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Abstract: Experimental characterization of Graphene NanoRibbons (GNRs) is still an expensive task 

and computational simulations are therefore seen a practical option to study the properties and 

mechanical response of GNRs. Design of GNR in various nanotechnology devices can be approached 

through molecular dynamics simulations. This study demonstrates that the Atomic–scale Finite Element 

Method (AFEM) based on the second generation REBO potential is an efficient and accurate alternative 

to the molecular dynamics simulation of GNRs. Special atomic finite elements are proposed to model 

graphene edges. Extensive comparisons are presented with MD solutions to establish the accuracy of 

AFEM. It is also shown that the Tersoff potential is not accurate for GNR modeling. The study 

demonstrates the influence of chirality and size on design parameters such as tensile strength and 

stiffness. A GNR is stronger and stiffer in the zigzag direction compared to the armchair direction. 

Armchair GNRs shows a minor dependence of tensile strength and elastic modulus on size whereas in 

the case of zigzag GNRs both modulus and strength show a significant size dependency. The size-

dependency trend noted in the present study is different from the previously reported MD solutions for 

GNRs but qualitatively agrees with experimental results. Based on the present study, AFEM can be 

considered a highly efficient computational tool for analysis and design of GNRs.       
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1. Introduction 

The separation of carbon allotrope “graphene” (a single flat atomic layer of graphite) using 

mechanical exfoliation (Novoselov et al. 2004) and advances in nanofabrication have opened the door 

for the bottom-up approach to nanotechnology. In this approach, nanodevices are built from basic 

atomic structures such as Graphene NanoRibbons (GNRs), Carbon NanoTubes (CNT), etc. Graphene 

and other nanomaterials allow for the design and fabrication of a new generation of composites and 

nanoelectromechanical systems with attractive mechanical, electronic and optical properties (Choi and 

Lee 2016; Chen and Hone 2013). 

 

The mechanical behaviour of nanoscale systems can be analyzed by using ab-initio (first-principle) 

methods (Hohenberg and Kohn 1964) or semi-empirical quantum methods (Haile 1992). Ab-initio 

calculations are computationally very expensive, and modelling is limited to a few hundred or thousand 

atoms. Semi-empirical quantum methods such as Molecular Dynamics (MD) and Tight-Binding 

Method (TBM) are used to simplify atomistic simulations. The parameters in MD and TBM are 

empirical, fitted to experimental data. MD has been one of the most commonly used methods to analyze 

the behaviour of nanomaterials. It solves the dynamic equilibrium state of an atomic system to obtain 

time-dependent positions of atoms under excitation.  Even MD is computationally expensive when 

applied to systems with a very large number of atoms.  

 

An alternate approach to MD analysis is the Atomic Scale Finite Element Method (AFEM) 

proposed by Liu et al. (2004). Unlike MD, it is a quasi-static solution of the final equilibrium state of 

an atomic system and requires no time integration. It serves as a computationally efficient alternative 

to MD because of its O(N) computational characteristics. Note that other available atomic simulation 

methods are at least O(N2).  The formulation of AFEM resembles the classical finite element method 

(FEM) and uses the total energy of an atomic system based on its potential field to derive the stiffness 

matrix and force vector. The stiffness is dependent on the positions of atoms, hence, non-linear. The 

method requires an iterative solution to obtain equilibrium state. It is considered superior to the 

beam/spring models for C-C bonds proposed by Tserpes and Papanikos (2005) and Alzebdeh (2012) as 

complex potential fields that take into account many body interactions can be used to simulate the 

behaviour of atomic systems. A number of studies have confirmed the accuracy of AFEM in modelling 

CNT and carbon nanorings and their global behaviour such as buckling loads and free vibration 

characteristics (Liu et al. 2004, 2005; Shi et al. 2009; Ghajbhiye and Singh 2015). However, 

comprehensive comparisons of AFEM with MD simulations are limited in the literature.    

