
Implementation of Nonlinear Model Predictive
Control on all Terrain Mobile Robot

by
c©Zohaib H. Farooqi

A Thesis submitted to the School of Graduate Studies in partial fulfillment of the
requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland
May 2017

St. John's Newfoundland



Abstract

The objective of this thesis is to control a mobile robot with nonholonomic constraints

to achieve two control objectives: point stabilization and trajectory tracking. This

research adopts Nonlinear Model Predictive Control (NMPC) to achieve these control

objectives. The mobile robot platform used in the research is Seekur Jr., which is a

skid-steering all terrain mobile robot with nonholonomic constraints. In this study

NMPC is developed and tested for both indoor and outdoor navigation. To address

the indoor localization issues, two methods have been adopted. In the former ap-

proach for indoor localization, a map of the environment is generated using a laser

range finder. This map, along with laser range finder, is used to determine the pose

(position and orientation) of the mobile robot in the environment. In the second

approach, OptiTrack motion capture system has been used, which gives the position

data of the mobile robot in the environment and orientation is evaluated through

this. For outdoor navigation, Global Positioning System (GPS) is used to obtain the

localization. The implementation of NMPC involves solving a dynamic optimization

control problem, which makes the evaluation of control command time consuming.

Therefore, it is di�cult to implement NMPC for mobile robots in real-time applica-

tions. To address this issue, an open source toolkit solving Optimal Control Problem

(OCP) has been used to implement fast NMPC routine, which provides real-time

applicability of the control strategy. Obstacle avoidance feature is also added to the
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controller to avoid static obstacles in the trajectory of the mobile robot. The proposed

control strategy is evaluated on a number of simulations and experimental studies.

The results validate the real-time applicability of the proposed approach in indoor

and outdoor navigation.
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Chapter 1

Introduction

1.1 Introduction

In the past few decades, the use of mobile robots has been extensively increased

for autonomous applications, to achieve task oriented objectives [1]. The examples

are in exploration tasks, especially in space, where exploration is constrained for

human beings and mobile robots are the only source to accomplish that; typical

examples are Mars rovers [2�4]. Mobile robots are being used in the inaccessible and

endangered areas for humans, typical examples are in disaster relief operations [5],

search and rescue operations [6] and assessing the situation in natural calamity hit

areas [7]. Moreover, mobile robots are also being utilized for military applications

[8, 9], surveillance [10, 11], domestic applications [12, 13] and entertainment purposes

[14].

Mobile robots can be classified in di�erent categories by choosing di�erent criteria

(see [15] for details), based on:

• area of application: ground, ariel, underwater and polar

• locomotion: legged and wheeled
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• motion constraints: holonomic and nonholonomic

• scale: large scale, micro and nano

This research is focused on nonholonomic class of mobile robots. The nonholonomic

mobile robot platform used in this research is a skid-steered type wheeled mobile

robot. In skid steering locomotion, wheels on each side are controlled and can be

driven at di�erent speeds. There is no explicit steering mechanism and to cause the

turning e�ect, the wheels on each side are driven at di�erent speeds [16, 17].

Development of optimal control strategy is the key requirement to enable the mo-

bile robot for autonomous navigation, and accomplish the tasks mentioned in the

beginning of the section. Many techniques have been developed in literature for

the control of mobile robots. The classical non-optimization based controls, such as

Proportional-Integral-Derivative (PID) controllers [18], have several limitations as-

sociated with them. First, the evaluated control command of PID control is solely

dependent on the feedback, so it does not cater the real-time constraints, which might

come across for such applications such as avoiding obstacles and variable speeds for

change in terrain. Secondly, it is di�cult to find the tuning parameters, which may

e�ectively stabilize the system. To fix those issues, several other controllers have

been developed with the optimization techniques, such as Linear Quadratic (LQ).

These controllers optimize the control signal to be applied while considering the few

constraints, which optimize the control signal over the infinite horizon. Then, there

comes state-of-the-art controller Model Predictive Controller (MPC), which considers

the system model, so it accounts the dynamics of the system. Based on system model

and other constraints, which corresponds to real world scenarios, MPC optimizes and

evaluates the control command, to drive the mobile robot. Therefore, the controller

is more robust and corresponds to real world scenarios, which is the fundamental

requirement for autonomous applications. MPC does the optimization over the finite
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FuturePast Current Time

Sampling Time

Prediction Horizon

Time ttn tn+1 tn+N

Current state 
x (n)

Feedback value  
µ(x(n)) = u*(0)

Optimal control sequence 
u*(k)Past control inputs

Closed loop state 
(Measured) Optimal predicted output (forecast)

Figure 1.1: Nonlinear Model Predictive Control

horizon and predicts the future control commands and the trajectory [19]. The control

strategy is realistic, as it accounts for the constraints and bounds introduced by real

world operations.

The core idea of the MPC is to explicitly use a model to predict and optimize the

process output at future time instants (horizon), and compute a control sequence over

the prediction horizon [19, 20]. This involves the receding horizon strategy, at each

instant the horizon is displaced towards the future, which involves the application of

the first control signal of the optimized sequence evaluated at each step [19,20]. Figure

1.1 illustrates the MPC strategy. MPC forecasts the optimal predicted output and

evaluates the optimal control sequence, based on closed loop state (from measurement)

and system model. Future prediction and optimization is done over a finite horizon,

called prediction horizon. The key point here is that when it comes to apply the

control command, it only applies the first control command from the optimized control
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sequence. In the next time step the prediction horizon is shifted by one time step in

the future. That is why it is also called receding horizon control [19,20], also depicted

in Figure 1.1. For further details see [19�21].

As the model of nonholonomic mobile robot, used in this research work, is nonlinear,

so it requires Nonlinear Model Predictive Control (NMPC). There are two variants of

NMPC, that are broadly used for the mobile robots.

• In the first method, nonlinear system model is linearized using linearization

techniques, followed by application of the linear MPC approaches [22�24]

• In the second method, NMPC is applied using the nonlinear model of the system

directly [24�26]

This research work implements the second method. The problem with the linearized

version is that the model of the mobile robot is highly nonlinear and linearization is

performed under many assumptions. These assumptions are only fulfilled provided

the conditions remain the same. Secondly, these assumptions are only true for a con-

fined region around the point of linearization, beyond that region the linearization

is not valid. Whereas, when nonlinear system model is used, then we are not per-

forming any linearization and the issues which are associated with the linearization

process are avoided. System model used may be continuous, which is the more likely

of the real world scenario. However, this imposes a problem that NMPC involves

dynamic optimization control problem, which is time consuming and not feasible for

real-time applications. To resolve this issue and make it possible for real-time appli-

cation, this study uses an open source toolkit called Automatic Control and Dynamic

Optimization (ACADO) Toolkit [27] which implements real-time NMPC routines.
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1.2 Problem Statement

The objective of this thesis is to develop a controller for autonomous navigation of

nonholonomic mobile robot for indoor and outdoor places to solve two control prob-

lems: point stabilization and trajectory tracking, in the absence or presence of the

static obstacles.

To address this problem, this thesis implements NMPC for nonholonomic mobile robot

in indoor and outdoor terrain and achieves two control objectives: point stabilization

(regulation) and trajectory tracking. Mobile robot platform used is Seekur Jr. [28]

(shown in figure 1.2), which is equipped with Laser range finder, Di�erential Global

Positioning System (DGPS) module, Inertial Measurement Unit (IMU), on board

computer and Wi-Fi module.

Figure 1.2: Seekur Jr., Mobile robot research platform
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1.3 Objectives and Contributions

The main objectives and contributions of this thesis are listed below:

Objective 1 Implementation of NMPC to solve point stabilization problem of non-

holonomic mobile robot

• Contribution 1: Real-time implementation of NMPC to solve point stabiliza-

tion problem for indoor navigation

• Contribution 2: Real-time implementation of NMPC to solve point stabiliza-

tion problem for outdoor navigation

• Contribution 3: Real-time implementation of NMPC to solve point stabiliza-

tion problem with obstacle avoidance

Objective 2 Implementation of NMPC to solve trajectory tracking problem of non-

holonomic mobile robot

• Contribution 1: Real-time implementation of NMPC to solve trajectory track-

ing problem for indoor navigation

• Contribution 2: Real-time implementation of NMPC to solve trajectory track-

ing problem for outdoor navigation

• Contribution 3: Real-time implementation of NMPC to solve trajectory track-

ing problem with obstacle avoidance

1.4 Thesis Overview

Chapter 1 introduces the focused area of research. It also outlines the objectives

and contributions of the thesis.
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Chapter 2 studies the background of NMPC and its applicability for mobile robots.

Furthermore, it presents some mobile robot control techniques emphasizing their rel-

ative advantages and disadvantages.

Chapter 3 models the tracking control problem with presentation of robot kinematic

model used for navigation. NMPC formulation and ACADO implementation is also

presented. Overall control strategy for methods, adopted in this research work, is also

explained.

Chapter 4 presents the point stabilization results of the mobile robot. Simulation

and experimental results are being presented for both indoor and outdoor navigation.

Point stabilization with obstacle avoidance is also demonstrated.

Chapter 5 presents the trajectory tracking results of the mobile robot. Simulation

and experimental results are being presented for both indoor and outdoor navigation.

Trajectory tracking with obstacle avoidance is also demonstrated.

Chapter 6 presents the concluding remarks by mentioning the research contributions

and limitations. Future directives are also highlighted.
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Chapter 2

Background

About this Chapter: This chapter studies the background for control of nonholo-

nomic mobile robots. It presents predictive and non-predictive control techniques

used for mobile robot emphasizing their relative advantages and disadvantages. Fur-

thermore it puts forward the history of NMPC and its applicability for mobile robots.

2.1 Control Problems of Non-holonomic Mobile

Robots

Feedback is one of the fundamental concept deployed for automation and control. The

basic control problems studied in literature widely for nonholonomic mobile robots

includes point stabilization, trajectory tracking and path following [29]. In order to

explain these control problems, let's take a general nonlinear system, expressed as [30]

ẋ(t) = f(x(t),u(t)) , x(0) = x0 (2.1)
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where t ∈ R is the time, which is sampled at defined sampling rate, x ∈ Rn and u ∈ Rm

are the n dimensional system state vector and m dimensional system control input,

respectively. Moreover, state constraints X ∈ Rm and control constraints U ∈ Rn can

be defined for this system.

