

essentially the background noise when there is no penetration with the bit and therefore no 

bit-rock interaction and the associated drilling modified surface waves. Figure 4.9 provides 

example surface wave frequency spectra recorded while drilling using the same color bar 

scale for surface wave magnitude as for Figure 4.8. The narrower frequency spectrum for 

the background noise confirms that there is less rig motion when not drilling and that the 

bit-rock interaction while drilling modified the surface waves radiated from the drill rig. In 

Figure 4.9, the frequency spectra for eight separate DOT drilling experiments are given, 

representing 4 increasing WOBs  with the pVARD tool (labelled as T1 throughT4) and 4 
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increasing WOBs without the pVARD tool, i.e. rigid or conventional drilling (labelled as 

T5 through T8). For these specific frequency spectra, it can be observed that i) the 

frequency bandwidth of the surface waves decreases with increasing WOB, and ii)  the 

surface wave amplitudes for pVARD drilling are higher than for rigid drilling. This 

confirms that the different drilling parameters used for the DOTs generates surface waves 

with distinct frequency and amplitude spectra.  

 

Figure 4.8: Sample frequency spectrum for surface wave traces recorded at channel #3 
when drill rig was on with no drilling 
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Figure 4.9: Demonstration of eight frequency bandwidths for surface wave traces 
recorded from 8 DOTs, which are divided into two drillings, i.e. the pVARD tool (T1-T4) 

and rigid (T5-T8) 
 

In addition to frequency spectrum, the energy level was also an effective means to 

quantitatively characterize drill-bit source. In this paper, surface wave amplitude level was 

obtained by means of root mean square (RMS) method [27], which was accessible by a 

workflow in Halliburton SeisSpace/ProMAX 2D package. This value was used to 

characterize the surface wave energy level. 
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4.6.3   Bit vibration data collection and analysis 

There were generally three types of drill string vibration in rotary drilling, i.e. axial, lateral 

and torsional vibrations [10]. In this research, they were evaluated by accelerations in axial, 

lateral and torsional directions, respectively, using the downhole SensorSub which was 

mounted behind the PDC bit in the drilling Bottom-Hole-Assembly (BHA) for measuring 

near-bit accelerations and rotation (Figure 4.3). The SensorSub used four triaxial 

accelerometers and a magnetometer (Figure 4.10), from which the near-bit axial, lateral 

and torsional accelerations were calculated [12]. The calculation procedure is demonstrated 

in Appendix 2. Accelerations were further processed using the RMS method which 

provided a measure of magnitude of a signal [27].  

 

Figure 4.10: Sensor package was coaxially located inside the downhole SensorSub. 
Accelerometers were collaboratively used in obtaining accelerations for bit vibration 

modified from Gao [12] 
 

In Figure 4.11, bit vibration levels are related to corresponding WOB when drilling was 

conducted in borehole 1 red shale from 69.3 to 93.8 m. Acceleration was normalized to 



113 
 

 
 

rotary speed of 100 rpm for comparison. Torsional vibration resulted from angular velocity 

change of drill string which played less role than axial and lateral vibrations and thus not 

investigated for the following research. Bit vibration levels in both axial and lateral 

directions generally decreased with the increase of WOB applied on the PDC bit. An 

exception is noted when WOB was the lowest, however, this is reasonable because when 

axial load increased the amplitude of bit natural vibration decreased. Axial vibration level 

remained the lowest compared to other vibrations while it was comparable to the lateral 

vibration level. These results were visually verified from field observations on drill string 

vibration on the ground. Torsional vibration or “stick-slip” of drill-string was commonly 

observed using the PDC bit by the driller, while axial and lateral vibration were not 

apparently observed.  

 

Figure 4.11: Bit vibration was interpreted as three accelerations. Red shale was drilled 
with one PDC bit from 69.3 to 93.8 m in borehole 1  
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4.7   Data Analysis and Interpretation 

In Table 4.2, three groups of seismic while drilling tests were conducted in three different 

boreholes. Rock type remained the same for each group, within the group drilling settings 

varied. The drilling setting was designated as rigid indicating the pVARD tool was not 

present. The setting of pVARD tool springs was set as V12000 which meant working load 

of 12,000 pounds for the tool springs at quarter deflection [1]. For every setting of drilling, 

increasing WOBs were applied and corresponding seismic events were recorded and 

distinguished by field file identification number (FFID). Representative seismic records 

were selected for processing. ROP and bit vibration data were finally normalized to 100 

rpm for comparison. 

 

Table 4.2: Drill-off test parameters for the seismic-while-drilling experiments 

Borehole Rock Drilling setting WOB (kg) Seismic events FFID 

1 Red shale Rigid 

5959.8 74,75 

7177.5 87,88,89 

10830 96,97 

13982 64,65 

15200 67 

2 Red shale pVARD 

6047.6 313 

7265.3 330,331 

8482.9 341,342,343 

8816.3 367 

2 Red shale Rigid 

6574.1 373,374,375 

6591.7 380,381,382,383 

6609.2 387,388 

7756.6 393 

3 Grey shale pVARD 

5328.1 560 

6475.6 562 

7622.9 564,565 
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9935.4 567 

3 Grey shale Rigid 

5415.9 569 

6580.9 570,572 

7745.8 574 

8910.8 575 
 

4.7.1   Rigid drilling on red shale  

In borehole 1, the red shale was drilled with rigid setting from 69.3 to 93.8 m depth.  

Available data include WOB, ROP, rotary speed, seismic signals, and bit vibrations.  

 

In Figure 4.12, normalized ROP is plotted versus WOB and corresponding axial and lateral 

acceleration. RMS of surface wave amplitude is interpreted as the energy from different 

drilling depths received by five different geophones. From Figure 4.13 to Figure 4.17, 

frequency spectra were obtained on five depths at selected channels #1, #3, #7, #10 and 

#13. Every black window represents one drilling condition of WOB.  

 

From the drilling performance (Figure 4.12), ROP generally increases with the increase of 

WOB, which confirms Maurer’s “Perfect bottom-hole cleaning theory” [22]. The 

maximum ROP was not determined to be the optimum drilling performance under the 

present drilling conditions due to lack of sufficient post-peak experiments. Corresponding 

axial and lateral vibration magnitudes decreased which showed bit vibration was depressed 

due to increase in WOB. Surface wave energies from all channels decreased. 

Simultaneously from the frequency spectra, frequency bandwidth of specific energy level 

(above -8.8 dB), i.e. black window height decreased.  
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Due to transmission of energy form drill bit though drill pipe to rig (Figure 4.4), drill bit 

energy was partitioned to rig-ground interaction and rig arrival or surface wave was 

obtained [24]. Based on this, decrease of surface wave energy and frequency bandwidth 

resulted from lower magnitude and less variation of rig-ground motion. A reasonable 

presumption is that less drill bit energy was partitioned to generate surface wave while 

more energy was used in bit penetration, when WOB is increased. 

 

Figure 4.12: Red shale was drilled from 69.3 to 93.8 m in borehole 1. Results were shown 
as ROP and vibration accelerations (top), surface wave energies from multiple channels 

(bottom)  
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Figure 4.13: Five frequency bandwidths corresponded five WOBs of rigid drilling from 
channel #1, when red shale was drilled from 69.3 to 93.8 m in borehole 1  
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Figure 4.14: Five frequency bandwidths corresponded five WOBs of rigid drilling from 
channel #3, when red shale was drilled from 69.3 to 93.8 m in borehole 1 
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Figure 4.15: Five frequency bandwidths corresponded five WOBs of rigid drilling from 
channel #7, when red shale was drilled from 69.3 to 93.8 m in borehole 1 
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Figure 4.16: Five frequency bandwidths corresponded five WOBs of rigid drilling from 
channel #10, when red shale was drilled from 69.3 to 93.8 m in borehole 1  
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Figure 4.17: Five frequency bandwidths corresponded five WOBs of rigid drilling from 
channel #13, when red shale was drilled from 69.3 to 93.8 m in borehole 1  

 

4.7.2   pVARD and rigid drilling on red shale 

In borehole 2, red shale was drilled with rigid setting from 103.6 to 106.0 m depth and 

drilled with pVARD tool from 82.3 to 103.6 m depth. Available data include WOB, ROP, 

rotary speed, seismic signals, while bit vibration data are not available.  

 

In Figure 4.18, normalized ROP was plotted versus WOB. Surface wave energy was 

interpreted from different drilling depth received by six different geophones. From Figure 

4.19 to Figure 4.24, frequency spectra were obtained on four depths for each setting at 

selected channels #1, #3, #5, #7, #10 and #13. 
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Figure 4.18: Red shale was drilled from 82.3 to 106.0 m in borehole 2. Results were 
shown as ROP, and surface wave energy comparison for the pVARD tool and rigid 

drillings 
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From the drilling performance, ROP generally increased with the increase of WOB for both 

means of drillings, while surface wave energies decreased. Simultaneously from the 

frequency spectrum, seismic frequency bandwidth of specific energy level (0 to -8.8 dB) 

decreased. This confirmed that the decrease of surface wave energy and frequency 

bandwidth from rig motion was due to increase of bit energy partition into bit penetration 

from increase of WOB. Rig-ground interaction was weakened in magnitude and motion 

variation. 

 

Furthermore, ROP increased with the pVARD tool compared to rigid drilling. For 

comparable WOB, the pVARD tool provided higher level of surface wave energy resulting 

from higher magnitude of rig-ground interaction. This phenomenon can be explained in 

terms of the pVARD tool mechanism. The pVARD tool improved drilling performance by 

means of increasing bit-rock contact time per every cycle of axial vibration period, thus 

rocks were more easily cracked which was confirmed in the laboratory experiments [6]. 

This function of imposing the bit on rock for a longer time with the pVARD tool made the 

whole drill string more compliant than the rigid case. In this way, the higher magnitude of 

rig motion was generated from additional compliance of drill string. The frequency 

bandwidths of the pVARD and rigid drillings were comparable. 

   

Finally, increase of WOB resulted in improved ROP by more energy partition into bit 

penetration, and less energy partition to rig-ground motion transmitted through the drill 

string causing less surface wave energy and frequency bandwidth. For comparable WOB, 

drill string compliance made more bit energy partition into bit penetration and increased 
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ROP by increasing bit-rock contact time, and intensified the rig-ground interaction 

resulting in higher magnitude of surface wave.  

 

Figure 4.19: Four frequency bandwidths corresponded four WOBs for the pVARD tool 
and rigid drillings from channel #1, when red shale was drilled from 82.3 to 106.0 m in 

borehole 2  
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Figure 4.20: Four frequency bandwidths corresponded four WOBs for the pVARD tool 
and rigid drillings from channel #3, when red shale was drilled from 82.3 to 106.0 m in 

borehole 2 
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Figure 4.21: Four frequency bandwidths corresponded four WOBs for the pVARD tool 
and rigid drillings from channel #5, when red shale was drilled from 82.3 to 106.0 m in 

borehole 2 
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Figure 4.22: Four frequency bandwidths corresponded four WOBs for the pVARD tool 
and rigid drillings from channel #7, when red shale was drilled from 82.3 to 106.0 m in 

borehole 2 
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Figure 4.23: Four frequency bandwidths corresponded four WOBs for the pVARD tool 
and rigid drillings from channel #10, when red shale was drilled from 82.3 to 106.0 m in 

borehole 2 
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Figure 4.24: Four frequency bandwidths corresponded four WOBs for the pVARD tool 
and rigid drillings from channel #13, when red shale was drilled from 82.3 to 106.0 m in 

borehole 2 
 

4.7.3   pVARD and rigid drilling on grey shale 

In borehole 3, grey shale was drilled with conventional setting from 57.5 to 60.0 m depth, 

and drilled with the pVARD tool from 54.5 to 57.5 m depth. Available data include WOB, 

ROP, rotary speed, seismic signals, while bit vibration data are not available.  

 

In Figure 4.25, normalized ROP is plotted versus WOB. Surface wave energy is interpreted 

from different drilling depths received by three different geophones. From Figure 4.26 to 

Figure 4.28, frequency spectra were obtained on four depths for each setting at selected 
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channels #7, #10 and #13. The energy level was set from 0 to -15 dB for the optimum 

demonstration based on the received surface wave energy. 

