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Evaluation of Incidence Rates in Pre-Clinical
Studies Using a Williams-Type Procedure

Ludwig A. Hothorn, Martin Sill, and Frank Schaarschmidt

Abstract

The analysis of dose-response relationships is a common problem in pre-clinical studies. For
example, proportions such as mortality rates and histopathological findings are of particular
interest in repeated toxicity studies. Commonly applied designs consist of an untreated control
group and several, possibly unequally spaced, dosage groups. The Williams test can be formulated
as a multiple contrast test and is a powerful option to evaluate such data. In this paper, we consider
simultaneous inference for Williams-type multiple contrasts when the response variable is
binomial and sample sizes are only moderate. Approximate simultaneous confidence limits can be
constructed using the quantiles of a multivariate normal distribution taking the correlation into
account. Alternatively, multiplicity-adjusted p-values can be calculated as well. A simulation
study shows that a simple correction based on adding pseudo observations leads to acceptable
performance for moderate sample sizes, such as 40 per group. In addition, the calculation of
adjusted p-values and approximate power is presented. Finally, the proposed methods are applied
to example data from two toxicological studies; the methods are available in an R-package.

KEYWORDS: binomial, ordered proportions, simultaneous confidence intervals, toxicology
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1 Introduction
Standard experimental design in repeated toxicity studies consists of a negative
control and several (commonly three) treatment groups. The frequently used para-
metric Dunnett (1955) and Williams (1971) procedures as well as the nonparametric
Dunn (1964) and Shirley (1977) procedures for skewed data, are the recommended
statistical procedures for toxicological studies involving continuous data (National
Toxicology Program, 2009). In comparing particular treatments with the control
group, Dunnett and Dunn procedures do not exploit the potential monotonicity of
effects, which occurs when treatments represent increasing dosage. Conversely, the
methods of Williams and Shirley assume the monotonicity of effects in comparing
the dose and control groups.

Various types of response variables (e.g., continuous, proportions (rates),
ordered categorical and multinomial data) are common in toxicological studies
(OECD408, 1998). However, most recommendations concerning statistical method-
ology focus on continuous endpoints (see, e.g. National Toxicology Program, 2009).
For example, the NTP provides the following recommendation regarding propor-
tional data: ’Because vaginal cytology data are proportions (the proportion of the
observation period that an animal was in a given estrous stage), an arcsine transfor-
mation is used to bring the data into closer conformance with a normality assump-
tion’ (National Toxicology Program, 2009). However, simulation studies involving
small samples (Carriere, 2001) and zero cells (Rucker et al., 2009) showed that the
arcsine transformation is inappropriate. A number of specific issues need to be ad-
dressed in toxicological studies that involve binomial proportions: 1. sample size
may be too small to allow the application of simple asymptotic methods; 2. the
direction of the toxic effect is usually known, (e.g., we are interested in only in-
creasing mortality or incidence rates); and 3. no, or very few, critical events may be
observed in the control group.

We propose using trend tests based on a totally ordered alternative hypothe-
sis to evaluate dose-response relationships. A large number of such tests have been
published. The most commonly used approach for proportional data - Cochran-
Armitage test (Armitage, 1955) - rejects the null hypothesis of equal proportions in
favor of a linear trend. However, this test is underpowered when the true trend is
not linear, i.e., when the dose and response exhibit a convex or concave relationship
(Bretz and Hothorn, 2002). Also, assuming a linear trend may be inappropriate in
many studies, e.g., when the study design involves unequally spaced dosage levels
between treatment groups. Additionally, the power of this test is strongly influ-
enced by the choice of dosage scores used in the calculation of the test statistic, and
optimal dosage scores are often unknown a priori. For datasets with small sample
sizes, using exact unconditional and conditional Cochran-Armitage trend tests has
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been proposed, and may be appropriate under different models (Tang et al., 2006).
Another approach involves testing whether a slope parameter of a logistic model is
non-zero, but the assumption of a linear relationship may again be inappropriate.
Finally, a likelihood ratio test based on isotonic regression (Leuraud and Benichou,
2006) can be applied.

