
Gender Equality Paradox – 1

Note: This is an earlier pre-print version. For the final proof-corrected version, please visit the 
Psychological Science website.

The gender equality paradox in STEM education
Gijsbert Stoet1 & David C. Geary2

1) Corresponding author (stoet@gmx.com),School of Social Sciences, Leeds Beckett University, Leeds, 
UK ; 2) Department of Psychological Sciences, University of Missouri, Columbia, Missouri

Abstract

The underrepresentation of girls and women in science, technology, engineering, and 
mathematics (STEM) is a continual concern for social scientists and policy makers. Using an 
international database on adolescent achievement in science, mathematics, and reading (n = 
472,242), we show girls performed similarly or better than boys in science in two of every three 
countries, and in nearly all countries, more girls appeared capable of college-level STEM study 
than enrolled. Paradoxically, the sex differences in the magnitude of relative academic strengths 
and pursuit of STEM degrees increased with increases in national gender equality. The gap 
between boys’ science achievement and girls’ reading achievement relative to their mean 
academic performance was near universal. These sex differences in academic strengths and 
attitudes toward science correlated with the STEM graduation gap.  A mediation analysis 
suggests that life-quality pressures in less gender equal countries promote girls’ and women’s 
engagement with STEM subjects.

Introduction

The underrepresentation of girls and women in science, technology, engineering, and 
mathematics (STEM) is a world-wide phenomenon (Burke & Mattis, 2007; Ceci, Williams, & 
Barnett, 2009; Ceci & Williams, 2011; Cheryan, Ziegler, Montoya, & Jiang, 2017). Although 
women are now well represented in the social and life sciences (Ceci, Ginther, Kahn, & 
Williams, 2014; Su & Rounds, 2016), they continue to be underrepresented in fields that focus 
on inorganic phenomena (e.g., computer science). Despite considerable efforts toward 
understanding and changing this pattern, the sex difference in STEM engagement has remained 
stable for decades (e.g., in the USA, National Science Foundation, 2017). The stability of these 
differences and the failure of current approaches to change them calls for a new perspective on 
the issue.

Here, we identify a major contextual factor that appears to influence women’s 
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engagement in STEM education and occupations. We find that countries with high levels of 
gender equality have some of the largesst STEM gaps in secondary and tertiary education; we 
call this the educational gender equality paradox. For example, Finland excels in gender equality
(World Economic Forum, 2015), its adolescent girls outperform boys in science literacy, and it 
ranks second in European educational performance (OECD, 2016a). With these high levels of 
educational performance and overall gender equality, Finland is poised to close the STEM 
gender gap. Yet, paradoxically, Finland has one of the world’s largest gender gaps in college 
degrees in STEM fields, and Norway and Sweden, also leading in gender equality rankings, are 
not far behind (fewer than 25% of STEM graduates are women). We will show that this pattern 
extends throughout the world, whereby the graduation gap in STEM increases with increasing 
levels of gender equality. 

We propose that the educational gender equality paradox is driven by two different 
processes, one based on distal social factors and the other on more proximal factors. The latter is 
student’s own rational decision making based on relative academic strengths and weaknesses as 
well as attitudes that can be influenced by distal factors (Figure 1).

Figure 1: Schematic illustration of the factors influencing educational and occupational 
choices. Distal factors, such as relatively poor living conditions might influence the 
development of personal academic strengths and attitudes toward different academic 
fields, which in turn result in choices individuals make in secondary education, tertiary 
education, and occupations.

Our proposal that students’ own rational decisions play a key role in explaining the 
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educational gender equality paradox is inspired by the expectancy value theory (Eccles, 1983; 
Wang & Degol, 2013). On the basis of this theory, it is hypothesized that students use their own 
relative performance (e.g., knowledge of what subjects they are best at) as a basis for decisions 
about further educational and occupational choices, and this has been demonstrated for STEM-
related decision making in the US (Wang, Eccles, & Kenny, 2013). The basic idea that 
individuals choose academic paths based on perceived individual strength is reflected in common
practice by school professionals: When students have the opportunity to choose their coursework
in secondary education, they are typically recommended to make choices based on their strengths
and enjoyment (e.g., Gardner, 2016; Universities and Colleges Admissions Service [UCAS], 
2015). 