In point stabilization control problem, a feedback control µ(x(t)) : Rn 7→ Rm ,

µ(x(t)) ∈ U is designed such that the 2.1 starting at the initial condition, x0 ∈ Rn

driven by the feedback, stays close to the desired set point, xs ∈ X, and converges,

i.e.

lim
t→∞
‖x(t)− xs‖ = 0 (2.2)

The important point to notice here is that in point stabilization, the set point xs is a

constant reference, but in case of trajectory tracking this reference is time dependent,

i.e. xr(t) : t 7→ Rn. In trajectory tracking problem, the feedback control µ(x(t)) :

Rn 7→ Rm , µ(x(t)) ∈ U is designed such to steer the solution of 2.1 to track the time

varying reference trajectory, such that

lim
t→∞
‖x(t)− xr(t)‖ = 0 (2.3)

It can be observed here that for constant reference, trajectory tracking problem be-

comes point stabilization problem. The third control problem is path following, but

this thesis only focuses on point stabilization and trajectory tracking problems.

2.2 Non Predictive Controllers for Non-holonomic

Mobile Robots

The nonholonomic constraints on the mobile robots makes the point stabilization

problem di�cult, due to Brockett's condition [31] a smooth time-invariant feedback
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control law cannot be used to stabilize the mobile robot at a given posture. This

implies that the linearized nonholonomic mobile robot model is not asymptotically

stable and the problem is nonlinear. Asymptotic stabilization can be achieved by using

time-varying or/and discontinuous controllers . Smooth time-varying stabilization was

first presented in [32] and discontinuous feedback controller for point stabilization was

proposed by [33]. Other work presented to solve point stabalization problem used

dynamic feedback linearization [34, 35], Lyapunov control [36] and state space exact

feedback linearization [37]. For further study see [1, 38].

Unlike point stabilization, trajectory tracking is more straight forward for non holo-

nomic mobile robots as the kinematic constraints are implicitly considered by the

reference trajectory. The trajectory tracking problem was globally solved by using

a nonlinear feedback control in [39] and by using dynamic feedback linearization

in [40, 41]. Other methods adopted for trajectory tracking includes Lyapunov sta-

ble time-varying tracking control law [42], back stepping technique [43] and sliding

mode techniques [44]. Controllers with simultaneous regulation and tracking capabil-

ities include di�erential kinematic controller [45] and dynamic feedback linearization

control [46]. The controllers developed in these two studies are not single controller

and require switching between regulation and tracking controllers. For further details

see [1, 38,47,48].

2.3 Model Predictive Control

2.3.1 History

MPC is not a specific control strategy, but it refers to the optimization based control

methods which explicitly use a model of system to obtain the control command by

minimizing an objective function [49]. The concept of MPC was first introduced in

10



middle of twentieth century [20]. Richalet et al. presented Model Predictive Heuristic

Control (MPHC) [50, 51] and Cutler and Ramakter with Dynamic Matrix Control

(DMC) [52] are considered as the pioneers to use MPC in process industry. In both

algorithms, process model has been used to predict the future control commands

by minimizing the predicted error, while considering the operational constraints. It

also predicts the output of the system with future control commands. For further

details of the early work in area of linear MPC see [53,54]. As most of the industrial

processes are nonlinear so there was a need of nonlinear MPC which would make use

of a nonlinear dynamic model and nonlinear constraints [49]. The NMPC algorithm

presented by [55] is considered as the first in this field [20]. Unlike the current versions

of NMPC which only applies the first control command from the control sequence

evaluated, this work applies the whole control sequence on optimization horizon to the

process plant [20]. The NMPC, which applies only the first optimal control command

from the optimized control sequence evaluated, for discrete time was first presented

in [56] and for continuous time in [57]. For further details on the historical background

on model predictive control see [20, 49, 58].

2.3.2 NMPC for Non-holonomic Mobile Robots

NMPC using linearization uses the linearized version of robot model which enables

it to implement for trajectory tracking [59] while NMPC uses the explicit nonlinear

robot model which enables it to implement for both point stabilization and trajectory

tracking problems [25, 48]. Di�erent strategies and early development for motion

control of non holonomic wheeled mobile robots using MPC can be studied in [60�62]

Some work studied in literature, for both approaches, is presented in the following

sections.
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2.3.2.1 Linear MPC

In [22] successive linearization approach is adopted, which yields a linear description

of the nonlinear error model of the nonholonomic wheeled mobile robot. Then the

control problem is solved through linear MPC. After following this linearization ap-

proach, the control inputs are assumed as decision variables, which makes it possible to

convert optimization problem to Quadratic Programming (QP) problem. Quadratic

Programming (QP) is solved by using numerical robust solver to get global optimal

solution. Simulation results for trajectory tracking are presented here and it is shown

that real time implementation is possible for the di�erential drive mobile robot.

In [23] an actual real-time implementation of trajectory tracking problem is pre-

sented. It also uses the successive linearization approach as used in [22] and solves the

Quadratic Programming (QP) to find global optimal solution. The optimization prob-

lem is solved by using library OOQP (Object Oriented software package for Quadratic

Programming) [63]. Real-time results have been implemented on a di�erential drive

mobile robot with standard of the shelf computer to run MPC based controller. The

experimental results reveal that the computational time in real-time scenario is was

more than the estimated one in [22].

In [24] both linear and nonlinear approaches of MPC have been presented for trajec-

tory tracking. Simulation results have been presented and real-time applicability is

evaluated. The nonlinear variant of the MPC leads to the nonconvex optimization

problem whereas linear variant leads towards the convex problem. The advantage of

linear approach is that it is possible to reduce the computational e�ort as it solves the

QP.But on the other hand, linear approach has also the disadvantage that lineariza-

tion is only valid near the point of linearization, i.e., linearized model is only valid for

points near the reference trajectory.
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2.3.2.2 Nonlinear MPC

The linear variant of MPC is only utilized for tracking control. In order to achieve reg-

ulation problem nonlinear variant is required. In [64] point stabilization for nonholo-

nomic wheeled mobile robots has been achieved using NMPC. Simulation results have

been presented and real-time applicability for nonholonomic wheeled mobile robot is

evaluated. Two di�erent cost functions has been utilized, a standard quadratic cost

function and a modified cost function. Modified cost function exploits the idea of

exponentially increasing state weighting, such that it increases the state penalty over

the prediction horizon and the states converge to an acceptable solution. A terminal

cost has been added to the cost function to be minimized. The modified cost function

gives the better convergence as compare to the standard cost function.

In [25] both point stabilization and trajectory tracking results have presented on skid

steered wheeled mobile robots, Pioneer 3-AT. It uses the open source toolkit ACADO

to solve the optimization problem. Real time experimental results for indoor naviga-

tion have been presented which shows the satisfactory performance of the controller.

The scope of the paper is limited to the indoor navigation and localization is map

based localization

2.3.2.3 Contributions and problems addressed in thesis

According to best of author's knowledge, no previous work has been presented which

implements NMPC on Seekur Jr. This work addresses both indoor and outdoor

navigation to solve point stabilization and trajectory tracking problems. Moreover,

for indoor navigation the use of motion capture system, to get the robot posture

information, is not present in literature for these two problems using NMPC.
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Chapter 3

Methodology of the

Implementation

About this chapter: The overall methodology for the implementation of NMPC

for mobile robot is presented in this chapter. Preliminaries are presented before

the NMPC formulation, which includes the robot kinematics and tracking control

modelling. After modelling the tracking control problem, NMPC is formulated and its

implementation through ACADO toolkit is also presented. The chapter is concluded

by discussing the overall system diagram to highlight the methodology developed for

this research.

3.1 Robot Kinematic Model

If the motion of a nonholonomic mobile robot is described by its position (x, y) and

orientation θ in Cartesian plane as shown in figure 3.1, then the kinematic equation
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is as follow [48]:

ẋ =


ẋ

ẏ

θ̇

 =


v cos θ

v sin θ

ω

 =


cos θ 0

sin θ 0

0 1


v
ω

 (3.1)

where x =
[
x y θ

]T
is the state vector and u =

[
v ω

]T
is the control signal vector

with v as the linear velocity and ω as the angular velocity. This model is called

unicycle model, which represents the di�erential drive mobile robots and used in this

research work. The model is su�cient to describe the nonholonomic constraints of

this class of robots.

3.2 Tracking Control

In order to demonstrate the tracking control problem a reference robot, shown in

figure 3.1, is defined with the reference state vector xr =
[
xr yr θr

]T
and reference

control vector u =
[
vr ωr

]T
. Reference robot has the same constraints as (3.1). So,

its kinematic model can be expressed as [48]:

ẋr =


ẋr

ẏr

θ̇r

 =


vr cos θr

vr sin θr

ωr

 =


cos θr 0

sin θr 0

0 1


vr
ωr

 (3.2)

The fundamental control objective is to control (3.1) and track (3.2). Therefore, the

error state vector xe is defined as follow [48]:

xe =


xe

ye

θe

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1




xr − x

yr − y

θr − θ

 (3.3)
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X

Y

Global Coordinate Frame

(x, y)

(xr, yr)

θ 

θ

θr

θr

θe

Figure 3.1: Mobile robot in global coordinate frame

Using the error state vector, the tracking control problem is converted into a regulation

problem, where a constant reference is used to track the desired trajectory. From (3.3)

it can be seen that tracking control objective can be achieved by driving the error

state vector xe to zero. By di�erentiating (3.3), the error state dynamic model is

obtained as follow [48]:
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ẋe =


ẋe

ẏe

θ̇e

 =


ωye − v + vr cos θe

−ωxe + vr sin θe

ωr − ω

 (3.4)

For this error state model, redefining the error control signals as [48]:

ue =

u1e

u2e

 =

vr cos θe − v

ωr − ω

 (3.5)

Then, the error state dynamic model (3.4) becomes

ẋe =


ẋe

ẏe

θ̇e

 =


0 ω 0

−ω 0 0

0 0 0




xe

ye

θe

+


u1e

vr sin θe

u2e

 (3.6)

A linearized version of error model of (3.4) can be obtained as follow:

˙̄xe =


ẋe

ẏe

θ̇e

 =


0 ωr 0

−ωr 0 0

0 0 0

 x̄e +


1 0

0 0

0 1

ue (3.7)

This linearized version of error state model is controllable, but the controllability of

this model is lost when reference linear and angular velocities approach zero. This

thesis does not use this linear version, instead it uses nonlinear version directly.

3.2.1 Point Stabilization

In point stabilization, the reference state vector xr for (3.2) has a fixed value, which

corresponds to the pose of the desired goal position; and the reference control vector

ur for (3.2) is the null vector, which means that reference linear and angular velocities
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are zero at the desired goal pose.

