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For random trees T generated by the binary search tree algorithm from uniformly

distributed input we consider the subtree size profile, which maps k ∈ N to the number

of nodes in T that root a subtree of size k. Complementing earlier work by Devroye, by

Feng, Mahmoud and Panholzer, and by Fuchs, we obtain results for the range of small

k-values and the range of k-values proportional to the size n of T . In both cases emphasis

is on the process view, i.e., the joint distributions for several k-values. We also show that

the dynamics of the tree sequence lead to a qualitative difference between the asymptotic

behaviour of the lower and the upper end of the profile.

1. Introduction

By a binary tree T we mean a finite, prefix-stable subset of the set N := {0, 1}� of finite

words with letters 0 and 1. The empty word represents the root node, and a non-empty

finite sequence u = (u1, . . . , uk) ∈ N identifies a node u of the tree with its route, starting

at the root node and moving to the left if ui = 0 and to the right if ui = 1, i = 1, . . . , k

(see also Figure 1(a)). A labelled binary tree is a pair (T ,φ), with T a binary tree and φ

a function on T with values in some set; in our case we may take this to be the set of

real numbers. The binary search tree (BST) algorithm transforms a sequence (xn)n∈N of

pairwise distinct real numbers into a sequence (Tn, φn)n∈N of labelled binary trees, where

Tn has n nodes. We start with the tree T1 = {∅} that consists of the root node only, with

φ1(∅) = x1. In order to obtain (Tn+1, φn+1) from (Tn, φn) we compare xn+1 to x1, moving

to the left if xn+1 < x1 and to the right if xn+1 > x1, repeating this with the next node and

its label (content) until an empty node for xn+1 is found.

Our basic object in this paper is the sequence (Tn)n∈N of random binary trees that results

if we apply the BST algorithm to a sequence (ξn)n∈N of independent random variables

that are all uniformly distributed on the unit interval. As the trees depend on the order of

the input values only, we may replace the uniform distribution by any other distribution
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562 F. Dennert and R. Grübel

Figure 1. Binary tree (a) with associated subtree size profile (b) and cumulative big subtree counts (c)

that assigns the value 0 to individual numbers (has no atoms). We write BST(n) for the

distribution of Tn; it is well known that this is not the uniform distribution on the set of

binary trees with n nodes.

Binary trees and the BST algorithm are standard objects of discrete mathematics and

theoretical computer science. Many authors have considered the above random input

model; see, e.g., [10], [12], and the references given there. For example, the node depth

profile of Tn, which maps k ∈ N to the number of nodes u ∈ Tn with depth k (where in

the above representation the depth of a node u = (u1, . . . , uk) is the word length k) has

been investigated in [2], [5], [9], and elsewhere.

In the present paper we consider the subtree size profile, which maps k ∈ N to the

number Xn,k of nodes u ∈ Tn that are the root of a subtree of Tn with size k. Here

the subtree T (u) of T associated with u = (u1, . . . , uk) ∈ T consists of all v = (v1, . . . , vl) ∈
{0, 1}� with the property that (u1, . . . , uk, v1, . . . , vl) ∈ T . Figure 1 shows a tree with 15

nodes; two of the nodes, (0) and (1, 0, 1), root a subtree of size 5, so that X15,5 = 2.

Whereas the node depth profile is based on the number of ancestors of a node, the

subtree size profile considers the number of its offspring. The first results we are aware of

for the subtree size counts of random binary trees generated by the BST algorithm from
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uniformly distributed random permutations are due to Devroye [4], who used a central

limit theorem for m-dependent random variables to prove asymptotic normality for the

standardized counts (Xn,k − EXn,k)/
√

var(Xn,k) for fixed k as n → ∞. Very recently Feng,

Mahmoud and Panholzer [7] have obtained results for the case that k = kn varies with n,

proving that asymptotic normality holds whenever kn/
√
n → 0 as n → ∞. These authors

also showed that the limit distribution of Xn,kn is Poisson with mean 2/t2 if kn/
√
n → t for

some t > 0. Shortly thereafter, Fuchs [8] obtained a Berry–Esseen bound in connection

with asymptotic normality, and a Poisson approximation result under the sole condition

that kn → ∞. Whereas Devroye’s approach is basically probabilistic, the later authors

heavily rely on analytic machinery.

In the present paper we complement these earlier results by considering the stochastic

processes Xn = (Xn,k)k∈N as n → ∞, which implies that we obtain results on the depend-

encies of the subtree size counts for various k-values. Figure 1(b) shows a realization of

the process X15. We will deal with the ‘lower’ end, where k remains bounded, and the

‘upper’ end, where k = kn varies with n such that kn/n tends to a positive value. For the

lower end our main tool is the contraction method, which has become one of the standard

techniques in this area. In connection with node depth profiles, this method has already

been used in [9] and [5]. It turns out that a variant of the method introduced in [11] leads

to convergence of the standardized processes n−1/2(Xn,k − EXn,k)k∈N to a discrete time

Gaussian process (X∞,k)k∈N as n → ∞, where convergence refers to weak convergence of

the finite-dimensional distributions of the processes. We obtain an explicit description of

the limiting second-order structure. We also show that there is a genuine reason for the

fact that the result is on weak convergence only.