Wider social factors may influence engagement in STEM through students’ utility 
beliefs or the expected long-term value of an academic path (Eccles, 1983; Wang & Degol, 
2013). The assessment of social factors that might influence STEM engagement is best done 
comparing countries that vary widely in the associated costs and benefits of a STEM career. One 
possibility is that contexts with fewer economic opportunities and higher economic risks may 
make relatively high paying STEM occupations more attractive relative to contexts with greater 
opportunities and lower risks. This may contribute to the educational gender equality paradox, 
because economic and general life risks are lower in gender equal countries which in turn results 
in greater opportunity for individual interests and academic strengths to influence investment in 
one academic path or another, as demonstrated by Wang et al. (2013) for the US. 

In analyses of the academic achievement of almost 475,000 adolescents across 67 
nations or economic regions, we show that girls and boys have similar abilities in science literacy
in most nations. At the same time, using a novel approach for examining intra-individual 
differences in academic strengths and relative weaknesses, we also show that science or 
mathematics are much more likely to be a personal academic strength for boys than girls. We 
then show that the relation between the sex differences in academic strengths and college 
graduation rates in STEM fields become larger in more gender equal countries. A mediation 
analysis suggests the latter is related to overall life satisfaction that in turn is related to income 
and economic risk in less developed countries (Pittau, Zelli, & Gelman, 2010).

Method

Programme for International Student Assessment (PISA)

PISA (OECD, 2016a) is the world’s largest educational survey. PISA assessments in 
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science literacy, reading comprehension, and mathematics are conducted every three years, and 
in each cycle, one of these domains is studied in depth. In 2015, the focus was on science 
literacy, which included additional questions about science learning and attitudes (see below). 
We used this most recent dataset, in which 519,334 students from 71 nations and regions 
participated. In order to prevent double-counting of samples, we excluded regions for which we 
also had national data (US states of Massachusetts and North Carolina, several Spanish regions, 
and Buenos Aires, because we had data from the US, Spain, and Argentina as a whole); this 
exclusion resulted in a sample of 472,242 in 67 nations/regions (Table S1), which represents 
25,141,223 students (i.e., the sum of weights provided by PISA for each student). Our dataset 
included the following regions: Hong Kong, Macao, Chinese Taipei, and the Chinese provinces 
of Beijing, Shanghai, Jiangsu, and Guangdong (i.e., these 4 Chinese provinces were combined 
into one sub-dataset by PISA).

The PISA organizers selected a representative sample of schools and students in each 
participating country or region. Participating students were between 15 years and 3 months and 
16 years and 2 months old. Each participating student completed a 2 hour PISA test that assessed
how well they can apply their knowledge in the domains of reading comprehension, 
mathematics, and science literacy. The same (translated) test material was used in each country.

PISA uses a well-developed statistical framework to calculate scores for science 
literacy, mathematics, reading comprehension and numerous other variables related to student 
attitudes and socioeconomic factors (OECD, 2016b). The scores of each student in each 
academic domain are scaled such that the average of students in OECD (Organization for 
Economic Cooperation and Development) countries is 500 points and the standard deviation is 
100 points.

The additional science literacy assessments in 2015 focused on attitudes, including 
science self-efficacy, broad interest in science, and enjoyment of science. For Science self-
efficacy, “PISA 2015 asked students to report on how easy they thought it would be for them to: 
recognize the science question that underlies a newspaper report on a health issue; explain why 
earthquakes occur more frequently in some areas than in others; describe the role of antibiotics in
the treatment of disease; identify the science question associated with the disposal of garbage; 
predict how changes to an environment will affect the survival of certain species; interpret the 
scientific information provided on the labelling of food items; discuss how new evidence can 
lead them to change their understanding about the possibility of life on Mars; and identify the 
better of two explanations for the formation of acid rain. For each of these, students could report 
that they ‘could do this easily’, ‘could do this with a bit of effort’, ‘would struggle to do this on 
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[their] own’, or ‘couldn’t do this’. Students’ responses were used to create the index of science 
self-efficacy.” (OECD, 2016a, p. 284).