As mentioned, assuming a linear dose-response relationship may be inap-
propriate or at least suboptimal in terms of power in cases of sub- and supra-linear
relationships. Also, one may often be interested in comparing several dose groups
with the control group explicitly. Adequate methods should allow the definition
of one-sided tests or confidence intervals when the direction of the effect of inter-
est is known a priori. For these reasons, the Williams test (Williams, 1971, 1972)
provides a good option to use because it was constructed for both a total order al-
ternative as well as specific comparisons versus control. For a general unbalanced
design and normally distributed variables, Bretz (2006) showed that Williams trend
test can be approximately formulated as a multiple contrast test. For large sample
sizes, similar asymptotic multiple contrast tests for binomial proportions have also
been proposed (Bretz and Hothorn, 2002). A Dunnett-type procedure for one- or
two-sided comparisons for the difference of proportions between several treatments
and a control was proposed (Schaarschmidt et al., 2009), using the analogous ap-
proach of multiple contrasts, without an order restricted alternative. Recently, the
small sample performance of simultaneous confidence intervals for contrasts of tu-
mor proportions, confounded by mortality without cause-of-death information, has
been investigated (Schaarschmidt et al., 2008a), including Williams-type contrasts
as a special case. In contrast to the problem considered here, such observations are
assumed to originate from realizations of two competing events assumed to follow
two independent Weibull distributions.

In this paper, we investigate simultaneous confidence limits as well as multi-
plicity-adjusted p-values for Williams-type contrasts of binomial proportions. We
assume that using binomial proportions as an effect measure is toxicologically
meaningful and not biased by competing risks. Further, we explore ways to adjust
for small sample size, and pay special attention to one-sided alternatives (i.e., set-
tings, in which the direction of an interesting effect is already known). We achieve
multiplicity adjustment by using appropriate quantiles of the multivariate normal
distribution, taking the correlation between the contrasts into account. The con-
fidence limits proposed in this paper can be used in inference for a global trend
hypothesis, and to display the differences between pooled proportions of the dose
groups and the proportion of the control group. The described procedure is val-
idated in an extensive simulation study, comparing different small sample adjust-
ments for balanced and unbalanced sample sizes, and large sets of binomial pa-
rameters sampled from the parameter space. We describe the appropriate test and
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adjusted p-values for single contrasts, and present an approximate power calcu-
lation for the global test on trend. The use of approximate power calculation is
illustrated for situations related to the example and compared to results of simu-
lated power. An R-software package implementing the proposed methods has been
made publicly available.

2 Motivating examples
In a toxicological study, mice were exposed to a control treatment and three doses
of a compound. After 6 months, mortality rates were assessed (Hothorn, 1994, see
Tab. 1).

In the second study, the incidences of tubular epithelial hyaline droplet gen-
eration in male rats were reported for a 28-day oral dose toxicity study of nonylphe-
nol (Woo et al., 2007, see Tab. 2).

Table 1: Chronic toxicity study on mice
Treatment Control 10 mg/kg 50 mg/kg 100 mg/kg
No. of dead mice 4 1 6 8
Total no. of mice 40 20 20 20
Proportion of dead mice 0.10 0.05 0.30 0.40

Table 2: 28-day toxicity study on male rats
Treatment Control 10 mg/kg 50 mg/kg 250 mg/kg
No. with hyaline droplets 0 0 3 8
No. of rats under observation 10 10 10 10
Observed proportion 0 0 0.3 0.8

In both examples, the aim is to detect the global trend depending on the
dosage levels. In addition, extracting information regarding the dosage levels that
lead to the trend may be necessary. The sample sizes are clearly too small to allow
the determination of asymptotic confidence limits.

3 A Williams-type procedure
Let us consider a completely randomized one-way layout with I groups, i = 1, ..., I,
where ni denotes the number of Bernoulli trials in the ith group, Yi is the number
of successes among the ni trials, and i = 1 denotes the control group and i = 2, ..., I

3

Hothorn et al.: Williams-Type Procedure for Rates

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 11.01.18 09:02



denotes treatment groups ordered by increasing dosage. The Yis are assumed to
be independent binomial random variables Yi ∼ Bin(ni,πi), with point estimators
pi = Yi/ni.

Let C = (c1, ...,cI) be a vector of contrast coefficients fulfilling the con-
straint ∑

I
i=1 ci = 0. Then, the linear combination L = ∑

I
i=1 ciπi has expectation

E (L) = 0 if all proportions are equal such that π1 = π2 = ... = πI . If we also de-
fine C such that ∑ci≤0 ci = −1 and ∑ci>0 ci = 1, the linear combination L can be
interpreted as a difference of weighted averages of proportions, with the simple
difference of two proportions as a special case.

According to Bretz (2006), the Williams test (Williams, 1971, 1972) can be
reformulated in terms of a test for M = I−1 linear combinations Lm, m = 1, ...,M
of the proportions πi. The contrast coefficients are defined in the following M× I
matrix with elements cmi,

CM×I =


−1 0 · · · 0 0 1
−1 0 · · · 0 nI−1

nI−1+nI

nI
nI−1+nI

...
... · · · ...

...
...