 

Figure 4.25: Grey shale was drilled from 54.5 to 60.0 m in borehole 3. Results were 
shown as ROP, and surface wave energy comparison for the pVARD tool and rigid 

drillings 
 

From the drilling performance (Figure 4.25), ROP generally increased with the increase of 

WOB for both means of drillings, while surface wave energies decreased. Simultaneously 

from seismic spectra, the seismic frequency bandwidth of specific energy level (above -6.6 

dB) decreased. This again confirmed that less energy was partitioned from drill bit source 

to the rig and rig-ground interaction was weakened. 
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Furthermore, ROP was lower with the pVARD tool than rigid drilling which was in contrast 

with drilling on red shale. For comparable WOB, the pVARD tool provided a narrower 

frequency bandwidth and lower surface wave energy compared to rigid drilling. This 

showed that rig-ground interaction was weakened in magnitude and vibration content, 

when less drill bit energy was partitioned into drilling penetration. The analysis indicated 

that more drill bit energy was partitioned to drill string which was actually absorbed by the 

pVARD tool in terms of compliance. The pVARD drilling here differed from that 

previously stated and the only difference was strength of rock. This setting of the pVARD 

tool did not improve drilling performance in weaker grey shale. The pVARD tool hindered 

effective drilling in softer grey shale indicating the limitation of this tool to drilling in soft 

rock.   

 

Figure 4.26: Four frequency bandwidths corresponded four WOBs for the pVARD tool 
and rigid drillings from channel #7, when grey shale was drilled from 54.5 to 60.0 m in 

borehole 3 
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Figure 4.27: Four frequency bandwidths corresponded four WOBs for the pVARD tool 
and rigid drillings from channel #10, when grey shale was drilled from 54.5 to 60.0 m in 

borehole 3 
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Figure 4.28: Four frequency bandwidths corresponded four WOBs for the pVARD tool 
and rigid drillings from channel #13, when grey shale was drilled from 54.5 to 60.0 m in 

borehole 3 
 

4.8   Discussion and Conclusions 

1) Bit motion closely correlated with WOB and seismic signal properties. With the increase 

of WOB, ROP increased. While bit natural vibration levels in axial and lateral directions 

decreased. This change was due to increased WOB in longitudinal direction. The rig-

ground interaction was weakened both in magnitude and frequency content. 

 

2) With the increase of WOB, the frequency bandwidth and energy magnitude of surface 

wave decreased for both the pVARD tool and conventional rotary drilling. A reasonable 
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presumption was proposed, i.e. less drill bit energy was partitioned to generate surface 

wave while more energy was used in bit penetration, when WOB was increased.  

 

3) On higher strength rock, the pVARD tool improved drilling performance. This was 

largely attributed from the drill string compliance brought by the pVARD tool. More bit 

energy was partitioned into bit penetration and ROP was increased by enhancement of drill 

bit-rock interaction, i.e. bit-rock contact time was increased per revolution of rotation by 

imposing compliance on drill bit. This mechanism of pVARD tool has been verified in 

laboratory tests [5,6]. This resulted in intensified rig-ground interaction and corresponding 

higher magnitude of surface wave.  

 

4) On lower strength shale, the pVARD tool hindered effective drilling. The pVARD tool 

drilling results of ROP and properties (frequency bandwidth and energy) of surface waves 

generated by rig-ground motion indicated more drill bit energy partition to the drill string 

and less rig-ground motion. Drill bit-rock interaction was hindered by this setting of springs 

and lower strength grey shale. This indicated that more researches should be conducted on 

the compliance setting of this pVARD tool for specific drilling conditions. 

 

5) Surface wave was utilized to characterize drill bit-rock interaction and drilling 

performance by indirect means of identifying rig-ground interaction, which closely related 

to drill bit motion and drilling energy partition.  
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6) Only surface wave was available for PDC bit drilling on shale formations. This probably 

resulted from the properties of weak shale. An improvement on using direct wave as SWD 

source could be conducting tests on stronger rocks which could improve data quality for 

PDC bit.  
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5.2   Abstract 

This paper describes an investigation of active bit vibration on the penetration mechanisms 

and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of 

drill-off tests (DOTs) was conducted where the drilling rate-of-penetration (ROP) was 

measured in a series of step-wise increasing static bit thrust or weight-on-bit (WOB). Two 

active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface 

using an electromagnetic vibrating table mounted underneath the drilling samples, and a 

third passive DOT was conducted where the bit was allowed to vibrate naturally with a 

lower amplitude due to the compliance of the drilling sample mounting. During drilling, an 

acoustic emission (AE) system recorded the AE generated by the diamond cutter 

penetration and cuttings were collected for grain size analysis. The instrumented drilling 

system recorded the dynamic motions of the bit-rock interface using a laser displacement 

sensor, and a load cell and an LVDT recorded the dynamic WOB and the ROP, 

respectively. Calibration with the drilling system showed that rotary speed was 

approximately the same at any given WOB, facilitating comparison of results at the same 

WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB 

increased with a higher amplitude of axial bit-rock vibration, and drill cuttings increased in 

size with a higher ROP. Spectral analysis of the AE indicated that the higher ROP and 

larger cutting size correlated with a higher AE energy and a lower AE frequency, indicating 
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larger fractures were being created to generate the larger cutting size. Overall, these results 

indicate that a greater magnitude of axial bit-rock vibration produces larger fractures 

generating larger cuttings which, at the same rotary speed, results in a higher ROP.  

  

Keywords: Active bit vibration; diamond coring drilling; drill-off test; acoustic emission; 

drilling performance; penetration mechanism; cutting size analysis. 

 

5.3   Introduction 

Two major types of drilling are used in the mineral, oil and gas, and construction industries. 

These are i) rotary drilling, where a static thrust or weight-on-bit (WOB) is applied to the 

bit, and ii) rotary-percussion drilling, where percussive hammer impacts are applied to the 

bit in addition to a static WOB. It is well known that rotary drilling performance, as 

measured by drilling rate-of-penetration (ROP) and the nature and rate of bit wear, is 

strongly influenced by bit motions and bit-rock interaction. This has been studied using 

roller cone and polycrystalline-diamond-compact (PDC) drag bits, which are widely used 

for oil and gas drilling. Theoretical models have been developed to study forces applied to 

roller cone bits as well as the correlation to ROP and drilling conditions [1,2]. Empirical 

relations have been proposed to correlate drag forces on a single-cutter PDC bit to rock 

type, depth-of-cut (DOC) and bit wear state [3]. Some researchers have reported on bit-

rock interactions through measurement and evaluation of the three modes of drill string 

vibrations (i.e. axial, lateral and torsional) recognizing that these drill string vibrations are 

excited by bit-rock interactions [4,5]. 
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At the Drilling Technology Laboratory at Memorial University of Newfoundland, several 

investigations have focused on using bit vibrations to improve rotary drilling performance. 

One study used compliant elastomers beneath rock specimens to enhance the oscillatory 

motions generated by bit-rock interaction while drilling with PDC bits, which resulted in 

improved cutting efficiency and overall drilling ROP [6]. Thereafter, this idea was further 

developed and incorporated into a drilling tool, called the passive Vibration-Assisted-

Rotary-Drilling (pVARD) tool, which demonstrated improved ROP under both laboratory 

and field drilling conditions [7,8]. Another study investigated the influence of active 

vibration on drilling performance for diamond drilling with coring bits and full-face drag 

bits using an electromagnetic vibrating table to vibrate the rock specimen while drilling. 

These studies varied both the amplitude and frequency of the applied vibration, and 

demonstrated that ROP was generally increased at a rate proportional to the amplitude of 

vibration, regardless of the vibration frequency [9,10]. 

 

One major challenge for investigating rotary drilling is the difficulty to visualize the bit-

rock interaction and bit penetration process. Cuttings analysis has been used to evaluate the 

penetration mechanisms by relating the size and shape of cuttings to the fracturing 

mechanisms [8,11], keeping in mind the potential influence of the mineral fabric of the rock 

[12]. Acoustic Emission (AE) technology provides an indirect way of studying these 

fracturing processes, in which AE signals are generated by the fracturing and remotely 

recorded. This technology has been abundantly reported in early studies on investigating 

micro-crack nucleation and crack propagation processes in core specimens under standard 
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strength tests in the laboratory [13]. In the drilling area, bit wear states were distinguished 

by studying frequency contents of AE signals using carbide rotary bits [14] and a single-

cutter bit [15,16], and by studying the amplitude using twist drill bits [17]. Energy related 

parameters of AE signals were commonly used to study bit penetration mechanisms such 

as the root mean square (RMS) of amplitude and the AE event energy. Some researchers 

have reported that the RMS of an AE signal is an effective measure of its magnitude [18]. 

For the drilling with an impregnated diamond bit, the dominant bit action consisted of 

cutting and friction processes [19], and the processes were investigated by monitoring AE 

signals. In a diamond coring bit drilling, a variation of RMS levels in AE signals was 

correlated with varying DOC [20]. In a PDC bit drilling, an average AE energy was 

calculated to investigate bit penetration mechanisms and drilling performance [8]. Related 

studies at the seismic scale [21-23] have related the frequency content of seismic waves to 

the length of the generated fractures, with longer fractures generating lower seismic 

frequencies and vice versa. 

 

Diamond core drilling is the primary form of rotary drilling used for mineral exploration 

and ore body evaluation. The paper outlines an investigation using AE and drill cuttings 

characterization to evaluate the penetration mechanisms for drilling with impregnated 

diamond coring bits while applying passive and active bit vibration. The experiments 

comprise a series of drill-off-tests where the WOB is increased in a step-wise manner while 

maintaining a constant bit vibration condition as provided by compliant specimen 

mountings and an external vibrating table. These drilling vibration experiments were 

carried out at the same vibration frequency but with incrementally increasing vibration 
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displacements. AE data was recorded for all of the DOTs to provide information about bit-

rock interaction during the DOTs.  Based on previous studies, we expected to observe an 

increase in ROP with the addition of active vibration, however, these experiments provided 

further data on the effect of the bit-rock interactions and penetration mechanisms that 

influence the ROP. 

 

5.4   Methodology 

5.4.1   Experimental method 

Figure 5.1 shows the schematic diagram of the experiment setup for conducting DOTs and 

monitoring of AEs. A small drilling simulator (SDS) was used to conduct DOTs.  With the 

SDS, a suspended mass provides a known WOB [24]. A Husqvarna coring bit with the 

outer diameter of 25.4 mm was mounted to the rig swivel. A constant flow rate and pressure 

of tap water flushed cuttings between bit and rock away to create space for a new round of 

penetration. The rotary speed was nominally set as 300 revolutions-per-minute (RPM) for 

all DOTs, but this measurement slightly decreased with increasing friction and torque from 

the increase of WOB [8]. However, a detailed calibration of the drilling system showed that 

the rotary speed was approximately constant for any given value of WOB up to the drilling 

founder point, where the drilling motor had insufficient torque to turn the bit [5]. All DOTs 

conducted for this investigation were at WOBs less than the founder point. A linear variable 

differential transformer (LVDT) was used to monitor bit-penetration depths that the drill 

bit actually penetrated and were measured by mm or m. Cylindrical drilling samples 
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measuring approximately 100 mm in both diameter and length were made from a fine-

grained concrete cast using fine aggregate, water and Portland cement. Previous studies 

conducted using this fine grained concrete material confirmed that it behaves similar for 

drilling to the low permeability sedimentary rock with the same unconfined compressive 

strength (UCS) [25]. Table 5.1 lists the geotechnical properties of this material measured 

using a standard ASTM strength test [26] and a standard ASTM ultrasonic test [27].  

 

Table 5.1: Geomechanics and ultrasonic properties of the drilling sample material [7] 

Rock 
UCS 

(MPa) 
Young's modulus 

(GPa) 
P-wave velocity 

(m/s) 
S-wave velocity 

(m/s) 

Concrete 51 34 4423 2448 

 

Active bit vibration was indirectly provided by one external electromagnetic vibrating table 

for the purpose of studying the effect on ROP (Figure 5.1). The vibration was configured 

to be 60 Hz with two varying amplitudes: 0.044 mm and 0.055 mm at the lowest WOB, 

referred to be L1 and L2 respectively. A rock cylinder was firmly mounted to the vibrating 

table surface, thus they vibrated axially under controlled settings. Figure 5.2 is a schematic 

diagram showing the penetration process of a six-segment diamond coring bit [20] along 

with the laboratory two-segment diamond coring bit. Drilling parameters include WOB and 

angular velocity Ω or rotary speed. The drill bit penetrates downwards perpendicular to X-

X’ in plot (a) and a segment moves rightwards from applied torque-on-bit (TOB) in plot 

(b). Depth-of-cut (DOC) is defined as the penetration depth of drill bit per revolution 

(mm/rev). Plot (c) shows the two-segment diamond coring bit used in this research with an 

outer diameter of 25.4 mm. The resultant WOB is then comprised of a combination of a 
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static one and a varying weight due to periodical vibrations. Vibration displacements of the 

rock cylinder were measured by a laser sensor, which was attached to the stationary rig 

frame of the SDS (Figure 5.3).  