To assess broad interest in science, “Students reported on a five-point Likert scale with 
the categories ‘not interested’, ‘hardly interested’, ‘interested’, ‘highly interested’, and ‘I don’t 
know what this is’, their interest in the following topics: biosphere (e.g. ecosystem services, 
sustainability); motion and forces (e.g. velocity, friction, magnetic and gravitational forces); 
energy and its transformation (e.g. conservation, chemical reactions); the Universe and its 
history; how science can help us prevent disease.” (OECD, 2016a, p. 284).

Enjoyment of science was assessed using the questions “I generally have fun when I am 
learning <broad science> topics; I like reading about <broad science>; I am happy working on 
<broad science> topics; I enjoy acquiring new knowledge in <broad science>; and I am 
interested in learning about <broad science>.” (OECD, 2016a, p. 284); different science topics 
were inserted in <broad science> across questions. 

In order to estimate whether a student would, in principle, be capable of study in STEM,
we used a proficiency level of at least 4 (of 6 possible) in science, mathematics, as well as 
reading comprehension. For science literacy for instance and according to the PISA guidelines, 
"At Level 4, students can use more complex or more abstract content knowledge, which is either 
provided or recalled, to construct explanations of more complex or less familiar events and 
processes. They can conduct experiments involving two or more independent variables in a 
constrained context. They are able to justify an experimental design, drawing on elements of 
procedural and epistemic knowledge. Level 4 students can interpret data drawn from a 
moderately complex data set or less familiar context, draw appropriate conclusions that go 
beyond the data and provide justifications for their choices" (OECD, 2016a, p.60). We believe 
that level 4 would be a minimal requirement; "At Level 3, students can draw upon moderately 
complex content knowledge to identify or construct explanations of familiar phenomena. In less 
familiar or more complex situations, they can construct explanations with relevant cueing or 
support. They can draw on elements of procedural or epistemic knowledge to carry out a simple 
experiment in a constrained context. Level 3 students are able to distinguish between scientific 
and non-scientific issues and identify the evidence supporting a scientific claim." (OECD, 2016a,
p.60).

Publications further detailing the PISA framework and methodology are available via 
http://www.oecd.org/pisa/pisaproducts/.

http://www.oecd.org/pisa/pisaproducts/
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STEM Degrees

The United Nations Educational, Scientific and Cultural Organization (UNESCO) 
reports national statistics on, among other things, education. We used the UNESCO graduation 
data (available via http://data.uis.unesco.org) labelled "Distribution of tertiary graduates" in the 
years 2012-2015 in Natural Sciences, Mathematics, Statistics, Information & Communication 
Technologies, Engineering, Manufacturing, and Construction (Table S1). The percentage of 
women among STEM graduates ranged from 12.4% in Macao to 40.7% in Algeria; the median 
was 25.4%.

Gender Equality

The World Economic Forum publishes The Global Gender Gap Report annually. We 
used the 2015 data (World Economic Forum, 2015). For each nation, the Global Gender Gap 
Index (GGGI) indexes the degree to which girls and women fall behind boys and men on 14 key 
indicators (e.g., earnings, tertiary enrollment ratio, life expectancy, seats in parliament) on a 0.0 
to 1.0 scale, with 1.0 representing complete parity (or men falling behind). For the countries 
participating in the 2015 PISA, GGGI scores ranged from 0.593 for the United Arab Emirates to 
0.881 for Iceland (Table S1).

Overall life satisfaction
We took the overall life satisfaction (OLS) score from the United Nations Development 

Programme (2016, p.250-253). The OLS question was formulated as follows: "Please imagine a 
ladder, with steps numbered from zero at the bottom to ten at the top. Suppose we say that the 
top of the ladder represents the best possible life for you, and the bottom of the ladder represents 
the worst possible life for you. On which step of the ladder would you say you personally feel 
you stand at this time, assuming that the higher the step the better you feel about your life, and 
the lower the step the worse you feel about it? Which step comes closest to the way you feel?". 
This score was expressed on a scale from 0 (least satisfied) to 10 (most satisfied) (M=6.2, 
SD=0.9, ranging from 4.1 in Georgia to 7.6 in Switzerland and Norway).