3.2.2 Trajectory Tracking

In trajectory tracking, the reference state vector xr and the reference control vector

ur for (3.2) are time varying values corresponding to the reference trajectory.

3.3 Nonlinear Model Predictive Control Formula-

tion

In this section, a brief description of NMPC scheme for mobile robots with nonholo-

nomic constraints and its implementation in ACADO toolkit is presented.

3.3.1 Nonlinear Model Predictive Control Design

The general nonlinear control system, like in (3.1), can be expressed as:

ẋ (t) = f (x (t) ,u (t)) (3.8)

where x(t) ∈ Rn and u(t) ∈ Rm are the n dimensional state and m dimensional

control vectors, respectively. The function f is assumed to be continuous. If the

model is expressed in error form, like (3.4), then the general expression will be [48]:

ẋe (t) = f (xe (t) ,ue (t)) (3.9)

where xe(t) ∈ Rn and ue(t) ∈ Rm are the n dimensional error state vector and m

dimensional error control vector, respectively. The control objective is to compute

a suitable control input u(t) to drive the system in (3.8) towards the equilibrium

18



position (xe(t) = 0 and ue(t) = 0). The constraints employed normally are the

control signal saturation constraints that can be expressed as [48]:

ue (t) ∈ U (3.10)

where 0 ∈ U ∈ Rm is a compact and convex set.

The objective of the tracking control algorithm is to minimize a weighted cost function

expressed as [48]:

J (t,xe (τ) ,ue (τ)) =
∫ t+T

t
l (τ,xe (τ) ,ue (τ)) dτ (3.11)

where l (τ,xe (τ) ,ue (τ)) = xe (τ)τ Qxe (τ) + ue (τ)τ Rue (τ) is the running cost and

Q and R are the positive definite symmetric weight matrices and T is the prediction

horizon. At time t, the open loop optimization problem (OP) to be solved online can

be formulated as follow [48]:

minimize
ue

J (t,xe (τ) ,ue (τ)) (3.12)

subject to:

ẋe (τ) = f (xe (τ) ,ue (τ))

ue (τ) ∈ U, (τ ∈ [t, t+ T ])

where 0 ∈ U ∈ Rm is a compact and convex set as in (3.10)

3.3.2 ACADO Toolkit

ACADO (Automatic Control and Dynamic Optimization) Toolkit [27] is a package,

which implements real-time NMPC routines [65]. The key features of ACADO toolkit,

which make it superior than other packages available are [66,67]:
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• open source

• user-friendliness, i.e., interface close to mathematical syntax

• code extensibility, as it is easy to link existing algorithms and also serve as the

platform for new developments

• self-contained, i.e., only need C++ compiler

• design for closed loop MPC implementation

Moreover, this toolkit provides MATLAB interface. This interface brings ACADO

integrators and algorithms for direct optimal control, model predictive control and

parameter estimation to MATLAB. It uses the ACADO Toolkit C++ code base and

implements methods to communicate with this code base [68]. As the algorithm in this

study is implemented on MATLAB, so this feature was worthy to use. It complies the

code and generates mex (MATLAB Executable) file, which solves the NMPC problem

in the run time.

The general form of the NMPC problem solved by ACADO toolkit is given by [65]:

minimize
x(.),u(.),p(.)

∫ t+T

t
‖h (x (t) , u (t) , p)− η (t)‖2

Q dt (3.13)

+ ‖m (x (to + T ) , p, to + T )− µ‖2
P

subject to:

x (to) = xo

∀t ∈ [to, to + T ] 0 = f (t, x (t) , ẋ (t) , u (t) , p)

∀t ∈ [to, to + T ] 0 ≥ s (t, x (t) , u (t) , p)

0 = r (x (to + T ) , p, to + T )
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where x(.) denote the system states, u(.) the control input, p a time constant pa-

rameter (optional), T the prediction horizon time, f(.) the model equation, s(.) the

path constraints, and r(.) the terminal constraints. Moreover, the objective function

is given in the least square form, where η and µ specify the tracking and terminal ref-

erence. The control problem (3.13), written in scalar notation, can be easily matched

with the robot control problem given by (3.12). For the mobile robot unicycle model

three system states are present, so x(.) contains three entities x-position, y-position

and orientation, θ. There are two control inputs, linear velocity (v) and angular ve-

locities (ω). Therefore, u(.) comprises of two elements v and ω. Prediction Horizon

(T ) is selected such that the system performance is satisfactory. The value is specified

in problem formulation subsection of each problem sections, individually. Constraints

have been put on velocities and specified in the experimental setup sections. No

terminal constraint has been implemented in this work.

3.4 System Specifications

The mobile robot platform used for this study is Seekur Jr. [28], which is a four-wheel,

skid-steer di�erential drive mobile robot with an embedded computer, client-server

communications capability, laser range scanner and many other useful features. MAT-

LAB codes have been written which integrates the NMPC routine implemented by

ACADO toolkit, Seekur Jr. input and output files and communication files. Following

softwares have been used in this research work:

• MATLAB : Platform to connect all the softwares and control code.

• ARNL [28]: ARNL (Advanced Robotics Navigation and Localization) server

runs on the mobile robot to run the robot according to the command velocity

received for indoor navigation. It uses the map of the environment and laser
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range finder to perform localization task.

• MOGS [28]: MOGS (Mobile Robot Outdoor Guidance System) server runs on

the mobile robot to run the robot according to the command velocity received

for outdoor navigation. It uses DGPS to perform the localization task.

• ARIA [28]: ARIA (Advanced Robot Interface for Applications) is the platform

which provides the client service for ARNL/MOGS server running on the mobile

robot.

• ACADO Toolkit : Toolkit with MATLAB interference to implement the NMPC

routine

• Mobile Eyes [28]: MobileEye was used as the graphical user interface for navi-

gation and monitoring of mobile robot.

• MobileSim [28]: Simulator used for indoor map based navigation to check the

applicability of controller for real time experimentation

• Mapper3 [28]: The map of environment for indoor navigation was created by

using the Mapper3 tool.

• Motive [69]: Software platform used for the OptiTrack [69] tracking system. It

tracks the mobile robot for indoor environment by using trackable markers and

provides the position of markers in the tracked environment.

3.5 Overall Control Strategy

The overall control strategy is represented in figure 3.2. NMPC has two major blocks,

optimizer and predictor. If the reference pose is given, NMPC controller computes the

optimal control command to track reference pose, while considering the cost function
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and constraints on the system. NMPC predictor predicts the future output states

and control inputs over the given prediction horizon using the current robot state and

control sequence, while considering the system model and prediction horizon. The

optimizer optimizes the cost function to compute the control input sequence using

the predicted output states, reference pose and control input, while considering the

constraints.

Optimizer

Predictor

Mobile 

Robot

Nonlinear Model 

Predictive Controller

ConstraintsCost Function

Reference Pose

(xr , yr , θr )

Controlled Output

(x , y , θ )

Control Input

(v , ω)

Predicted 

Output

(x, y, θ)

Control 

Input

(v, ω)

Prediction Horizon

System Model

Figure 3.2: Overall Control Strategy

3.5.1 Indoor Navigation based on Map Based Localization

The overall system architecture for indoor navigation of mobile robot using map based

localization is shown in figure 3.3. The system has four major blocks.

• Server: ARNL (Advanced Robotics Navigation and Localization) server runs

on mobile robot (for real time experiment) and on MobileSim (for simulation).

This is the modified version of ARNL server, which enables it to receive the

velocity command through client which connects to MATLAB through TCP/IP

connector. It drives the mobile robot on the basis of velocity command (v, ω)
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Figure 3.3: Overall Control Strategy for Indoor Navigation using map based localiza-
tion
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received from client. Localization of mobile robot is also done by ARNL server.

It uses the map data and laser range finder to perform localization task. It

provides the robot status (x, y, θ, v, ω) information to client.

• Client: ArNetworking Client connects with ARNL server through wireless con-

nection. This is the modified version which enables MATLAB to connect to

ARNL server. It receives the robot status (x, y, θ, v, ω) from ARNL server and

sends command velocity (v, ω) to server which drives mobile robot. This ve-

locity command is being received from MATLAB TCP/IP connector. To this

end, it acts as server, which receives velocity commands and sends the robot

status to MATLAB. Therefore, the client acts as a middle layer, which provides

connection between MATLAB and ARNL Server.

• MATLAB: This is the core of processing part of the navigation process. It

receives the robot status (x, y, θ, v, ω) from client. It passes the pose (x, y, θ)

information to NMPC controller for the evaluation of velocity command, which

is then passed to client. NMPC is implemented through ACADO toolkit, which

has a MATLAB interface. After solving NMPC problem by ACADO, MATLAB

receives optimal predicted states (x,y, θ) and optimal control input (v, ω) over

the given prediction horizon. These are the vectors having length equal to the

number of prediction steps. From the optimal control sequence, the first set

is selected as velocity command and is fed to the robot. All the plotting and

storing of results are also done here.

• ACADO Toolkit: ACADO toolkit solves the fast NMPC by taking the pose

feedback (x, y, θ), mobile robot model, state and control constraints, cost func-

tion, reference state and control inputs, prediction horizon and sampling time.

ACADO toolkit runs the online optimization and gives optimal predicted states
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(x,y, θ) and optimal control input (v, ω) over the specified prediction horizon.

Figure 3.4 shows the map of the environment for indoor navigation. The map is

constructed through Laser range finder by using Mapper3 software. This is the map

of Intelligent System Lab in Faculty of Engineering and Applied Sciences. The black

lines represent the walls or boundaries of the objects scanned by laser. The clay

colored area represents the forbidden area for the mobile robot. The central white

region is the area where mobile robot can navigate.

Figure 3.4: Map of the environment for Indoor Navigation
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3.5.2 Indoor Navigation based on Tracking System

The overall system architecture for indoor navigation of mobile robot using tracking

system is shown in figure 3.5. The system has four major blocks.

• Server: ARNL (Advanced Robotics Navigation and Localization) server runs

on mobile robot (for real time experiment). This is the modified version of

ARNL server, which enables it to receive the velocity command through client

which connects to MATLAB through TCP/IP connector. It drives the mobile

robot on the basis of velocity command (v, ω) received from client. It provides

the robot speed (v, ω) information to client. Now, the localization data is not

provided by ARNL server, instead it is obtained through tracking system.