At the upper end, where k = kn varies with n such that limn→∞ kn/n = 1 − t, 0 � t < 1,

it is known that the individual random variables Xn,kn converge to 0 in probability. We

show that a non-trivial limit arises if we pass to the partial sums

Yn,t :=
∑

j�(1−t)n
Xn,j , (1.1)

and we then obtain a limit process Y∞ = (Y∞,t)0�t<1 for the processes Yn = (Yn,t)0�t<1 as

n → ∞. Figure 1(c) shows a path of Y15; the two nodes with subtree size 5 correspond

to a jump of size 2 at t = 2/3. Convergence refers to the usual Skorokhod metric on the

space of cadlag functions on the interval [0, t0], for all t0 < 1. It turns out that at this

end of the subtree size profile we even have convergence almost surely. Previous work

has concentrated on the distributions; taking into account the dynamics of the sequence

we see that there is a major qualitative difference between the asymptotics of the two

ends.

The results are given in the next section, and proofs are in Section 3. In a final

section we collect some remarks on related results and problems. We write 1A for the

indicator function associated with a set A and L(X) for the distribution of a random

quantity X, sometimes abbreviating L(X) = P to X ∼ P . Also, ‘=distr’ means equality in

distribution and ‘→distr’ denotes convergence in distribution. Billingsley’s classic [1] is our

basic reference for convergence in distribution.
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2. Results

Clearly, Xn,n ≡ 1 and Xn,k ≡ 0 if k > n. General formulas for the mean and variance of

Xn,k have already been obtained by [7, p. 178]

EXn,k =
2(n+ 1)

(k + 1)(k + 2)
for n � k + 1, (2.1)

var(Xn,k) =
2k(4k2 + 5k − 3)(n+ 1)

(k + 1)(k + 2)2(2k + 1)(2k + 3)
for n � 2k + 2. (2.2)

As explained in the Introduction, our main interest here is in the ‘process view’, which

means that we need a similar result for the covariances.

Proposition 2.1.

(a) For 1 � j < k,

cov(Xj+k+2,j , Xj+k+2,k) = − 4j(j + 2k + 3)

(j + k + 1)(j + k + 2)(k + 1)(k + 2)
.

(b) For all n > j + k + 2,

cov(Xn,j , Xn,k) =
n+ 1

j + k + 3
cov(Xj+k+2,j , Xj+k+2,k).

Our first theorem deals with the number of small subtrees.

Theorem 2.2. Let (X∞,k)k∈N be a centred Gaussian process with covariance matrix Σ =

(Σ(j, k))j,k∈N given by

Σ(j, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2k(4k2 + 5k − 3)

(k + 1)(k + 2)2(2k + 1)(2k + 3)
, if j = k,

− 4j(j + 2k + 3)

(j + k + 1)(j + k + 2)(j + k + 3)(k + 1)(k + 2)
, if j < k.

(2.3)

Then (n−1/2(Xn,k − EXn,k))k∈N converges to (X∞,k)k∈N as n → ∞ in the sense that, for any

fixed k ∈ N, the k-dimensional random vectors

n−1/2(Xn,1 − EXn,1, . . . , Xn,k − EXn,k) (2.4)

converge in distribution to the k-dimensional random vector (X∞,1, . . . , X∞,k) as n → ∞.

In [4], [7] and [8], limit results were obtained for the one-dimensional random variables

Xn,k , where k may depend on n. Our result complements this, as the vector version also

provides information about the dependencies of the random variables. We could view this

as a partial answer to the question of what happens ‘across k’. Our second main point

in the present paper is the discussion of what happens ‘across n’: Taking the dynamics

of the whole sequence (Xn)n∈N into account, it is natural to ask for the ‘best’ mode of

convergence. It turns out that we have almost sure convergence at the big subtrees end of
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On the Subtree Size Profile of Binary Search trees 565

the profile, but that the weak convergence result in Theorem 2.2 cannot be strengthened.

Rather than investigating this latter problem in some general abstract context of tail

σ-fields, we give the following result on the number Xn,1 of ‘leaf nodes’, which may be of

interest in its own right.

Theorem 2.3. P (X3m−1,1 = m for infinitely many m ∈ N) = 1.

Theorem 2.3 and formula (2.1) together imply that

lim inf
n→∞

|Xn,1 − EXn,1| = 0 with probability 1, (2.5)

whereas Theorem 2.2 gives

n−1/2(Xn,1 − EXn,1) →distr X∞,1, (2.6)

where X∞,1 has a normal distribution with mean 0 and variance 2/45. Clearly, (2.5) and

(2.6) together imply that we do not have almost sure convergence for the random vectors

in (2.4).

For the big subtrees we need to set up a suitable state space for the Y -processes first. Let

D be the set of all cadlag (i.e., right continuous with left limits) functions f : [0, 1) → R.

We say that fn → f in D if the restrictions to every interval [0, t0], t0 < 1, converge with

respect to the Skorokhod topology; see [1, Chapter 3]. This defines a topology on D; we

equip D with the associated Borel σ-field. Then t 
→ Yn,t with Yn,t as defined in (1.1) is an

element of this space, for every n, with Yn,0 ≡ 1 and Yn,1− ≡ n.

Theorem 2.4. In the space D, Yn = (Yn,t)0�t<1 converges almost surely to a limit process

Y∞ = (Y∞,t)0�t<1 as n → ∞.

In the course of the proof we will give a relatively explicit construction of Y∞, based

on the recursive structure of the family BST(n), n ∈ N. This construction can also be used

to obtain the mean and variance function of the limit process.

Theorem 2.5.

EY∞,t =
1 + t

1 − t
for all t ∈ [0, 1),

var(Y∞,t) =

⎧⎪⎨
⎪⎩

2 +
2

1 − t
− 4

(1 − t)2
− 8 log(1 − t)

1 − t
, for t ∈ [0, 1/2),

8 log 2 − 5

1 − t
, for t ∈ [1/2, 1).