Analyses

The PISA data set provides for each participating student scores for mathematics, 
science literacy, and reading comprehension. We used these given scores to calculate for each 
student their highest performing subject (i.e., personal strength), their second highest, and lowest.
To do so, we needed to calculate each student's average score in these three subjects and then 



Gender Equality Paradox – 7

compare each subject score to the calculated average score. In order to make such calculations 
possible, we standardized data first. In other words, we scaled the data into a common format, 
namely z-scores, which have a mean of 0 and a standard deviation of 1.

We calculated each students’ relative strengths in mathematics, science literacy, and 
reading comprehension using the following steps:

1. We standardized the mathematics, science, and reading scores on a nation-by-nation basis. 
We call these new standardized scores zMath, zRead, and zScience.

2. We calculated for each student the standardized average score of the new z-scores and we 
call this zGeneral.

3. Then, we calculated for each student their intra-individual strengths by subtracting zGeneral 
as follows: relativeSciencestrength = zScience - zGeneral, relativeMathstrength = zMath - 
zGeneral, relativeReadingstrength = zReading – zGeneral.

4. Finally, using these new intra-individual (relative) scores, we calculated for each country the 
averages for boys and girls and subtracted those to calculate the gender gaps in relative 
academic strengths.

To illustrate, one US student had the following 3 PISA scores for science, mathematics, 
and reading: 364, 411, and 344, respectively. After standardization (step 1), these scores were 
zScience = -1.39, zMath = -0.69, and zRead = -1.61. The student's zGeneral was -1.27 (step 2). 
His relative strengths were calculated by subtracting zGeneral from the standardized scores, and 
then again standardizing the difference scores (because they are by definition not standardized). 
Using this calculation, his relative scores were as follows: relativeSciencestrength = -0.71, 
relativeMathstrength = 2.23, and relativeReadingstrength = -1.34 (step 3). Note that although 
this student's scores in all three subjects are below the standardized national mean (i.e., 0), his 
personal strength in mathematics deviates more than 2 standard deviations from the national 
mean of relative mathematics strengths. In other words, the gap between his mathematics score 
and his overall mean score is much larger (> 2 SDs) than is typical for US students. Using these 
types of scores, we could calculate the intra-individual sex differences for science, mathematics, 
and reading for the US (and similarly for all other nations/regions).

Further, we calculated for each student the difference between actual science 
performance and science self-efficacy (i.e., self-perceived ability). For this, we used the same 
method as reported elsewhere (Stoet, Bailey, Moore, & Geary, 2016, p. 10): For each 
participating nation, we first standardized science performance and science self-efficacy scores. 
Then, we subtracted these two variables for each student and then once more standardized the 
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difference for the students of each country separately. The resulting score is a measure of the 
degree to which science self-efficacy is unrepresentative of actual performance (i.e., 
underestimation of own ability or exaggeration of own ability).

For correlations, we typically applied Spearman’s rho (correlation coefficient 
abbreviated as rs), because not all variables were normally distributed. Throughout all analyses, 
we used an alpha criterion of 0.05.

Results

Sex Differences in Science Literacy

For each of the 67 countries/regions participating in the 2015 PISA, we first tested for 
sex differences in science literacy (i.e., average score of boys – average score of girls, by 
country, Figure 2A). We found that girls outperformed boys in 19 (28.4%) countries, boys 
outperformed girls in 22 (32.8%) countries, and no statistically significant difference was found 
in the remaining 26 (38.8%) countries. The mean national effect size (Cohen’s d) was -0.01 (SD 
= 0.13, CI=[ -0.04 , 0.02 ] ), ranging between d = -0.46 (CI = [-0.50,-0.41]) in favor of girls (in 
Jordan) and d = 0.26 (CI = [ 0.21 , 0.31 ]) in favor of boys (in Costa Rica). The relation between 
the effect size of the absolute science gap and gender equality (GGGI) was not statistically 
significant (rs = .23, CI = [-.18,.46], p = .069, n = 62).