• Client: ArNetworking Client connects with ARNL server through wireless con-

nection. This is the modified version, which enables MATLAB to connect to

the ARNL server. It receives the robot speed (v, ω) from ARNL server and

sends command velocity (v, ω) to server, which drives the mobile robot. This

velocity command is being received from MATLAB TCP/IP connector. To this

end, it acts as server, which receives velocity commands and sends the robot

status to MATLAB. Therefore, the client acts as a middle layer, which provides

connection between MATLAB and ARNL Server.

• Tracking System: The software platform used fot OptiTrack tracking system is

Motive. Motive broadcasts the tracked markers data. These markers are placed

on the mobile robot, so data obtained corresponds the mobile robot position

in the tracked environment. It uses the NatNet SDK, which is a Client/Server

networking for sending and receiving NaturalPoint data across networks. Server

is the host machine, where Motive is running and broadcasting the tracked

position data of rigid body and markers. Client is the local machine where data
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Figure 3.5: Overall Control Strategy for Indoor Navigation using tracking
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is obtained in MATLAB. Client is connected with MATLAB to get the markers

information. From this markers position data, pose (x, y, θ) of mobile robot is

evaluated.

• MATLAB: This is the core processing part of the navigation process. It re-

ceives the robot pose (x, y, θ) from tracking system through NatNet SDK and

mobile robot speed (v, ω) from client. It is necessary to mention that in this

method robot pose is not obtained through map based localization, rather it is

obtained through tracking. MATLAB passes the POSE (x, y, θ) information to

NMPC controller for the evaluation of velocity command, which is then passed

to client. NMPC is implemented through ACADO toolkit, which has a MAT-

LAB interface. After solving NMPC problem by ACADO, MATLAB receives

optimal predicted states (x,y, θ) and optimal control input (v, ω) over the given

prediction horizon. From the optimal control sequence, the first set is selected

as velocity command and is fed to the robot. All the plotting and storing of

results are also done here.

• ACADO Toolkit: ACADO toolkit solves the fast NMPC by taking the POSE

feedback (x, y, θ), mobile robot model, state and control constraints, cost func-

tion, reference state and control inputs, prediction horizon and sampling time.

ACADO toolkit runs the online optimization and gives optimal predicted states

(x,y, θ) and optimal control input (v, ω) over the prediction horizon.

The tracked environment is shown in figure 3.6. The environment is of Intelligent

System Lab in Faculty of Engineering and Applied Sciences. Four cameras have been

used to track the mobile robot.
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Figure 3.6: Motive (Software) for OptiTrack motion capture system

3.5.3 Outdoor Navigation based on DGPS

The overall system architecture for outdoor navigation of mobile robot is shown in

figure 3.7. The system has four major blocks.

• Server: MOGS (Mobile robot Outdoor Guidance System) runs on Mobile robot

(for real time experiment) and on MobileSim (for simulation). This is the mod-

ified version of MOGS server, which enables it to receive the velocity command

through client which connects to MATLAB through TCP/IP connector. It

drives the mobile robot on the basis of velocity command (v, ω) received from

client. MOGS performs the localization task based on DGPS. It uses the map

of the environment to navigate, positioning of the mobile robot is determined

through DGPS. It provides the robot status (x, y, θ, v, ω) information to client.

Pose is calculated from the GPS, robot gyro/IMU and odometry sensors.

• Client: ArNetworking Client connects with MOGS server. It receives the Robot

status (x, y, θ, v, ω) from MOGS server and sends Command velocity (v, ω) to
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Figure 3.7: Overall Control Strategy for Outdoor Navigation
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server, which drives mobile robot. This velocity command is being received from

MATLAB TCP/IP connector. To this end, it acts as server, which receives

velocity commands and sends the robot status to MATLAB. Therefore, the

client acts as a middle layer, which provides connection between MATLAB and

MOGS Server.

• MATLAB: This is the core of processing part of the navigation process. It

receives the robot status (x, y, θ, v, ω) from client. It passes the POSE (x, y, θ)

information to NMPC controller for the evaluation of velocity command, which

is then passed to client. NMPC is implemented through ACADO toolkit, which

has a MATLAB interface. After solving NMPC problem by ACADO, MATLAB

receives optimal predicted states (x,y, θ) and optimal control input (v, ω) over

the given prediction horizon. From the optimal control sequence, the first set

is selected as velocity command and is fed to the robot. All the plotting and

storing of results are also done here.

• ACADO Toolkit: ACADO toolkit solves the fast NMPC by taking the POSE

feedback (x, y, θ), mobile robot model, state and control constraints, cost func-

tion, reference state and control inputs, prediction horizon and sampling time.

ACADO toolkit runs the online optimization and gives optimal predicted states

(x,y, θ) and optimal control input (v, ω) over the prediction horizon.

3.5.4 Obstacle Avoidance

In this research work, the obstacles considered are static and their location is pre-

known in the mapped environment. As NMPC is well able to cope with the con-

strained optimization problem, so this idea has been exploited for obstacle avoidance

problem. The controller considers these obstacles as the constraints in optimization
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problem. The objective is to minimize

√
(x− xo)2 + (y − yo)2 ≥ ro (3.14)

where (xo, yo) represents the location of the obstacle in the environment, (x, y) depicts

the current location of mobile robot and ro represents the radius of the obstacle.

Here, the radius of the obstacle also considers the safe margin for the mobile robot

navigation. So, the mobile robot keeps the minimum safe distance from the obstacle,

while avoiding that obstacle. ro includes the radius of the obstacle, radius of the

environment and minimum safe distance from the obstacle.
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Chapter 4

Point Stabilization

About this Chapter: This chapter presents the point stabilization results for

wheeled mobile robot. The chapter has been divided into four sections. First sec-

tion presents the results for indoor navigation using map based localization. Second

section discusses the indoor navigation results using tracking system. Point stabiliza-

tion results for outdoor navigation have been presented in third section. Last section

presents the point stabilization results with obstacle avoidance.

4.1 Indoor Navigation based on Map based Local-

ization

4.1.1 Problem Formulation

In the mapped environment, the robot starts from the initial pose

xi =
[
0.338 0.990 0

]T
(m, m, rad)
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and desired goal is to stabilize at the pose

xr =
[
4.735 3.620 0

]T
(m, m, rad)

In order to move from initial position and stabilize itself at the desired pose, robot is

constrained on its linear and angular speed, specified as:

v =
[
−0.3 0.3

]
m/s

ω =
[
−0.3 0.3

]
rad/s

In order to achieve the above mentioned task, the controller update time step is chosen

to be 0.3 s with number of prediction steps equal to 10. Therefore, the prediction

horizon time is 3 s. The weight matrices Q and R of the cost function (3.11) are

chosen as diagonal matrices with diagonal elements defined as (1, 10, 1) and (2, 2)

for Q and R, respectively.

4.1.2 Simulation Results

Series of simulations were carried out in MATLAB and MobileSim (Simulator). The

former is used to test the proper functionality of controller, while later is used to eval-

uate the applicability for the mobile robot for real time experimentation. MATLAB

simulations do not use map and robot states are simulated over the prediction hori-

zon. MobileSim simulations use the map to perform localization task and controller

receives the state feedback same as it does for real-time scenario.

Figure 4.1 shows the MATLAB simulation results. It can be seen from Figure 4.1(a),

robot trajectory, that robot started from position (0.338 m, 0.990 m) and stopped at

(4.74 m, 3.62 m). Figure 4.1(b) shows that error state vector xe converges to null
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Figure 4.1: Simulation(ACADO) results of point stabilization for indoor navigation
using map based localization

vector. The steady state absolute error in x-position is 0.0013 m, y-position is 0.0064

m, and theta is 0.0002 rad. This leads to overall error state vector magnitude 0.0065.

Figure 4.1(c) and 4.1(d), shows that both linear and angular velocities are always

within the specified range as mentioned in the constraints to the controller. These

results achieve the proper working of the controller developed for this problem.

Figure 4.2 shows the simulation results from MobileSim. It can be seen from Fig-

ure 4.2(a), robot trajectory, that robot started from position (0.396 m, 0.974 m)

and stopped at (4.726 m, 3.610 m). Figure 4.2(b) shows that error state vector xe

converges to null vector. The steady state absolute error in x-position is 0.0090 m,

y-position is 0.0010 m, and theta is 0.0 rad. Therefore, overall error state vector

magnitude 0.0014. The overall error is more than the ACADO case because of two
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Figure 4.2: Simulation(MobileSim) results of point stabilization for indoor navigation
using map based localization

reasons. Firstly, MobileSim uses the localization data by using map, whereas ACADO

simulation only uses the predicted states from the controller. Secondly, MobileSim

provides the simulation environment with realistic robot model. Figure 4.2(c) shows

the linear velocity of mobile robot. It can be noticed, that there is time lag between

the robot actual velocity and velocity command generated by the controller. This

can be attributed to two reasons: (a) Actual velocity is considered after one sam-

pled time, which the robot achieved when the current generated velocity command is

applied (b) Only kinematic model of robot has been considered and there is always

inertia associated with the real robot, which is not considered in the kinematic model.

Figure 4.2(d) shows angular velocities, actual and generated. It has the same lag as

appearing in the linear velocity case. From both figures, it is clear that velocities are
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always with in the specified range as mentioned in the constraints to the controller.

These simulations lead to the real-time applicability of controller developed for this

problem.

4.1.3 Real-Time Experiment

Figure 4.3 shows the real time experimental results run on Seekur Jr. for point

stabilization problem for indoor navigation using map based localization.
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Figure 4.3: Realtime Experimental results of point stabilization for indoor navigation
using map based localization

It can be seen from Figure 4.3(a), robot trajectory, that robot starts from position

(0.389 m, 0.982 m) and stops at (4.731 m, 3.587 m). Figure 4.3(b) shows that error

state vector xe converges to null vector. The steady state absolute error in x-position
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is 0.0040 m, y-position is 0.0330 m, and theta is 0.0175 rad. Therefore, the overall

error state vector magnitude is 0.0375. This error is larger than the simulation results.

It was expected, because the model of system doesn't use the dynamics of robot and

localization data is not accurate. In MobileSim simulation localization is always con-

sidered to be accurate, whereas in real-time scenario it can never achieve comparable

localization as simulation. Overall trend in the robot trajectory and state vector error

is similar for both simulation and real time experimental cases. Figure 4.3(c) shows

the linear velocity of mobile robot. Again, there is time lag between the robot actual

velocity and velocity command generated by the controller, because of same reason,

as mentioned above. It can be observed that from time 0 to 20 s, linear velocity

command generated by the controller remain constant, but robot actual velocity has

spikes in it. This is because of the real time dynamics of robot. Figure 4.3(d) shows

the actual angular velocity of robot and angular velocity generated by the controller.