 

In all of the tests, four Panametrics P-wave sensors were placed symmetrically around a 

rock cylinder to monitor AEs. Locations of these sensors were set identical in reference to 

the top surface of this cylinder and the location of the sensors was the same for all of the 

tests to ensure a confident comparison of AE signals between varying WOBs as well as 

different drilling settings. These sensors were calibrated with a central frequency of 1.14 

MHz, and a working bandwidth range from 0.65 to 1.63 MHz at -6 dB attenuation. Four 

preamplifiers, manufactured by Physical Acoustics Corporation, were used to amplify AE 

signals at a 20 dB gain. A GaGe CompuScope 8280 A/D board sampled these analogue 

signals at a sampling frequency of 10 MHz. The measurement of AE signals was 

synchronized to the drilling test.  
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Figure 5.1: Schematic diagram for conducting DOTs using a small drilling simulator at 
the Memorial University of Newfoundland. A DOT is conducted on a concrete cylinder, 

which is firmly mounted to the vibration table 
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Figure 5.2: Schematic view of a diamond coring bit drilling: (a) drilling parameters for a 
six-segment diamond bit; (b) penetration process of a single segment; (c) two-segment 

diamond bit used in this paper. This is modified after Karakus and Perez [20] 

 

 

Figure 5.3: Overview of the DOT setup (a) with a concrete cylinder for mounting AE 
transducers; (b) the laser sensor attached to the stationary rig frame 
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5.4.2   Testing plan  

For the DOT experiments, a water flow rate of 3.78 l/min and a total of bit-penetration 

depth of approximately 15 mm were confirmed at each WOB. A group of four increasing 

WOBs were confirmed: 84.1 kg, 95.3 kg, 106.5 kg and 117.7 kg. In each DOT, the four 

increasing WOBs were applied on a rock cylinder, and a drilling vibration setting was 

assigned to this test. Those rock cylinders were casted with the same proportions of 

materials and their geomechanics properties are shown in Table 5.1. 

 

Table 5.2 lists the inputs for monitoring AE signals. These configurations were used for the 

following DOTs. 

 

Table 5.2: Inputs for monitoring acoustic emission 

Sampling frequency P-wave sensor Gain Peak-peak input Trigger level 
(Hz) # (dB) (V) (V) 

10 Mega 4 20 10 0.05 

 

The first series of DOTs was conducted without active vibration for a range of increasing 

WOB. Simultaneously, AE signals were monitored and cuttings were collected, providing 

data for frequency content and event energy analysis and a particle size distribution 

analysis. The second phase of the experiment consisted of two series of active vibration 

drillings. All other drilling parameters remained the same with the exception of vibration 

displacement. The two axial displacement settings had been previously described as: L1 

and L2 (L1<L2). 
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5.5   Data Acquisition and Processing 

For each DOT, drilling related data are obtained, i.e. WOB, bit-penetration depth - time, 

and vibration displacement - time. Synchronized AE signals are recorded as well.  

 

Figure 5.4 shows an example of the analysis processes for ROP based on bit-penetration 

depth - time, and of bit vibration from vibration displacement - time. The bit-penetration 

depth was measured to be approximately 10 mm when the vibration setting of L1 and the 

WOB of 95.3 kg were chosen. The bit-penetration depth is determined by a moving average 

of the time-depth data resulting in a smooth average depth curve. This curve is quasi-linear 

and the slope of this curve was then taken as the ROP. Bit vibration data was first processed 

by removing trends of original vibration displacement. Spectral analysis using a fast Fourier 

transform (FFT) method was used to study a window of vibration displacement (the black 

square), indicating a dominant frequency of 60 Hz which is consistent with the working 

frequency of the vibrating table. The magnitude of vibration displacement, within the linear 

portion of the bit-penetration depth - time curve, was studied by the RMS method (Equation 

1), which was an effective parameter of evaluating the vibration magnitude as reported by 

other researchers [20]. The above data processing was facilitated by a routine in MATLAB. 

 

���� = �
�

�
∫ ��

���
�

�
                                                     (1) 
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Where 

���� = RMS level of data; 

� = period of waveform; 

�� = instantaneous value.  

 

Figure 5.5 shows a sample AE signal with 16384 points at a sampling frequency of 10 

MHz. By an FFT analysis on the whole signal, the resultant frequency spectrum shows an 

outstanding peak frequency of 133 kHz. Figure 5.6 shows four waveforms of a single AE 

event recorded at four sensors. For the four waveform characteristics, peak frequencies and 

spectral centroids remain approximately the same. While, the waveform energy is 

obviously different for the four channels due to distance to AE sources and coupling 

issue.In this way, one channel of signals are selected for further analysis. With this method, 

multiple AE signals were analyzed and similar frequency peaks were found. In this manner, 

this peak frequency was picked as a means of characterizing the AE signal. In each DOT, 

fifteen AE signals were randomly selected for spectral analysis and corresponding peak 

frequencies were further characterized by the arithmetic average peak frequency and the 

standard deviation. In addition, the spectral centroid of 264 kHz was obtained based on the 

frequency spectrum at a frequency range of 0 to 1 MHz. This range was chosen to filter out 

most of the high frequency noise. The arithmetic average and standard deviation of spectral 

centroids were calculated from over eighty consecutive AE signals.   
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Figure 5.4: A sample DOT is synchronized with the displacement of the vibrating table 
(a) at vibration L1 and WOB=95.3 kg, from which an analysis window of vibration (b) 

and the corresponding frequency spectrum (c) are obtained. The peak frequency of 60 Hz 
represents the working frequency of the vibrating table 
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Figure 5.5: A sample AE signal (a) with its frequency spectrum (b) indicating a peak 
frequency of 133 kHz and a spectral centroid of 264 kHz at vibration L1 and WOB=95.3 

kg. The spectral centroid is calculated based on a frequency range of 0 and 1 MHz 
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Figure 5.6: Four waveforms of a single event are recorded by four AE sensors from 
passive drilling at WOB=106.5 Kg. Each waveform is shown in left panel and peak 

frequency and spectral centroid are shown in right panel 
 

Figure 5.7 shows the event count and the average event energy of AEs, which were 

recorded during a DOT. Every AE signal was grouped by its triggered time and 

synchronized with the drilling test. Multiple AE signals were continuously triggered and 

they were recorded at every two seconds according to the DAQ system. In this plot, an 

effective drilling penetration process was marked within the time range of 0 and 20 seconds 

and corresponding AE signals were included for further analysis. By integration of a 

rectified AE waveform, the event energy was obtained on the time domain based on the 
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method developed by other researchers [28]. It’s approximately the same as the area under 

waveform FFT. At a specific time, an average event energy was then calculated by an 

arithmetic mean method on multiple AE event energies. In an effective drilling time 

window, e.g. from 0 to 20 seconds here, the average event energy was then calculated and 

taken as the AE energy level for this DOT. 

 

 

Figure 5.7: A sample DOT with synchronized vibration (a) and synchronized AE count 
and average energy (b) at vibration L1 and WOB=95.3 kg. The time at 0 second shows 

the start of the DOT 
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5.6   Data Analysis and Interpretation 

5.6.1   Drilling performance and vibration 

Figure 5.8 shows the experimental results demonstrating the relationship between   ROP 

and the corresponding vibration level with respect to WOB for the three drilling settings. 

 

 

Figure 5.8: An assembly of both ROP (a) and the corresponding vibration level (b) are in 
correlation to WOB. ROP is positively correlated with WOB 
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In plot (a), the results show an increase in ROP with increasing WOB. At the same WOB, 

ROP is positively correlated with vibration level. In particular, under a higher WOB, the 

differences in ROP between three vibration settings are greater than that under a lower 

WOB. This indicates that active vibration increases ROP more at a high level of WOB than 

that in a lower level of WOB, compared to passive drilling.  

 

In plot (b), the vibration levels for both vibration settings increase at beginning. This is due 

to the decrease of vibrating system compliance with increasing WOB. In this way, the 

vibrating system vibrates more effectively at the rated vibration setting. Then, the vibration 

levels decrease slightly with increasing WOB due to depression of vibration from high 

WOBs, confirming the results of this system reported by other researchers [29]. At different 

WOB, vibration displacements vary and variations of 10% and 14% are shown for vibration 

drilling setting L1 and L2, respectively. This indicates a relatively stable change of 

vibration displacement with respect to WOB. The passive vibrations are not zero due to the 

existence of compliance of the vibration table. The two active vibration levels are provided 

here as the first stage of evaluating the drilling performance with respect to the active 

vibration levels. 

 

5.6.2   Acoustic emission analysis 

Figure 5.9 and Figure 5.10 show the frequency distributions in correlation to WOB for the 

three drilling settings. For every DOT, Figure 5.9 shows the peak frequency calculated by 

the arithmetic average method based on the fifteen peak frequencies. While Figure 5.10 
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show the spectral centroid with respect to WOB. The results show that peak frequency 

decreases with increasing WOB. Research in seismology has shown a reverse relation 

between a corner frequency to a crack size [21-23]. In this manner, the decrease in peak 

frequency here indicates an increase in the crack size from a diamond bit penetration 

process, when WOBs are increased. In addition, under the same WOB, a decrease in peak 

frequency is found, which indicates an increase in the crack size with the increasing 

vibration level. This decrease is more apparent at a higher WOB than in a lower WOB, 

which confirms that bit vibration functions more efficiently at a higher WOB.  

 

Figure 5.9: Peak frequency distribution is in correlation to WOB at drilling with settings 
of passive, vibrations L1 and L2. An arithmetic average of peak frequencies is obtained 

based on fifteen events at each WOB. Peak frequency is found to decrease with 
increasing WOB 
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Figure 5.10: Spectral centroid varies with respect to WOB for the three drilling settings. 
Spectral centroids decrease with increasing WOB 

 

Figure 5.11 plots the average energy with respect to WOB and ROP. In plot (a), the average 

energy of AE is elevated with the increase in WOB, when the corresponding ROP 

increases. Under the same WOB, the average energy is greater with a higher level of 

vibration (L2>L1>Passive). These results indicate that AE average energy is positively 

correlated to ROP which is shown in plot (b). This phenomenon is consistent with the 

results obtained by previous research, i.e. the higher RMS of an AE signal correlates to a 

higher DOC [20], or a higher AE energy comes from a higher ROP [8]. In summary, 

diamonds cut more aggressively with a higher level of ROP, resulting in a greater 

magnitude of AE energy from rock cracking.  
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Figure 5.11: Average energy of AEs is in positive correlation to (a) WOB and (b) ROP 
for all DOTs using three settings of passive, vibrations L1 and L2. Bit vibration enhances 

the AE average energy 
 

From the previous analyses, a summary is given here based on AE parameters (peak 

frequency and average energy) in response to WOB. An increase in WOB causes the 

increase in the size of crack and corresponding average energy of AE signals recorded from 

the diamond bit penetration process. In this way, an elevation of ROP is obtained from 

increasing WOB. In addition, an increase in vibration levels functions similarly. As a result, 

bit vibration improves the bit-rock interaction conditions thereafter enhances diamond bit 

penetration. 
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5.6.3   Cutting size distribution 

5.6.3.1   Particle size distribution (PSD) 

The analysis of cutting particle size distribution was conducted using two standard particle 

size analysis methods: sieving analysis for grain sizes greater than 75 um and hydrometer 

analysis for smaller particles. The sieving analysis involved using different size of meshes 

to retain cutting particles, and weight percentages of each size of particles were assembled 

according to the ASTM standard D6913 [30]. The hydrometer analysis involved 

quantitative determination of particle size distribution by sedimentation process using a 

floating hydrometer following the ASTM standard D422 [31]. Based on all particle size 

and corresponding passed weight percentage, the cumulative passed weight percentage - 

mesh size curve is plotted in normal - logarithmic coordinates, i.e. the particle size 

distribution (PSD) chart.  
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Figure 5.12: PSD charts for all DOTs using the three settings, i.e. passive, vibrations L1 
and L2. Cutting is coarser when the PSD curve shifts to the right for each drilling setting 

 

Figure 5.12 shows the PSD charts for drilling using three settings. A PSD curve 

corresponds to an analysis of cuttings from a drill-off test. The charts show that the 

maximum particle size from the three drillings is less than 1 mm. When a single PSD curve 

shifts to the right for each drilling setting, the particle size tends to be bigger with the 

increase in WOB which is also correlated with increase ROP. This phenomenon has been 

reported by other researchers, i.e. a higher DOC causes a higher percentage of coarser 

cuttings [15]. PSD curves are barely distinguishable when the mesh size is over 0.4 mm. 
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This is because a minor portion of cuttings (size over 0.4 mm) were obtained from the 

overall cuttings for each DOT. 

 

5.6.3.2   Mean particle size 

Mean particle size is commonly used to quantitatively characterize the particle size 

distribution. In 1933, a particle size distribution (PSD) function was first proposed from a 

sieving analysis on powdered coal, known as the Rosin-Rammler (RR) model [32], or 

Rosin-Rammler-Sperling-Bennett (RRSB) model [33]. Later, this model was widely used 

to describe the PSD of powders of various types and sizes, and was specifically suited to 

representing powders from operations such as grinding, milling, and crushing [34]. This 

two-parameter function is described in Equation 2, from which the mean particle size can 

be obtained.  