Sex differences in Academic Strengths

As we previously reported for reading and mathematics (Stoet & Geary, 2015), there 
were consistent sex differences in intra-individual academic strengths across reading and science.
In all countries except for Lebanon and Romania (97% of countries), boys’ intra-individual 
strength in science was (significantly) larger than that for girls (Figure 2B). Further, in all 
countries, girls' intra-individual strength in reading was larger than that of boys, while boys’ 
intra-individual strength in mathematics was larger than that of girls. In other words, the sex 
differences in intra-individual academic strengths were near universal. The most important and 
novel finding here is that the sex difference in intra-individual strength in science was higher and
favored boys in more gender-equal countries, rs = .42, CI = [.19 , .61] , p < 0.001, n = 62, (Figure
3A), as was the sex difference in intra-individual strength in reading, which favored girls in more
gender-equal countries, rs = -.30, CI = [ -.51 , -.06 ] , p = .017, n = 62. 
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Figure 2: Sex differences in PISA science, mathematics, and reading scores expressed as 
Cohen's d (see Table S2 for CIs). Sex differences are calculated as the scores of boys 
minus scores of girls. Thus, negative values indicate an advantage of girls and positive 
values an advantage of boys. A: Sex differences in absolute PISA scores. B: Sex 
differences in intra-individual scores.

Another way of calculating these patterns is to examine the percentage of students who 
have individual strengths in science, mathematics, and reading, respectively. To do so, we first 
determined students’ individual strength. Next, we calculated the percentage of boys and girls 
who had science, mathematics, or reading as their personal academic strength; this contrasts with
the above analysis that focused on the overall magnitude of these strengths independent of 
whether they were the students’ personal strength. We found that on average (across nations), 
24% of girls had science as their strength, 25% of girls had mathematics as their strength, and 
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51% reading. The corresponding values for boys were 38% science, 42% mathematics, and 20% 
reading. 

Thus, despite national averages that indicate boys’ performance was consistently higher 
in science than that of girls relative to their personal mean across academic areas, there were 
substantial numbers of girls within nations that performed relatively better in science than in 
other areas. Within Finland and Norway, two countries with large overall sex differences in the 
intra-individual science gap and very high GGGI scores, there were 24% and 18% of girls who 
had science as their personal academic strength, respectively; relative to 37% and 46% of boys. 

Finally, it should also be noted that the difference between the percentage of girls with a
strength in science or mathematics was always equally large or larger than the percentage of 
women graduating in STEM; importantly, again this difference was larger in more gender equal 
countries (rs = .41, CI = [ .15 , .62 ] , n = 50, p = .003). In other words, more gender equal 
countries were more likely than less gender equal countries to lose those girls from an academic 
STEM track who are most likely to choose it based on personal academic strengths.

Figure 3: Gender equality (y-axes) is related to sex differences in intra-individual science 
strength and STEM graduation. The Global Gender Gap Index (GGGI) assesses the 
extent to which economic, educational, health, and political opportunities are equal for 
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women and men. Blue lines indicate the regressions. A: The gender gap in intra-
individual science scores was larger in more gender equal countries (rs = .42). B: The 
percentage of women with degrees in STEM fields was lower in more gender equal 
countries (rs = -.47). 

The above analyses show that most boys scored relatively higher in science than their 
all-subject average, and most girls scored relatively higher in reading than their all-subject 
average. Thus, even when girls outperformed boys in science, as was the case in Finland, girls 
generally performed even better in reading, which means that their individual strength was, 
unlike boys, reading. The relevant finding here is that the intra-individual sex differences in 
relative strengths in science and reading increased with increases in gender equality (GGGI). In 
accordance with expectancy value theory, this pattern should result in far more boys than girls 
pursuing a STEM career in more gender equal nations, and this was the case (rs = -.47, n = 50, p 
< .001, CI = [ -.66 , -.22 ], Figure 3B). And, similarly, girls will be more likely than boys to 
choose options in which they can gain the most benefit from their relative strength in reading.