 

In recent years, the use of single-layer (SL) and multi-layer (ML) GNRs have been demonstrated 

through experiments for applications ranging from resonators and sensors to reinforcing elements in 
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polymer composites (Choi and Lee 2016; Chen and Hone 2013; Njugna and Pielichowski 2003). Unlike 

CNT, GNRs are 2-D structures that have a wide range of applications.  As nanofabrication is still an 

expensive and challenging task and material characterization at the nanoscale is not yet a mature 

technology, there is considerable interest in atomistic modelling to assess properties, design 

nanodevices and understand their performance and reliability. Simulations can be used to determine the 

final design parameters for fabrication. In this regard, AFEM could serve as an efficient modelling tool 

for preliminary design of nanomaterials and nanodevices that can be verified at the final design and 

fabrication stage using more comprehensive atomistic simulations such as MD. Although the 

application of AFEM to CNT modelling has been demonstrated (Liu et al. 2004, 2005; Shi et al. 2009), 

its application to the modelling of GNR has attracted no attention according to our knowledge. 

 

Several fundamental design-related issues require attention in the case of GNRs. While most 

atomistic simulation studies on graphene have focused on bulk graphene where Periodic Boundary 

Conditions (PBC) are used, GNRs have edges that could have a significant effect on design parameters 

such as tensile strength and elastic modulus (Fig. 1). The common GNR edges are either armchair or 

zigzag or they could be described by using an arbitrary chiral vector expressed in terms of the hexagonal 

base vectors n1 and n2 shown in Fig. 1.  CNTs are considered 1-D structures and end (edge) effects are 

not significant in most applications. Several recent studies (Chu et al. 2014; Le 2015; Ng et al. 2013; 

Zhao et al. 2009) have used molecular dynamics and molecular mechanics to examine the mechanical 

and thermal properties of GNRs. Furthermore, as shown by Zhao et al. (2009) and Chu et al (2014) 

using MD simulations, the above design parameters are strongly size and chirality dependent. It would 

therefore be useful to establish the applicability of AFEM as a design tool for GNRs through a 

comprehensive comparison with MD results and examine the size and chirality dependence of tensile 

strength and elastic modulus based on AFEM.   

 

 
Figure 1: Armchair and zigzag edges of graphene nanoribbon. 
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Recent studies by Malakouti and Montazeri (2016) and Gajbhiye and Singh (2015) demonstrated 

the application of AFEM to analyze pristine and defective bulk graphene sheets and nonlinear frequency 

response respectively. While both these studies have not examined size-dependency, and edge and 

chirality effects of GNRs, they are also based on the Tersoff-Brenner (T-B) potential (Brenner 1990; 

Tersoff 1988). The T-B potential has certain deficiencies as reported by Brenner et al. (2002) and Stuart 

et al. (2000). It does not have a double bond or conjugate bond rotation barrier to prevent certain 

unrealistic bond rotations. The second generation Reactive Empirical Bond Order (REBO) potential 

proposed by Brenner et al. (2002) leads to a significantly better description of bond energies, lengths, 

and force constants for hydrocarbon molecules, as well as elastic properties thus enabling simulation of 

complex deformation patterns. It also accounts for forces associated with rotation about dihedral angles 

for carbon–carbon double bonds. 

 

Based on the above literature review, this paper has several objectives. We first implement the 

Tersoff potential (Tersoff 1988) and second generation REBO potential (Brenner et al. 2002) in AFEM 

to assess the dependence of potential field in AFEM modelling of GNRs and compare with MD 

simulation results for bulk graphene. We thereafter compare the tensile strength and elastic modulus of 

GNRs and bulk graphene obtained from AFEM using the two potentials with MD simulations for 

different chiralities. Through these comparisons, we demonstrate the deficiencies of Tersoff potential 

in modelling GNRs and establish that AFEM based on the second generation REBO is a very efficient 

and accurate approach to simulate the mechanical response of GNRs. Next, we focus on the size-

dependency of tensile strength and elastic modulus of GNRs of different width to length ratios. Through 

these studies, we demonstrate that AFEM can be used as an accurate and efficient simulation tool for 

design of GNRs.   

