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ON THE NUMBER OF ITERATIONS REQUIRED
BY VON NEUMANN ADDITION

Rudolf Grübel
1

and Anke Reimers
1

Abstract. We investigate the number of iterations needed by an ad-
dition algorithm due to Burks et al. if the input is random. Several
authors have obtained results on the average case behaviour, mainly
using analytic techniques based on generating functions. Here we take
a more probabilistic view which leads to a limit theorem for the distri-
bution of the random number of steps required by the algorithm and
also helps to explain the limiting logarithmic periodicity as a simple
discretization phenomenon.
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1. Introduction and results

Some fifty years ago Burks et al. [2] introduced an addition algorithm that
since then has become one of standard topics in computer science curricula; see
e.g. Scott [19] or Wegener [21]. It is also used in practice for multiprecision
arithmetic; see e.g. Forster [7]. This algorithm proceeds iteratively, with the
number of steps and hence the running time depending on the input. In the
worst case this number is of the same order as the length n of the input, but on
average only about logb n steps are needed with a base b representation. The
average case behaviour has already been discussed in Burks et al. [2], with com-
plements and refinements obtained by Claus [4] and Knuth [12]. Together with
Quicksort and a related selection algorithm, also due to Hoare and known as
Find or Quickselect, von Neumann addition is one of the classical examples
for an algorithm where the worst case behaviour is no better than that of some
standard naive procedure. Therefore, the raison d’être for these methods, at least
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from a practical point of view, is the improvement obtained “on average” or “for
typical input”. We mention in passing that there is, similar to the situation with
Hoare’s algorithms, a deterministic algorithm with worst case behaviour compa-
rable to the average case behaviour of von Neumann addition but requiring more
complicated data structures; see Cormen et al. [5] or Wegener [21].

In recent years some of the early average case analyses have received renewed
interest, with the focus on the complete distribution of the running time rather
than the associated expected value. Let Yn denote the number of comparisons
needed by Quicksort. Using martingale methods Regnier [15] showed that (Yn−
n logn)/n converges in distribution as n→∞, Rösler [17] obtained the same result
with a completely different and somewhat more constructive method. For Find

see Grübel and Rösler [10] and Grübel [8,9], where the convergence in distribution
of Zn/n was established for the number Zn of comparisons needed to find a specific
quantile such as the median. It is an immediate consequence of these results that
there is a concentration of mass phenomenon in the first, but not in the second
case: Yn/EYn converges to a fixed value as n→∞, Zn/EZn does not. Also, such
results can be used to assess the probability of excessively long running times via
the quantiles of the limit distribution. The bounds for these quantiles that come
out of the results for expected values via Chebychev’s inequality can be very poor;
see e.g. the discussion in Grübel [8]. Chassaing et al. [3] discuss related optimality
concepts; concentration of mass in connection with stochastic algorithms is also
discussed in McDiarmid and Hayward [14] and McDiarmid [13].

Let Xn be the number of iterations required by von Neumann addition if the
input consists of two independent sequences of length n of independent and uni-
formly distributed base-b digits (for a description of the algorithm see the begin-
ning of the next section). For b = 2 Burks et al. [2] obtained the upper bound
EXn ≤ log2 n + 2 and Claus [4] showed that EXn ≥ dlog2 ne − 1. The general
remarks in the previous paragraph would lead us to expect a result on the con-
vergence in distribution of (Xn − an)/bn to some non-trivial limit law as n→∞,
with suitable sequences (an)n∈N and (bn)n∈N of real numbers. In view of the av-
erage case results the shift sequence (an)n∈N should be of the order logb n and
indeed, Claus [4] conjectured on the basis of numerical evidence that EXn− log2 n
converges to 1/3 for b = 2 as n→∞. Knuth [12], however, proved that

EXn = logb n+
γ

log b
+

1
2

+ logb
b− 1

2
− f(n) + O

(
(log n)4

n

)
as n→∞, where γ is Euler’s constant and

f(x) =
2

log b

∞∑
k=1

<
(

Γ
(
−2πik
log b

)
exp

(
2πik logb

(b− 1)x
2

))
·

(The versions of the algorithm considered by Claus [4] and Knuth [12] differ
slightly; see Sect. 3.1 below.) We have f(bx) = f(x) for all x > 0, but a plot
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shows that f is not constant (for small b, f is “almost” constant). This small-
fluctuations phenomenon appears in connection with various algorithms such as
radix exchange sorting and tries; see Chapter 5.2.2 and Chapter 6.3 in Knuth [11],
Chapter 7.8 in Sedgewick and Flajolet [20] and the references given there.

In accordance with the classical approach to such problems both Claus and
Knuth based their analysis on a recursion relation for the values P (Xn ≥ i),
i = 1, . . . , n, n ∈ N; the use of generating functions then provides the bridge to
the impressive array of techniques of asymptotic analysis (Knuth dedicates his
paper to de Bruijn). For a review of Mellin transform methods in this context,
including an analytic approach to the small-fluctuations phenomenon, see Flajolet
et al. [6]. Our approach makes more use of probabilistic structures. As a result
distributional limits can be obtained (which in turn shows that there is concen-
tration of mass about the mean for large n), the above log-periodicity is seen to
arise as a discretization phenomenon and a simple ‘non-computational’ proof can
be given that f is not constant.