Science Attitudes and Gender Equality

Next, we considered sex differences in science attitudes, namely science self-efficacy, 
broad interest in science, and enjoyment of science. Boys’ science self-efficacy was higher than 
that of girls in 39 of 67 (58%) countries, and especially so in more gender equal countries, rs = .
60, CI=[ .41 , .74 ], n = 61, p < .001 (Figure 4). Similarly, boys expressed a stronger broad 
interest in science than girls in 51 (76%) countries, and again this was particularly true in more 
gender equal countries (rs = .41, CI=[ .15 , .62 ], n = 50, p = .003). And finally, the same was 
found for students' enjoyment of science; boys reported more joy in science than girls in 29 
(43%) countries, and more so in gender equal countries, rs = .46, CI=[ .23 , .64 ], n = 61, p < .
001. Further, these attitude gaps were correlated with the intra-individual science gap (self-
efficacy: rs = .24, CI=[ -0.00 , 0.46 ], n = 66, p = .052; enjoyment of science: rs = .31, CI=[ .07 , .
52 ], n = 66, p = .010; broad interest, rs = .27, CI=[ .01 , .51 ], n=54, p = .043).
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Figure 4. Sex differences in science self-efficacy (y-axis) increase with increases in the 
global gender gap index (x-axis).

Science self-efficacy is relatively weakly correlated with science performance (across 
participating nations, r=.17, n = 472,242, CI=[ .16 , .18 ] , p<.001). This means that the deviation
between science self-efficacy and science performance is of interest (e.g., students might under 
or overestimate their own performance, and this could influence later choices). We calculated for
each student the difference between standardized science self-efficacy scores and standardized 
science performance scores (this is a measure of the component of self-efficacy that is 
independent from actual performance, see Method). Using this metric, we found that in 34 (49%)
countries, boys overestimated their science self-efficacy and deviated significantly from girls, in 
comparison to 5 (7%) countries where girls overestimated their science self-efficacy and 
deviated significantly from boys. Paradoxically, boys’ overestimation of their competence in 
science was larger in countries with higher GGGI scores (M=0.739, SD=0.06) relative to 
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countries in which there was no sex difference the estimation of science competence (M=0.697, 
SD=0.04), t(54)=2.66, p=.010.

Next, we used the science performance data and attitude data (broad interest in science 
and enjoyment of science) to determine the percentage of female students who, in principle, 
could be successful in tertiary education in STEM. For this, we defined suitability as follows: A 
student would need to have at least proficiency level 4 in all three PISA domains (science, 
mathematics, and reading, see Method).  Using these ability criteria, we would expect far more 
women among STEM graduates (international mean = 49%, SD = 4) than are actually found in 
any country (international mean = 28%, SD = 6 , Figure 5A).  In regard to attitudes, we assumed 
that they should at least have the international median level of enjoyment science, interest in 
science, and science self-efficacy. Using these additional criteria, the percentage of girls likely to
enjoy, feel capable, and be successful in tertiary STEM programs is still considerably higher in 
every country (international mean = 41%, SD = 6), except Tunisia, than is actually found (Figure
5B). 

As argued above, we believe that factors other than attitude and motivation play a role –
namely personal academic strengths. When we add this factor to our estimate (Figure 5C), we 
see that the difference between expected and actual STEM graduates becomes smaller 
(international mean = 34%, SD = 6), although it is still the case that in most countries women’s 
STEM graduation rates are lower than we would anticipate (see Discussion).

Figure 5: Estimates of female graduation in STEM in tertiary education based on ability 
and attitude factors in secondary education. Red lines indicate the estimated (horizontal) 
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and actual (vertical) average graduation percentage of women in STEM. For instance, in 
the last panel we estimate 34% of women will graduate college with a STEM degree 
(internationally) but only 28% did so. Identity lines (i.e., 45° lines) are colored blue; 
points above the identity lines indicate fewer women STEM graduates than expected. A: 
The y-axis displays the percentage of girls among students who are estimated to choose 
STEM based on ability alone (see text for criteria). Although there was considerable 
cross-cultural variation, on average around 50% of students graduating in STEM could be
women, which deviates considerably from the actual percentage of women among STEM
graduates (x-axis). B: The estimate of women STEM students (y-axis) is based on both 
ability (as in panel A) and being above the international median score in science attitudes
. C: This estimate is based on ability, attitudes, as well as having either mathematics or 
science as a personal strength.

Mediation Model

Thus far, we have shown that the sex differences in STEM graduation rates and in 
science literacy as an academic strength become larger with gains in gender equality and that 
schools prepare more girls for further STEM study than actually obtain a STEM college degree.