 

2. Atomic-scale Finite Element Method (AFEM)  

2.1 Formulation 

In the AFEM formulation proposed by Liu et al. (2004), the equilibrium configuration of the atomic 

system in relation to the position of the atoms, x, is related to the state of minimal energy as, 

 

totdE
 = 0

dx
           (1) 

 

The total energy Etot can be expanded in a Taylor series around the equilibrium position x(0): 
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Defining the displacement u as: 

 

  0
 =  - u x x            (3) 

 

Then substitute the Eq. (2) into Eq. (1) to give the following AFEM equation system, which is 

similar to the governing equation in FEM: 

 

Δu = PK            (4) 

 

where K corresponds to the nonlinear stiffness matrix;  Δu is the displacement increment vector; and P 

is the non-equilibrium load vector respectively given by: 

 

(0)

2

totd E
 =  

d d  =

K
x x x x

          (5) 

 

(0)

tot

x x

dE
 =  - 

dx  = 
P           (6) 

 

The total energy consists of the sum of internal energy stored within each atomic bond, U, and the 

work done by the external forces, Wf. For a system with N atoms the interatomic total energy, Utot , is 

given by:  

 

 
N

tot j i

i < j

U  =  U  -  x x           (7) 

 

In Eq. (7), U corresponds to a pairwise potential. The work done by the external forces,
ext

iF , 

acting on the ith atom is given by: 

 

N
ext

f i i

i = 1

W  =  F x            (8) 

 

Considering Eqs. (7) and (8) the total energy of the system is given by: 
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 
N N

ext

tot j i i i

i < j i = 1

E  =  U  -  -  F x x x          (9) 

 

The computational procedure of AFEM involves four steps. The first step is the construction of the 

element stiffness matrix, K, and element non-equilibrium force vector, P.  Next, build the global 

stiffness matrix and global non-equilibrium force vector, and then solve Eq. (4). Finally, update the 

displacement vector. As the basic formulation of AFEM described by Eq. (4) is nonlinear, it must be 

solved iteratively until the global non-equilibrium force vector, P, reaches zero within a prescribed 

tolerance. 

 

2.2 Tersoff Potential 

Similar to MD, the accuracy of AFEM for a given atomic system depends on the potential field 

chosen to describe the atomic interactions. One of the earliest many-body potential is the Tersoff 

potential (Tersoff 1987; Tersoff 1988) which contains a bond-order term. The energy stored in the bond 

between atoms i and j is given as a function of the separation distance (
ijr ) between the atoms and 

expressed as, 

 

     T T T T T

c ij R ij A ijV  = f r V r + B V r 
           (10) 

 

where  T

c ijf r  is a cut-off function that is defined in Appendix; T

RV and T

AV  represent the repulsive and 

attractive pair potential in relation to
ijr  respectively; and TB  is a monotonically decreasing function and 

expresses the measure of the bond order, which is related to the number of neighbors and bond angles. 

 

   T 1

R ij ijV r  = Aexp -λ r ;    T 2

A ij ijV r  = - Bexp -λ r  ;  T T t

1
-

n nT 2n
ijB  = 1 + β ζ

 
  
      (11) 

 

Additional parameters appearing in Eqs. (10) and (11) are defined in Appendix. 

 

2.3 Second Generation REBO Potential 

The second-generation REBO potential (Brenner et al., 2002) is an advanced improvement of the 

Tersoff potential. The energy stored on the bond between atoms i and j is given by: 

 

  R R R R R

c ij R AV  = f r V +B V          (12) 
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where, 

 

ij ij-α rijR

R ij

ij

Q
V  = 1 + A e

r

 
 
  
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ij ij

3
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and the parameters ijQ , ijA , 
ij

α , (n)
ijB  and 

(n)

ij
β  depend on the atom types i and j; ijr  is the bond length.  

The term RB corresponds to the bond order term. It is related to the number of neighbors and the 

angle, which is related to the forming and breaking of the bonds between the atoms. It is defined as, 

 

R σπ σπ π

ij ji ij

1
B  = b + b  + b

2
             (14) 

 

Additional parameters involved in Eqs. (12) - (14) are defined in Appendix 

 

3. Atomic Finite Elements 

Figure 2 shows the basic atomic finite element for Tersoff and second generation REBO potentials 

for graphene. The central atom (1) interacts with three nearest neighbouring atoms 2, 5 and 8 and the 

six second nearest neighbouring atoms 3, 4, 6, 7, 9 and 10. The complete element is applicable at the 

interior of bulk graphene where the stiffness of interior atoms are computed using a complete atomic 

finite element. However for GNRs, the edge effects could be significant depending on the dimensions 

of the nanoribbon. It is therefore necessary to consider the exact connectivity of edge atoms and derive 

the stiffness matrix for all possible atomic finite element configurations of edge atoms. Figure 3 shows 

the possible edge atom connectivity for GNR edges. There are six possible atomic element 

configurations for edge atoms for both armchair and zigzag configurations. Each of these modified 

atomic finite elements has less than nine neighbouring atoms compared to Fig. 2. It should be noted that 

the stiffness of these modified atomic finite elements cannot be obtained by simply dropping the 

relevant rows and columns of the element shown in Fig. 2. The energy of each edge atom should be 

derived based on the exact connectivity using the relevant potential (Tersoff or second generation 

REBO) and the corresponding stiffness matrix derived for each case.  
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Figure 2 Graphene sheet and the basic atomic finite element. 