We now state our main results, proofs are collected in the next section. Asymp-
totics for distributions require a suitable notion of distance for probability mea-
sures: we work with the total variation distance which for distributions P,Q on
the Borel subsets B of the real line is defined by

dTV(P,Q) := sup
A∈B

∣∣P (A)−Q(A)
∣∣.

We write L(Z) for the distribution of the random variable Z and use dTV(X,Y ) as
an abbreviation for dTV(L(X),L(Y )). If P and Q are concentrated on the set Z
of integers, then

dTV(P,Q) =
1
2

∑
k∈Z

∣∣P ({k})−Q({k})
∣∣.

Further, if P, P1, P2, . . . all satisfy this condition, then convergence of the atoms,
i.e.

Pn({k}) → P ({k}) for all k ∈ Z,
is equivalent to convergence in total variation distance (this is a special case of
Scheffé’s theorem; see e.g. Billingsley [1], p. 218). It turns out that no rescaling
is required for the distributional asymptotics of Xn (i.e. we may take bn = 1
for all n ∈ N), so that the distributions of interest are indeed concentrated on Z.
However, because of the log-periodicity we do not have one single limit distribution
but rather a whole family that depends on the behaviour of {logb n}; here {x}
denotes the fractional part of x, i.e. {x} = x − bxc in the usual floor and ceiling
notation. A random variable Z is said to have the Gumbel distribution with scale
parameter λ, which we abbreviate to Z ∼ Gu(λ), if P (Z ≤ z) = exp(− exp(−λz))
for all z ∈ R. For typographical convenience we define the constants

ζb := logb
b− 1

2
, χb :=

b− 1
2b
·
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Note that χb is the probability that the sum of two independent random integers,
both uniformly distributed on the set {0, 1, . . . , b − 1}, exceeds the value b − 1.
In our model for the input of the algorithm, this is the probability that a carry is
generated at some fixed position of the input sequences.

Theorem 1. Let Xn denote the random number of iterations required by von
Neumann addition with respect to base b if the input consists of independent and
uniformly distributed base b digit sequences of length n. Then, with Z ∼ Gu(log b),

lim
n→∞

dTV

(
Xn − blogb nc,

⌈
Z + ζb + {logb n}

⌉)
= 0.

This shows that the distribution of the integer-valued random variable Xn −
blogb nc can be approximated by a shifted and discretized Gumbel distribution,
with the shift depending on n only via the fractional part of its base-b logarithm.
In particular, we obtain approximations for the probability that Xn is equal to
or greater than blogb nc + k for n large and k fixed. Our next result deals with
the quality of the Gumbel approximation in the tails of the distribution, i.e. with
increasing k, where Theorem 1 would be useless. Of special interest are deviations
that are of the same order of magnitude as the mean.

Theorem 2. Let Xn and Z be as in Theorem 1. Then, for all t > 0,

lim
n→∞

nt
∣∣∣P (Xn − blogb nc ≥ t logb n

)
− P

(
dZ + ζb + {logb n}e ≥ t logb n

)∣∣∣ = 0.

The tail behaviour of Z is easily accessible. From limz→∞ bzP (Z ≥ z) = 1 it
follows that ntP

(
dZ + ζb + {logb n}e ≥ t logb n

)
oscillates between two positive

constants, in Section 3.2 this will be discussed in more detail. There are two points
worth noting at this stage: first, the tail probabilities of Xn fluctuate too; second,
the distributional approximation by a shifted and discretized Gumbel distribution
is close enough to capture these fluctuations.

Closeness in total variation norm of two distributions does not imply that the
corresponding moments are close. The next result supplements Theorem 1 in this
respect.

Theorem 3. Let Xn and Z be as in Theorem 1. Then, for all l ∈ N,

lim
n→∞

(
E
(
Xn − blogb nc

)l − E
⌈
Z + ζb + {logb n}

⌉l) = 0 .
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By Theorem 1, for any fixed η in the interval [0, 1) we obtain a limit distribution
for the subsequence (Xnk − blogb nkc)k∈N if we take nk := dbk+ηe for all k ∈ N.
Theorem 3 shows that, for such sequences,

lim
k→∞

(
EXnk − logb nk

)
= E

⌈
Z + ζb + η

⌉
− η

with Z ∼ Gu(log b). This representation throws some light on the average case
behaviour of the algorithm, supplementing the earlier work by Claus [4] and
Knuth [12] cited above. In particular, we have the following result, which also
shows that the full sequence

(
L(Xn − blogb nc)

)
n∈N does not converge.

Theorem 4. With Z ∼ Gu(log b), the function

η 7→ E
⌈
Z + ζb + η

⌉
− η

is not constant.

The limiting average case behaviour will be further discussed in Section 3.3
below where we also relate our result to Knuth’s formula.