We will now consider one of the factors that might explain why the graduation gap may 
be larger in the more gender-equal countries. Countries with the highest gender equality tend to 
be welfare states (to varying degrees) with a high level of social security for all its citizens; in 
contrast, the less gender-equal countries have less secure and more difficult living conditions, 
likely leading to lower levels of life satisfaction (Pittau et al., 2010). This may in turn influence 
one’s utility beliefs about the value of science and pursuit of STEM occupations, given these 
occupations are relatively high paying and thus provide the economic security that is less certain 
in countries that are low in gender equality. We used overall life satisfaction (OLS) as a measure 
of overall life circumstances; this is normally distributed and is a good proxy for economic 
opportunity and hardship and social- and personal-wellbeing (Pittau et al., 2010).

In more equal countries, overall life satisfaction was higher (rs=.55, , CI = [ .35 , .70 ], 
p< .001, n=62).  Accordingly, below we test whether low prospects for a satisfied life may be an 
incentive for girls to focus more on science in school and, as adults, choose a career in a 
relatively higher paid STEM field.

If our hypothesis is correct, then OLS should at least partially mediate the relation 
between gender equality and the sex differences in STEM graduation. A formal mediation 
analysis using a bootstrap method with 5,000 iterations confirmed the mediational model path of 
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life satisfaction for STEM graduation (mean indirect effect = -0.19, SE = 0.08, Sobel’s z= -2.24, 
p<.025, CI of bootstrap samples = [-0.39 , -0.04]). The effect of the direct path in the mediation 
model is statistically significant (mean direct effect = -0.34, SE =0.135, CI of bootstrap samples 
= [ -0.65 , -0.02], p=.038), and the mediation is considered partial (proportion mediated is 0.35, 
CI = [0.06, 0.95], p=.013, Table S3). A sensitivity analysis of this mediation (Imai, Keele, & 
Tingley, 2010; Tingley, Yamamoto, Hirose, Keele, & Imai, 2014) showed the point at which the 

average causal mediation effect (ACME) is approximately zero (ρ= -0.4, CI=[-.11,0.15], RM
2∗¿ RY

2∗¿¿
¿

= 0.16 , RM
2∗¿ RY

2∗¿¿
¿= 0.07; Figure S1). The latter suggests that an unknown 3rd variable may possibly

confound the mediation model (see Discussion).

Discussion

Using the most recent and largest international database on adolescent achievement, we 
confirmed that girls performed similarly or better than boys on generic science literacy tests in 
most nations. At the same time, women obtained fewer college degrees in STEM disciplines than
men in all assessed nations, although the magnitude of this gap varied considerably. Further, our 
analysis suggests that the percentage of girls who would likely be successful and enjoy further 
STEM study was considerably higher than the percentage of women graduating in STEM, 
implying that there is a loss of female STEM capacity between secondary and tertiary education.

One of the main findings of this study is that, paradoxically, countries with lower levels 
of gender equality had relatively more women among STEM graduates than did more gender 
equal countries. This is a paradox, because gender-equal countries are those that give girls and 
women more educational and empowerment opportunities, and generally promote girls’ and 
women’s engagement in STEM fields (e.g., Williams & Ceci, 2015).

In our explanation of the paradox, we focused on decisions that individual students may
make, and decisions and attitudes that are likely influenced by broader socioeconomic 
considerations. On the basis of expectancy value theory (Eccles, 1983; Wang & Degol, 2013), 
students should at least in part base educational decisions on their academic strengths. 
Independent of absolute levels of performance, boys on average had personal academic strengths
in science and mathematics, and girls in reading comprehension. Thus, even when girls’ absolute
science scores were higher than those of boys, as in Finland, boys were often better in science 
relative to their overall academic average. Similarly, girls might have scored higher than boys in 
science, but they were often even better in reading. Critically, the magnitude of these sex 
differences in personal academic strengths and weaknesses was strongly related to national 
gender equality, with larger differences in more gender equal nations. These intra-individual 
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differences in turn may contribute, for instance, to parental beliefs that boys are better at science 
and mathematics than girls (Eccles & Jacobs, 1986; Gunderson et al., 2012).  

We also found that boys often expressed higher self-efficacy, more joy in science and a 
broader interest in science than girls. These differences were also larger in more gender equal 
countries, and were related to the students’ personal academic strength. We discuss some 
implications below (Interventions).