 

   

(a) (b) (c) 

 
 

 

(d) (e) (f) 

Figure 3: Modified atomic finite elements for edge atoms. 

 

4. Numerical Results and Discussion 

In this section, the mechanical behaviour of single layer graphene sheets obtained from AFEM 

simulations is presented and material characteristics relevant to the design of GNRs are examined. 

4.1 Verification of the accuracy of AFEM 

Initially, in order to validate the AFEM implementation, the stress-strain curves of pristine bulk 

graphene sheets under tension are compared with molecular dynamics (MD) simulation results. The 
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Tersoff and second generation REBO potential simulations were carried out at a temperature of 1 K. 

Non-periodic boundary conditions were used in MD and AFEM modeling involved edge elements as 

described above. The canonical ensemble (NVT) together with a time integration step of 0.5 fs was 

used in MD. The equilibrium distance between two carbon atoms was taken as 1.396 Å (Stuart et al.  

2000). The Tersoff and second generation REBO potential parameters used in this study can be found 

in Tersoff (1988) and Stuart et al. (2000) respectively. Two pristine graphene sheet having armchair 

and zigzag edges with dimensions of 23.7 Å x 21.8 Å (228 atoms) and 41.2 Å x 39.4 Å (660 atoms) 

were subjected to uniaxial tension loading to examine the accuracy and size effects of AFEM. The 

atomic mesh corresponding to the 660 atoms case is shown in Fig. 4 with tensile loading configurations 

for the armchair and zigzag directions. In computing stresses, the thickness of sheet was assumed as 

0.34 nm. Modified Newton-Raphson method was used to solve the Eq. (4) with load steps of 0.1 eV/ 

Å.  

 

 
 

Figure 4. Graphene sheet with 660 atoms and tensile loading in armchair and zigzag directions.  

 

Figure 5a shows a comparison of the stress-strain curves of pristine graphene sheets obtained 

from AFEM and MD simulations for uniaxial tensile loading in the armchair and zigzag directions 

based on the Tersoff potential. Note that engineering (nominal) stress and strain are used in the 

calculations. The results for 228 and 660 atoms meshes showed minor differences confirming that the 

considered mesh sizes were sufficient to model the behaviour of bulk graphene. Therefore, the solutions 

are only shown for the 660 atoms mesh. The AFEM and MD results agree very closely until strain 

reaches 0.1 and thereafter show minor deviation with MD results showing slightly higher softening. 

Minor oscillations are quite natural in MD simulations as the response is determined through a dynamic 
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analysis and nominal stress does not contain a correction for the kinetic energy of the system 

(Dewapriya 2012). AFEM results are quite smooth as they correspond to quasi-static analysis. Some 

deviations are observed at higher strains closer to the ultimate strength as MD better simulates the initial 

bond breaking until the solution becomes unstable and reaches the failure point (Dewapriya and 

Rajapakse 2014). It is therefore observed that failure strains from MD simulations are slightly higher 

and ultimate strengths are slightly smaller. AFEM in the current form does not capture bond breaking 

as well as MD but the behaviour shown in Fig. 5a confirms that it is able to capture the failure stress 

and strain predicted by MD with good accuracy.  

 

 
(a)                                                                              (b) 

 

Figure 5 Stress-strain curves obtained from AFEM and MD for armchair and zigzag sheets based 

on (a) Tersoff potential and (b) the second generation REBO potential. 

 

Although the results in Fig. 5a for AFEM and MD simulations are generally in good agreement, 

it is known that the Tersoff potential has certain weaknessess in modelling carbon atom systems (Stuart 

et al. 2000). Figure 5b shows the stress-strain curves based on the second generation REBO potential. 