Note that t 
→ var(Y∞,t) is continuous but not differentiable at t = 1/2. Theorem 2.5

also shows that the limit in Theorem 2.4 is non-degenerate.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548309990630
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 23 Jan 2018 at 10:13:51, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548309990630
https://www.cambridge.org/core


566 F. Dennert and R. Grübel

3. Proofs

3.1. Proof of Proposition 2.1

Suppose that 1 � j < k < ∞. We begin with the case n = j + k + 1. Then nodes contrib-

uting to Xn,j or Xn,k must be elements of the left or right subtree of Tn. The size In of

the left subtree is uniformly distributed on {0, . . . , n− 1} and, given In = i, the left and

right subtrees are independent, with distributions BST(i) and BST(n− 1 − i) respectively.

In particular, we have the symmetry property

E[Xn,jXn,k|In = i] = E[Xn,jXn,k|In = n− 1 − i] for i = 0, . . . , n− 1. (3.1)

We now consider different ranges for the size of the left subtree separately.

If In = j, then the left subtree contributes the fixed value 1 to Xn,j and all other subtrees

of size j must be contained in the right subtree; also, Xn,k ≡ 1, as the right subtree is the

only subtree with k nodes. This gives

E[Xn,jXn,k|In = j] = E[Xn,jXn,k|In = k] = 1 + EXk,j .

If In ∈ {j + 1, . . . , k − 1}, then Xn,k = 0, as neither subtree has enough nodes to accom-

modate a subtree of size k. Hence E[Xn,jXn,k|In = i] = 0 for this range of i-values. If

In = i ∈ {0, . . . , j − 1}, then each subtree of size j must be a subtree of one possible

subtree of size k of the right subtree with n− 1 − i nodes, so that

E[Xn,jXn,k|In = i] = E[Xn,jXn,k|In = n− 1 − i] = EXn−1−i,k EXk,j .

Here we have used the simple fact that, for any two subtrees of a tree, either one of them

is contained in the other, or they are disjoint; also, given that a node spawns a subtree of

size k, the distribution of this subtree is BST(k). Using the known formula for EXn,k , we

obtain

EXn,jXn,k =
2

n

(
1 +

2(k + 1)

(j + 1)(j + 2)

)
+

2

n

j−1∑
i=0

2(n− 1 − i+ 1)

(k + 1)(k + 2)

2(k + 1)

(j + 1)(j + 2)

=
2j2k + 8j2 + 14jk + 24j + 16k + 16 + 4k2

(j + k + 1)(j + 1)(j + 2)(k + 2)
for n = j + k + 1.

We now turn to the case of interest, where n = j + k + 2. Again, we have Xn,k = 0 if

In ∈ {j + 2, . . . , k − 1}, so that

EXn,jXn,k =
2

n
E[Xn,jXn,k|In = 0] +

2

n

j−1∑
i=1

E[Xn,jXn,k|In = i]

+
2

n
E[Xn,jXn,k|In = j] +

1

n

(
2 − 1{j+1=k}

)
E[Xn,jXn,k|In = j + 1]. (3.2)

Here we used (3.1); the indicator function ensures that we do not count In = k twice if j

and k differ by 1 only.

For the first term on the right-hand side of (3.2) we use

E[Xn,jXn,k|In = 0] = EXj+k+1,jXj+k+1,k ,
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which can now be evaluated with the formula for the case n = j + k + 1 from the first

part of the proof. For i ∈ {1, . . . , j − 1} we get

E[Xn,jXn,k|In = i] = EXn−1−i,k EXk,j =
2(n− i)

(k + 1)(k + 2)

2(k + 1)

(j + 1)(j + 2)
.

Further,

E[Xn,jXn,k|In = j] = (1 + EXk,j)EXk+1,k

=

(
1 +

2(k + 1)

(j + 1)(j + 2)

)
2(k + 2)

(k + 1)(k + 2)
,

and, if j + 1 < k,

E[Xn,jXn,k|In = j + 1] = EXj+1,j + EXk,j

=
2(j + 2)

(j + 1)(j + 2)
+

2(k + 1)

(j + 1)(j + 2)
,

whereas, for j + 1 = k,

E[Xn,jXn,k|In = j + 1] = 2
(
EXj+1,j + EXk,j

)
in view of Xn,k = 2 on In = j + 1. Note that this difference between the two cases j + 1 < k

and j + 1 = k cancels with the modification 2 − 1{j+1=k} in (3.2). Put together, this leads

to

EXn,jXn,k =
4g(j, k)

(j + k + 2)(j + k + 1)(j + 1)(j + 2)(k + 1)(k + 2)

with

g(j, k) :=18 + 21j2k + 54jk + 33j + 39k + 18j2 + 29k2

+ 6j2k2 + 27jk2 + 9k3 + 3j3 + 2j3k + 4jk3 + k4,

so that finally

cov(Xj+k+2,j , Xj+k+2,k) = EXj+k+2,jXj+k+2,k − EXj+k+2,j EXj+k+2,k

= − 4j(j + 2k + 3)

(j + k + 2)(j + k + 1)(k + 1)(k + 2)
.

For the proof of (b) we may regard j and k as being fixed. It is evidently enough to

show that, for all n � j + k + 2,

(n+ 1)an+1 − (n+ 2)an = 0, with an := cov(Xn,j , Xn,k).

For any two random variables X and Y with finite second moment and a third random

variable Z , we have the conditional covariance formula

cov(X,Y ) = E
(
cov[X,Y |Z]

)
+ cov

(
E[X|Z], E[Y |Z]

)
.