 

�(�) = 100 exp [−(d/��)]�                                                            (2) 

 

Where 

�(�) = retained weight fraction or cumulative weight percentage (%); 

�  = particle size or mesh size (µm); 

�� = mean particle size (µm); 

� = measure of the spread of particle sizes distribution parameter. 
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Both mean particle size ��  and distribution parameter � can be estimated by equation 

fitting on experimental data. Calculations of the two parameters are commonly done by 

linear regression of data represented as { log[ -log( cumulative weight percentage) ] } 

versus [ log( retaining powder sieve size) ]. In this method, 36.79% of the cumulative 

weight percentage corresponds to the theoretical mean particle size which is calculated 

using a MATLAB routine [35]. Figure 5.13 shows three samples of particle size distribution 

and corresponding linear regression fittings using this routine. Mean particle sizes for the 

three incremental WOBs are found to be 0.026, 0.049 and 0.069 mm respectively. 

 

Figure 5.14 shows mean particle sizes for DOTs using the three settings. Mean particle 

sizes increases with increasing WOB, which corresponds to the visual understanding from 

the previous PSD charts. Under the same WOB, mean particle size is increased when the 

vibration level is elevated. Based on the positive correlation of ROP to the bit vibration 

level previously reported, this confirms that a higher level of vibration helps the diamond 

bit cut in a deeper depth per revolution and coarser cuttings are obtained.  
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Figure 5.13: Demonstration of mean particle sizes for three increasing WOBs using the 
RR diagram, modified from Brezani and Zelenak [35]. Mean particle size is obtained as 

the mesh size at 36.79% retained 

 

 

Figure 5.14: Mean particle size is positively correlated to WOB for DOTs using the three 
settings. Coarser cutting is obtained with the increase in WOB 
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5.6.4   Correlation of ROP to AE energy and cutting size  

The response of cutting size distribution or mean particle size to WOB can be related to the 

previously described AE parameters. The average energy of AEs shows a positive 

correlation to the crack size, in terms of ROP, which is positively correlated to cutting size. 

In this manner, the increase in ROP comes from the increase in the average energy of AEs 

resulting from bigger cracks during the diamond bit penetration process, causing coarser 

cuttings. 

 

5.7   Discussion and Conclusion 

1) For an increase in WOB and also an increase in vibration level, ROP is in a positive 

correlation to AE energy, crack size, cutting size distribution and mean particle size. 

 

2) Diamond bit penetration mechanism is indirectly characterized by AE parameters, i.e. 

peak frequency, spectral centroid and average energy. They are successfully correlated to 

crack size confirming the results reported by other researchers. 

 

3) A higher level of bit vibration improves diamond bit-rock interaction, thus helps a 

diamond bit cut more aggressively, resulting in better drilling performance. 
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5.9   Abbreviations 

AE Acoustic emission 

DOC Depth-of-cut 

DOT Drill-off test 

FFT Fast Fourier transform  

PDC Polycrystalline-diamond-compact  

PSD Particle size distribution  

pVARD passive Vibration-Assisted-Rotary-Drilling  

RMS Root mean square 

ROP Rate-of-penetration 

RPM Revolution-per-minute 

RR Rosin-Rammler  

SDS Small drilling simulator  

UCS Unconfined compressive strength 

WOB Weight-on-bit 
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6.2   Abstract 

This paper focuses on an evaluation of rotary-percussion drilling as a seismic source. Two 

field experiments were conducted aiming to characterize seismic sources from different 

rocks with different strengths, i.e. weak shales and hard arkose. Characterization of rotary-

percussion drilling sources consist of spectral analysis and mean power study, along with 

field measurements of the source radiation patterns. Spectral analysis shows that increase 

of rock strength increases peak frequency and widens bandwidth, which makes harder rock 

more viable for seismic while drilling purpose. Mean power analysis infers higher 

magnitude of body waves in rotary-percussion drilling than in conventional drillings. 

Within the horizontal plane, the observed P-wave energy radiation pattern partially confirm 

the theoretical radiation pattern under a single vertical bit vibration. However a horizontal 

lobe of energy is observed close to orthogonal to axial bit vibration. From analysis, this 

lobe is attributed to lateral bit vibration, which is not documented elsewhere during rotary-

percussion drilling. Within the horizontal plane, the observed radiation pattern of P-wave 

is generally consistent with a spherically-symmetric distribution of energy. In addition, 

polarization analysis is conducted on P-waves recorded at surface geophones for 

understanding the particle motions.  P-wave particle motions are predominately in vertical 

direction showing the interference of free-surface.  
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Keywords: Rotary percussion drilling; seismic while drilling; source radiation pattern; 

polarization analysis; frequency spectrum; mean power. 

 

6.3   Introduction 

Rotary-percussion drilling (RPD) is widely used for drilling blast holes for the exploitation 

of mineral resources. It has also shown potential for seismic while drilling (SWD) purposes. 

For example, percussion drilling was first proposed as a seismic source, from which drill-

bit positon can be monitored [1]. Rotary-percussion drilling has been successfully 

developed for characterizing drilling conditions [2], estimating rock strength [3,4], and 

discriminating rock types [5]. Rotary-percussion drilling produces stronger- and wider-

band sources than most standard active sources, which makes rotary-percussion drilling 

ideal for SWD [6]. The basic principles of SWD were reviewed by Poletto and Miranda 

[7]. In the past, theoretical studies have been used to characterize the seismic source 

radiation patterns from vertical and rotational motions of drill bits. Limited research has 

been done on characterizing the field radiation pattern of rotary-percussion drilling source.  

 

In this paper, field experiments using rotary-percussion drilling were conducted with the 

purpose of measuring the radiation pattern of the seismic waves emanating from the drill 

bit. In addition to energy levels, particle motion directions and polarization angles are 

computed. The field measurements are done for drilling in two different rock types: weak 

shales and hard arkose. Measurements are divided into three parts: characterization of the 

rotary-percussion drilling source by frequency spectrum and mean power, radiation 
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patterns (in cross-hole survey and in horizontal plane), and particle motion properties. 

Measurements are subdivided into three parts. 

 

1) The frequency spectra of rotary-percussion drilling are studied in response to different 

strengths of rocks; the mean power of rotary-percussion drilling is compared to 

conventional drilling sources, such as polycrystalline diamond compact (PDC) bit and 

roller-cone bit.  

 

2) Drill-bit source energy radiation patterns are measured using cross-hole survey 

hydrophones and surface 3C geophones.  

 

3) Particle motions are calculated from 3C geophones. 

 

Elastic waves emanating from drilling originate in the interaction of drill bit with rock. 

Understanding this interaction is essential for characterizing rotary-percussion drilling as a 

seismic source. Theoretical studies of the forces involved in the interaction of drill bit with 

rock have been conducted to describe the cutting actions of drill bits, such as polycrystalline 

diamond compact and roller-cone bits. For example, an analytical model of a two-

dimensional roller-cone bit is established to describe the gouging action of that bit. Forces 

on teeth are predicted when it rolls, given the depth-of-cut, torque, and the translational and 

rotational velocities [8]. The lobed pattern of the roller-cone bit has additionally been 

included in a theoretical model, from which the axial force on the bit is modulated for this 

periodic creation and destruction effect [9]. The interaction of polycrystalline diamond 
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compact bit with rock has also been studied by a numerical modeling to describe the drag 

and friction actions. Simulation results of drilling parameters, i.e. weight-on-bit, torque-on-

bit (TOB) and rotary speed, demonstrate the bit vibrations in axial and torsional directions 

[10]. Experimental studies of the interaction of drill bit with rock have been done. For 

example, the vertical and horizontal forces on a single tooth of one roller-cone bit are 

experimentally correlated to the depth-of-cut [11]. The interaction of roller-cone bit with 

rock is reflected in recorded seismic signals. For instance, the low frequency content of the 

seismic signal is correlated with the forces of the lobed pattern effect [9].  

 

Characterization of the radiation pattern of drill-bit seismic sources is of high interest for 

the geotechnical and engineering communities. In the simplified situation of homogeneous 

and isotropic media, source radiation has been theoretically studied from a single force. A 

mathematical model of radiation is proposed when three types of stresses are applied on a 

cylindrical hole embedded in an infinite solid medium. Radiated waves are interpreted as 

P-wave, S-waves (vertically polarized SV, and horizontally polarized SH). In the particular 

situation under a normal stress, P-wave amplitude maximizes parallel to the stress direction 

and minimizes perpendicular to the stress direction [12]. The radiation patterns of the P-

wave and SV wave are similar to those for a theoretical radiation model, in which a 

harmonic vertical force is applied in an infinite homogeneous isotropic medium [13,14]. In 

realistic situations, inhomogeneity and anisotropy of the medium significantly complicate 

the radiation mechanism. A theoretical model proposed to study source radiation from 

finely stratified media with randomly distributed elastic parameters indicates radiation 
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patterns are significantly different from those calculated for isotropic homogeneous 

medium [15].  

 

Field measurements of radiation patterns from drilling have shown good agreement with 

the theoretical radiation patterns. In one roller-cone bit drilling, measurements of P-wave 

amplitudes decrease with increasing angles relative to the direction of axial drill-tooth 

impact and SV wave amplitude is higher than for SH wave, which confirm the theoretical 

radiation patterns [16,17]. In one field cross-hole survey, SV wave amplitudes are measured 

on different depths of tricone bit drilling, and measurements show analogies with the 

theoretical SV wave radiation pattern [18].  

 

Spectral analysis of the seismic waves radiated from drill-bit source is a frequently used 

method for characterization of the source radiation. Based on an accelerometer attached at 

top of the Kelly, tricone bits show peak frequencies that are correlated with formation 

hardness [19] and bit wear state [20]. Peak frequencies are related to bit geometries for both 

coring and roller-cone bits [21]. Frequency bandwidths of rotary-percussion drilling 

sources are sensitive to the relationship between drilling conditions [2], bit types [6] and 

rock types [5].  

 

6.4   Methodology 

We have carried out two field experiments designed to characterize rotary-percussion 

drilling as a seismic source. The first (Red Bridge Road) experiment is a preliminary 
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experiment designed to characterize rotary-percussion drilling in low strength grey shale 

(unconfined compressive strength 32.3 MPa) and moderate strength red shale (unconfined 

compressive strength 56.0 MPa).  The second (Collier Point) experiment is designed 

specifically to characterize the radiation pattern of the rotary-percussion drilling source 

while drilling in hard sandstone (unconfined compressive strength 163.0 MPa).  The two 

experiments provide a field calibration of theoretical models. 

 

6.4.1   Field experiments 

Rotary-percussion drilling is carried out at two different sites representing rocks of different 

strengths to characterize the seismic signals generated by the drilling. At the Red Bridge 

Road quarry, a 1C geophone array is used to study drill-bit source spectral characteristics 

and mean power in low strength shales. For reference we also compare data from a 

polycrystalline diamond compact bit and a roller-cone bit. In the Collier Point barite mine, 

3C geophones are used to study the source energy radiation pattern within the horizontal 

plane and particle motion properties in high strength arkose.  A vertical hydrophone array 

is used to study the source energy radiation pattern within the vertical plane. Geomechanics 

and ultrasonic properties of rocks from the two experimental sites are listed in Table 6.1. 

The unconfined compressive strength is measured by the point load index method [22] and 

ultrasonic velocities are measured by the ultrasonic testing method [23] using standardized 

techniques. 
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Table 6.1: Geomechanics and ultrasonic properties of rocks, in which red shale properties 
are in reference to Rana et al. [24]  

Rocks 
Unconfined compressive 

strength (MPa) 
Density 
(kg/m3) 

P-wave 
velocity 

(m/s) 

S-wave 
velocity 

(m/s) 

Grey 
arkose 

163.0 2692 5042 3059 

Red shale 56.0 2760 5154 3767 

Grey 
shale 

32.3 2579 3394 2693 

 

6.4.2   Red Bridge Road quarry experiment 

A linear array of 1C geophones (20) was spread adjacent to three boreholes (Figure 6.1). 

The lithology of underground formations by cross section A-A’ are demonstrated in Figure 

6.2. The quarry is composed of Manuels River Formation of the Harcourt Group which is 

black to dark grey shale with thin beds of grey limestone which we refer to as grey shale. 

This formation is underlain by the Chamberlain’s Brook Formation of the Adeyton Group 

defined as green to grey shales with some red mudstones, which is locally red shale [25]. 

