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Research article

Aerodynamic feeding systems: an example for
changeable technology

Thomas Frädrich, Julia Pachow-Frauenhofer, Fiege Torsten and Peter Nyhuis

Institute of Production Systems and Logistics, Leibniz University of Hanover, Garbsen, Germany

Abstract
Purpose – The purpose of this paper is to transfer the idea of changeability to a concrete technical application.
Design/methodology/approach – Based on the definition of changeability on a factory level, a transformation of the five change enablers specified
therein for the work station level using the example of an aerodynamic feeding system takes place in this paper.
Findings – The observed aerodynamic feeding system can be determined as changeable.
Practical implications – Changeable systems are able to react with low effort to exterior influences, e.g. of the market, and thus represent a
considerable competitive advantage.
Originality/value – The new element in this paper is the observation of change enablers on the work station level. This point of view enables the
concrete figuration of changeable technical systems.

Keywords Aerodynamics, Feeding devices, Production management, Factories

Paper type Research paper

Introduction

The circumstances under which the industrially producing

companies act have changed strongly within the last years – the

worldwide markets react to external influences in increasingly

shorter time frames. Established approaches of the last

decades, such as “computer-based production” or “flexible

production” can no longer meet up with this trend. This is

documented by the study “changeable production systems”

carried out by the Institute of Production Systems and Logistics

(IFA) of the Leibniz University of Hannover and other leading

research institutes in production technique with well-known

enterprises. This study was subsidized by the Federal Ministry

for Education and Research (BMBF). A matching result of the

study is, on the one hand, that currently there is no other

possibility for a company to react to external influences other

than flexibility. On the other hand, the study showed that the

scientific construct of changeability as it is currently intensively

discussed in the German research landscape, is theoretically apt

to resolve these deficits, but it is not concrete and tangible

enough to find application in companies. The central idea of

changeability consists in designing production system in such a

manner that a pre-developed solution space can be activated

with low investments. Yet these mostly provide theoretical

concepts about this range of topics or go into the planning and

evaluation approaches, only seldom can one find technical

examples for changeable solutions. That is, where this paper
sets off. The aim is to demonstrate that aerodynamic feeding
systems, as developed at the IFA, are an example for a
changeable system. In the following, the subject of
changeability will be shortly introduced at first as well as its
understanding as it forms the basis of this paper. Subsequently,
feeding systems in general and especially aerodynamic systems
will be described. The main part of this paper will set about
depicting the changeability of aerodynamic feeding systems.
The paper will conclude with a summary and an outlook.

Changeability

The turbulent environment requires a production system to be
rapidly adaptable to altered conditions. On this note, in today’s
practice, production systems are only designed flexibly in many
cases (De Toni and Tonchia, 1998; Wiendahl et al., 2007;
ElMaraghy and Wiendahl, 2008). If a production system is
flexible, it is able (for example, in the case of a higher output
demand) to customize fast and without additive invest inside of
the narrow corridor. But the change drivers are very versatile
nowadays and the direction as well as the force of change are no
longer easily foreseeable (Pachow-Frauenhofer et al., 2008).
As a reaction to the initially weak changing impulses, so far
production-related solutions have been developed whose
implementation often took several years. One example is the
modularly structured standard assembly cell “Mobi-Cell” by
BMW (2005). To prepare a production system for all
possible changes is not feasible, to start off with from the
economic point of view. Owing to this reason it is necessary to
design a system, which enables a dynamic adaptation of the
production system. This is where the main idea of changeability
sets off. In the literature, there are different definitions of
changeability to be found (Schuh et al., 2004; Spath and
Scholtz, 2007). ElMaraghy and Wiendahl define changeability
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as a characteristic of a production system which enables an
economic, anticipatory adaptation of all factory elements and
processes on all factory levels at an early stage (Wiendahl et al.,
2007; ElMaraghy and Wiendahl, 2008). On the basis of the
definition of ElMaraghy and Wiendahl (Wiendahl et al., 2007;
ElMaraghy and Wiendahl, 2008), Nyhuis et al. describe
changeability as in the following (Pachow-Frauenhofer et al.,
2008; Heinen et al., 2008).

Changeability is recognized as the potential by which fast
adaptation is enabled within narrow corridors, concerning the
organization and the techniques, with low investment. The
changeable production system is planned on the displacement of
the barrier of the corridors. The utilization of this potential is
carried out only when needed. An additional option made
possible by changeability is the contraction option where it would
be possible, for example, to downgrade the level of automation if
it is feasible as it would also be favourable concerning the
environment. Changeability is to be understood as a system
attribute and has to consider its internal and external
interdependences. Thus, changeability is superordinate to
flexibility (Wiendahl, 2005). Since changeable production
systems act in dynamic environments, they do not have to be
planned and kept in constant operation just once. Instead, a
process has to be activated, which, following a basic analysis,
offers creative solutions, that are continuously adjusted to the
environmental requirements and restructured if necessary. The
differences between flexibility and changeability are made clear
in Figure 1.