Together with the basic distributional split property of BST(n), this readily leads to the

following recursion:

an =
2

n

n−1∑
i=0

ai + bn, with bn := cov
(
E[Xn,j |In], E[Xn,k|In]

)
.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548309990630
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 23 Jan 2018 at 10:13:51, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548309990630
https://www.cambridge.org/core


568 F. Dennert and R. Grübel

The recursion can easily be solved, resulting in

(n+ 1)an+1 − (n+ 2)an = (n+ 1)bn+1 − nbn,

so it remains to show that the right-hand side vanishes for n � j + k + 2.

Again, nodes contributing to Xn,j or Xn,k must be elements of the right or left subtree,

so that

E[Xn,j |In = i] = EXi,j + EXn−1−i,j , (3.3)

and similarly with k instead of j. We now simply calculate nbn for n � j + k + 2. Using

(3.3) we obtain

nbn =

n−1∑
i=0

(EXi,j + EXn−1−i,j)(EXi,k + EXn−1−i,k) − nEXn,jEXn,k. (3.4)

With (2.1) and EXi,j = 0 for i < j, EXj,j = 1, and n � j + k + 2, this leads to

(j + 1)(j + 2)(k + 1)(k + 2)nbn

= 4(k + 1)2(k + 2) + 8

n−1∑
i=k+1

(i+ 1)2 + 4(n− j)(j + 1)(j + 2)

+ 4(n− k)(k + 1)(k + 2) + 8

n−2−k∑
i=j+1

(i+ 1)(n− i) − 4n(n+ 1)2

= −1

3
j(8 + 4j + 4j2),

which indeed does not depend on n. (Some of the above computations were carried out

with the help of the computer algebra system Maple.)

3.2. Proof of Theorem 2.2

We require some more notation. Throughout, we fix the dimension k and regard vectors

as column vectors or k × 1 matrices; At is the transpose of the matrix A, and we write

δi,j for Kronecker’s delta, which is 1 for i = j and 0 otherwise. We use the Euclidean

norm on R
k and the operator norm on the space R

k×k of k × k-matrices, writing ‖ · ‖
in both cases. Convergence of random vectors and random matrices refers to the

respective L3-norm. For example, Yn → 0 for a sequence (Yn)n∈N of k-dimensional random

vectors means that limn→∞ E‖Yn‖3 = 0. Finally, Id = (δi,j)
k
i,j=1 denotes the k × k unit

matrix.

Suppose that Yn := (Xn,1, . . . , Xn,k)
t, an := EYn and Σn := cov(Yn). We shall show that

Σ
−1/2
n (Yn − an) converges in distribution to a d-dimensional standard normal random

vector. As k was arbitrary, this together with the structure of the Σn given in Proposition 2.1

implies the statement of the theorem.

Splitting the tree into its left and right subtree as in Section 3.1, we obtain the following

basic distributional recursion for the Y -vectors:

Yn =distr YIn + Y ′
n−1−In + bn. (3.5)
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Here Y ′
k is an independent copy of Yk for each k ∈ N, In is independent of (Yn)n∈N and

(Y ′
n )n∈N and is uniformly distributed on {0, . . . , n− 1}, and bn = (δn,1, . . . , δn,k). As this

does not change the distributions, we may assume that In = nU� for all n ∈ N, with U

uniformly distributed on the unit interval.

For n > k the ‘toll terms’ bn in (3.5) disappear, and then, for the rescaled random vectors

Zn := Σ−1/2
n (Yn − an), Z

′
n := Σ−1/2

n (Y ′
n − an), n ∈ N,

the recursion (3.5) translates into

Zn =distr An,InZIn + An,n−1−InZ
′
n−1−In + vn,In , (3.6)

with

An,i := Σ−1/2
n Σ

1/2
i , vn,i := Σ−1/2

n (ai + an−1−i − an) for i = 0, . . . , n− 1.

We need the asymptotic behaviour of the random vectors vn,In and the random matrices

An,In , An,n−1−In .

Lemma 3.1.

(a) For all j ∈ N,

lim
n→∞

E1{In�j}‖An,In‖3 = 0, lim
n→∞

E1{n−1−In�j}‖An,n−1−In‖3 = 0.

(b)

lim
n→∞

E‖vn,In‖3 = 0.

(c)

lim
n→∞

E‖An,In −
√
U Id‖3 = 0, lim

n→∞
E‖An,n−1−In −

√
1 −U Id‖3 = 0.

Proof. Throughout, we may assume that n > 2k + 2. In particular, by Proposition 2.1(b),

Σn = (n+ 1)Λ, (3.7)

with some fixed matrix Λ.

(a) By symmetry it is enough to prove the first part, and for this it is enough to use (3.7)

and to note that

sup
i=0,...,j

‖Σi‖ < ∞ for all j ∈ N.

(b) From (2.1) we obtain that ai + an−1−i = an for i = k + 1, . . . , n− 2 − k, so that

E‖vn,In‖31{k<In<n−1−k} = 0. (3.8)

For i � k we have, for the jth component of ai + an−1−i − an,

|(ai + an−1−i − an)j | �
∣∣∣∣δij − 2(i+ 1)

j + 1

∣∣∣∣ � k + 1,
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so that

E‖aIn + an−1−In − an‖31{In�k} � (k + 1)9/2
k + 1

n
,

which together with (3.7) implies

lim
n→∞

E‖vn,In‖31{In�k} = 0. (3.9)

By symmetry,

lim
n→∞

E‖vn,In‖31{In�n−k−1} = 0, (3.10)

and part (b) of the lemma is now immediate from (3.8), (3.9) and (3.10).