These lithologies are confirmed by drill cuttings circulated back to surface.  
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Figure 6.1: Spread of 1C geophones array (20) with three seismic source boreholes in Red 
Bridge Road quarry of eastern Newfoundland and Labrador of Canada 
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Figure 6.2: Cross section of A-A’ showing the rock formation penetrated based on 
analysis of cuttings circulated from bottom hole 

 

The experimental drilling was carried out with an Ingersoll Rand T3W rig using three bits: 

hammer bit (155 mm), polycrystalline diamond compact bit (152 mm) and roller-cone bit 

(152 mm) (Figure 6.3). The seismic characteristics of rotary-percussion drilling are 

compared to those of polycrystalline diamond compact bit and roller-cone bit drillings. 

Drilling parameters remain constant for rotary-percussion drilling, while varying rotary 
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speed and weight-on-bits are applied on other two bits. During drill-off tests, seismic 

signals were continuously recorded for 30 s with sampling frequency of 1000 Hz. 

 

Figure 6.3: (a) Overview of drill site with in-line geometry of geophones; (b) 1C 
geophone; (c) Front view of the drill rig modified from Rana et al. [24]  

 

In this experiment, characterization of rotary-percussion drilling source is achieved by 

evaluating: 

 

1) Comparison of frequency spectra from the rotary-percussion drilling source from 

different rock types, i.e. grey and red shales.  
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2) Mean power comparison of rotary-percussion drilling signal and that from 

polycrystalline diamond compact and roller-cone bits. Seismic sources are 

compared on both grey and red shales.  

 

6.4.3   Collier Point experiment 

In this experiment, the P-wave energy radiation pattern and wave particle motions are 

investigated on seismic sources generated by rotary-percussion drilling. An array of 3C 

geophones (12) was stiffly coupled into bedrock surrounding two source boreholes (Figure 

6.4). The lithology of the site is shown in cross section B-B’ (Figure 6.5). The host rock 

consists of green-grey volcanic sedimentary arkose with red arkose at top [26]. Cuttings 

show that the majority of rocks are grey arkose with red spots in few depths, which indicates 

high homogeneity through all the formation. 
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Figure 6.4: Top view of 3C geophones (12) spread around two source boreholes in Collier 
Point barite mine at eastern Newfoundland and Labrador of Canada 
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Figure 6.5: Cross section of B-B’ showing the rock formation penetrated based on 
analysis of cuttings 

 

The experimental drilling was carried out with an Atlas rotary-percussion rig with a 155 

mm hammer bit (Figure 6.6). The drilling parameters remain constant with weight-on-bit 

of 3.45 MPa feed pressure and rotary speed as 58 revolutions-per-minute (RPM). Borehole 

1 and 2 were both drilled to depths of 46 m. During drilling, seismic signals are 

continuously recorded for 30 s with sampling frequency of 1000 Hz. 
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Figure 6.6: (a) Onsite seismic while drilling (facing south); (b) 3C geophone with 
horizontal in-line component facing borehole 2; (c) hydrophone 

 

In this experiment, two objectives were achieved when rotary-percussion drilling is 

conducted at borehole 2 (Figure 6.4) by the following plans: 

 

1) Frequency spectra of rotary-percussion drilling signal are obtained from hard arkose. 

This supplements the study of spectral characteristics of rotary-percussion drilling source 

on weak rock. 

 

2) Wave energy radiation and polarization analysis within the horizontal plane. 3C 

geophones (12) are arranged in 2- or 3-geophone lines oriented radially from borehole 2 

(Figure 6.4).  
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3) Wave energy radiation within the vertical plane. An array of hydrophones (21) was 

placed in water-filled borehole 1 for measuring seismic source from drilling in borehole 2 

(Figure 6.6).  

 

6.5   Data Processing 

6.5.1   Seismic data from the Red Bridge Road experiment 

For the Red Bridge Road quarry experiment, the raw seismic data are processed following 

a workflow that sequentially includes notch filtering, spiking deconvolution and cross-

correlation with the reference channel #20. Notch filtering aims at removing 60 Hz noise. 

Channel #20 is selected as the reference channel because it is the closest geophone to drill-

bit source. In Figure 6.7, a sample of cross-correlated seismic data are shown from borehole 

2. The zero-lag of the cross-correlation is placed at 100 ms. Twenty traces are grouped as 

one drill-bit source and the apparent difference of amplitudes are shown between rotary-

percussion drilling and drilling with the polycrystalline diamond compact bit.  

 

Figure 6.8 shows an example of SV and surface waves determined in rotary-percussion 

drilling and polycrystalline diamond compact bit drilling. SV wave is identified only in 

rotary-percussion drilling and P-wave is not identified in this experiment because of the 

weakness of the grey and red shales. SV wave is selected as the target for spectral analysis 

for both grey and red shales.  
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Figure 6.7: Sample seismic data cross-correlated on channel #20. No scaling (a) is 
compared with scaling at individual peak amplitude (b). In borehole 2 from 79.2 to 85.3 

m depth, seismic sources are obtained from one rotary-percussion drilling (RPD) and one 
conventional drilling with a polycrystalline diamond compact (PDC) bit. Every twenty 

traces are assembled in one group recorded by 20 geophones 
 



191 
 

 
 

 

Figure 6.8: Cross-correlated records from channel #3 in borehole 2. One rotary-
percussion drilling starts from surface and is followed by one conventional drilling with a 
polycrystalline diamond compact bit to 91.4 m depth. Trace is individually scaled at its 

peak amplitude  
 

Rector and Hardage [17] demonstrate that surface waves observed in SWD experiments 

can be a combination of surface waves generated by drilling rig operations and longitudinal 

waves that propagate up the drill pipe, couple with the drill rig and are re-radiated as surface 

waves. The energy of the surface wave generated by rig operations and drilling can be used 

to characterize rock-bit interaction during drilling. We use this characteristic of the surface 

waves to characterize drilling with three different types of drill bits.  

 

6.5.2   Seismic data from the Collier Point experiment 
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6.5.2.1   Hydrophone data for cross-hole survey 

For the Collier Point experiment, seismic data are simultaneously recorded in 3C surface 

geophones and hydrophones in an adjacent borehole. The geometry for the hydrophones is 

shown in Figure 6.9. Rotary-percussion drilling in borehole 2 was monitored by in-line 

hydrophones (21) with 2 m spacing in borehole 1, covering depths from 6 to 46 m. 

 

Figure 6.9: Illustration of cross-hole survey on hammer bit source with in-line spread of 
hydrophones 
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A standard workflow is used to process the raw seismic data. This workflow sequentially 

includes AGC (30 s window), notch filtering, spiking deconvolution and then cross-

correlation. Cross-correlation is conducted using the hydrophone at the same depth as the 

drill-bit source. This takes the advantage of high S/N of hydrophone data. Figure 6.10 

shows an example of a processed hydrophone record. The P-wave occurs as the first arrival 

and is selected as the target for analyzing cross-hole energy radiation. There is a notable 

polarity change indicating reverse travel direction of seismic wave from the source, and 

trace polarities from hydrophones #11 to #21 have been reversed for consistency. In this 

example the rotary-percussion drilling source is located between hydrophones #10 and #11 

by depth. 

   

Figure 6.10: Sample seismogram of P-waves received by hydrophones. The polarities 
have been reversed from trace #11 to #21 for consistency. The drill-bit source depth is 

apparently located between trace #10 and #11 
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The P-wave from multiple sources is then picked from cross-correlated seismic data and 

those amplitudes from each source are normalized to its maximum. In homogeneous media 

without attenuation, wavefronts emanating from a single source are spherical and the 

amplitude decays due to geometric divergence of the wavefront. To compensate for this, a 

divergence gain function is applied following Newman [27] and Yilmaz [28]. The 

compensated P-wave amplitudes for each source-receiver pair are calculated by 

multiplying the normalized amplitude by the corresponding normalized gain function.  

 

6.5.2.2   The 3C geophone seismic data 

Processing the 3C seismic data follows the same work flow described previously. Figure 

6.11 shows an example of the response of the seismic source recorded on vertical 

component of all geophones at single source depth. The P-wave is identified as the first 

arrival according to the travel time. The vertical component of the P-wave is chosen as the 

estimator of the P-wave radiation pattern. 

 

The vertical component of amplitudes emanating from a specific drill-bit depth is picked 

for the twelve geophones at five receiver locations. Geophones at the same locations are 

grouped to provide multiple measurements at the same azimuths with reference to borehole 

2. To compensate for the effect from different angles of emergence (ϕ), vertical amplitudes 

are rotated to the source-receiver linear path (Figure 6.16), followed by amplitude 

normalization. Amplitude decay by geometric spreading is compensated by multiplying 
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normalized amplitude by the normalized gain function [27,28]. Amplitudes were measured 

by taking the maximum positive values of P-waves within vertical component traces.  

 

Figure 6.11: Seismogram received on vertical component of 3C geophones. Varying 
arrival times and amplitudes result from varying source-receiver distance and the 

geometric divergence 
 

6.6   Data Analysis and Interpretation 

6.6.1   Characterization of the rotary-percussion drilling source 

Characterization of the rotary-percussion drilling source is carried out in the following two 

steps. First, frequency spectra of rotary-percussion drilling sources are studied on different 

rock strengths, i.e. grey shale and red shale from the Red Bridge Road experiment and 

arkose from the Collier Point experiment. Spectral analysis is conducted on rotary-

percussion drilling sources for equal source-receiver distances. Second, the mean power of 

rotary-percussion drilling sources is compared to conventional sources by selecting surface 
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waves from the Red Bridge Road experiment. Autocorrelation is conducted on windowed 

surface waves. The zero-lag of the autocorrelation is then extracted as the mean power for 

surface wave [29]. The details for the mean power study are listed in Table 6.2. 

 

Table 6.2: Seismic sources generated by rotary-percussion drilling and other bit sources 

Rock Source type 
Drilling depth 

(m) 
Seismic event 

(FFID) 
Borehole # 

Red shale 

Polycrystalline 
diamond 
compact 

81.6-93.8 86-99 1 

Roller-cone 93.8-99.9 100-109 1 

Hammer 79.2-82.3 290-305 2 

Grey shale 

Hammer 44.2-53.3 519-528 3 

Polycrystalline 
diamond 
compact 

57.5-60.6 569-577 3 

 

In Figure 6.12, frequency spectra of rotary-percussion drilling sources from different rock 

strengths are compared at the same source-receiver distance of 79 m. SV waves are selected 

from both Red Bridge Road and Collier Point experiments. Peak frequency increases with 

increasing rock strength, i.e. 55 Hz for grey shale, 83 Hz for red shale and 166 Hz for arkose. 

From the frequency spectra of SV waves, the difference of the range of frequency contents 

is used to characterize the frequency bandwidth. The spectra recorded in stronger arkose 

are significantly broader and peak at higher frequencies. The results show that increase of 

rock strength increases the peak frequency and widens the frequency bandwidth of seismic 

sources, which makes harder rock more viable for SWD purpose. 
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In Figure 6.13, autocorrelation mean powers of seismic sources generated by rotary-

percussion drilling are compared to conventional drill bits, i.e. roller-cone bit and 

polycrystalline diamond compact bit from the Red Bridge Road experiment. In this 

experiment, body waves are not identified for conventional drillings because of the 

weakness of shales (Figure 6.8). The surface wave is then selected for the mean power 

analysis from the three drillings, which is generated by rig-ground motions comprised of 

original drill rig operation and new rig-ground motion coupled with longitudinal waves 

radiated from the interaction of drill bit with rock. The magnitude of sources from rotary-

percussion drilling is higher than polycrystalline diamond compact bit by three orders in 

grey shale and is higher than polycrystalline diamond compact and roller-cone bits by two 

orders in red shale. These results demonstrate that rotary-percussion drilling releases 

significantly higher magnitude surface waves than conventional drilling sources. The 

difference in energy indicated by surface waves suggest that it will occur in body waves.  

This is demonstrated in Figure 6.8 that shows SV wave in rotary-percussion drilling but not 

in polycrystalline diamond compact bit drilling. The source mean power from 

polycrystalline diamond compact bit is much smaller than that for roller-cone bit. This 

demonstrates decreased axial vibration of polycrystalline diamond compact bit compared 

to that for the roller-cone bit which is documented in literature [7]. 
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Figure 6.12: Frequency spectra of rotary-percussion drilling SV waves vary with different 
rock strengths: i.e. grey and red shales from the Red Bridge Road experiment, and arkose 
from the Collier Point experiment. Source-receiver distance for three rotary-percussion 
drilling sources is 79 m. Increase of rock strength increases peak frequency and widens 

bandwidth 
 

 

Figure 6.13: Mean power of rotary-percussion drilling and conventional drillings, i.e. 
roller-cone bit and polycrystalline diamond compact bit, in terms of surface waves from 
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(a) grey shale and (b) red shale. The magnitude of sources from rotary-percussion drilling 
is higher than polycrystalline diamond compact bit in three orders in grey shale, and is 
higher than polycrystalline diamond compact and roller-cone bits in two orders in red 

shale  
 

6.6.2   Radiation pattern of drill-bit source  

6.6.2.1   Energy radiation within vertical plane 

The energy radiation pattern within the vertical direction plane is obtained from the cross-

hole survey (Figure 6.9). For a single seismic source depth, the P-wave amplitude is 

compensated to remove the divergence effect by multiplying by a P-wave gain function. 