The prestudy shows that in practice various approaches exist
to react to unforeseeable turbulences not only in the carried out
case studies in well-known companies but also in an extensive
literature research (Bredow, 2008; Wörn, 2008). Numerous
approaches for flexible but also adaptive or agile production
systems are described in the literature inter alia (Koren et al.,
1999; Koren, 2006; Abele et al., 2008; Lotter and Wiendahl,
2008). Yet none of these approaches is sufficient to design the
companies in a long-term responsive manner, since all these
approaches only enable a reaction within pre-planned
solutions, but not a reaction to unplanned turbulences. Yet the
theoretical construct of “changeability” finds no or only minor
application in practice so far (Pachow-Frauenhofer et al.,
2008). A public discourse additionally showed that a large
deficit lies in the measurement and evaluation of changeability.
Nowadays, same as for the approach of flexibility (De Toni and
Tonchia, 1998), it is impossible to measure changeability and
its benefit (Browne et al., 1984; Brill and Mandelbaum, 1989;
Nyhuis, 2008).

Cisek et al. (2002) describes in that production has five
options to react to exterior changes. These are lot size, product,
quality, time and costs. A flexible system possesses the ability

of adaptation concerning one of these factors whereas a

changeable system possesses the ability to adapt the system

concerning several of these factors.
A production system consists of different objects that can be

designed in an individually changeable manner. For this, they

have to possess certain characteristics to enable a change

process. These are called change enablers. Wiendahl et al.
describe change enablers on the factory level (Hernández

Morales, 2003; Wiendahl et al., 2005):
. Scalability. Technical, spatial and staff permeability

(extendibility and reducibility), e.g. flexible working time

model.
. Modularity. Standardised, serviceable units or elements,

e.g. Plug & produce-modules.
. Compatibility. Interconnectability concerning material,

information, media and energy, e.g. standardised software

interfaces.
. Universality. Dimensioning and designing of various

requirements concerning a product or technology,

e.g. variation flexibility.
. Mobility. Spatially unlimited mobility of objects,

e.g. machines on reels.

That means that the systems which possess these change

enablers are considered as changeable. Yet it is to be

considered that not all objects can or have to possess all

change enablers. This is to be investigated in case of need.

Feeding system

The feeding serves as a technical system of linking value-adding

processes in the forefront of the assembly and the assembly

station itself. Such as the process-logically advanced transport

of components, the feeding itself is not a value-adding process.
The mostly used feeding system is the vibratory bowl feeder

(VBF). Boothroyd, for example, produced a catalogue for an

ample spectrum of workpieces for the feeding with VBFs,

containing several general solutions and a large number of

special characteristics of typical workpieces (Boothroyd, 1984).

van der Stappen et al. (2002) have also regarded various part

geometries in different feeding systems. Despite all these

investigations, it is impossible to examine vibration feeders

without experimental investigations of the behaviour of real

pieces in the feeding process. The reason for this lies in the

chaotic physical processes of the micro throw. Hongler, for

example, discovered that pieces follow chaotic rules during the

orientation process (Hongler, 1994). Yet the pieces had a very

simple geometry and the focus of the work lay on the general

dynamic pieces behaviour. Others investigated the natural

resting of pieces in the VBF (Ngoi et al., 1997), yet again only

for cubic geometries. It is thus almost impossible to establish

general behavioural rules for pieces in industrial applications.
The progress in the computer industry and picture

processing has lead to the fact that feeding systems are

increasingly equipped with cameras for flexible systems (Perks,

2006; Braggins, 2006; Sorensen and Stringham, 1999). Yet this

generally also has complex systems as a consequence which

need an additional handling installation, mostly robots, to

implement the results of the picture processing. An

aerodynamic procedure which was developed at the IFA uses

standard singularisation systems, such as VBFs or centrifugal

bowl feeders (CBFs) in connection with air nozzles as barriers

for the singularisation of workpieces in combination with an

Figure 1 Definition of changeability

D
em

an
ds

Time

Source: Zäh et al. (2005)

0

Changeability Changeability

Flexibility corridor f2

Flexibility corridor f3

1 2 3 4 5 6

Aerodynamic feeding systems: an example for changeable technology
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active aerodynamic orienting device as an out of bowl tooling.