It has the same lag as appearing in the linear velocity case. From both figures, it

is clear that velocities are always within the specified range, for both generated and

actual ones, as mentioned in the constraints to the controller. These result shows the

satisfactory performance of developed controller for the point stabilization problem

of mobile robot. Table 4.1 summarizes the steady state errors for robot states.

Steady State Error

Parameter
Simulation

Real-Time Experiment
MATLAB MobileSim

x-position (m) 0.0013 0.0090 0.0040

y-position (m) 0.0064 0.0010 0.0330

Heading angle (rad) 0.0002 0.0 0.0175

Table 4.1: Steady state errors of point stabilization problem for indoor navigation
based on map based localization

39



4.2 Indoor Navigation based on Tracking System

4.2.1 Problem Formulation

The robot starts from the initial pose

xi =
[
1.1508 1.5571 0.0195

]T
(m, m, rad)

and desired goal is to stabilize at the pose

xr =
[
3.8061 −2.0550 −1.5378

]T
(m, m, rad)

In order to move from initial position and stabilize itself at the desired pose, robot is

constrained on its linear and angular speed, specified as:

v =
[
−0.3 0.6

]
m/s

ω =
[
−0.7 0.7

]
rad/s

The controller update time step is chosen to be 0.25 s with number of prediction steps

equal to 20, leading to a prediction horizon time T = 5 s. The weight matrices Q

and R of the cost function (8) are chosen as diagonal matrices with diagonal elements

defined as (3, 2, 0.5) and (4, 5) for Q and R, respectively.

4.2.2 Simulation Results

Series of simulations were carried out in MATLAB using ACADO toolkit. The pur-

pose is to test the proper functionality of controller. MATLAB simulations do not use

tracking system and robot states are simulated over the prediction horizon. Figure 4.4

shows the simulation result obtained from ACADO. It can be seen from Figure 4.4(a),
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Figure 4.4: Simulation results of point stabilization for indoor navigation using track-
ing system

robot trajectory, that robot starts from position (1.1508 m, 1.5571 m) and stops at

(3.7660 m,−2.0571 m). Therefore, the steady state absolute error in x-position is

0.0401 m, y-position is 0.0021 m, and theta is 0.0006 rad. So, the overall error state

vector magnitude 0.0401. Figure 4.4(b) plots the state errors. It is clear that er-

ror state vector xe converges to null vector. Figure 4.4(c) and 4.4(d), shows that

both linear and angular velocities are always with in the specified range as mentioned

in the constraints to the controller. Though Linear velocity and angular velocities

touches the maximum allowed values but never exceeds the limits. So the controller

generates the velocity commands under constrained values in order to achieve point

stabilization of the mobile robot. This leads to the proper working of the controller

developed for this problem.
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4.2.3 Real-Time Experiment

Figure 4.5 shows the real time experimental results run on Seekur Jr. for indoor

navigation using tracking system.
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Figure 4.5: Realtime Experimental results of point stabilization for indoor navigation
using tracking system

42



Figure 4.5(a) shows the robot trajectory, where robot starts from position (1.1508 m,

1.5571 m) and stops at (3.8496 m,−2.0550 m). At the final pose robot adjusts for

y-position. This is also clear from figure 4.5(b) where y state error becomes positive

and then converges to zero. Figure 4.5(b) shows that error state vector xe converges

to null vector. The steady state absolute error in x-position is 0.0044 m, y-position is

0.0002 m, and theta is 0.0040 rad. This leads to overall error state vector magnitude

0.0437. The overall error state vector is really close to the simulation results as

compare to the results obtained by mapped based localization. The reason behind

is that, now robot is using being tracked by motion capture system which has more

precision as compare to localization achieved through map based localization. Overall

trend in the robot trajectory and state vector error is similar for both simulation and

real time experimental cases. Figure 4.5(c) shows the linear velocity of mobile robot.

There is time lag between the robot actual velocity and velocity command generated

by the controller, because of same reason, as mentioned in Section 4.1.2. It can be

observed that actual linear velocity of the robot momentarily above the maximum

specified velocity 0.6 m/s, but velocity generated by controller is still in the limits

at that point also. The reason behind this is that, robot can have velocity more

than 0.6 m/s. But in order to be in safe region, maximum velocity specified is 0.6

m/s so that robot always follow the velocity command generated by the controller.

Figure 4.5(d) shows angular velocities, actual velocity of robot and angular speed

generated by the controller. It has the same lag as appearing in the linear velocity

case. From both figures, it is clear that velocities are always with in the specified

range,for both generated and actual ones, as mentioned in the constraints to the

controller. Figure 4.5(e) shows that the computation time, for obtaining the robot

status, solving NMPC, evaluating velocity command and saving results, is in the order

of fraction of milliseconds. The sampling time selected for this experiment is 0.25 s.
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So, there is enough time to apply the velocity command to mobile robot, which is

still equivalent to sampling time. These result shows the satisfactory performance of

developed controller for the point stabilization problem of mobile robot. Table 4.2

summarizes the absolute values of steady state errors for robot states.

Steady State Error

Parameter Simulation Real-Time Experiment

x-position (m) 0.0401 0.0044

y-position (m) 0.0021 0.0002

Heading angle (rad) 0.0006 0.0040

Table 4.2: Steady state errors of point stabilization problem for indoor navigation
based on tracking system

4.3 Outdoor Navigation based on DGPS

4.3.1 Problem Formulation

The robot starts from the initial pose

xi =
[
−2.533 −87.248 2.3911

]T
(m, m, rad)

and desired goal is to stabilize at the pose

xr =
[
−18.984 −78.170 2.7402

]T
(m, m, rad)

These poses correspond to the positioning data obtained through MOGS server on the

map of the outdoor environment. In order to move from initial position and stabilize

itself at the desired pose, the mobile robot is constrained on its linear and angular
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speed, specified as:

v =
[
−0.3 0.3

]
m/s

ω =
[
−0.3 0.3

]
rad/s

The controller update time step is chosen to be 0.3 s with number of prediction steps

equal to 10. Therefore, prediction horizon time is 3 s. The weight matrices Q and

R of the cost function (8) are chosen as diagonal matrices with diagonal elements

defined as (10, 10, 0.1) and (50, 80) for Q and R, respectively.

4.3.2 Simulation Results

Simulation results are obtained from MATLAB using ACADO. Simulations do not use

GPS based localization. So, in order to get mobile robot state feedback, robot states

are simulated over the prediction horizon. Simulation results are shown in Figure 4.6,

which includes (a) mobile robot trajectory, (b) state vector error, (c) linear velocity

and (d) angular velocity.

It can be seen from Figure 4.6(a) that robot starts from position (-2.533 m, -87.248

m) and stops at (-18.9842 m, -78.1747 m). Therefore, the absolute values of steady

state error in x-position is 0.0002 m, y-position is 0.0047 m, and the theta error is

0.0936 rad. So, the overall error state vector magnitude is 0.0937. Figure 4.6(b)

shows that error state vector xe converges to null vector. Figure 4.6(c) and 4.6(d),

shows that both linear and angular velocities are always with in the specified range

as mentioned in the constraints to the controller. These results achieve the proper

working of the controller developed for this problem.
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Figure 4.6: Simulation results of point stabilization for outdoor navigation

4.3.3 Real-Time Experiment

Figure 4.7 shows the real-time experimental results run on Seekur Jr. for outdoor

navigation. It can be seen from figure 4.7(a), robot trajectory, that robot starts from

position (−2.5330 m,−87.2480 m) and stops at (−19.0640 m,−78.3290 m). Figure

4.7(b) shows that error state vector xe converges to null vector. The steady state

absolute error in x-position is 0.0800 m, y-position is 0.1590 m, and theta is 0.0698

rad. This leads to overall error state vector magnitude 0.1912. The overall error

state vector is quite high as compare to the simulation results. Overall trend in the

robot trajectory and state vector error is similar for both simulation and real time

experimental cases. Figure 4.7(c) shows the linear velocity of mobile robot. There

is time lag between the robot actual velocity and velocity command generated by
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Figure 4.7: Realtime Experimental results of point stabilization for outdoor navigation
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the controller, because of same reason, as mentioned in section 4.1.2. For outdoor

rough terrain, there is so frequent spikes in the velocity, but the mean value is same

as generated by controller. Figure 4.7(d) shows angular velocities, actual velocity of

robot and angular speed generated by the controller. It has the same lag as appearing

in the linear velocity case. From both figures, it is clear that velocities are always

within the specified range, for both generated and actual ones, as mentioned in the

constraints to the controller. Figure 4.7(e) shows that the computation time for

obtaining the robot status, solving NMPC, evaluating velocity command and saving

results is in order of milliseconds whereas sampling time selected for this experiment

is 0.3 s. So, there is enough time to apply the velocity command to mobile robot

which is still equal to sampling time. These result shows the satisfactory performance

of developed controller for the point stabilization problem of mobile robot. Table 4.3

summarizes the absolute values of steady state errors for robot states.

Steady State Error

Parameter Simulation Real-Time Experiment

x-position (m) 0.0002 0.0800

y-position (m) 0.0047 0.1590

Heading angle (rad) 0.0936 0.0698

Table 4.3: Steady state errors of point stabilization problem for outdoor navigation
based on DGPS
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4.4 Obstacle Avoidance

4.4.1 Problem Formulation

The robot starts from the initial pose

xi =
[
0.9782 1.5937 0.0779

]T
(m, m, rad)

and desired goal is to stabilize at the pose

xr =
[
3.8061 −2.0550 −1.5378

]T
(m, m, rad)

In order to move from initial position and stabilize itself at the desired pose, robot is

constrained on its linear and angular speed, specified as:

v =
[
−0.3 0.6

]
m/s

ω =
[
−0.7 0.7

]
rad/s

While moving from initial position to final goal position, the robot is also supposed

to avoid the obstacles in its path. The obstacles are positioned at:

(xo1 , yo1) = (2.763 m, 0.863 m)

(xo2 , yo2) = (4.270 m,−0.862 m)

(xo3 , yo3) = (2.744 m,−0.964 m)

In order to achieve the above mentioned task, the controller update time step is chosen

to be 0.25 s with number of prediction steps equal to 20. Therefore, the prediction

horizon time is equal to 5 s. The weight matrices Q and R of the cost function (3.11)

49



are chosen as diagonal matrices with diagonal elements defined as (3, 2, 0.5) and (4,

5) for Q and R, respectively. The problem is similar to the problem stated in Section

4.2, but now there are obstacles in the robot path which it needs to avoid. All the

coordinate points correspond to the locations in the tracked environment.