To obtain more reliable and stable amplitude distribution, amplitude correction is repeated 

in five sources from 17.1 to 45.3 m depth.  

 

For purpose of analysis, the corrected amplitudes from all sources are classified into five 

degree bins based on the angle of incidence referred to the horizontal plane on the 

hydrophones. The arithmetic mean amplitude is taken from each group, and normalized 

and plotted along with the moving average smoothing curve in polar coordinates. Figure 

6.14 shows the measured amplitude distribution of P-waves within the vertical plane when 

measurements are only conducted on the right side of the borehole 2. The P-wave energy 

radiations from theoretical axial bit vibration (a) and lateral bit vibration (b) are 

demonstrated [12,17] and they are symmetrical about the borehole 2. For theoretical 

radiations, the angle of emergence (ϕ) is referenced from the horizontal plane to the linear 

path intersecting the polar center and the length represents energy level.  
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For rays travelling downwards, the measured radiation of P-wave amplitudes increase with 

increasing angle of emergence to 80°. In plot (a), the measured amplitude distribution of P-

waves generally confirms the theoretical radiation pattern under a single axial bit vibration 

[12,17] when rays travel downwards, i.e. emanating P-wave amplitudes increase with the 

increasing angle of emergence to the maximum in the bit vibration direction. There are no 

measured amplitudes for angles of emergence from 80° to 90° because of experimental 

limitations.  
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Figure 6.14: Measured amplitude distribution of P-waves within the vertical plane along 
with energy radiations from theoretical (a) axial bit vibration and (b) lateral bit vibration. 
Measured amplitude distribution partially confirms the theoretical predication for axial bit 

vibration. An additional lateral vibration is indicated by the new horizontal energy lobe 
(b) 
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For rays travelling upwards, a horizontal lobe of amplitude is found when the angle of 

emergence is located between 0° and 30°, and then measured amplitudes increase until the 

angle of emergence reaches the measurement limit of 75°. The additional horizontal lobe 

of amplitude is observed close to orthogonal to axial bit vibration. In fact, the smallest 

geometric correction is made in this direction where significantly higher corrected 

amplitudes are not possible. This strongly indicates that the lobe of amplitude is authentic 

which is attributed to an additional horizontal vibration source. In plot (b), the observed 

horizontal lobe of amplitude is consistent with the theoretical radiation pattern of P-wave 

under a single lateral vibration source [12,17] for rays travelling upwards. An additional 

lateral vibration is indicated by the new horizontal energy lobe during rotary-percussion 

drilling which is not documented elsewhere. This lateral bit vibration has been measured 

by downhole accelerometers during the Red Bridge Road experiment with a polycrystalline 

diamond compact bit in addition to axial and torsional bit vibrations [30]. From the above 

analysis, a combination of axial and lateral vibrations have been demonstrated during 

rotary-percussion drilling from field measurements of radiation patterns.  

 

6.6.2.2   Energy radiation within horizontal plane 

The energy radiation pattern within the horizontal plane is determined from P-waves 

recorded by 3C geophones. Data processing includes angle rotation and geometric 

compensation which have been previously demonstrated. This procedure is repeated on 

nine sources from 24.9 to 45.3 m depth. The corrected amplitudes from those sources are 

then averaged on common geophones of each groups (Figure 6.4), where geophones are 

taken into one group based on the proximity of its azimuth with reference to borehole 2. 
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The azimuth is the counter-clockwise angle measured from the north direction through 

borehole 2. The arithmetic average amplitude taken from every group of measurements is 

plotted in polar plot showing errors between the average value and limit measurements. 

 

Figure 6.15 shows the distribution of measured amplitudes recorded from borehole 2 within 

the horizontal plane. Measured amplitudes are evenly distributed except for geophones at 

the azimuth of 33° where amplitude levels are much higher in geophone #1 and #3 than the 

rest. This largely results from extraordinarily high recordings from the two geophones. The 

observed pattern is generally consistent with a spherically-symmetric distribution of energy 

[17]. 

 

Figure 6.15: Measured amplitude distribution of P-waves within the horizontal plane. 
Five groups of geophones are distributed as even as possible around borehole #2 (polar 
center), with redundant measurements for every group showing an arithmetic average 

(cycle) and errors 



204 
 

 
 

 

6.6.3   Polarization analysis 

The purpose of polarization analysis is to determine the actual particle motion 

(displacement) direction so that the true wave motion is understood at the surface 

geophones. The hodogram is used to visually show the trajectory of particle motion. A 

hodogram is defined as the curve described by displacement of two components over a 

specific time window [31]. Particle motion direction is calculated by the following 

procedures. First, the original hodogram components are projected to a new coordinate 

system which has been rotated within that plane. Second, the power of projected 

components is calculated. Third, the maximum power is found from all rotated coordinates 

and the angle of rotation is taken as the polarization angle and corresponding direction is 

the particle motion direction [32]. 

 

Figure 6.16 shows the orientation of a 3C geophone, including three orthogonal 

components, i.e. vertical (V) component, horizontal in-line (H-I) or radial component, and 

horizontal out-of-line (H-O) or transverse component. Positive values are obtained from H-

I component when the H-I orientation is consistent with the source-receiver azimuth as 

demonstrated, and vertical and transverse components then maintain the same polarity as 

H-I component. The angle of emergence (ϕ) is referenced to the horizontal plane. . 

Polarization analysis is conducted on the first arrivals of P-wave which is easily 

distinguished and not mixed with other phases. The time window of P-wave remains the 

same for plotting hodograms of components V and H-I, and components H-O and H-I 
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recorded at a single depth of source. Polarization analysis is conducted on the first 11 

geophones due to a loss of component on the 12th geophone.  

 

Figure 6.16: Orientation of 3C geophone showing three orthogonal components. The 
orientation of H-I component follows the source-receiver azimuth 

 

Figure 6.17 shows an example of hodograms for P-waves recorded at the azimuth of 32.8° 

(geophone #2) with six sources of depths from 17.1 to 45.3 m. The azimuth is the 

counterclockwise angle measured from the north direction with reference to borehole 2. 

For every event, a specific time window is taken on P-waves resulting in two hodograms 

listed in a row. This time window is rigorously defined to pick P-waves, which are hard to 

separate due to the short distance from source to receiver. For each hodogram, a black arrow 
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shows the vector of the interpreted particle motion direction along with an angle, which is 

rotated counterclockwise from the H-I orientation and referred to as the polarization angle. 

In column (a), polarization angles are within the range of 86.2° and 89.7° showing particle 

motions are almost parallel to the direction of component V for the whole range of depths 

of the source.  This results indicates that despite high angles of emergence, the free-surface 

effect dominates the response of the surface geophones as has been reported by other 

researchers [33]. In column (b), particle motions is dominantly in the H-I orientation and 

all the polarization angles are smaller than 45°. This shows that P-wave particle motions 

deviate from the H-I orientation indicating the H-I components of geophones are not in 

exact consistence with the source-receiver azimuths.  

 

Figure 6.18 shows an example of hodograms for P-waves recorded at five different 

azimuths of geophones (#11, #2, #5, #7 and #9 from top to bottom) from a common source 

depth of 17.1 m. In column (a), polarization angles are within the range of 58.1° and 107.6° 

showing particle motions are predominately in the vertical direction.  In column (b), 

polarization angles are smaller than 45° showing particle motions predominates in the H-I 

orientation, with an exception of 116.4°. This results also show that P-wave particle 

motions deviate the H-I orientation indicating the H-I orientations of geophones are not in 

exact consistence with the source-receiver azimuths. 
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Figure 6.17: Hodograms for P-waves recorded at the azimuth of 32.8° from multiple 
depths of sources. The azimuths are relative to the direction away from the source. Each 



208 
 

 
 

row refers to an event covering two hodograms in column (a) and (b). Blue lines show 
hodograms of P-waves at specific time windows. Black arrows show the vectors for 

particle motion directions 
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Figure 6.18: Hodograms for P-waves recorded at varying azimuths of geophones from a 
common source depth of 17.1 m. The azimuths are relative to the direction away from the 
source. Each row refers to an event covering two hodograms in column (a) and (b). Blue 

lines show hodograms of P-waves at specific time windows. Black arrows show the 
vectors for particle motion directions 
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Figure 6.19: Calculated polarization angles from hodograms of P-waves recorded at 11 
geophones (except geophone #12) from the six depths of sources. Polarization angles are 

rotated counterclockwise from the H-I orientations. Radii represent planar distance of 
source-geophone in meters 

 

Figure 6.19 shows the calculated polarization angles from hodograms of P-waves recorded 

at 11 geophones from the six depths of sources as previously described. Following the 

previous convention, polarization angles are rotated counterclockwise from the H-I 

orientation. Radii are the planar distances from the sources to geophones. In hodograms for 

components V and H-I, polarization angles are predominately located closer to the vertical 

component orientation. The assembly results show the interference of free-surface on P-

wave particle motion which is deflected to near vertical [33]. In hodograms for components 

H-O and H-I, polarization angles distribute closer to the H-I direction, i.e. most of them are 

within 45° of the H-I orientation. This shows similar results as previously described, i.e. P-

wave particle motions deviate the H-I orientations indicating the H-I orientations of 

geophones are not in exact consistence with the source-receiver azimuths.  

 

6.6.4   Deviation of horizontal components of P-wave polarizations from source-

receiver azimuths 

Deviation of H-I orientation from the source-receiver azimuth is further studied for each 

geopohone. Figure 6.20 shows the polarization angles from six sources of depths from 17.1 

to 45.3 m recorded by a single geophone. Take geophone #1 as an example, polarization 

angles are predominately in the azimuth of 30° or 210° from six different depths of sources, 

indicating the systematic deviation of H-I orientation away from the source-receiver 
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azimuth. In other words, the H-I orientation is inconsistent with the source-receiver azimuth. 

For most of geophones (#3, #4, #5, #6, #7, #8 and #11), deviation angles are predominately 

less than 15°. This shows the confidence of geophone orientations and recorded data. For 

the rest of geohones, deviation angles vary moderately and are mostly over 30°. In 

experiments, geophones were set approximately in orientations of source-receiver azimuths. 

These orientations are not measurely precisely. We just report these deviation angles which 

are possibly due to the deviation of geophone orientation from source-receiver azimuth or 

anisotropy associated with vertical fractures.  
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Figure 6.20: Polarization angles from six sources of depths from 17.1 to 45.3 m recorded 
by a single geophone. Particle motions deviate the H-I orientations showing the H-I 
components are not in exact consistence with the source-receiver azimuths. Radii 

represent planar distance of source-geophone in meters 

 

6.7   Conclusions 

In this research, rotary-percussion drilling source properties are comprehensively studied. 

Sources in weak shales and hard arkose are studied. Some essential points are discussed 

below. 

 

1) Characterization of rotary-percussion drilling sources consists of spectral analysis and 

mean power study. Spectral analysis shows that an increase of rock strength increases peak 

frequency and widens the corresponding frequency bandwidth, which makes harder rock 

more viable for SWD purpose. Mean power analysis shows that rotary-percussion drilling 

releases a significantly higher magnitude of surface waves than conventional 

polycrystalline diamond compact and roller-cone bit drillings. The difference in energy 

indicated by surface waves suggests that this will also occur in body waves. The smaller 

magnitude of mean power from polycrystalline diamond compact bit than roller-cone bit 

demonstrates decreased axial vibration of polycrystalline diamond compact bit compared 

to that for the roller-cone bit which is documented in literature.  

 

2) Field measurements of the P-wave energy radiation pattern within the vertical plane 

partially is consistent with the theoretical energy radiation pattern under a single vertical 
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bit vibration. However, an additional horizontal lobe of energy is observed close to 

orthogonal to axial bit vibration.  

 

3) The measured radiation pattern within the horizontal plane is generally consistent with 

a spherically-symmetric distribution of energy. 