Here again, very good agreement between the AFEM and the corresponding MD results is noted. In 

fact, the agreement between MD and AFEM is better. However, there are clear differences in the stress-

strain curves presented in Fig. 5a and 5b for the different chiralities and potentials. These differences 

are illustrated in Fig. 6 where the AFEM-based stress-strain curves obtained from the two different 

potential functions are compared with an independent MD simulation reported in the literature (Zhao 

et al. 2009).  

 

 Figure 6 shows that the stress-strain curves based on the Tersoff potential have a strong chirality 

dependence whereas the results from the second generation REBO potential are nearly independent of 

the chirality except for the different tensile strengths and failure strains. The second generation REBO 

results in Fig. 6 agree quite closely with the results of Zhao et al. (2009), who used the orthogonal tight-
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binding method and molecular dynamic simulations based on the AIREBO potential (Stuart et al. 2000) 

to obtain their stress-strain curves. AIREBO is a more advanced version of the REBO potential and the 

second generation REBO results obtained from AFEM is as good as the AIREBO solutions although 

the AFEM computational cost is only a fraction of the MD computation cost. The deficiencies of the 

Tersoff potential in modelling the behaviour of graphene is clear from the Fig. 6 and it is therefore not 

used in GNR modelling in the remainder of this paper.  

 

 
Figure 6 Comparison of stress-strain curves of pristine bulk graphene obtained from AFEM using 

Tersoff and second generation REBO potentials with AIREBO potential based MD results. 

 

 The ultimate tensile strength obtained from AFEM is 101.3 GPa and 116.4 GPa in the armchair 

and zigzag cases respectively. The fracture strain also depends on the chirality, and is 0.17 and 0.23 in 

the armchair and zigzag directions respectively. The elastic modulus is 0.67 TPa for armchair and 0.71 

TPs for zigzag. Zhao et al. (2009) used MD simulation and reported fracture strain and tensile as 0.13 

and 90 GPa in the armchair direction, and 0.2 and 107 GPa in the zigzag direction. Lee et al. (2008) 

reported, based on experimental measurements, an elastic modulus and intrinsic breaking strength of 

1±0.1 TPa and 130 ± 10 GPa respectively for bulk graphene. Liu et al. (2007) using ab initio calculations 

reported an elastic modulus of 1.050 TPa and tensile strengths of 110 and 121 GPa in the armchair and 

zigzag directions respectively. Based on ab initio calculations, an elastic modulus of 1.11 TPa (Liera et 

al. 2000) and 1.24 ± 0.01 TPa (Konstantinova et al. 2006) has been reported in the literature. Using 

atomistic simulations, Terdalkar et al. (2010) reported an elastic modulus of 0.84 TPa. Cao (2014) 

presented a comprehensive review of MD simulations of graphene and highlighted the differences 

between properties reported by different methods. The results obtained from the AFEM based on the 

second generation REBO potential agree quite well with the above reported solutions tensile strength 

but lower for the elastic modulus. It should be noted that results from various studies (both experimental 

and simulations) reported in the literature do not agree perfectly with each other due to different 
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simulation conditions and assumptions (Cao 2014). Generally, the tensile strength reported is in the 

range 90-130 GPa and elastic modulus around 0.7-1.1 TPa. 

 

 Further comparisons of stress-strain curves of bulk graphene obtained from AFEM based on the 

second generation REBO potential is shown in Fig. 7 where the MD simulation results of Dewapriya 

(2012) and Malakouti and Montazeri (2016) are used. The present results agree closely with Dewapriya 

(2012) who used the AIREBO potential but deviate from Malakouti and Montazeri (2016) at higher 

strains whose results appeared to be based on the first generation REBO potential. Based on these 

comparisons, it is clear that AFEM based on the second generation potential is able to accurately 

simulate the tensile response of bulk graphene.  

 

 
Figure 7. Comparison of stress-strain curves from AFEM with additional MD results from 

literature. 

 

4.2 Mechanical Behaviour of GNRs 

 In this section, the mechanical behavior of GNRs of different dimensions is examined to study 

the effects of size and chirality on the elastic modulus and tensile strength. The results are based on the 

AFEM using the second generation REBO potential. The geometry of a typical GNR is shown in Fig. 