The pieces are individually handed over as partial strings to

aerodynamic actuators (out of the bowl) which can be

combined according to the requirement of the collocation

task. The actuators can be created from the aerodynamic

orientation processes described in the following.
There are two aerodynamic orientation processes which use

two workpiece characteristics each (Figure 2). First, there is the

possibility of an axial orientation of the workpieces. In that case

they slide down an inclined plane which can be adjusted and

into which an air nozzle is integrated. Together, with the air

nozzle, the plane establishes the aerodynamic actuator, which

actively puts the workpieces into the desired position. For this

purpose, the position of the center of gravity and the geometry

of the workpieces are used. Since the pieces pass the nozzle at a

certain speed on the inclined plane, the permanently flowing air

from the nozzle creates an impulse according to the orientation

of the piece (for example, center of gravity at the front or back)

which turns the wrongly oriented workpieces and maintains the

correctly oriented ones (Wiendahl and Rybarczyk, 2003).
The second process enables a radial orientation. The position

of the center of gravity or special aerodynamic characteristics of

geometry can also be used in this case. The radial orientation by

means of the position of the center of gravity is carried out on an

air cushion that the piece settles down on almost without

friction and with the center of gravity downwards after having

“floated” down onto the air. The geometrical characteristics in

turn are used on the inclined plane with integrated air nozzles

whose impulse either turns the pieces or not, according to their

position.
The orientation of the pieces is carried out actively, i.e. the

workpieces are put into the desired position by means of the air

flow. The air flows applied here are also to be regarded as

orienting devices which IFA has been developing since the

beginning of the 1990s and not as the equally long known

aerodynamic blades as they are used in passive operations

(Müller-Kramp, 1992; Wiendahl et al., 1999; Jaksic and Maul,

2001). The output performance of a production plant with

active orientation will rise accordingly depending on the

number of stable positions that a workpiece can occupy

(Boothroyd, 2005). For example, if there are two-piece

positions, the output with active orientation will rise by 100

per cent. The aerodynamic orientation itself works without

sensor technology or image processing.
Figure 3 shows a feeding system with two actuators: an

inclined plane and an air cushion. In each of these actuators, the

degree of orderliness of the workpiece is increased until finally

only singular workpieces in selected workpiece positions are to

be found. In this case, the singularisation of the workpieces is

carried out by a CBF which is filled by a bunker system. In

industrial application, the orientation is followed by the

checkup of the workpiece orientation by means of a camera

system so as to ensure that exclusively correctly oriented and

qualitatively faultless workpieces reach the following process.

Figure 3 shows the modular construction of the system which

enables a simple exchange of the single modules.

Changeability of aerodynamic feeding systems

In Part 2, the five change enablers for factory level described in

the literature have already been depicted briefly. A system is

changeable if it possesses the necessary change enablers. For

the evaluation of the changeability of the aerodynamic system

as described in Chapter 3 its constitutive criteria concerning the

existence of change enablers are to be examined in the

following.
Scalability mainly determines spatial degrees of liberty of

concerning extension, growth but also shrinkage in factory

planning. The enabler is also called breathability and for

technical systems can be interpreted such that in this case the

spatial degrees of liberty refer to the amount processed in

the system. In the first instance, an aerodynamic actuator for the

orientation of components is merely subject to physical limits,

namely laws of nature. The number of workpieces which can

slide along the inclined plane is the same as can be individually

handed over as a string of pieces. The limitation thus lies with

the singularisation system, which hands over this string of

pieces to the aerodynamic actuator. That means that the

Figure 2 Aerodynamic orientation process
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aerodynamic actuator demonstrates a very large flexibility
corridor (Figure 1) but does not fulfill the change enabler

“scalability”. Yet an aerodynamic feeding system consisting
of aerodynamic actuators and further modules does fulfill
this change enabler. Such a system is scalable concerning
the amount processed in the system. The choice of the

singularisation system (VBF or CBF) can actually change the
output performance, for example.

Modularity is based on the idea of standardised elements

so that the exchange of modules only has partial effects
(e.g. shutdowns) on the change object or its environment.
So modules are autonomously acting entities, which ensure a
high degree of compatibility among each other. Aerodynamic

actuators are self-sufficiently functioning entities or modules.
They can be introduced individually or in combination with
each other for the orientation of components together with a
preposed singularisation system.