(c) Again it is enough to prove the first part, and it is easy to see that we may neglect

the range In ∈ {0, . . . , 2k + 2, n− 2k − 3, . . . , n− 1} asymptotically. Outside this range (3.7)

gives An,In = (
√
In + 1/

√
n+ 1)Id, so the assertion follows from the construction of the

sequence (In)n∈N.

Letting n → ∞ in (3.6), we formally obtain the fixed-point equation

Z∞ =distr

√
U Z∞ +

√
1 −U Z ′

∞ (3.11)

for the prospective limit Z∞. In view of

E
(
‖
√
UId‖3 + ‖

√
1 −UId‖3

)
=

4

5
< 1, (3.12)

the right-hand side of (3.11) defines a contraction with respect to the Zolotarev ζ3-metric

on the space of k-dimensional distributions with mean 0 and variance Id, and it is easily

seen that the k-dimensional standard normal distribution solves (3.11) and hence is the

unique fixed point in this space.

This is made rigorous in [11]. The statements in the above lemma together with (3.12)

validate the assumptions of Theorem 4.1 in [11], which provides the desired convergence

to the fixed point, i.e., asymptotic normality. We mention in passing that we only need

a special case; with the notation used in [11] we have that s = 3, we only have two

summands, and our In has a very special form.

3.3. Proof of Theorem 2.3

A tree Tn with n nodes has n+ 1 nodes u that are external in the sense that Tn+1 :=

Tn ∪ {u} is a tree with n+ 1 nodes. Any node with maximal depth must be a leaf node,

and any leaf node is ancestor to two external nodes. This leads to the (tight) bounds

Xn,1 � 1, 2Xn,1 � n+ 1, for all n ∈ N. (3.13)

In the BST sequence, Tn+1 arises from Tn by choosing u uniformly at random from the

external nodes of Tn. The new node may either increase Xn,1 by 1 or it may leave Xn,1

invariant; if Xn,1 = k these two possibilities have probabilities (n+ 1 − 2k)/(n+ 1) and

2k/(n+ 1) respectively.

Let Y = (Ym)m∈N be defined by Ym := X3m−1,1 − m for all m ∈ N. This is a non-

homogeneous Markov chain with Y1 ≡ 0, and some standard calculations show that
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its transition probabilities are given by

P (Ym+1 = k − 1|Ym = k) =
8(m+ k)3

3m(3m+ 1)(3m+ 2)
,

P (Ym+1 = k + 1|Ym = k) =
2(m+ k)(m+ 1 − 2k)(m− 2k)

3m(3m+ 1)(3m+ 2)

+
2(m− 2k)2(m+ k + 1)

3m(3m+ 1)(3m+ 2)

+
2(m− 2k)(m− 2k − 1)(m+ k + 2)

3m(3m+ 1)(3m+ 2)
,

P (Ym+1 = k + 2|Ym = k) =
(m− 2k)(m− 2k − 1)(m− 2k − 2)

3m(3m+ 1)(3m+ 2)
,

and P (Ym+1 ∈ {k − 1, k, k + 1, k + 2}|Ym = k) = 1. Note that the restrictions (3.13) trans-

late into

k � 1 − m, 2k � m.

Now let Z = (Zm)m∈N be a random walk on Z with P (Z1 = 0) = 1 that moves from k

to k − 1, k + 1 and k + 2 with probabilities 8/27, 6/27 and 1/27 respectively, and again

P (Zm+1 ∈ {k − 1, k, k + 1, k + 2}|Zm = k) = 1 for all m ∈ N. It is straightforward to show

that, for k > 0,

P (Ym+1 = k − 1|Ym = k) � P (Zm+1 = k − 1|Zm = k),

P (Ym+1 = k + 1|Ym = k) � P (Zm+1 = k + 1|Zm = k),

P (Ym+1 = k + 2|Ym = k) � P (Zm+1 = k + 2|Zm = k),

whereas for k < 0 all these inequalities hold with � replaced by � and vice versa. In

words: on N, the conditional increment of Y is stochastically bounded from above by the

conditional increment of Z; on −N, it is the other way round. We also have

P (Y2 = −1) � P (Z2 = −1), P (Y2 � 1) = P (Y2 = 1) � P (Z2 � 1).

Given a sequence (ξn)n∈N of independent random variables, all uniformly distributed on

the unit interval, we can construct Y and Z via Y1 = Z1 ≡ 0 and

Zm+1 = Zm + f(ξm), Ym+1 = Ym + g(m, Ym, ξm) for all m ∈ N,

where f and g(m, k, ·) are the quantile functions associated with the distributions of the

conditional increments. This construction yields a bivariate chain on Z × Z that has

marginals Y and Z and is such that, for all m ∈ N,

0 < Ym � Zm =⇒ 0 � Ym+1 � Zm+1,

Zm � Ym < 0 =⇒ Zm+1 � Ym+1 � 0

and with the further property that Y2Z2 � 0. This means that the return time distributions

to 0 of Y are stochastically bounded from above by the distribution of the return time

to 0 of Z . Note that for Y the return times to 0 are independent but not identically

distributed: we do have a Markov chain, but it is not homogeneous in time. The random
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walk (Zm)m∈N is null recurrent in view of the fact that its step distribution has mean

0, which means that its return time is finite with probability 1. Hence Y returns to 0

infinitely often.

3.4. Proof of Theorem 2.4

The subtree size profile can be regarded as an inverse to the standardized subtree size

counts. We show that the counts converge, and that the Y -processes can be written as an

almost surely continuous function of these counts. In order to make this precise, we define

the empirical subtree size functional Ψ as a function that associates with a non-empty

tree T the function Ψ(T ) : N → [0, 1] defined by

Ψ(T )(u) := #T (u)/#T , u ∈ N.