1 where l and b denotes the length and width; and Nl and Nb denote the number of hexagonal cells in 

the length and width directions respectively. In the numerical study, Nl = 16 with Nb equal to 3, 5, 7, 9, 

11 and 17 re used to study the size effects of GNRs. Figure 8 shows the stress-strain curves of armchair 

and zigzag GNRs with varying values of Nb. Figure 9 shows the variation of tensile strength and elastic 

modulus with Nb.  It is found that armchair GNRs shows little size-dependency of design properties 

whereas the size dependency is more prominent in the case of zigzag GNRs. This behavior agrees with 

the MD results reported by Zhao et al. (2009) for square GNRs and Chu et al. (2014) for both square 

and rectangular GNRs. Zigzag GNRs becomes stiffer as the width is reduced and the tensile strength is 
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also increased as shown in Fig. 9. Zigzag GNRs have a higher tensile strength compared to armchair 

similar to the case of bulk graphene.  

 
(a) Zigzag direction 

 
(b) Armchair direction 

 

Figure 8: Stress-strain curves of armchair and zigzag GNRs 

 

 

  

 

Figure 9. Variation of elastic modulus and tensile strength of GNRs with different widths. 

 

However, it is interesting to note that the size dependency trend seen in Fig. 9 for tensile strength 

and elastic modulus of zigzag GNRs is different from the trend observed by Zhao et al. (2009) and Chu 
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et al. (2014) who reported increases in tensile strength and elastic modulus as the size of GNR increases 

eventually approaching the bulk values.  Although Zhao et al. (2009) used square GNRs in their 

simulation, Chu et al. (2014) used both square and rectangular GNRs to confirm their results. In order 

to investigate this difference, we present a comparison of MD results based on the second generation 

REBO potential with our AFEM results for GNRs in Fig. 10. The accuracy of AFEM solutions is again 

clear from Fig. 10. The trend we notice in Fig. 9 is similar to the experimental results of Shin et al. 

(2006) who determined the elastic modulus of single nanofibers with an ellipsoidal cross-section using 

an atomic force microscope. Their results confirm a substantial increase in the elastic modulus as the 

dimeter of the fiber decreased similar to the trend noted in Fig. 9. It is generally reported in the literature 

as the size decreases the properties improve in the case of nanomaterials. Such behaviour is accounted 

for by an increase in the number of boundary atoms with higher energies compared to the number of 

internal atoms.     

 

Figure 10. Comparison of GNR stress-strain curves obtined from AFEM with MD results.  

 

Conclusions 

The atomic-scale finite element method was successfully applied to study the mechanical 

response of GNRs. Extensive comparisons with MD simulations reported in the literature are presented 

for bulk graphene stress-strain curves. It is found that both AFEM and MD based on Tersoff potential 

are not capable of modelling the tensile behavior of graphene. The AFEM based on the second 

generation REBO potential shows high accuracy in modelling the tensile response of bulk graphene. 

Comparisons with MD solutions reported in the literature show that the tensile strength predicted by 

AFEM is about 5-10 % higher than the results corresponding to MD. Failure strains predicted by AFEM 

are generally higher than the MD results. The difference between AFEM and corresponding MD results 

become more visible closer to tensile failure point and hardly any difference is noted in the initial small 
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strain range.  Armchair GNRs show negligible size-dependency whereas size-effects are significant in 

the case of zigzag GNRs. In terms of the chirality effects, zigzag GNRs are stiffer and stronger than 

armchair GNRs and similar behavior is also noted for bulk graphene. The current approach is 

computationally highly efficient compared to MD simulations due the O(N) characteristics of AFEM. 
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Appendix 

 

Tersoff Potential Parameters: 

 

 
 

ij

ijT

c ij ij

ij

1,                         r < R - D

r - Rπ1 1f r = - sin ,   R - D < r < R + D
2 2 2 D

0,                   r  >  R + D




  

 
   





       (A.1) 

The parameters R and D are not systematically optimized but are chosen so as to include 

the first-neighbor shell only. For C-C bonds, Tersoff (1988) presented a set of suitable values of R 

and D that are given below. As the parameters R and D are chosen to include only the first-neighbor 

interaction, thus, the cut-off function, T

cf , goes from 1 to 0 within a cut-off distance R-D < rij < R+D.  

 

   Tn

ij c ik ijk

k i, j

ζ  = f r g θ


 ;  
 

2 2

ijk 2 2
2

ijk

c c
g θ = 1 + -

d d + h - cosθ 
  

     (A.2) 

The bond angle θijk is defined as shown in Fig. A1.  