2. Proofs

We first introduce some notation. Throughout, b is a fixed integer greater
than 1, b is the basis for the representation of the numbers to be added. Let
Zb := {0, 1, . . . , b− 1} be endowed with the operations

m⊕ n := m+ n (mod b), m ∧ n :=

{
1, if n+m ≥ b,
0, otherwise.

Further, Zb,∞ denotes the set of sequences u = (u0, u1, . . . ) of elements of Zb. On
sequences, ⊕ and ∧ operate componentwise. We define the truncation operators
Tn : Zb,∞ → Zb,∞, n ∈ N0, and the shift operator S : Zb,∞ → Zb,∞ by

Tn(u)k :=

{
uk, if k < n,

0, otherwise,
S(u)k :=

{
uk−1, if k > 0,
0, otherwise,

for all u = (uk)k∈N0 ∈ Zb,∞. Sequences u, v with only a finite number of non-
zero elements can be regarded as base-b representations of non-negative integer
numbers; in contrast to the usual notation we read the digits from left to right in
increasing order. The von Neumann addition algorithm provides the sum u+ v of
such “terminating” sequences via the following iterative procedure: we start with
u(0) := u, v(0) := v. Given u(l), v(l) we first check whether v(l) = 0. If this is the
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case, then the u-part of the pair contains the required base-b representation of the
sum and no (further) iterations are needed. If not, we define the next pair by

u(l+1) := u(l) ⊕ v(l), v(l+1) := S
(
u(l) ∧ v(l)

)
.

From l = 1 onwards the v(l)-parts contain the respective carry bits. These start in
v(1) at those positions k where uk−1 +vk−1 ≥ b and propagate to the right in later
v-parts as long as uk−1+j + vk−1+j = b− 1, j = 1, 2, . . . The algorithm terminates
as soon as all components of the v-part of the pair are equal to 0, which is the case
after at most n+ 1 steps if n is the maximum of the length of u and the length of
v (a slight subtlety arises in this connection, see Sect. 3.1 below). The point of the
algorithm is, of course, that “on the average”, the number of required iterations
is much smaller than the effective length of the input.

In order to make such a statement precise we need a stochastic model. We con-
sider two independent random elements U and V of Zb,∞, both with independent
components that are uniformly distributed on the set Zb of availabe digits, and
denote by Xn the random number of iterations required by the above algorithm if
the input consists of U and V truncated at n, i.e. of Tn(U) and Tn(V ).

From U and V we obtain two increasing sequences (σl)l∈N0 and (τl)l∈N0 of
integer-valued random variables by τ0 := 0,

σl := inf{k ≥ τl : Uk + Vk > b− 1}, τl+1 := inf{k > σl : Uk + Vk 6= b− 1}

for all l ∈ N0. With

Ml := max{τj − σj−1 : 1 ≤ j ≤ l}, Nn := #{0 ≤ k < n : Uk + Vk > b− 1}

we then have the following fundamental relationship on Tn(V ) 6= 0,

MNn−1 + 1 ≤ Xn ≤ MNn + 1. (1)

On Tn(V ) = 0 we have Xn = 0; as this happens with probability b−n only this
will turn out to be without significance for the limiting behaviour. Of course, the
point of this construction is that the bounds in (1) are sharp enough to reduce
the study of (Xn)n∈N to that of (Ml)l∈N and that the latter sequence is easier to
analyse. In fact, it is immediately clear from the construction that the distribution
of Nn is binomial with parameters n and χb; further, it is easily verified that the
differences τj+1 − σj , j ∈ N0, are independent and geometrically distributed with
parameter 2χb. Note, however, that (Ml)l∈N and (Nn)n∈N are not independent.

We use the well-known fact that geometric distributions arise as discretiza-
tions of exponential distributions. Formally, if Ỹ is exponentially distributed
with parameter λ, then Y := dỸ e has a geometric distribution with parameter
1− exp(−λ). The transition Ỹ 7→ Y preserves independence and obviously com-
mutes with taking the maximum. We can therefore assume that Ml = dM̃le, with
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M̃l := max{Ỹ1, . . . , Ỹl} and (Ỹj)j∈N a sequence of independent random variables,
exponentially distributed with parameter λ := log b.

The Gumbel distribution is one of the extreme value distributions, it arises
as the limit distribution of the maxima of independent random variables (see
e.g. Resnick [16]). We require a strong variant of this statement for exponential
distributions.

Lemma 5. Let (Ỹj)j∈N be a sequence of independent random variables, all
exponentially distributed with parameter λ, and suppose that Z ∼ Gu(λ). Let
M̃n := max{Ỹ1, . . . , Ỹn}. Then, for all γ < 2λ,

lim
n→∞

∫ ∞
−∞

eγ|z|
∣∣fn(z)− f∞(z)

∣∣dz = 0,

where fn and f∞ denote the densities of M̃n − (logn)/λ and Z respectively.