Compatibility is tightly connected with modularity but not
equivalent to it. By means of standardised interfaces,
compatibility enables a low effort drop-down resp. integration

of modules. Aerodynamic actuators consist of gliding zones
where work pieces are lead past air nozzles or on air cushions.
They enable a continuous process which bears no special
requirements towards the interfaces. So as to reach a defined

speed when the pieces encounter the actuator, a simple
transport band is sufficient which is generally independent of
the geometry of the components.

Universality represents the characteristic of objects to meet
the diverse tasks, requirements, aims or functions. Technical
systems have generally been constructed for a precise aim resp.
on the basis of certain functional principles. For example, by

now, modern five-axis rotating/milling centers can produce
geometries with almost any degree of complexity but they are
not able to change the production process – it always remains
with the cutting basic principle. Aerodynamic actuators were

developed for the orientation of small parts and remain within
this spectrum. Yet within this range, the procedures are apt for
the most diverse parts whose position of center of gravity or
special aerodynamic characteristics allow an aerodynamic

orientation. That also means that by the application of air flows
they are independent from the outer contour of the components
which stands in contrast with the majority of standard
orientation procedures (e.g. mechanical harassments in the

VBF). That makes the same actuator applicable for different
pieces after only minor adaptations of the parameters.

Mobility ensures the local, unlimited mobility of objects in a

factory. That means that when the factory itself is designed

changeably, so that, for example, the media necessary for the

operation of the facility can be put at disposition at any place in

the factory at a low effort, the facility itself simply has to stand

on wheels so as to fulfill the requirements of this enabler. An

aerodynamic feeding device consisting of a singularisation

system and one or two aerodynamic actuators is suitable in any

case, concerning the measurements as well as the weight, to be

mobilised on wheels.
So the five change enablers originating from the factory

planning are given in the case of the aerodynamic feeding

technology and enable a variation of two of the five

requirements for the adaptation of production to exterior

changes presented by Cisek (see Chapter 2) for the moment.

The lot size and the product, that is the component to be fed,

can be adapted to exterior conditions by means of aerodynamic

feeding systems with a low effort. The lot size can be selected

through the choice of the singularisation. The orientation of the

component takes place independently of the geometry. If one

observes the feeding systems in an environment with short

product life cycles, two further requirements can be influenced,

namely costs and time. Owing to the aptitude of aerodynamic

feeding systems for different component geometries described

in the paragraph “universality”, it is not necessary to acquire

new conventional feeding technologies in the case of a product

change. Over a longer term and several product changes, the

corresponding purchasing costs can be saved. Yet this does not

only concern the costs, the time investment for the construction

and production of the conventional system is also omitted.

Even more importantly than the time saving for the supplier, it

is to be considered that the expenses for initiating operation

with the user are reduced. Owing to his familiarity with the

aerodynamic feeding, he saves time during its installation and

thus reduces complexity from starting up his new product at the

same time. Even the fifth reaction requirement, the quality, can

be improved by using the aerodynamic feeding technology. It is

an active procedure for the orientation of work pieces and,

therefore, has the advantage that the components have to go

through the feeding process only once. In the case of passive

procedures, pieces are sorted out several times before they are

coincidentally on hand in the desired orientation. This bears a

higher risk of damage for the work pieces.
Figure 4 exemplifies several pieces with different geometries

which can be oriented with the aerodynamic feeding system

Figure 3 Aerodynamic feeding system
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Figure 4 Examples for aerodynamically oriented pieces
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described in Part 3. For this purpose, the aerodynamic

actuators have simply been adapted to the existing system. The

displayed pieces are oriented by using the actuator or the

combination of two actuators to different degrees. For example,

the uppermost pieces can be completely oriented to one

position with two actuators (output: 400 pieces/min). Yet the
same piece can also be partly oriented with an actuator in the

feeding system (output: 200 pieces/min). This example vividly

makes the changeability of aerodynamic feeding systems clear.

Summary

To begin with, this paper briefly introduced the term

“changeability” and its definition as well as the aerodynamic

feeding as a technical system. The following discussion of the

system on the basis of change enablers allows for the following

conclusion: aerodynamic feeding systems are changeable. They
feature all the change enablers described in the factory planning

and can thus themselves be called changeable as technical

systems with their physical limitations. The big advantage of

aerodynamic systems compared to conventional ones lies in their

“universality”, that means their ability to be suitable for different

pieces equally. Owing to the extensively workpiece-neutral
modules of the aerodynamic feeding systems and the low-wear

and reproducible processes they can be applied for the most

diverse products over a long period of time. This can represent a

considerable cost advantage compared with conventional

systems, especially in the case of short product life cycles. This
cost advantage of changeable systems compared with

conventional feeding systems is to be demonstrated in further

studies.
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