Now let (ηu)u∈N be a family of independent random variables, all uniformly distributed

on the unit interval. For each u = (u1, . . . , uk) ∈ N, let

Φ∞(u) :=

k−1∏
j=1

η
(1−uj+1)

(u1 ,...,uj )
· (1 − η(u1 ,...,uj )

)uj+1 . (3.14)

We interpret an empty product as 1, i.e., Φ∞(∅) = 1. This defines a random element of

[0, 1]N . The following proposition seems to belong to the folklore of the subject, but we

have not been able to find it in the literature in the form required here. The result can be

put into the wider context of boundary theory for transient Markov chains; see [6].

Proposition 3.2. As n → ∞, Ψ(Tn) converges with probability 1 in the space [0, 1]N , en-

dowed with the product topology. The distribution of the limit Ψ∞ is the same as the

distribution of Φ∞.

Proof. Let u = (u1, . . . , ul) ∈ N. We may assume that u �= ∅. It is known that the fill level

of the Tn converges to ∞ almost surely, so that

τ := min{n ∈ N : u ∈ Tn} < ∞ with probability 1.

Let (ξn)n∈N be the input sequence that generates the sequence of trees as explained

in the Introduction. The order statistics 0 < ξ(τ:1) < ξ(τ:2) < · · · < ξ(τ:τ) < 1 associated

with ξ1, . . . , ξτ form a partition of the unit interval. Let k be such that ξτ = ξ(τ:k) and

put ξ(τ:0) = 0, ξ(τ:τ+1) = 1. The sequence (ξτ+n)n∈N is independent of the initial segment

(ξ1, . . . , ξτ) and again consists of independent random variables, all uniformly distributed

on [0, 1]. The subsequence of those that land in the interval I := (ξ(τ:k−1), ξ(τ:k+1)) and

thus contribute to the subtree rooted at u is again i.i.d., now uniformly distributed on

I , conditionally on (ξ1, . . . , ξτ), which means that in the limit the relative subtree sizes at

u0 := (u1, . . . , ul , 0) and u1 := (u1, . . . , ul , 1) will be (ξ(τ:k) − ξ(τ:k−1))/(ξ(τ:k+1) − ξ(τ:k−1)) and

(ξ(τ:k+1) − ξ(τ:k))/(ξ(τ:k+1) − ξ(τ:k−1)) respectively. Hence, if we have convergence of Ψ(Tn)(u)

then convergence also holds for Ψ(Tn)(u0) and Ψ(Tn)(u1). In view of Ψ(Tn)(∅) ≡ 1 for all

n ∈ N, this proves almost sure convergence of the standardized subtree size functional in

the product topology.
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The distributional statement now follows immediately from the basic distributional

recursion of the family BST(n), n ∈ N0.

We need two properties of the limit function.

Lemma 3.3.

(a) With probability 1, all values Ψ∞(u), u ∈ N, are different.

(b) With probability 1, #{u ∈ N : Ψ∞(u) � t} is finite for all t > 0.

Proof. In view of Proposition 3.2 we may consider Φ∞, defined in (3.14), instead of Ψ∞.

(a) For the proof of the first statement, let u, v ∈ N with u �= v and let s be the last

common ancestor of u and v. We first assume that s /∈ {u, v}. If s is the direct ancestor to

u and v, i.e., u = s0, v = s1 or u = s1, v = s0, then

Φ∞(u) = ηΦ∞(s), Φ∞(v) = (1 − η)Φ∞(s), (3.15)

with η uniformly distributed on (0, 1) and independent of Φ∞(s). Clearly, this implies that

P (Φ∞(u) = Φ∞(v)) = 0. If u /∈ {s, s0, s1} then a representation analogous to (3.15) would

contain an additional factor η̃ for Φ∞(u), where η̃ has an absolutely continuous distribution

and is independent of η and Φ(s). Again, this implies that P (Φ∞(u) = Φ∞(v)) = 0. By

symmetry the same holds if v /∈ {s, s0, s1}, and the remaining cases s = u and s = v can be

handled similarly.

(b) We first note that the probability that Φ∞(u) � t for a specific node u = (u1, . . . , uk), k ∈
N, can be written as the probability of the event η1 · · · ηk � t, with η1, . . . , ηk independent

and uniformly distributed on [0, 1]. By a standard argument, using the fact that the

variables − log ηi, i = 1, . . . , k, are exponentially distributed with mean 1,

P (η1 · · · ηk � t) = P
(
s(log η1 + · · · + log ηk) � s log t

)
� e−s log t

(
Ees log η1

)k
� 1

ts(1 + s)k
for all s > 0.

We have 2k nodes of depth k. Hence, with s = 3/2,

E#{u ∈ N : Φ∞(u) � t} = 1 +

∞∑
k=1

E#{u ∈ N : |u| = k, Φ∞(u) � t}

� 1 +

∞∑
k=1

2k
2k

t3/25k
< ∞.

This proves that #{u ∈ N : Φ∞(u) � t} is finite with probability 1 for each individual

t > 0. Using monotonicity in t, it is easy to construct a set of probability 1 that works for

all t > 0 simultaneously.

Suppose now that A is such that P (A) = 1 and such that Ψ∞(ω) has the properties

described in Lemma 3.3 whenever ω ∈ A. Because of Proposition 3.2, we may further
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574 F. Dennert and R. Grübel

assume that on A we also have Ψ(Tn)(u)(ω) → Ψ∞(u)(ω) for all u ∈ N as n → ∞. We now

claim that, for ω ∈ A, Yn(ω) converges in D to the limit Y∞(ω) = (Y∞,t(ω))0�t<1 given by

Y∞,t(ω) := #{u ∈ N : Ψ∞(u)(ω) � 1 − t}.