Explanations

We propose that when boys are relatively better in science and mathematics while girls 
are relatively better at reading than other academic areas, there is the potential for substantive sex
differences to emerge in STEM-related educational pathways. The differences are expected 
based on expectancy value theory and are consistent with prior research (Eccles, 1983; Wang & 
Degol, 2013). The differences emerge from a seemingly rational choice to pursue academic paths
that are a personal strength, which also seems to be common academic advice given to students, 
at least in the UK (e.g., Gardner, 2016; UCAS, 2015). 

The greater realization of these potential sex differences in gender equal nations is the 
opposite of what some scholars might expect intuitively, but is consistent with findings for some 
other cognitive and social sex differences (e.g., Lippa et al., 2010; Pinker, 2008; Schmitt, 2015). 
One possibility is that the liberal mores in these cultures, combined with smaller financial costs 
of foregoing a STEM path (below), amplify the influence of intra-individual academic strengths. 
The result would be the differentiation of the academic foci of girls and boys during secondary 
education and later in college, and across time increasing sex differences in science as an 
academic strength and in graduation with STEM degrees.

Whatever the processes that exaggerate these sex differences, they are abated or 
overridden in less gender equal countries. One potential reason is that a well-paying STEM 
career may appear as an investment in a more secure future. In line with this, our mediation 
analysis suggests that OLS partially explains the relation between gender equality and the STEM
graduation gap. Some caution when interpreting this result is needed, though. Mediation analysis
depends on a number of assumptions, some of which can be tested using a sensitivity analysis, 
which we conducted (Imai, Keele, & Yamamoto, 2010). The sensitivity analysis gives an 
indication of the correlation between the statistical error component in the equations used for 
predicting the mediator (OLS) and the outcome (STEM graduation gap); this includes the effect 
of unobserved confounders. Given the range of rho values in the sensitivity analysis (Fig. S1), it 
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is possible that a third variable could be associated with OLS and the STEM graduation gap. A 
related limitation is that the sensitivity analysis does not explore confounders that may be related
to the predictor variable (i.e., GGGI). Future research that includes more potential confounders is
needed, but are currently unavailable for many of the countries included in our analysis. 

Relation to previous studies of gender equality and educational outcomes

Our current findings agree with previous studies in that sex differences in mathematics 
and science performance vary strongly between countries, although we also believe that the link 
between measures of gender equality and these educational gaps (e.g., as demonstrated by Guiso,
Monte, Sapienza, & Zingales, 2008; Hyde & Mertz, 2009; Else-Quest, Hyde, & Linn, 2010; 
Reily, 2012) can be difficult to determine and is not always found (Ellison & Swanson, 2010; for
an in depth discussion, see Stoet & Geary, 2015).

We believe that one factor contributing to these mixed results is the focus on sex 
differences in absolute performance, as contrasted with sex differences in academic strengths and
associated attitudes. As we have shown, if absolute performance, interest, joy, and self-efficacy 
alone were the basis of choosing a STEM career, we would expect to see more women entering 
STEM career paths than do so (Figure 5).

It should be noted that there are careers that are not STEM by definition, although they 
often require STEM skills. For example, university programs related to health and health care 
(e.g., nursing and medicine) have a majority of women. This may partially explain why even 
fewer women than we estimated, with obvious STEM ability and interest, pursue a college 
degree in STEM.

Interventions

Our results indicate that achieving the goal of parity in STEM fields will take more than
improving girls’ science education and raising overall gender equality. The generally overlooked
issue of intra-individual differences in academic competencies and the accompanying influence 
on one’s expectancies of the value of pursuing one type of career versus another need to be 
incorporated into approaches for encouraging more women to enter the STEM pipeline. In 
particular, high achieving girls whose personal academic strength is science or mathematics 
might be especially responsive to STEM-related interventions.

In closing, we are not arguing that sex differences in academic strengths or wider 
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economic and life-risk issues are the only factors that influence the sex difference in the STEM 
pipeline. We are confirming the importance of the former (Wang et al., 2013) and showing that 
the extent to which these sex differences manifest varies consistently with wider social factors, 
including gender equality and life satisfaction. In addition to placing the STEM-related sex 
differences in broader perspective, the results provide novel insights into how girls’ and 
women’s participation in STEM might be increased in gender equal countries.
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