4.4.2 Simulation Results

Simulations are run in MATLAB using ACADO toolkit. The purpose is to test the

proper functionality of controller. Simulations do not use tracking system and robot

states are simulated over the prediction horizon. Results are shown in figure 4.8,

including (a) mobile robot trajectory, (b) state vector error, (c) linear velocity and

(d) angular velocity.
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Figure 4.8: Simulation results of point stabilization with obstacle avoidance
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It can be seen from figure 4.8(a) that robot starts from position (0.9782m, 1.5937m)

and stops at (3.8061m, -2.0550m) and avoids the above mentioned obstacles at the

specified locations. Figure 4.8(b) shows that error state vector xe converges to null

vector. The absolute value of steady state error in x-position is 0.0408 m, y-position

is 0.0021 m, and the theta error is 0.0006 rad. This leads to overall error state vector

magnitude 0.0408. Figure 4.8(c) and 4.8(d), clearly shows that both linear and

angular velocities are always with in the specified range as mentioned in the constraints

to the controller. These results conclude that leads the controller developed for this

problem is working, properly.

4.4.3 Real-Time Experiment

Figure 4.9 shows the real time experimental results run on Seekur Jr. for point

stabilization in the presence of obstacles.

It can be seen from figure 4.9(a), robot trajectory, that robot starts from position

(0.9782m, 1.5937m) and stops at (3.8393m,−2.0539m). While moving from initial

pose to final pose, robot also avoids the obstacles at the above mentioned locations.

In the plot obstacles are shown, it is important to mention here that these circles

includes the radius of circle and robot and safe margin for navigation. Figure 4.9(b)

shows that error state vector xe converges to null vector. The steady state absolute

error in x-position is 0.0332 m, y-position is 0.0011 m, and theta is 0.0216 rad. This

leads to overall error state vector magnitude 0.0396. The overall state vector error is

really close to the simulation results. Overall trend in the robot trajectory and state

vector error is similar for both simulation and real time experimental cases. Figure

4.9(c) shows the linear velocity of mobile robot. There is time lag between the robot

actual velocity and velocity command generated by the controller, because of same

reason, as mentioned in section 4.1.2. It can be observed that actual linear velocity of
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Figure 4.9: Realtime Experimental results of point stabilization with obstacle avoid-
ance

the robot is momentarily above the maximum specified velocity 0.6 m/s, but velocity

generated by controller is still in the limits at that point also. The reason behind

this is same as mentioned in section 4.1.2. When robot sees the first obstacle at that

moment, there is dip in actual velocity of robot as robot slows down and slightly
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change the orientation as seen in figure 4.9(b) also where theta error oscillate at

that time step. Figure 4.9(d) shows angular velocities, actual velocity of robot and

angular speed generated by the controller. It has the same lag as appearing in the

linear velocity case. From both figures it is clear that velocities are always with in the

specified range,for both generated and actual ones, as mentioned in the constraints to

the controller. Figure 4.9(e) shows that the computation time, for obtaining the robot

status, solving NMPC, evaluating velocity command and saving results, is in order

of fraction of milliseconds. The sampling time selected for this experiment is 0.25 s.

So, there is enough time to apply the velocity command to mobile robot which is still

equal to sampling time. There are obstacles present and specified as the constraints

for the optimal control problem. Therefore, computational time is more than that

of section 4.2 around the location of obstacles, which can been seen from the initial

spikes. These result shows the satisfactory performance of developed controller for

the point stabilization with obstacle avoidance problem of mobile robot. Table 4.4

summarizes the absolute values of steady state errors for robot states.

Steady State Error

Parameter Simulation Real-Time Experiment

x-position (m) 0.0408 0.0332

y-position (m) 0.0021 0.0011

Heading angle (rad) 0.0006 0.0216

Table 4.4: Steady state errors of point stabilization problem with obstacle avoidance
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Chapter 5

Trajectory Tracking

About this Chapter: This chapter presents the trajectory tracking results for non-

holonomic wheeled mobile robot. The chapter has been divided in four sections. First

section presents the trajectory tracking results for indoor navigation based on map

based localization. Second section discusses the indoor navigation results based on

tracking system. Trajectory tracking results for outdoor navigation have been pre-

sented in third section. Last section presents the trajectory tracking results in the

presence of obstacles.

5.1 Indoor Navigation based on Map based Local-

ization

5.1.1 Problem Formulation

The reference trajectory is a circular trajectory defined by:
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xr(t) = 2.66 + 1.5 ∗ sin(0.133 ∗ t) m

yr(t) = 2.44 + 1.5 ∗ cos(0.133 ∗ t) m

vr = 0.2 m/s

ωr = −0.133 rad/s

In order to move from initial position and stabilize itself at the desired pose, robot is

constrained on its linear and angular speed, specified as:

v =
[
−0.3 0.6

]
m/s

ω =
[
−0.7 0.7

]
rad/s

The controller update time step is chosen to be 0.2 s with number of prediction steps

equal to 20, leading to a prediction horizon time 4 s. The weight matrices Q and

R of the cost function (3.11) are chosen as diagonal matrices with diagonal elements

defined as (30, 30, 1) and (50, 40) for Q and R, respectively.

5.1.2 Simulation Results

Series of simulations were carried out in MATLAB and MobileSim (Simulator). The

former is used to test the proper functionality of controller, while later is used to eval-

uate the applicability for the mobile robot for real time experimentation. MATLAB

simulations do not use map and robot states are simulated over the prediction hori-

zon. MobileSim simulations use the map to perform localization task and controller

receives the state feedback same as it does for real-time scenario.

Figure 5.1 shows the MATLAB simulation results. It can be seen from Figure 5.1(a),
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Figure 5.1: Simulation(ACADO) results of trajectory tracking for indoor navigation
using map based localization

robot trajectory, that robot started from position (2.59 m, 2.45 m) and makes a circle

of radius 1.5 m centered at (2.585 m, 2.436 m). Figure 5.1(b) shows that error state

vector xe converges to null vector. The root mean square (rms) values of steady state

error in x-position is 0.00020 m, y-position is 0.00047 m, and theta is 0.0016 rad.

This leads to overall error state vector magnitude 0.0016. The steady state mean

values with standard deviation for x-position error is 0.00006± 0.00019 m, y-position

error is 0.00007 ± 0.00047 m, and theta error is −0.00027 ± 0.00150 rad. Figure

5.1(c) and 5.1(d), shows that both linear and angular velocities are always with in

the specified range as mentioned in the constraints to the controller. Both linear

and angular velocities converge to reference velocities. The rms value of steady state

error in linear velocity is 0.00052 m/s, and for angular velocity it is 0.00054 rad/s.

56



Overall error control vector magnitude is 0.00075. The steady state mean values with

standard deviation for linear velocity error is −0.00050 ± 0.00014 m/s, and angular

velocity error is −0.00014 ± 0.00053 rad/s.These results achieve the proper working

of the controller developed for this problem.

Figure 5.2 shows the simulation results from MobileSim. It can be seen from Figure

5.2(a), robot trajectory, that robot started from position (2.308 m, 3.949 m) and makes

a circle of radius 1.5 m centered at (2.585 m, 2.436 m). Figure 5.2(c) shows that error

state vector xe converges to null vector. The steady state rms error in x-position is

0.0213 m, y-position is 0.0254 m, and theta is 0.0439 rad. This leads to overall error

state vector magnitude 0.0551. The steady state mean values with standard deviation

for x-position error is −0.0040±0.0210 m, y-position error is −0.0027±0.0253 m, and

theta error is −0.0366± 0.0244 rad. The overall error is more than the ACADO case,

because MobileSim provides the simulation environment with realistic robot model.

Figure 5.2(d) shows the linear velocity of mobile robot. There is time lag between

the robot actual velocity and velocity command generated by the controller, because

of same reason, as mentioned in Section 4.1.2. Both generated and actual linear

velocities converge to reference velocity. The rms value of steady state error for linear

velocity is 0.0185 m/s. Figure 5.2(e) shows angular velocities, actual velocity of robot

and angular speed generated by the controller. It has the same lag as appearing in

the linear velocity case. The rms value of steady state error for angular velocity is

0.0234 rad/s. The steady state mean values with standard deviation for linear velocity

error is 0.0133 ± 0.0129 m/s, and angular velocity error is −0.0209 ± 0.0105 rad/s.

From both figures, it is clear that velocities are always with in the specified range as

mentioned in the constraints to the controller. These simulations lead to the real-time

applicability of controller developed for this problem.
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Figure 5.2: Simulation(MobileSim) results of trajectory tracking for indoor navigation
using map based localization

5.1.3 Real-Time Experiment

Figure 5.3 shows the real time experimental results run on Seekur Jr. for trajectory

tracking problem for indoor navigation based on map based localization.
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Figure 5.3: Realtime Experimental results of trajectory tracking for indoor navigation
using map based localization

It can be seen from Figure 5.3(a), robot trajectory, that robot started from position

(2.380 m, 4.027 m) and makes a circle of radius 1.5 m centered at (2.585 m, 2.436 m).

Figure 5.3(b) shows that error state vector xe converges to null vector. The steady

state rms values of error in x-position is 0.0370 m, y-position is 0.0454 m, and theta is

0.0574 rad. This leads to overall error state vector magnitude 0.0820. The steady state

mean values with standard deviation for x-position error is −0.0042 ± 0.0368 m, y-

position error is−0.0071±0.0449 m, and theta error is−0.0412±0.0400 rad. The error

is larger than the simulation results. It was expected, because the model of system

doesn't use the dynamics of robot. Overall trend in the robot trajectory and state

vector error is similar for both simulation and real time experimental cases. Figure

5.3(c) shows the linear velocity of mobile robot. Again, there is time lag between
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the robot actual velocity and velocity command generated by the controller, because

of same reason, as mentioned in section 4.1.2. Both generated and actual linear

velocities converge to reference velocity. The steady state rms error magnitude for

linear velocity is 0.0182 m/s. Figure 5.3(d) shows the actual angular velocity of robot

and angular velocity generated by the controller. It has the same lag as appearing in

the linear velocity case. The steady state rms error magnitude for angular velocity is

0.0178 rad/s. The steady state mean values with standard deviation for linear velocity

error is 0.0047 ± 0.0176 m/s, and angular velocity error is 0.00024 ± 0.0178 rad/s.