Proof. The distribution of λỸj is exponential with parameter 1, hence a simple
rescaling argument shows that it is enough to consider the case λ = 1. We split the
range of integration for the weighted difference of the densities into the segments
(−∞,− logn), [− logn, 0] and (0,∞). For the first of these we note that P (M̃n <
0) = 0, hence this part of the integral reduces to

∫ − logn

−∞
eγ|x|f∞(x) dx =

∫ − logn

−∞
exp
(
−γx− x− exp(−x)

)
dx

=
∫ ∞

0

exp
(
γ logn+ γy + logn+ y − n exp(y)

)
dy

≤ n1+γ e−n
∫ ∞

0

e−y(n−1−γ) dy,

where we used that ey ≥ 1 +y for all y ≥ 0. Evidently, this last integral tends to 0
as n→∞.

For all x ≥ − logn we have

P (M̃n ≤ logn+ x) = P (Ỹ1 ≤ logn+ x, . . . , Ỹn ≤ logn+ x) =
(

1− e−x

n

)n
,

which shows that M̃n − logn has density

fn(x) = e−x
(

1− e−x

n

)n−1

, x > − logn.
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We can therefore rewrite the integral over the middle segment as follows,∫ 0

− logn

eγ|x|
∣∣fn(x) − f∞(x)

∣∣ dx
=
∫ 0

− logn

e−γx−x
∣∣∣(1− e−x

n

)n−1

− e−e−x
∣∣∣dx

=
∫ n

1

yγ
∣∣∣(1− y

n

)n−1

− e−y
∣∣∣ dy

=
∫ n

1

yγ e−y
∣∣∣exp

(
(n− 1) log

(
1− y

n

)
+ y

)
− 1

∣∣∣dy .
It is easily seen that the term within the absolute value signs tends to 0 as n→∞.
Using

log(1− z) ≤ −z for z < 1

we see that it is also bounded from above by ey/n + 1, which means that the
integrand is bounded by the function y 7→ yγ

(
e−y/2 + e−y

)
for n ≥ 2. Hence

Lebesgue’s dominated convergence theorem applies and we obtain that the middle
term also vanishes in the limit.

The integral over the final segment (0,∞) can be rewritten as∫ ∞
0

eγx
∣∣fn(x) − f∞(x)

∣∣ dx
=
∫ ∞

0

eγx−x
∣∣∣(1− e−x

n

)n−1

− e−e−x
∣∣∣dx

=
∫ ∞

0

eγx−x−e−x
∣∣∣exp

(
(n− 1) log

(
1− e−x

n

)
+ e−x

)
− 1

∣∣∣dx.
We may assume that n ≥ 2 so that the inequality∣∣log(1− y) + y

∣∣ ≤ 2 y2 on |y| ≤ 1/2

applies with y = e−x/n, resulting in the upper bound∣∣∣(n− 1) log
(

1− e−x

n

)
+ e−x

∣∣∣ ≤ e−x

n
+ 2

e−2x

n
≤ 3.

This in turn means that we can use∣∣∣ey − 1
∣∣ ≤ e3 |y| on |y| ≤ 3

to obtain∣∣∣exp
(

(n− 1) log
(

1− e−x

n

)
+ e−x

)
− 1

∣∣∣ ≤ e3
(e−x

n
+ 2

e−2x

n

)
·
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Inserting this upper bound in the above integral and using γ < 2 we again obtain
the limit 0 as n→∞. �

The proofs of our first three theorems all use the same strategy: Xn is related to
MNn and MNn−1 by (1), these are related to some M -variables with non-random
index l = l(n), Ml has a representation via a continuous counterpart M̃l and
Lemma 5 is used to close the gap to a suitably transformed Gumbel variate.

The total variation distance for (the distributions of) random variables X and
Y with densities fX and fY is given by

dTV(X,Y ) =
1
2

∫ ∞
−∞

∣∣fX(u)− fY (u)
∣∣ du,

it is obviously invariant under shifts, i.e.

dTV(X + c, Y + c) = dTV(X,Y ) for all c ∈ R, (2)

and cannot increase under discretization, i.e.

dTV

(
dXe, dY e

)
≤ dTV(X,Y ). (3)

Also, as limc→0

∫ ∣∣f(x+c)−f(x)
∣∣dx = 0 for integrable functions f (see e.g. Th. 9.5

in Rudin [18]), we have the following continuity property for random variables X
with an absolutely continuous distribution,

lim
c→0

dTV(X + c,X) = 0. (4)

With γ = 0 Lemma 5 leads to a limit result for the total variation distance
between the distributions of the shifted maximum and the limit variable, which
is enough to carry out the last step of the strategy outlined above in connection
with Theorem 1. For the step from Xn to Ml we need the following lemma:

Lemma 6. limn→∞ dTV

(
Xn,Mdnχbe + 1

)
= 0.