With Y∞ ≡ 0 on Ac this would show that Yn → Y∞ with probability 1.

Let ω ∈ A be fixed; below, we omit the argument ω. Let t0 < 1 be given and choose

ε > 0 such that 1 − 2ε > t0. Then the number of nodes u with Ψ∞(u) � ε is finite, and these

nodes u1, . . . , uk may be ordered such that Ψ∞(ui+1) < Ψ∞(ui), i = 1, . . . , k − 1. Further, for

each of these nodes, Ψ(Tn)(ui) → Ψ∞(ui).

Now consider the functions

fn : [0, t0] → N, t 
→ #{u ∈ N : Ψ(Tn)(u) � 1 − t},

n ∈ N, and

f∞ : [0, t0] → N, t 
→ #{u ∈ N : Ψ∞(u) � 1 − t}.

Clearly, these are the restrictions of the Yn- and Y∞-path, respectively, to the interval

[0, t0]. For any given δ > 0 we can find an n0 ∈ N such that |Ψ(Tn)(ui) − Ψ∞(ui)| � δ for

all n � n0 and all i ∈ {1, . . . , k}. We may further assume, by increasing n0 if necessary, that

the number of nodes in Tn, n � n0, that have subtree size at least 1 − t0, does not exceed

k. All these functions are then increasing, take their values in {1, . . . , k}, have jumps of

size 1 only (if δ is small enough) and the position of the ith jump of fn converges to the

position of the ith jump of f. Taken together, this implies that fn → f as n → ∞ with

respect to the Skorokhod topology on the space of cadlag functions on [0, t0].

3.5. Proof of Theorem 2.5

Using the representation (3.14), we define ΦL
∞,Φ

R
∞ : N → [0, 1] by

ΦL
∞(u) := Φ∞(0u), ΦR

∞(u) := Φ∞(1u),

where 0u = (0, u1, . . . , uk), 1u = (1, u1, . . . , uk) for all u = (u1, . . . , uk) ∈ N. Let

Y L
∞ (t) := #{u ∈ N : ΦL

∞(u) � 1 − t}, Y R
∞ (t) := #{u ∈ N : ΦR

∞(u) � 1 − t}.

Then we obtain from (3.14), with η := η∅,

Y∞,t =distr 1 + 1[1−t,1)(η)Y
L

∞

(
η − 1 + t

η

)
+ 1(0,t](η)Y

R
∞

(
t− η

1 − η

)
. (3.16)

Clearly, EY L
∞ (t) = EY R

∞ (t) = EY∞,t, hence (3.16) implies that f(t) := EY∞,t satisfies the

integral equation

f(t) = 1 + 2

∫ t

0

f

(
t− s

1 − s

)
ds.

This is uniquely solved by f(t) = (1 + t)/(1 − t), 0 � t < 1. (We can use (2.1) to guess the

solution, but note that almost sure convergence in D does not imply convergence of the

first moments.)

In the above derivation of the mean function we have implicitly used that EYn,t < ∞ for

0 � t < 1, which follows from the argument given at the end of the proof of Lemma 3.3.
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This argument can easily be extended to prove the existence of higher moments; in

particular, EY 2
∞,t < ∞ for 0 � t < 1.

To obtain the variance function g(t) := var(Y∞,t) we once again make use of the

conditional variance formula,

g(t) = var
(
E[Y∞,t|η]

)
+ E

(
var[Y∞,t|η]

)
,

with η as in (3.16). From (3.16) we obtain, with f again the mean function,

E[Y∞,t|η] = 1 + 1[1−t,1)(η) f

(
η − 1 + t

η

)
+ 1(0,t](η) f

(
t− η

1 − η

)
.

Using our formula for f we are thus led to

var
(
E[Y∞,t|η]

)
= E

(
E[Y∞,t|η]

)2 − (EY∞,t)
2 = h(t),

with

h(t) :=

⎧⎪⎨
⎪⎩

2t(t2 − 6t+ 3)

3(1 − t)2
, 0 � t � 1/2,

2(1 − t)

3
, 1/2 < t < 1.

Further, as Y L
∞ and Y R

∞ are independent given η,

var[Y∞,t|η] = 1[1−t,1)(η) g

(
η − 1 + t

η

)
+ 1(0,t](η) g

(
t− η

1 − η

)
,

which leads to

E
(
var[Y∞,t|η]

)
= 2

∫ t

0

g

(
t− s

1 − s

)
ds = 2(1 − t)

∫ t

0

1

(1 − s)2
g(s) ds.

Putting this together, we obtain an integral equation for the variance function,

g(t) = 2(1 − t)

∫ t

0

g(s)

(1 − s)2
ds+ h(t). (3.17)

In particular, g(0) = 0 (which is also obvious from Y∞,0 ≡ 1), g is continuous on [0, 1), and

g is differentiable on (0, 1/2) ∪ (1/2, 1). Standard techniques, such as taking the derivative

on both sides and solving the resulting differential equations inside the subintervals, can

be used to show that (3.17) is uniquely solved by the function given in the theorem.