From both figures, it is clear that velocities are always within the specified range,

for both generated and actual ones, as mentioned in the constraints to the controller.

These result shows the satisfactory performance of developed controller for the point

stabilization problem of mobile robot.

Table 5.1 summarizes the rms values of the steady state errors for the mobile robot

states and controls.

Steady State Error

Parameter
Simulation Real-Time

ExperimentMATLAB MobileSim

x-position (m) 0.00020 0.0213 0.0370

y-position (m) 0.00047 0.0254 0.0454

Heading angle (rad) 0.00160 0.0439 0.0574

Linear Velocity (m/s) 0.00052 0.0185 0.0182

Angular Velocity (rad/s) 0.00054 0.0234 0.0178

Table 5.1: Steady state errors of trajectory tracking problem for indoor navigation
based on map based localization
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5.2 Indoor Navigation using Tracking System

5.2.1 Problem Formulation

The reference trajectory is a circular trajectory defined by:

xr(t) = 0.3301 + 1.5 ∗ sin(0.15 ∗ t) m

yr(t) = −0.4489 + 1.5 ∗ cos(0.15 ∗ t) m

vr = 0.225 m/s

ωr = −0.15 rad/s

In order to move from initial position and stabilize itself at the desired pose, robot is

constrained on its linear and angular speed, specified as:

v =
[
−0.3 0.6

]
m/s

ω =
[
−0.7 0.7

]
rad/s

The controller update time step is chosen to be 0.2 s with number of prediction steps

equal to 20, leading to a prediction horizon time 4 s. The weight matrices Q and

R of the cost function (3.11) are chosen as diagonal matrices with diagonal elements

defined as (30, 30, 1) and (20, 10) for Q and R, respectively.

5.2.2 Simulation Results

Series of simulations were carried out in MATLAB using ACADO toolkit. The pur-

pose is to test the proper functionality of controller. MATLAB simulations do not

use tracking system and robot states are simulated over the prediction horizon.

Figure 5.4 shows the MATLAB simulation results. It can be seen from Figure 5.4(a),
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Figure 5.4: Simulation(ACADO) results of trajectory tracking for indoor navigation
based on tracking system

robot trajectory, that robot started from position (0.3301 m,−0.4489 m) and makes

a circle of radius 1.5 m centered at (0.3301 m,−0.4489 m). Figure 5.4(b) shows that

error state vector xe converges to null vector. The root mean square (rms) values of

steady state error in x-position is 0.000063 m, y-position is 0.000065 m, and theta

is 0.000057 rad. This leads to overall error state vector magnitude 0.00011. The

steady state mean values with standard deviation for x-position error is −0.000009±

0.000062 m, y-position error is 0.000013±0.000064 m, and theta error is −0.000057±

0.000006 rad. Figure 5.4(c) and 5.4(d), shows that both linear and angular velocities

are always with in the specified range as mentioned in the constraints to the controller.

Both linear and angular velocities converge to reference velocities. The rms value of

steady state error in linear velocity is 0.000003 m/s, and for angular velocity it is
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0.000003 rad/s. Overall error control vector magnitude is 0.000005. The steady

state mean values with standard deviation for linear velocity error is −0.000003 ±

0.0000007 m/s, and angular velocity error is 0.0000008±0.000003 rad/s. These results

achieve the proper working of the controller developed for this problem.

5.2.3 Real-Time Experiment

Figure 5.5 shows the real-time experimental results run on Seekur Jr. for outdoor

navigation. It can be seen from figure 5.5(a), robot trajectory, that robot starts

from position (0.3301 m,−0.4489 m) and makes a circle of radius 1.5 m centered

at (0.3301 m, −0.4489 m). Figure 5.5(b) shows that error state vector error xe

converges to null vector. The steady state rms error in x-position is 0.0175 m, y-

position is 0.0182 m, and theta is 0.0240 rad. This leads to overall state vector

error magnitude 0.0348. The steady state mean values with standard deviation for

x-position error is 0.0017± 0.0174 m, y-position error is 0.0017± 0.0182 m, and theta

error is 0.0228 ± 0.0075 rad. This error is larger than the simulation results. It was

expected, because the model of system doesn't use the dynamics of robot. Overall

trend in the robot trajectory and state vector error is similar for both simulation and

real time experimental cases. Figure 5.5(c) shows the linear velocity of mobile robot.

Again, there is time lag between the robot actual velocity and velocity command

generated by the controller, because of same reason, as mentioned in section 4.1.2.

Both generated and actual linear velocities converge to reference velocity. The rms

value of steady state error for linear velocity is 0.0129 m/s. Figure 5.5(d) shows the

actual angular velocity of robot and angular velocity generated by the controller. It

has the same lag as appearing in the linear velocity case. The rms value of steady state

error for angular velocity is 0.0121 rad/s. The steady state mean values with standard

deviation for linear velocity error is 0.0124±0.0034 m/s, and angular velocity error is
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Figure 5.5: Realtime Experimental results of trajectory tracking for indoor navigation
based on tracking system

−0.0056±0.0108 rad/s. From both figures, it is clear that velocities are always within

the specified range, for both generated and actual ones, as mentioned in the constraints

to the controller. Figure 5.5(e) shows that the computation time, for obtaining the

robot status, solving NMPC, evaluating velocity command and saving results, is in
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order of fraction of milliseconds whereas sampling time selected for this experiment is

0.2 s. So, there is enough time to apply the velocity command to mobile robot which

is still equivalent to sampling time. These result shows the satisfactory performance

of developed controller for the point stabilization problem of mobile robot. Table 5.2

summarizes the rms values of steady state errors for robot states and controls.

Steady State Error

Parameter Simulation Real-time Experiment

x-position (m) 6.27e-05 0.0175

y-position (m) 6.49e-05 0.0182

Heading angle (rad) 5.71e-05 0.0240

Linear Velocity (m/s) 3.40e-06 0.0129

Angular Velocity (rad/s) 3.05e-06 0.0121

Table 5.2: Steady state errors of trajectory tracking problem for indoor navigation
based on tracking system

5.3 Outdoor Navigation based on DGPS

5.3.1 Problem Formulation

The reference trajectory is a circular trajectory defined by:

xr(t) = −4.783 + 1.5 ∗ sin(0.133 ∗ t) m

yr(t) = −89.306 + 1.5 ∗ cos(0.133 ∗ t) m

vr = 0.2 m/s

ωr = −0.133 rad/s
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In order to move from initial position and stabilize itself at the desired pose, robot is

constrained on its linear and angular speed, specified as:

v =
[
−0.3 0.6

]
m/s

ω =
[
−0.7 0.7

]
rad/s

The controller update time step is chosen to be 0.22 s with number of prediction steps

equal to 20, leading to a prediction horizon time T = 4 s. The weight matrices Q

and R of the cost function (8) are chosen as diagonal matrices with diagonal elements

defined as (30, 30, 1) and (50, 50) for Q and R, respectively.

5.3.2 Simulation Results

Simulation results are obtained from MATLAB using ACADO. Simulations do not

use GPS based localization. So, in order to get mobile robot state feedback, robot

states are simulated over the prediction horizon.

Figure 5.6 shows the simulation results. It can be seen from figure 5.6(a), robot

trajectory, that robot starts from position (−4.78 m,−89.31 m) and makes a circle

of radius 1.5 m centered at (−4.78 m,−89.31 m). Figure 5.6(b) shows that error

state vector xe converges to null vector. The steady state rms error in x-position is

0.00057 m, y-position is 0.00066 m, and theta is 0.00095 rad. This leads to overall error

state vector magnitude 0.0013. The steady state mean values with standard deviation

for x-position error is 0.00010 ± 0.00056 m, y-position error is 0.00018 ± 0.00063 m,

and theta error is 0.00027± 0.00092 rad. Figure 5.6(c) and 5.6(d), shows that both

linear and angular velocities are always with in the specified range as mentioned in the

constraints to the controller. Both linear and angular velocities converge to reference

velocities. The rms value of steady state error in linear velocity is 0.00048 m/s,
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Figure 5.6: Simulation results of trajectory tracking for outdoor navigation

and for angular velocity it is 0.00039 rad/s. Overall control vector error magnitude is

0.00062. The steady state mean values with standard deviation for linear velocity error

is −0.00045 ± 0.00017 m/s, and angular velocity error is −0.00001 ± 0.00039 rad/s.

These results achieve the proper working of the controller developed for this problem.

5.3.3 Real-Time Experiment

Figure 5.7 shows the real-time experimental results run on Seekur Jr. for outdoor

navigation. It can be seen from figure 5.7(a), robot trajectory, that robot starts

from position (−4.78 m,−89.31 m) and makes a circle of radius 1.5 m centered at

(−4.78 m,−89.31 m). Figure 5.7(b) shows that the error state vector xe converges

to null vector. The steady state rms error in x-position is 0.0315 m, y-position is
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Figure 5.7: Realtime Experimental results of trajectory tracking for outdoor naviga-
tion

0.0377 m, and theta is 0.0277 rad. This leads to overall error state vector magnitude

0.0564. The steady state mean values with standard deviation for x-position error is

0.0072±0.0307 m, y-position error is 0.0085±0.0368 m, and theta error is −0.0218±

0.0171 rad. Overall trend in the robot trajectory and state vector error is similar for
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both simulation and real time experimental cases. Figure 5.7(c) shows the linear

velocity of mobile robot. There is time lag between the robot actual velocity and

velocity command generated by the controller, because of same reason, as mentioned

in Section 4.1.2. Both generated and actual linear velocities converge to reference

velocity. The steady state rms error magnitude for linear velocity is 0.0098 m/s.