Proof. Let

An :=
{
|Nn − dnχbe| < n3/4

}
, Bn :=

{
Mdnχbe−dn3/4e = Mdnχbe+dn3/4e

}
·

We have Xn = Mdnχbe + 1 on An ∩Bn ∩ {Xn 6= 0} so that∣∣P (Xn ∈ C)− P (Mdnχbe + 1 ∈ C)
∣∣ ≤ P (Anc) + P (Bnc) + b−n

for all C ⊂ Z (we write Ac for the set-theoretic complement of A). As the right
hand side does not depend on C the assertion will follow if we can show that
P (Anc) → 0 and P (Bnc) → 0 as n → ∞. Since ENn = nχb and var(Nn) =
nχb(1 − χb) the first of these is an easy consequence of Chebychev’s inequal-
ity. In connection with Bn we use the above representation by exponentially
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distributed random variables Ỹj , j ∈ N. Obviously, for Mdnχbe−dn3/4e to differ
from Mdnχbe+dn3/4e we need a record value in the index range j ∈ dnχbe ± dn3/4e.
Let Rl := {Ỹl > Ỹj : j = 1, . . . , l − 1} denote the event that the lth value in the
Ỹ -sequence is a record. It is well known (and easy to see) that P (Rl) = 1/l. In
particular,

P (Bnc) ≤
dnχbe+dn3/4e∑
j=dnχbe−dn3/4e

1
j
→ 0

as n→∞. �

Proof of Theorem 1. Lemma 5 implies

lim
n→∞

dTV

(
M̃dnχbe − logbdnχbe , Z

)
= 0 with Z ∼ Gu(log b).

As the relevant distributions are absolutely continuous property (4) yields

lim
n→∞

dTV

(
M̃dnχbe + 1− logb n− ζb , Z

)
= 0.

For x ∈ R, k ∈ Z we have dx− ke = dxe− k, hence we obtain on using (2) and (3)

lim
n→∞

dTV

(
Mdnχbe + 1− blogb nc ,

⌈
Z + ζb + {logb n}

⌉)
= 0.

The assertion now follows with Lemma 6, the triangle inequality for the total
variation distance and a version of (2) for discrete random variables. �

Proof of Theorem 2. Let t > 0 be fixed. As we compare integer-valued random
variables we may replace t logb n by an := dt logb ne. Let κ be a constant satisfying
1/2 < κ < 1. Chernoff’s bound on the tails of binomial distributions gives

P
(
|Nn − nχb| ≥ βn

)
≤ 2 exp(−2β2n) for all β ≥ 0,

see e.g. Section 2 in McDiarmid [13]. Hence, with An :=
{
|Nn − dnχbe| < nκ

}
,

P (Anc) ≤ P
(
|Nn − nχb| ≥ nκ−1

)
= O

(
exp
(
−n2κ−1

))
= o

(
n−γ

)
(5)

for all γ > 0. Let φ± : N→ N be defined by

φ+(n) := dnχbe+
⌊
nκc, φ−(n) := dnχbe −

⌊
nκc − 1 .

From (1) it follows that

P
(
Xn − blogb nc ≥ an

)
≤ P

(
Mφ+(n) + 1 ≥ an + blogb nc

)
+ P (Anc) + b−n,

P
(
Xn − blogb nc ≥ an

)
≥ P

(
Mφ−(n) + 1 ≥ an + blogb nc

)
− P (Anc) − b−n.
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In view of (5) it remains to consider the respective first terms on the right hand
side. As an is integer we may replace Mφ+(n) by M̃φ+(n) + 1. With

c±n := blogb nc − logb φ±(n)− 2

and
∆l(z) :=

∣∣∣P (M̃l − logb l ≥ z
)
− P (Z ≥ z)

∣∣∣
this results in

P
(
Mφ+(n) + 1 ≥ an + blogb nc

)
= P

(
M̃φ+(n) ≥ an + blogb nc − 2

)
≤ P (Z ≥ an + c+n ) + ∆φ+(n)(an + c+n ) ,

P
(
Mφ−(n) + 1 ≥ an + blogb nc

)
= P

(
M̃φ−(n) ≥ an + blogb nc − 2

)
≥ P (Z ≥ an + c−n ) − ∆φ−(n)(an + c−n ) .

Let fl and f∞ be the densities of M̃l−logb l and Z respectively. Markov’s inequality
yields

∆φ±(n)(an + c±n ) ≤ exp
(
−γ(an + c±n )

) ∫
z≥an+c±n

eγz
∣∣fφ±(n)(z)− f∞(z)

∣∣ dz,
Lemma 5 implies that the integral tends to 0 with n → ∞ for any γ < 2 log b.
Using c±n = O(1) we see that this yields the rate o(n−ηt) for all η < 2.

It remains to show that

P
(⌈
Z + ζb + {logb n}

⌉
≥ an

)
− P

(
Z ≥ an + c±n

)
= o(n−t).

Because of

P
(⌈
Z + ζb + {logb n}

⌉
≥ an

)
= P

(
Z ≥ an − ζb − {logb n} − 1

)
this amounts to finding an upper bound for the probability that Z takes its value
in a short interval moving to the right. Using ζb = logb χb + 1 we obtain

∣∣c+n − (−ζb − {logb n} − 1)
∣∣ =

∣∣∣logb
dnχbe+ bnκc

nχb

∣∣∣ = O
(
nκ−1

)
,

and the same bound holds for the other interval. For any sequence (δn)n∈N with
δn ↓ 0 we have

P (Z ∈ an ± δn) ≤ 2 δn sup
z∈an±δn

d
dz
P (Z ≤ z)

≤ 2 δn log b sup
z∈an±δn

exp
(
−(log b)z

)
≤ 2 δn log b b−an+δn .
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This last term is of the order O(δnn−t). With the above bounds on the length of
the intervals this leads to the bound O(n−t+κ−1), which is o(n−t) as desired. �

We note that the above proof supplies the rate o(n−η) for the difference of the
tail probabilities, for all η < t+ min{t, 1/2}, which is more than the order o(n−t)
in the assertion of the theorem.