4. Comments

4.1. Contractions at the big end

We have used a variant of the contraction method to obtain asymptotic normality for the

number of small subtrees. By design, a method that takes distributions as its basic objects

will lead to weak convergence only, where in fact, by Theorem 2.4, the ‘true’ mode of

convergence for the cumulative counts of large subtrees is convergence with probability

1. Nevertheless, it is interesting to see the contraction method at work at this end too.

We refer the reader to the first author’s doctoral thesis [3] for details, and simply give an

overview.
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Let D now be the set of all weakly increasing and right continuous functions f : [0, 1) →
N with the property that f(0) = 1 and

‖f‖ :=

∫ 1

0

(1 − t) |f(t)| dt < ∞.

This is a closed subset of the L1-space associated with the measure ν(dt) = (1 − t) dt on the

unit interval. Let B(D) be the associated Borel σ-field. Then Yn converges in distribution

in the space D as n → ∞, and the limit distribution is the unique fixed point of a suitably

defined functional Φ : M → M, with M the set of all probability measures P on (D,B(D))

that satisfy the condition
∫

‖f‖P (df) < ∞. We define a family {φ(s, .) : 0 < s < 1} of

functions φ(s, .) : D → D by

φ(s, f)(t) := 1 + 1[1−t,1)(s) · f
(
s− 1 + t

s

)
+ 1(0,t](s) · f

(
t− s

1 − s

)
,

and then let Φ(P ) be the distribution of φ(η,X), with η and X independent, η uniformly

distributed on the unit interval, and P the distribution of the D-valued random variable

X; see also (3.16). In fact, Φ turns out to be a strong contraction with respect to the

metric

d(P ,Q) := inf{E‖X − Y ‖ : X ∼ P , Y ∼ Y }

on M, and we have the following upper bound for the distance between the distribution

of Yn and the distribution of the limit:

d
(
L(Yn),L(Y∞)

)
� 6(1 + log n)/n for all n ∈ N.

4.2. The middle range

Given that we have found functional limits at the big and the small end of the subtree

size functional, it is natural to ask what happens ‘in the middle’. We know from the results

of [7] and [8] that, for any individual t ∈ (0,∞), the counts Xn,kn converge in distribution

to a limit that is Poisson with mean 2/t2 if kn ∼ tn1/2. It is easy to see that we cannot

possibly have convergence almost surely in this situation, as this would mean that with

probability 1 the random variable Xn,kn does not change its value from some n onwards.

Regarding the joint distribution for more than one t-value, we conjecture that the

associated counts are independent in the limit (Proposition 2.1 shows that the covariances

tend to 0), but we do not have a proof. Use of the contraction method seems to require the

construction of an appropriate accompanying sequence. Neininger and Rüschendorf [11]

were able to carry this out in situations where asymptotic normality holds, as in our

Theorem 2.2. For this it was important that for normal distributions there are two

parameters that can be adjusted; also, the ideal metric ζ3 used in connection with

asymptotic normality does not seem to have an obvious analogue for distributions

concentrated on N0. We plan to deal with this problem in a separate paper.

4.3. Use of subtree sizes

Passing from a binary tree to one of its characteristics entails some loss of information,

but the intention is of course that the characteristic distils the features of the tree that
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are of relevance to the application of interest. As with the node depth profile, the subtree

size profile captures to some extent the balancedness of tree. For example, the sequence

(1, 1, . . . , 1) would not completely specify the tree, but it would show that each node has

exactly one direct child; the tree is essentially a linked list, and only the left–right structure

of the tree’s only path is lost when passing from the tree Tn to its subtree size profile Xn.

Other characteristics of Tn can be read off from Xn: for example, the internal path length

Pn, which is the sum of the heights of all nodes in Tn, and the Wiener index Wn, which is

the sum of all distances between unordered pairs of nodes in Tn, can be written as

Pn =

n−1∑
j=1

jXn,j , Wn =

n−1∑
j=1

j(n− j)Xn,j .

Another use of subtree sizes appears in connection with the reconstruction of a sample

ξ1, . . . , ξn from the associated labelled binary tree (Tn, φn) produced by the BST algorithm.

Where within the range of knowing the full sample and knowing the ordered sample lies

(Tn, φn)? In the step from the order statistics to the original sample all n! permutations

are possible, and have equal likelihood. Given the labelled tree, it is clear that the first

value ξ1 of the sample is the label of the root node, but the permissible permutations

associated with the left L(Tn) and right subtree R(Tn) of Tn may be put together in an

arbitrary manner. This implies that, with ψ(Tn) the number of permutations that are

compatible with the outcome Tn, we have

ψ(Tn) =

(
#Tn − 1

#L(Tn)

)
ψ(L(Tn))ψ(R(Tn)).

This can easily be solved, resulting in

ψ(Tn) =
∏
u∈Tn

(
#Tn(u) − 1

#L(Tn(u))

)
= n!

∏
u∈Tn

1

#Tn(u)
= n!

n−1∏
j=1

j−Xn,j ,

which depends on the tree only via the associated subtree size profile. For example, with

n = 15, 768768 different permutations lead to the tree T15 in Figure 1(a). Of course, as

conditioning turns uniform distributions into uniform distributions, this also follows from

the known formula for the probability of a specific tree under BST(n): see, e.g., [12,

Theorem 6.1].
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[3] Dennert, F. (2009) Zufällige binäre Bäume: Algorithmen, Asymptotik und Statistik.

Dissertation, Leibniz Universität Hannover.

[4] Devroye, L. (1991) Limit laws for local counters in random binary search trees. Random Struct.

Alg. 2 303–315.

[5] Drmota, M., Janson, S. and Neininger, R. (2008) A functional limit theorem for the profile of

search trees. Ann. Appl. Probab. 18 288–333.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548309990630
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 23 Jan 2018 at 10:13:51, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548309990630
https://www.cambridge.org/core


578 F. Dennert and R. Grübel
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