The steady state mean values with standard deviation for linear velocity error is

0.0002±0.0098 m/s. Figure 5.7(d) shows angular velocities, actual velocity of robot,

velocity generated by the controller and the reference velocity. It has the same lag

as appearing in the linear velocity case. The steady state rms error magnitude for

angular velocity is 0.0171 rad/s. The steady state mean values with standard deviation

for angular velocity error is −0.0010 ± 0.0171 rad/s. From both figures, it is clear

that velocities are always within the specified range, for both generated and actual

ones, as mentioned in the constraints to the controller. Overall control vector error

magnitude is 0.0197, which is well within acceptable range. Figure 5.7(e) shows

that the computation time, for obtaining the robot status, solving NMPC, evaluating

velocity command and saving results, is in order of fraction of milliseconds whereas

sampling time selected for this experiment is 0.2 s. So, there is enough time to apply

the velocity command to mobile robot which is still equal to sampling time. These

result show the satisfactory performance of the developed controller for the trajectory

tracking problem of the mobile robot for outdoor navigation. Table 5.2 summarizes

the rms values of steady state errors for robot states and controls.
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Steady State Error

Parameter Simulation Real-time Experiment

x-position (m) 0.0006 0.0315

y-position (m) 0.0007 0.0377

Heading angle (rad) 0.0009 0.0277

Linear Velocity (m/s) 0.0005 0.0098

Angular Velocity (rad/s) 0.0004 0.0171

Table 5.3: Steady state errors of trajectory tracking problem for outdoor navigation
based on DGPS

5.4 Obstacle Avoidance

5.4.1 Problem Formulation

The reference trajectory is a circular trajectory defined by:

xr(t) = 0.3301 + 1.5 ∗ sin(0.15 ∗ t) m

yr(t) = −0.4489 + 1.5 ∗ cos(0.15 ∗ t) m

vr = 0.225 m/s

ωr = −0.15 rad/s

In order to move from initial position and stabilize itself at the desired pose, robot is

constrained on its linear and angular speed, specified as:

v =
[
−0.3 0.6

]
m/s

ω =
[
−0.7 0.7

]
rad/s
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While tracking the reference trajectory, the mobile robot is also supposed to avoid

the obstacle in its trajectory present at

(xo, yo) = (0.663 m,−2.103 m)

The controller update time step is chosen to be 0.2 s with number of prediction steps

equal to 20, leading to a prediction horizon time 4 s. The weight matrices Q and

R of the cost function (3.11) are chosen as diagonal matrices with diagonal elements

defined as (30, 30, 1) and (20, 10) for Q and R, respectively. The problem is similar

to the problem stated in Section 5.2, but now there are obstacles in the robot path

which it needs to avoid. All the coordinate points correspond to the locations in the

tracked environment.

5.4.2 Simulation Results

Simulations are run in MATLAB using ACADO toolkit. The purpose is to test the

proper functionality of controller. Simulations do not use tracking system and robot

states are simulated over the prediction horizon. Simulation results are shown in

figure 5.8, including (a) mobile robot trajectory, (b) state vector error, (c) linear

velocity and (d) angular velocity.

Figure 5.8 shows the simulation results. It can be seen from figure 5.8(a), robot

trajectory, that robot starts from position (0.3301 m,−0.4489 m) and makes a circle of

radius 1.5 m centered at (0.3301 m,−0.4489 m). The mobile robot successfully avoids

the obstacle, which comes in the reference trajectory. Once obstacle is avoided, robot

again starts to track the reference trajectory. Figure 5.8(b) shows that error state

vector xe converges to null vector. It can be noted while robot is avoiding the obstacle,

the state errors are present. Figure 5.8(c) and 5.8(d), shows that both linear and

71



−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x−position (m)

y−
po

si
tio

n 
(m

)

Robot Trajectory 

 

 
actual
reference
obstacle

(a) Mobile Robot Trajectory

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
State Vector Error

Time (sec)

St
at

e 
Ve

cto
r E

rro
r (

m
, m

, r
ad

)

 

 
x−error (m)
y−error (m)
theta−error (rad)

(b) State Vector Error

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Linear Velocity

Time (sec)

v (
m

/se
c)

 

 
actual
reference

(c) Linear Velocity Profile

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Angular Velocity

Time (sec)

w 
[ra

d/
se

c]

 

 
actual
reference

(d) Angular Velocity Profile

Figure 5.8: Simulation results of trajectory tracking with obstacle avoidance

angular velocities are always with in the specified range as mentioned in the constraints

to the controller. Both linear and angular velocities converge to reference velocities.

At the time of obstacle avoidance, both linear and angular velocities deviates from

the reference values. Once obstacle is avoided, both linear and angular velocities

again converge to reference values. These results achieve the proper working of the

controller developed for this problem.

5.4.3 Real-Time Experiment

Figure 5.9 shows the real-time experimental results run on Seekur Jr. for outdoor

navigation. It can be seen from figure 5.9(a), robot trajectory, that robot starts

from position (0.3760 m,−0.4340 m) and makes a circle of radius 1.5 m centered
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Figure 5.9: Realtime Experimental results of trajectory tracking for obstacle avoidance

at (0.3301 m,−0.4489 m). The mobile robot successfully avoids the obstacle, which

comes in the reference trajectory. Once obstacle is avoided, robot again starts to track

the reference trajectory. Figure 5.9(b) shows that the error state vector xe converges

to null vector. Overall trend in the robot trajectory and state vector error is similar

for both simulation and real time experimental cases. Figure 5.9(c) shows the linear
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velocity of mobile robot. There is time lag between the robot actual velocity and

velocity command generated by the controller, because of same reason, as mentioned

in Section 4.1.2. Both generated and actual linear velocities converge to reference

velocity. Actual linear velocity converges to zero when obstacle is encountered and

then tracks the linear velocity command generated by the controller. Once the obsta-

cle is avoided linear velocity starts to track the reference value. Figure 5.9(d) shows

angular velocities, actual velocity of robot, velocity generated by the controller and

the reference velocity. It has the same lag as appearing in the linear velocity case.

From both figures, it is clear that velocities are always within the specified range,

for both generated and actual ones, as mentioned in the constraints to the controller.

Figure 5.9(e) shows that the computation time, for obtaining the robot status, solv-

ing NMPC, evaluating velocity command and saving results, is in order of fraction

of milliseconds whereas sampling time selected for this experiment is 0.2 s. So, there

is enough time to apply the velocity command to mobile robot which is still equal

to sampling time. At the time instants of obstacle avoidance, computational time

is more, but still well below the sampling time. These result show the satisfactory

performance of the developed controller for the trajectory tracking problem of the

mobile robot with obstacle avoidance.
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Chapter 6

Conclusion and Future Work

About this Chapter: This chapter presents the discussion of the implementation

of the control strategy used. It concludes by mentioning the research contributions

and limitations of the thesis. Future directives are also highlighted

6.1 Discussion

6.1.1 Conclusion

This thesis successfully achieves its objectives defined in Chapter 1. It implements

NMPC for indoor and outdoor navigation, to solve point stabilization and trajectory

tracking problem. From the results presented in Chapter 4 for point stabilization and

Chapter 5 for trajectory tracking, it is clear that steady state errors for robot states

and inputs converge to zero. The mobile robot always followed the smooth trajectory.

In real time experiments, the robot velocities (both linear and angular) follow the

same velocities as generated by the controller. These velocities are always in the

constrained input limits. There is small time delay exists in the actual velocity and

velocity command generated by the controller. This delay is cause of only considering
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the kinematics in robot model, but overall trend is same for both. The computational

time for generation of velocity command and doing all processing is in the order

of fraction of milliseconds. Therefore, computational time is always less than the

sampling time for the controller. These leads to the successful implementation of

NMPC on mobile robot. Two methods have been used for indoor navigation to address

the localization issue. Among these two methods the results are better for the tracking

control, rather than mapped based localization. Moreover, obstacle avoidance feature,

for static obstacles, is successfully implemented. The results show the satisfactory

performance of the developed controller.

6.1.2 Research contributions

The research contributions are as follow:

• Contribution 1: Real-time implementation of NMPC to solve point stabiliza-

tion problem in indoors using mapped based localization and also with tracking

system

• Contribution 2: Real-time implementation of NMPC to solve trajectory track-

ing problem for indoor navigation using mapped based localization

• Contribution 3: Real-time implementation of NMPC to solve point stabiliza-

tion problem for outdoor navigation using DGPS

• Contribution 4: Real-time implementation of NMPC to solve trajectory track-

ing problem for outdoor navigation using DGPS

• Contribution 5: Real-time implementation of NMPC with obstacle avoidance

for both point stabilization and trajectory tracking
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6.1.3 Research limitations

This research work has following limitations:

• Obstacle Avoidance: This thesis addresses the obstacle avoidance problem,

which comes across in many cases of real time navigation of mobile robots.

Obstacles considered in this research are static and whose location is already

known to the controller. But in some real-world scenarios, the location of the

obstacles is not pre-known and in number of cases obstacles are moving also.

But this research work does not consider those cases.

• Localization: In this research, control of wheeled mobile robot is considered for

indoor and outdoor navigation. Navigation consists of localization and control,

but this thesis only considers the control aspect and takes the localization as

it receives from the server. For indoor navigation two methods are used to get

feedback data from the mobile robot: mapped based localization and indoor

tracking which doesn't consider the localization instead it uses motion capture

system. Then for outdoor, it uses DGPS based localization which converts the

DGPS coordinates into the mapped pose information. Inaccuracy of localization

e�ects the results, but its not the research focus area for this thesis.

6.2 Future Directions

This research work can be extended in following aspects, while considering the research

limitations presented in Section 6.1.3.

• Unknown and Dynamic Obstacle Avoidance: In future, the obstacle avoid-

ance feature would be extended to the unknown obstacles, the obstacles which

are not known to the controller and comes across during navigation, and dy-
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namic obstacles, the obstacles which are in motion and not static at fixed loca-

tion. For this purpose, a high-level controller can be developed, like behaviour

based controller. This high-level controller will be doing the obstacle avoidance

and NMPC will be taking care of the robot trajectory and formulating velocity

command to follow the desired trajectory.

• State Estimation: In this research localization data was available, but in fu-

ture, when localization data is not su�cient, state estimation can be added.

Even now, in order to improve the localization state estimation can be added

which will eventually improve the performance of system. Di�erent state esti-

mation techniques are studied in literature, like basic Extended Kalman Filter

(EKF) techniques [70], Unscented Kalman Filter (UKF) [71], and then we have

the Moving Horizon Estimation techniques (MHE) [26] in which the prediction

horizon is moving each step, just like NMPC.

• Universal Platform for server: In this thesis, three di�erent methods have

been developed to do the indoor and outdoor navigation of wheeled mobile

robots; based on mapped based localization, tracking system for indoor naviga-

tion and DGPS based localization for outdoor navigation. For these methods

two di�erent server files have been run on the mobile robot, ARNL server and

MOGS server. This server connects with client in PC and which connects MAT-

LAB. In future this work can be extended in which a single server file would

be run in the mobile robot which would select in the indoor and outdoor, and

which method of localization is used. Secondly, rather than using PC and hav-

ing TCP/IP connection, a executable MATLAB code can run in the onboard

computer of Seekur Jr. This will reduce the time computation as one layer of

communication will be reduced and algorithm will become more e�cient.
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