 

4) Polarization analysis of P-wave is conducted to determine the actual particle motion 

direction so that the true wave motion is understood at geophones. The P-wave motion is 

shown to be near-vertical which confirms the interference of free-surface. P-wave particle 

motions deviate the H-I orientations indicating the H-I orientations of geophones are 

inconsistent with the source-receiver azimuths. Deviation angles are predominately less 

than 15° for most of geophones, showing the confidence of geophone orientation and data 

recording.  
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Chapter 7   Concluding Remarks 

 

7.1   Summary 

In the work for this dissertation, the mechanism of improving drilling performance was 

studied for three typical drilling methods: rotary, rotary-percussion, and the newly 

developed pVARD technology. In terms of the fundamental differences in drill-bit motions, 

the objectives were addressed by an indirect means of studying drill-bit seismic sources 

and the corresponding drilling performances in the test drillings using SWD or AE 

technologies. DOTs were planned and grouped for comparison of different types of drilling 

such as rotary drilling and pVARD drilling, rotary drilling and RPD.  The processed SWD 

and AE signals showed good correlations of waveform energy and frequency to ROP, 

WOB, rotary speed, bit vibration, drill cutting size distribution, and rock type. This study 

is a comprehensive examination of SWD and AE to the three drilling methods, and shows 

some promise for the application of SWD and AE technologies in studying drilling in the 

oil and gas industry, and in the mining area. 

 

The details of five research areas in this study are provided in Chapters 2, 3, 4, 5 and 6. 

These research will be commented on as follows. 

 

7.2   Concluding Remarks 
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Chapter 2 reports on a study of the geomechanical deformation of specimens of synthetic 

rock or concrete using the AE technique in standard CCS tests. This research aimed to 

provide a comparison of synthetic rock to natural rock in terms of deformation properties. 

This research provides support for the use of AE in conjunction with DOTs on synthetic 

rock. From the analysis on AE signals, internal crack locations were plotted showing the 

progress of deformation and failure during tests, and showing the failure mechanism of 

shearing as observed and illustrated by previous test results.  

 

Chapter 3 reports on a comparison of rotary drilling and pVARD drilling using AE 

technique in the laboratory. DOTs were conducted with the same materials and variable 

WOB. For every test, AE signals were monitored and drilling cuttings were collected, 

resulting in AE energy and cutting size distributions. For an increase of WOB, ROP is in 

positive correlation to AE energy and the cutting size distribution. For two drillings under 

the same WOB, ROP from pVARD drilling is higher than that from rotary drilling, i.e. 

pVARD compliance increases bit-rock contact time per revolution resulting in a higher 

number of AE events and coarser cuttings than rotary drilling.  

 

Chapter 4 reports on a comparison of rotary drilling and pVARD drilling through the use 

of SWD technique in the field. DOTs were conducted. The drilling parameters were not 

identical in each run, but they were controlled to be closely comparable. Seismic surface 

waves were recorded for every test, resulting in seismic parameters of energy and frequency 

bandwidth. Surface waves were verified to be radiated from the rig-ground interaction as 

reported by some other researchers. Seismic wave parameters were in good correlation to 
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bit vibration and ROP. For an increase of WOB, ROP increased while measured bit 

vibration levels decreased due to compression from WOB, and the corresponding seismic 

energy and frequency bandwidth decreased. For the comparison of rotary drilling and 

pVARD drilling, results varied with the variation of rock strength. In stronger rock, both 

ROP and seismic wave energy from pVARD drilling were higher than that from rotary 

drilling. This was explained as follows. Greater drill string compliance with this tool caused 

more bit energy to go into bit penetration and increased ROP by increasing bit-rock 

interaction time per revolution, which also intensified the rig-ground interaction resulting 

in a higher magnitude of surface wave. In weaker rock, both ROP and seismic wave energy 

from pVARD drilling were lower than that from rotary drilling. This was also explained as 

follows. The pVARD tool drilling results, in terms of ROP and the seismic properties 

(frequency bandwidth and energy) of surface waves generated by the rig-ground interaction 

indicated greater partition of drill-bit energy to a drill string and less rig-ground interaction. 

Bit-rock interaction was reduced by the chosen setting of springs inside the pVARD tool 

and the softer shale. In summary, the drilling mechanism and bit vibration were indirectly 

characterized using the SWD technique by means of recording rig-ground interaction which 

was correlated to bit vibration. This pVARD tool was less favorable in some rock types 

and the inner spring settings need to be modified for better results. 

 

Chapter 5 reports a study of an active vibration drilling. Axial bit vibration was produced 

by mounting rock samples on an electromagnetic vibrating table. DOTs were conducted 

with a diamond coring bit on synthetic rock, with varying WOB and vibration amplitude. 

For every test, AE signals were monitored and drilling cuttings were collected, providing 
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AE energy and cutting size distributions. For an increase of WOB and also an increase in 

vibration level, ROP was in a positive correlation to AE energy, crack size, cutting size 

distribution and mean particle size. Spectral analysis of the AE indicated that the higher 

ROP and larger cutting size were correlated with a higher AE energy and a lower AE 

frequency, indicating larger fractures were being created to generate the larger cutting size. 

Diamonds cut more aggressively with a higher level of ROP, resulting in a greater 

magnitude of AE energy from micro cracking. 

 

Chapter 6 is a study of RPD in the field using the SWD technique. The characterization of 

RPD sources consisted of spectral analysis and mean power study, along with field 

measurements of the seismic source radiation patterns. The spectral analysis showed that 

increase of rock strength increased peak frequency and widened bandwidth of seismic 

waves. This indicated that harder rock was more viable for SWD purposes. The mean 

power analysis inferred a higher magnitude of body waves in RPD than that in rotary 

drilling. Within the horizontal plane, the observed P-wave energy radiation pattern partially 

confirmed the theoretical radiation pattern under a single vertical bit vibration. However, a 

horizontal lobe of energy was observed close to orthogonal to axial bit vibration. From 

analysis, this lobe was attributed to a lateral bit vibration, which was not documented 

elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-

wave is generally consistent with a spherically-symmetric distribution of energy. In 

addition, polarization analysis is conducted on P-waves recorded at surface geophones for 

understanding the particle motions.  P-wave particle motions are predominately in vertical 

direction showing the interference of the free-surface. Analysis of seismic waves showed 
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that P-wave was recognizable while S-wave was mixed with P-wave. This is due to a short 

distance from source to receiver and a larger distance can separate body waves. Field 

drilling studies of this type should be conducted with greater distance of receivers from the 

drill bit source than was the case in this work. 

 

7.3   Dissertation Highlights and Contributions 

7.3.1   Rock failure mechanisms and acoustic emission 

AE event energy increases with increased core deformation and is found inversely related 

to dominant frequency. Dominant frequency has been proven to be in an inverse relation to 

crack size. In this way, larger cracks are generated when cracks nucleate and propagate in 

the process of core deformation. For the same shearing mechanism in PDC bit drilling, 

bigger cracks have been anticipated and confirmed from passive and active drillings with 

larger crack sizes causing larger cuttings. It is anticipated to be different in cracking 

mechanism using roller cone and hammer bits.  

 

7.3.2   Characterization of bit vibration and bit-rock interaction 

1) Natural bit vibration is measured by a downhole sensor sub as three types of 

accelerations. In particular, the axial vibration acceleration decreases with increasing 

WOB.  
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2) The passive drilling using pVARD setting of 12,000 pounds for the tool springs at 

quarter deflection have shown the potential to significantly improve drilling performance 

in higher strength of red shale. Under the same setting, drilling performance is not improved 

in the weaker grey shale. It is anticipated to obtain a better drilling performance using this 

setting of passive drilling in harder rock.  

 

3) Active vibration drilling has shown the potential to improve bit-rock interaction 

compared to rotary drilling. This is based on the improved drilling performance active 

vibration drilling.  

 

4) Characteristics of rig-generated surface waves (energy and frequency bandwidth) 

decrease with decreasing natural bit vibration levels.  

 

5) A higher energy of surface waves in pVARD is obtained in stronger shale while a lower 

one for weaker shale, compared to rotary drilling. The contradictory results show the 

influence of rock strength on drilling performance of pVARD.  

 

6) Measurement of P-wave amplitude shows an additional lateral vibration in rotary-

percussion drilling that is not initially observed.  

 

7) Energy of seismic source from rotary-percussion drilling is higher than that of rotary 

drilling by 2 to 3 orders of measurements.  
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7.3.3   Evaluation of drilling performance and penetration mechanisms 

1) Dominant frequency and spectral centroid of AE signals are inversely related to ROP. 

From the inverse relation between dominant frequency and crack size, higher ROP will 

result in lower dominant frequency and spectral centroid. 

 

2) Mean energy of AE signals and mean particle size of cuttings are both positively 

correlated to ROP.  

 

3) ROP is increased from rotary drilling for both pVARD and rotary-percussion drilling, in 

which natural bit vibration is passively utilized and active bit vibration is applied, 

respectively. 

 

7.4   Recommendations for Future Work 

Based on the current research on drilling performance and penetration mechanisms for all 

three drilling types, some recommendations can be offered. 

 

1) For commercial use of this pVARD technique, variation of number and setting of springs 

and dampening rubbers can result in different outcomes. Limited compliance settings have 

been tested in field using this tool. In addition, limited rock type has been tested, i.e. shale. 

It is recommended to conduct further study on drilling performance from variation of 

compliance settings numerically and physically.  
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2) It is highly recommend to conduct more research on pressurized drill-off tests with 

monitoring AE. In this way, a real-time investigation method on drill bit vibration and 

drilling mechanisms can be more feasible based on laboratory tests. A real-time AE 

monitoring tool is expected to be developed. 

 

3) Last but not the least, numerical simulations on seismic radiation and AE during drilling 

are recommended.  
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Appendix 1   Processing of AE Signals Using Matlab® Codes 

 

A1.1   Main Function 

clear all  

clc 

srcFolder_CH4 = [uigetdir('','Select Channel #4 Folder to Open') '\']; % Source Directory 

sig_files_CH4 = dir(fullfile(srcFolder_CH4,'*.sig'));  

srcFolder_CH6 = [uigetdir('','Select Channel #6 Folder to Open') '\']; % Source Directory  

sig_files_CH6 = dir(fullfile(srcFolder_CH6,'*.sig')); 

 

TimeNum0=*; % Start time of experiment converted to seconds  

Vp=*; % P velocity in specimen (mm/s) 

D_specimen=*; % Specimen diameter (mm) 

L_specimen=*; % Specimen length (mm) 

L_steel=*; % Length from top sensor to bottom of steel platen (mm) 

xls_name_in='*.xls'; % Stress data input name 

xls_name_out= '*.xls'; % All results saved name 

 

%Stress-strain 

[Stress, text_data, all_data]=xlsread('*'); % [Time Extension Load Strain% Stress] 

[Row_num,Column_num]=size(Stress); 

for j=1:Row_num 
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    Stress(j,4)=abs(Stress(j,2))/L_specimen;  

    Stress(j,5)=abs(Stress(j,3))/(pi*D_specimen*D_specimen/4);  

end 

 

TriggerTime4=[0 0 0 0 0 0 0]; % [Elapsedtime DF Energy PekAmp PekAmpSamp 

%ArrivalSample RA_value] RA_value=rise time/PekAmp 

TriggerTime6=[0 0 0 0 0 0 0]; % [Elapsedtime DF Energy PekAmp PekAmpSamp 

%ArrivalSample RA_value] 

 

for fle = 1:length(sig_files_CH4) 

    clc;display([num2str(fix(1000*fle/length(sig_files_CH4))/10) '% converted' ]) 

   [Vlt4 Tme4 Hdr4] = readSignal(srcFolder_CH4,sig_files_CH4(fle,1).name); % Input file 

%path & file name with extention 

   [Vlt6 Tme6 Hdr6] = readSignal(srcFolder_CH6,sig_files_CH6(fle,1).name); % Input file 

%path & file name with extention 

       

   [ElaspeTime DF Energy PekAmp PekAmpSamp ArriSamp RA_value] = 

processSignal(Tme4,Vlt4,Hdr4,TimeNum0);  

   TriggerTime4(fle+1,:)=[ElaspeTime DF Energy PekAmp PekAmpSamp ArriSamp 

RA_value]; 

   [ElaspeTime DF Energy PekAmp PekAmpSamp ArriSamp RA_value] = 

processSignal(Tme6,Vlt6,Hdr6,TimeNum0); 
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   TriggerTime6(fle+1,:)=[ElaspeTime DF Energy PekAmp PekAmpSamp ArriSamp 

RA_value]; 

end 

 

TriggerTime=[TriggerTime4 TriggerTime6]; 

 

% AE source location 

Yloc=[0,0];  

for i=2:size(TriggerTime(:,1)) 

    delta=(TriggerTime(i,6)-TriggerTime(i,13))/10^7;     

    Yloc=[Yloc;0.5*(L_specimen+2*L_steel-Vp*delta),(TriggerTime(i,6)-

TriggerTime(i,13))];  

end 

TriggerTime=[TriggerTime Yloc]; 

Results_orig=TriggerTime; 

 

%Filter out source without the range of bottom and top of specimen 

inx=2; 

for i=2:size(TriggerTime(:,1)) 

    if TriggerTime(i,15)>=L_steel & TriggerTime(i,15)<=L_steel+L_specimen; 