 

Figure A1: Definition of angles in Tersoff potential.  

For carbon-carbon interactions these parameters are A=1393.6 eV, B=346.74 eV, λ1=3.4879, 

λ2=2.2119, R=1.95 Å, D= 0.15 Å, Tn
β =1.5724 x 10-7, tn =0.72751, c=3.8049 x 104, d=4.3484 and h=-

0.57058 (Tersoff 1988). 
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Second Generation REBO Potential Parameters: 

 

 

 

  
    

   

 

1

ij

1

ij

2 1

1 2R

c ij ij

2

ij

1,                                       r < R  

π r - R
1+cos

R - R
f r =         R < r < R

2

0,                                        R  < r



  
   
   
    









      (A.3) 

 

The term 
RB corresponds to the bond order term. It’s related with the number of neighbors and 

the angle, which it’s related with the forming and breaking of the bonds between of the atoms. The 

expression for 
RB is: 

R σπ σπ π

ij ji ij

1
B  = b + b  + b

2
             (A.4) 

π rc dh

ij ij ijb = Π  + b            (A.5) 

The term 
σπ

ijb  is composed by covalent bond interactions, and by the angular function  jikg cosθ

, which include the contribution from the second nearest neighbour according to the cosine of the angle 

of the bonds between atoms ik and ij. 

     ijk

1
-
2

λσπ C H

ij ik ik jik ij i i

k i, j

b  = 1 + f r g cosθ e + P N ,N
 
 
 


≠

      (A.6) 

According to Brenner et al. (2002) the parameters Pij and λijk are taken to be zero for solid-state 

carbon. The following equations show the angular function in three regions of bond angle θ, 

For 0o < θ < 109.476o 

         t
jik jik i jik jikg cosθ = G cosθ +Q N γ cosθ - G cosθ 

 
      (A.7) 

       

   

5 4 3
jik

2

G cosθ = 0.5024cos θ +1.4297cos θ +2.0313cos θ +

                     2.2544cos θ +1.4068cos θ +0.3755
     (A.8) 

       

   

5 4 3
jik

2

γ cosθ = -0.0401cos θ +1.272cos θ -0.5597cos θ -

                     0.4331cos θ +0.4889cos θ +0.2719
  (A.9) 
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For 109.476o < θ < 120o 

   jik jikg cosθ = G cosθ  

       

   

5 4 3
jik

2

G cosθ = 36.2789cos θ +71.8829cos θ +57.5918cos θ +

                     24.0970cos θ +5.6774cos θ +0.7073
 (A.10) 

For 120o < θ < 180o 

   jik jikg cosθ = G cosθ  

 (A.11) 

       

   

5 4 3
jik

2

G cosθ = -1.3424cos θ - 4.928cos θ -6.83cos θ -

                     4.346cos θ -1.098cos θ +0.0026
 

 (A.12) 

The function  t
iQ N  is given by 

    

t
i

t t t
i i i

t
i

1                                           N  < 3.2         

Q N = 1+cos 2π N - 3.2 2   3.2 < N  < 3.7 

0                                           N  > 3.7 



 
  



 

 (A.13) 

The term t
iN  is the sum of the carbon atoms number and the hydrogen atoms number, in this 

case H
iN  is zero, 

t C H
i i iN  = N  + N  

 (A.14) 

 
 

carbon atoms
C

i ik ik

k i, j

N  = f r


  

 (A.15) 

The term rc
ijΠ  is a three-dimensional cubic spline, which depends on the number of carbon 

atoms that are neighbors of atoms i and j and the nonconjugated bonds. 

 rc t t conj
ij ij i j ijΠ = F N ,N ,N  

 (A.16) 



21 

 

   
 

   
 

2 2
carbon atoms carbon atoms

conj

ij ik ik ik jl jl jl

k i, j l i, j

N  = 1 + f r F x + f r F x
 
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   
      

   

 (A.17) 

    
ik

ik ik ik

ik

1                                           x < 2         

F x = 1 + cos 2π x - 2 2   2 < x < 3 

0                                           x > 3 


  



 

 (A.18) 

 t
ik k ik ikx  = N  - f r  

 (A.19) 

where k, l, and j are the neighbors of atoms.  

 The term dh

ijb  is zero for graphene due to its planar configuration. All the parameters considered 

can be found in Stuart et al. (2000). 