For convergence in total variation to imply convergence of the associated mo-
ments some extra conditions are needed; the following lemma gives the details in
the discrete case that is of interest for the proof of Theorem 3. Note that this is a
result for distributions, the X- and Y -variables need not be defined on the same
probability space.

Lemma 7. Let Xn, Yn, n ∈ N, be random variables with values in Z and let
l ∈ N. If, for some γ > l,

lim
n→∞

dTV(Xn, Yn) = 0, sup
n∈N

E|Xn|γ <∞, sup
n∈N

E|Yn|γ <∞,

then
lim
n→∞

(
EX l

n −EY ln) = 0.

Proof. A simple decomposition gives, for all M ∈ N,∣∣EX l
n −EY ln

∣∣ ≤ ∑
|k|<M

|k|l
∣∣P (Xn = k)− P (Yn = k)

∣∣
+

∑
|k|≥M

|k|l P (Xn = k) +
∑
|k|≥M

|k|l P (Yn = k).

For the second term we have∑
|k|≥M

|k|l P (Xn = k) ≤ M l−γ
∑
|k|≥M

|k|γ P (Xn = k) ≤ M l−γ sup
n∈N

E|Xn|γ ,

and the analogue of this upper bound obviously also holds for the Y -variables.
Hence, for any given ε > 0, we can find an M large enough for the second and
third term in the decomposition to be less than ε/3. For the first term we use∑

|k|<M
|k|l
∣∣P (Xn = k)− P (Yn = k)

∣∣ ≤ 2M l dTV(Xn, Yn),

i.e. we can further choose n0 (in dependence on M) large enough for this term to
also be less than ε/3 for all n ≥ n0. Put together this implies the convergence of
the moments. �
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Proof of Theorem 3. In view of Theorem 1 and Lemma 7 it remains to show that

sup
n∈N

E
∣∣Xn − blogb nc

∣∣γ <∞, sup
n∈N

E
∣∣dZ + ζb + {logb n}e

∣∣γ <∞
for all γ > 0. For Z this is trivial: The shifts are bounded by |ζb|+ 1 and Gumbel
distributions have exponentially decreasing tails. For the first part we use

E
∣∣Xn − blogb nc

∣∣γ =
(∫

An∩{Xn=0}
+
∫
An∩{Xn 6=0}

+
∫
Anc

)∣∣Xn − blogb nc
∣∣γ dP

with An as defined in the proof of Theorem 2 and consider the three terms on the
right hand side separately. Since 0 ≤ Xn ≤ n+ 1 we have∫

Anc

∣∣Xn − blogb nc
∣∣γ dP ≤ P (Anc)

(
n+ 1 + blogb nc

)γ
,

hence for the third term the desired boundedness follows from (5). On An∩{Xn =
0} we can use P (Xn = 0) = b−n. On An ∩ {Xn 6= 0} we have, with φ± as in the
proof of Theorem 2,∣∣Xn − blogb nc

∣∣γ ≤ ∣∣Mφ+(n) + 1− blogb nc
∣∣γ +

∣∣Mφ−(n) + 1− blogb nc
∣∣γ .

Now, with the notation of Lemma 5∣∣E|M̃n − (logn)/λ|γ − E|Z|γ
∣∣ ≤ ∫

|z|γ
∣∣fn(z)− f∞(z)

∣∣dz.
As z 7→ |z|γ increases at a subexponential rate, this lemma implies that the right
hand side converges to 0 as n→∞; in particular, with λ = log b,

sup
n∈N

E
∣∣M̃n − logb n

∣∣γ < ∞ .

We have

Mφ±(n) + 1− blogb nc =
(
M̃φ±(n) − logb φ±(n)

)
+
(
Mφ±(n) − M̃φ±(n)

)
+ 1

+
(
logb φ±(n)− blogb nc

)
,

hence
sup
n∈N

E
∣∣Mφ±(n) − blogb nc

∣∣γ < ∞

follows on using Minkowski’s inequality. �

Proof of Theorem 4. Suppose the statement is wrong. Then η 7→ E{Z + η} is
constant on (0, 1). From

{Z + η} =

{
{Z}+ η, if {Z}+ η < 1,
{Z}+ η − 1, if {Z}+ η ≥ 1,
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for all η ∈ (0, 1) it then follows that

E{Z + η} =
∫

(0,1−η)

(x+ η)P {Z}(dx) +
∫

[1−η,1]

(x+ η − 1)P {Z}(dx)

= η +
∫

(0,1]

xP {Z}(dx) −
∫

[1−η,1)

1P {Z}(dx)

= η + E{Z} − P
(
{Z} ≥ 1− η

)
.