        TriggerTime(inx,:)=TriggerTime(i,:); 

        inx=inx+1; 

    end 
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end 

Source=TriggerTime(1:inx-1,:); 

 

% Average repeated AE results within the same second 

averageSource =averageSignal(Source); 

 

% Save all results to xls_name_out 

xlswrite(xls_name_out,Results_orig,'Results_orig'); 

xlswrite(xls_name_out,Source,'Location_Filter'); % filtered out 

xlswrite(xls_name_out,averageSource,'average_filter_Signal');  

xlswrite(xls_name_out,Stress,'Stress_Strain'); 

 

A1.2   Function “readSignal” 

function [Vlt Tme Hdr] = readSignal(PathName,FileName) 

    if nargin == 0 

    [FileName,PathName] = uigetfile({'*.sig';'*.SIG'}, 'Select Data File'); %fileSelect dialog 

    end 

    if FileName~=0 

        fid = fopen(strcat(PathName,FileName), 'r'); 

        if fid == -1 

            sprintf('%s', 'Can not open file'); 

        else 
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        end 

 

    end 

    %fid = fopen('AS_CH04-00001.sig', 'r'); 

    fseek(fid, 0, 'bof') ;Hdr.file_version = char(fread(fid, [1 14], 'char')); 

    fseek(fid, 16, 'bof') ; Hdr.name = char(fread(fid, [1 9], 'char')); 

    fseek(fid, 27, 'bof') ; Hdr.comment = char(fread(fid, [1 256], 'char')); 

    fseek(fid, 287, 'bof') ;Hdr.sample_rate_index = (fread(fid,[1 1],  'int16')); 

    fseek(fid, 289, 'bof') ;Hdr.operation_mode = (fread(fid, [1 1], 'int16')); 

    fseek(fid, 291, 'bof') ;Hdr.trigger_depth =fread(fid, [1 1], 'int32'); 

    fseek(fid, 295, 'bof') ; Hdr.trigger_slope =fread(fid, [1 1], 'int16'); 

    fseek(fid, 297, 'bof') ;Hdr.trigger_source =fread(fid, [1 1], 'int16'); 

    fseek(fid, 299, 'bof') ;Hdr.trigger_level =fread(fid, [1 1], 'int16'); 

    fseek(fid, 301, 'bof') ;Hdr.sample_depth =fread(fid, [1 1], 'int32'); 

    fseek(fid, 305, 'bof') ;Hdr.captured_gain =fread(fid, [1 1], 'int16'); 

    fseek(fid, 307, 'bof') ;Hdr.captured_coupling =fread(fid, [1 1], 'int16'); 

    fseek(fid, 309, 'bof') ;Hdr.current_mem_ptr =fread(fid, [1 1], 'int32'); 

    fseek(fid, 313, 'bof') ;Hdr.starting_address =fread(fid, [1 1], 'int32'); 

    fseek(fid, 317, 'bof') ;Hdr.trigger_address =fread(fid, [1 1], 'int32'); 

    fseek(fid, 321, 'bof') ;Hdr.ending_address =fread(fid, [1 1], 'int32'); 

    fseek(fid, 325, 'bof') ;Hdr.trigger_time =fread(fid, [1 1], 'uint16'); 

    fseek(fid, 327, 'bof') ;Hdr.trigger_date =fread(fid, [1 1], 'uint16'); 

    fseek(fid, 329, 'bof') ;Hdr.trigger_coupling =fread(fid, [1 1], 'int16'); 
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    fseek(fid, 331, 'bof') ;Hdr.trigger_gain =fread(fid, [1 1], 'int16'); 

    fseek(fid, 333, 'bof') ;Hdr.probe =fread(fid, [1 1], 'int16'); 

    fseek(fid, 335, 'bof') ;Hdr.inverted_data =fread(fid, [1 1], 'int16'); 

    fseek(fid, 337, 'bof') ;Hdr.board_type =fread(fid, [1 1], 'uint16'); 

    fseek(fid, 339, 'bof') ;Hdr.resolution_12_bits =fread(fid, [1 1], 'int16'); 

    fseek(fid, 341, 'bof') ;Hdr.multiple_record =fread(fid, [1 1], 'int16'); 

    fseek(fid, 343, 'bof') ;Hdr.trigger_probe =fread(fid, [1 1], 'int16'); 

    fseek(fid, 345, 'bof') ;Hdr.sample_offset =fread(fid, [1 1], 'int16'); 

    fseek(fid, 347, 'bof') ;Hdr.sample_resolution =fread(fid, [1 1], 'int16'); 

    fseek(fid, 349, 'bof') ;Hdr.sample_bits =fread(fid, [1 1], 'int16'); 

    fseek(fid, 351, 'bof') ;Hdr.extended_trigger_time =fread(fid, [1 1], 'uint32'); 

    fseek(fid, 355, 'bof') ; Hdr.imped_a =fread(fid, [1 1], 'int16'); 

    fseek(fid, 357, 'bof') ; Hdr.imped_b =fread(fid, [1 1], 'int16'); 

    fseek(fid, 359, 'bof') ; Hdr.external_tbs =fread(fid, [1 1], 'float'); 

    fseek(fid, 363, 'bof') ; Hdr.external_clock_rate=fread(fid, [1 1], 'float'); 

    fseek(fid, 367, 'bof') ; Hdr.file_options=fread(fid, [1 1], 'int32'); 

    fseek(fid, 371, 'bof') ; Hdr.version =fread(fid, [1 1], 'uint16'); 

    fseek(fid, 373, 'bof') ; Hdr.eeprom_options =fread(fid, [1 1], 'uint32'); 

    fseek(fid, 377, 'bof') ; Hdr.trigger_hardware =fread(fid, [1 1], 'uint32'); 

    fseek(fid, 381, 'bof') ; Hdr.record_depth =fread(fid, [1 1], 'uint32'); 

    fseek(fid, 385, 'bof') ; Hdr.sample_offset_32 =fread(fid, [1 1], 'int32'); 

    fseek(fid, 389, 'bof') ; Hdr.sample_resolution_32 =fread(fid, [1 1], 'int32'); 

    fseek(fid, 393, 'bof') ; Hdr.multiple_record_count =fread(fid, [1 1], 'uint32'); 
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    fseek(fid, 397, 'bof') ; Hdr.dc_offset =fread(fid, [1 1], 'int16'); 

    fseek(fid, 401, 'bof') ; Hdr.padding =fread(fid, [1 1], 'uint8'); 

    inputRangeTable=[10 5 2 1 .5 .2 .1]; 

    sample_rate_index_Table= [1 2 5 10 20 50 100 200 500 ... 

                             [1 2 5 10 20 50 100 200 500]*10^3 ... 

                             [1 2  2.5 5 10 12.5 20 25 30 40 50 60 ... 

                             65  80 100 120 125 130 150 200 250 300 500]*10^6 ... 

                              [1 2 4 5 8 10]*10^9] ; 

 

    if (Hdr.resolution_12_bits) 

         fseek(fid, 512, 'bof') ; ADC = fread(fid,'int16') ; 

    else 

        fseek(fid, 512, 'bof') ; ADC = fread(fid,'uint8') ;    

    end 

     

   sample_rate = sample_rate_index_Table(Hdr.sample_rate_index+1);  

   Tme = (-Hdr.trigger_depth+(0:Hdr.record_depth-1)')/sample_rate; % 16384x1 double 

   Vlt =((-1-

ADC)*inputRangeTable(Hdr.captured_gain+1)/Hdr.sample_resolution_32+Hdr.dc_offset

); % 16384x1 double 

 

   fclose(fid); 

   end 
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A1.3   Function “averageSignal” 

function [out]=averageSignal(TriggerTime) 

TmInd = 1;cum =-1; 

out=[];                      % Counting repeated events within one second 

while(TmInd <=size(TriggerTime,1)) 

    ind = find(TriggerTime(:,1)==TriggerTime(TmInd,1)); 

    cum = cum+length(ind); 

    out = [out;TriggerTime(TmInd,1) sum(TriggerTime(ind,2))/length(ind) 

sum(TriggerTime(ind,3))/length(ind) sum(TriggerTime(ind,4))/length(ind) ... 

        sum(TriggerTime(ind,5))/length(ind) sum(TriggerTime(ind,6))/length(ind) 

sum(TriggerTime(ind,7))/length(ind) sum(TriggerTime(ind,8))/length(ind) ... 

        sum(TriggerTime(ind,9))/length(ind) sum(TriggerTime(ind,10))/length(ind) 

sum(TriggerTime(ind,11))/length(ind) sum(TriggerTime(ind,12))/length(ind) ... 

        sum(TriggerTime(ind,13))/length(ind) sum(TriggerTime(ind,14))/length(ind) 

sum(TriggerTime(ind,15))/length(ind) sum(TriggerTime(ind,16))/length(ind) length(ind) 

cum]; 

    TmInd=TmInd+length(ind);     

end 

end 

 

A1.4   Function “processSignal” 
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function [ElaspeTime DF Energy PekAmp ArriSamp] = processSignal(Tme,Vlt,Hdr) 

   SampleRate=10^7; Trigger=0.1; 

   n=14; SampleNum=2^n; 

   DF=0;Energy=0; 

       

   c=struct2cell(Hdr);% Returns structure values 

   Bin_result=de2bi(cell2mat(c(17)),16);% Integer of trigger time 

   Sec=bi2de(Bin_result(1:5))*2; 

   Min=bi2de(Bin_result(6:11)); 

   Hr=bi2de(Bin_result(12:16));TimeNum0=14*3600+25*60+21.6;% Initial trigger time 

in seconds 

   ElaspeTime=Hr*3600+Min*60+Sec-TimeNum0;% Event elasped time in seconds 

    

   Element=[Tme Vlt]; % [Time Amp DemeanAmp RectifiedAmp] 

   % 1 DC Offset calculation 

   sum=0.0; 

   for i=1:1:SampleNum 

    sum=sum+Element(i,2); 

   end 

   DCoffset=sum/SampleNum; 

    

   % 2 Demeaning operation 

   for i=1:1:SampleNum 
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    Demean(i)=Element(i,2)-DCoffset; 

   end 

   Element=[Element Demean']; 

   %plot(Element(:,1),Element(:,3)); 

   %title('Demeaning Amplitude');xlabel('Time(Second)');ylabel('Amplitude(Volt)'); 

   %xlswrite('AS_CH04-00001',Element(:,3),'sheet1','c1:c16384') 

 

   %3 Rectification operation 

   for i=1:1:SampleNum 

    Rectify(i)=abs(Demean(i)); 

   end 

   Element=[Element Rectify']; 

   %xlswrite('AS_CH04-00001',Element(:,4),'sheet1','d1:d16384'); 

 

   % 4 Maximum amp and its index 

   PekAmp=max(Element(:,4)); 

    

   % 5 Arrival sample or time 

   for i=1:1:SampleNum 

    if Element(i,2)>=Trigger         

    break;     

    end 

   end 
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   if i<SampleNum 

    ArriSamp=i; 

   else 

    ArriSamp=0;                                     % No waveform detected 

   end 

    

   % Calculation of waveform parameters 

   if ArriSamp~=0 

     % 7 Total energy in time domain / Some issue about selected window 

     sum=0.0; 

     for i=ArriSamp:1:SampleNum 

      sum=sum+Element(i,4); 

     end 

     Energy=sum/SampleRate; 

    

% 6 Dominant frequency and FFT 

   ZeroCross=0;FstNum=ArriSamp;LstNum=ArriSamp+1023; 

   if LstNum>SampleNum 

       LstNum=SampleNum; 

   end 

   if FstNum==1 

      FstNum=2;  
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   end 

   for i=FstNum:1:LstNum      

       if Element(i-1,3)/Element(i,3)<0             % Dominant frequency 

           ZeroCross=ZeroCross+1; 

       end 

   end 

   DF=(ZeroCross-1)/2/((LstNum-FstNum+1)/SampleRate); 

   end 

end 
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Appendix 2   Calculation of Bit Vibrations from Sensor Sub Data 

 

A2.1   Methodology 

Bit accelerations, i.e. axial, lateral and torsional, are calculated from the three 

accelerometers using Equations (A2.1) to (A2.3) [1], respectively. Geometry of 

accelerometers are available in Chapter 4.   
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������ , ��������, and ���������� are the axial, lateral and torsional accelerations from sensor 

sub geometry. �1� and �1� are the accelerations recorded from accelerometer #1; �2� 

and �2�  are the accelerations recorded from accelerometer #2; �3�  is the acceleration 

recorded from accelerometer #3. ������  is used to replace ������ when any acceleration 

from accelerometers #1 and #2 exceeds the limit of 4 g, where g is the gravity of earth.  
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