Hence this function can only be constant if the fractional part of Z is uniformly
distributed on the unit interval. This, however, would imply

φZ(2π) = Ee2πiZ = Ee2πi{Z} = φ{Z}(2π) = 0,

where φY denotes the characteristic function of the random variable Y . However,
the characteristic function of a Gumbel variate Z does not take the value 0. This
can either be seen directly from φZ(t) = Γ(1− it/λ) and the fact that the Gamma
function has no zeros, or (more probabilistically. . . ) from the fact that Gumbel dis-
tributions are infinitely divisible, which implies that their characteristic functions
do not take the value 0. �

3. Miscellaneous comments

As announced above, we briefly comment on the modelling of the algorithm,
we discuss some large deviation aspects, and finally we give some more details on
the limiting average case behaviour.

3.1. The formal descriptions of von Neumann addition given by Claus [4] and
Knuth [12] differ with respect to the way an overflow bit is handled. This is
perhaps most easily described with the help of a simple example with b = 2:
Starting with

u = (u0 · · · un−k+1 1 1 · · · 1)
v = ( 0 · · · 0 1 0 · · · 0) carry: 0,

both of length n, we arrive after k iterations at

u(k) = (u0 · · · un−k+1 0 0 · · · 0)
v(k) = ( 0 · · · 0 0 0 · · · 0) carry: 1.

From a practical point of view no further iterations are required as the binary
representation of u+ v can be read off from the last display. However, if we pad
the original input with zeros we would have

u(k) = (u0 · · · un−k+1 0 0 · · · 0 0 0 · · · )
v(k) = ( 0 · · · 0 0 0 · · · 0 1 0 · · · ),
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and the formal requirement that all components in the v-part are zero would
necessitate an additional step – a completely superfluous step as the corresponding
u-position will always have the value 0. In our analysis above we have included this
step, as in Knuth [12] and the textbooks we are aware of, in contrast to Claus [4].
How does this affect our results? The two formalizations of the algorithm can only
differ in the number of iterations required if the maximal run straddles n, i.e. if
MNn−1 < MNn . As in the proof of Lemma 6 we can construct an event An such
that

0 ≤ X(Knuth)
n −X(Claus)

n ≤ 1An , with lim
n→∞

P (An) = 0.

From this it is obvious that Theorem 1 holds for both versions and so does
Theorem 3 in view of Minkowski’s inequality, Theorem 4 is not affected. In par-
ticular, Claus’ conjecture on the asymptotic behaviour of the average number of
iterations (which obviously referred to his version) is now disproved.

3.2. The arguments in the proof of Theorem 2 can be used to obtain tail approx-
imations for sequences other than n 7→ (1 + t) logb n, t > 0. In particular, the
approximation by a discretized shifted Gumbel distribution turns out to give the
correct first order term for the tail probabilities of Xn for sequences of the order
O(nγ) with γ < 1 (some upper bound on the rate of increase of the sequence is
obviously needed as P (Xn > n+ 2) = 0 for all n ∈ N). Using

P
(
dZ + ζb + {logb n}e ≥ (1 + t) logb n− blogb nc

)
= P

(
Z + ζb + {logb n} ≥ d(1 + t) logb ne − blogb nc − 1

)
= P

(
Z ≥ t logb n− ζb + d(1 + t) logb ne

−(1 + t) logb n− 1
)

and writing an ∼ bn if the ratio an/bn tends to 1 with n→∞, we arrive at

P
(
Xn ≥ (1 + t) logb n

)
∼ n−t b(1+t) logbn+1−d(1+t) logbne b χb .

As the exponent of b varies between 0 and 1 this in turn implies

lim sup
n→∞

nt P
(
Xn ≥ (1 + t) logb n

)
= b2χb , (6)

lim inf
n→∞

nt P
(
Xn ≥ (1 + t) logb n

)
= b χb for all t > 0.

On a logarithmic scale, which is much coarser, the fluctuations disappear and we
obtain

lim
n→∞

1
logn

logP
(
Xn ≥ (1 + t) logb n

)
= −t for all t > 0.

The latter could be seen as a large deviation result; see McDiarmid [13] for general
comments and McDiarmid and Hayward [14] for a similar result in the Quicksort

context.
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However, if interest is primarily in bounds for the tail probabilities of Xn then,
in the present situation, such results can be obtained more directly. Let

Aik := {Ui + Vi > b− 1} ∩
k⋂
l=1

{Ui+l + Vi+l = b− 1}, i ∈ N, k ∈ N0,

where (Un)n∈N and (Vn)n∈N refer to the notation introduced at the beginning of
Section 2. In words: Aik is the event that a carry is generated at position i and
propagates for at least k steps. The independence of the individual bits (or digits)
implies P (Aik) = χbb

−k. For fixed k the events Aik, i ∈ N, are either disjoint or
independent, hence

P (Aik ∩Ajk) =

{
0, if 0 < |i− j| ≤ k,
χ2
bb
−2k, for |i− j| > k.

These events are related to the number Xn of iterations required for input length
n by

{Xn ≥ k + 2} =
n−k⋃
i=1

Aik for all n ∈ N, k ∈ N0.

Now let kn := d(1 + t) logb ne − 2. Using Boole’s inequality we then obtain

P
(
Xn ≥ (1 + t) logb n

)
= P (Xn ≥ kn + 2) ≤

n−kn∑
i=1

P (Aikn) ≤ nχbb
−kn

≤ nχb b
2−(1+t) logb n ≤ b2χb n

−t.

Similarly, now with Bonferroni’s inequality,

P
(
Xn ≥ (1 + t) logb n

)
≥

n−kn∑
i=1

P (Aikn) −
n−kn∑
i,j=1
i6=j

P (Aikn ∩Ajkn)

≥ (n− kn)χb b−kn − (n− kn)2χ2
b b
−2kn .

For the second term on the right hand side we obtain the order O
(
n2n−2(1+t)

)
= o
(
n−t
)
, and kn ≤ (1 + t) logb n− 1 yields the lower bound (n− kn)χb n−1−tb for

the first term. Put together these elementary estimates result in

lim sup
n→∞

nt P
(
Xn ≥ (1 + t) logb n

)
≤ b2χb , (7)

lim inf
n→∞

nt P
(
Xn ≥ (1 + t) logb n

)
≥ b χb for all t > 0.

In fact, the above arguments show that the upper bound even holds for the indi-
vidual n’s, a situation not uncommon in the large deviation context. Via suitably
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chosen subsequences the inequalities in (7) may be strengthened, so we overall
obtain a completely elementary proof of (6).

3.3. In connection with the limiting behaviour of the expected number of iterations
a central role is played by the function h : [0, 1] → R, η 7→ EdZ + ηe − η. A
straightforward calculation yields

EdZ + ηe =
∑
k∈Z

k
(
e−b

η−k − e−b
η+1−k)

for all η ∈ [0, 1].

Figure 1 shows the function h for b = 2 and b = 10. Apart from being “almost
constant”, h also “looks very sinusoidal”. This we will now investigate; as a
corollary we also obtain the connection to Knuth’s formula cited in Section 1.
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Figure 1: The periodic limit function h.

The function h is obviously sufficiently smooth to permit a representation as
an absolutely convergent Fourier series,

h(η) =
∑
k∈Z

ak e2πikη , with ak =
∫ 1

0

h(η) e−2πikη dη .

Using EZ = γ/λ for Z ∼ Gu(λ), λ = log b and Fubini’s theorem we obtain

a0 = E

(∫ 1

0

(
dZ + ηe − η

)
dη
)

= EZ +
1
2

=
γ

log b
+

1
2
·

Suppose that k 6= 0. An elementary computation shows that∫ 1

0

(dz + ηe − η) e−2πikη dη =
e2πik{z}

2πik
for all z ∈ R,
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which leads to

ak = E

(∫ 1

0

(
dZ + ηe − η

)
e−2πikη dη

)
=

1
2πik

Ee2πik{Z} =
1

2πik
Γ
(

1− 2πik
log b

)
= − 1

log b
Γ
(
−2πik

log b

)
·

In this derivation, Fubini’s theorem justifies the first equality, the third uses the
arguments for the characteristic functions of {Z} and Z given in the proof of
Theorem 4 and the last one follows with Γ(z + 1) = zΓ(z). It is well known that
R 3 t 7→ Γ(it) decreases at an exponential rate; Table 1 gives ak for some values
of k and b. We see that indeed the Fourier coefficients decrease rapidly (the near-
constancy phenomenon could be seen under this aspect – the decrease sets in at
k = 0). As h is real-valued, we have a−k = ak for all k ∈ Z.

Table 1: Fourier coefficients of h.

k b = 2 b = 10

0 1.332746177 0.750681578
1 0.603× 10−6 − 0.506× 10−6 i −0.628× 10−2 − 0.654× 10−2 i
2 0.213× 10−12 + 0.295× 10−12 i 0.873× 10−4 + 0.122× 10−4 i
3 −0.107× 10−18 − 0.163× 10−18 i 0.363× 10−6 + 0.921× 10−6 i

10 0.541× 10−62 + 0.104× 10−62 i −0.392× 10−19 − 0.319× 10−19 i

With the above h and ζb as defined at the beginning of this section we can write
the special case l = 1 of Theorem 3 as

EXn = logb n+ ζb + h
(
ζb + {logb n}

)
+ o(1).

Inserting the Fourier series representation with the coefficients as calculated above
and using

ake2πikη + a−ke−2πikη = 2<
(
ake2πikη

)
,

exp
(
2πik(ζb + {logb n})

)
= exp

(
2πik(ζb + logb n)

)
,
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we obtain

EXn = logb n+ ζb + a0 + 2
∞∑
k=1

<
(
ak exp

(
2πik(ζb + {logb n})

))
+ o(1)

= logb n +
γ

log b
+

1
2

+ logb
b− 1

2

− 2
log b

∞∑
k=1

<
(

Γ
(
−2πik

log b

)
exp
(

2πik logb
(b− 1)n

2

))
+ o(1).

Hence we finally arrive at a formula for the limiting average case behaviour that
agrees with Knuth’s result quoted in the first section. Note, however, that Knuth
obtained a rate result too. We would expect that a statement on the speed of
convergence would also be possible with the methods used here, but we have not
carried this out.
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