−1 n2
n2+···+nI

· · · nI−2
n2+···+nI

nI−1
n2+···+nI

nI
n2+···+nI

 (1)

In this matrix, each row corresponds to one linear combination

Lm =
I

∑
i=1

cmiπi

To test for an increasing trend, we test the intersection of the elementary
null hypotheses H0 :

⋂M
m=1 Lm ≤ 0, versus the union of the elementary alternative

hypotheses H1 :
⋃M

m=1 Lm > 0. That is, the objective is to perform a one-sided
Union-Intersection-Test on the M linear combinations (Bretz and Hothorn, 2002,
Bretz, 2006), while controlling the family-wise error rate over all M contrasts.

Alternatively, lower simultaneous confidence limits for the linear combina-
tions Lm can be used. In this case, one can conclude a presence of a trend in the
proportions π1, ...,πI if at least one of the M lower confidence limits excludes the
value 0. In addition, the confidence limits describe the difference between the con-
trol group i = 1 and the weighted average of proportions of higher dose groups, and
allow one to interpret the relevance of the effect size. Another advantage of con-
fidence intervals lies in their ability to summarize the uncertainty of the estimates
using an easily interpretable scale of differences in proportions.

In other words, the above procedure tests the null-hypothesis of no differ-
ence among the proportions,

H0 : π1 = π2 = ...= πI, (2)
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against the alternative that the binomial proportions are increasing with increasing
dosage compared to the control group. To achieve this, higher dose groups are suc-
cessively pooled and compared to the control. This approach leads to multiple com-
parisons regarding a single overall question, and, therefore, an adjustment is needed
to ensure that the overall hypothesis is tested at level α . The M local hypotheses are
positively correlated, and this correlation is included in the test procedure in order
to avoid the overall test becoming too conservative. By testing M different local hy-
potheses, the procedure is sensitive to a number of different dose-response shapes,
and allows one to gain a more detailed knowledge of the dose-response shape than
would be possible using a simple p-value for a global test of trend.

3.1 Approximate confidence limits for a single linear combina-
tion of proportions

The point estimator for a single linear combination L is L̂ = ∑
I
i=1 ci pi and the lower

(1−α) Wald confidence limit for L is:[
I

∑
i=1

ci pi− z1−α

√
I

∑
i=1

c2
i V̂ (pi)

]
(3)

with V̂ (pi) = pi (1− pi)/ni and z1−α denoting the (1−α) quantile of the standard
normal distribution. Wald limits for binomial proportions are known to keep the
(1−α) coverage probability only for asymptotically large sample sizes (Agresti
and Caffo, 2000, Price and Bonett, 2004, Brown and Li, 2005). So far, no ex-
act confidence limits are available for a linear combination of proportions. In a
seminal paper, Agresti and Coull (1998) showed that adding a total of four pseudo-
observations to the observed successes and failures yields approximate confidence
intervals for one binomial proportion with good small sample performance. Mo-
tivated by approximating the posterior distribution following from a uniform beta
prior, Agresti and Caffo (2000) proposed an improved Wald confidence interval for
the difference of two proportions by adding two successes and two failures. Brown
and Li (2005) recommended the use of this method based on a comparative simula-
tion study due to its good coverage probability for moderate sample sizes. Price and
Bonett (2004) further extended this interval to linear combinations of I proportions.
In their approach, pi in Equation (3) is replaced by p̃i = (Yi +2/g)/(ni +4/g),
and V̂ (pi) by p̃i (1− p̃i)/(ni +4/g), with g the number of non-zero contrast coef-
ficients. Alternatively, pi in Equation (3) is replaced by p̃i = (Yi +1)/(ni +2), and
V̂ (pi) by p̃i (1− p̃i)/(ni +2). Both intervals are the Agresti and Caffo interval for
the difference of two binomials if the contrast has only two non-zero coefficients.
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Price and Bonett (2004) investigated the performance of their method in a simula-
tion study involving different types of single contrasts, and concluded that, com-
pared to the Wald limit, it exhibited better coverage probability for the improved
limits.

These simulation studies, however, considered only the coverage probabil-
ity of two-sided (1−α) confidence intervals. The coverage probability of one-sided
limits was investigated only by Cai (2005) in the case of a single binomial propor-
tion. The direction of interest is usually known in trend tests, and only the upper or
lower limit is necessary for a decision regarding the trend. Therefore, we are mainly
interested in the performance of one-sided confidence limits. However, when the
assumption of monotonicity is in question, two-sided confidence intervals may be
more appropriate. See for example the recent discussion of Shirley and Peddada
(Shirley, 2007).

3.2 Approximate simultaneous confidence limits for multiple lin-
ear combinations of proportions

Approximate simultaneous confidence limits for M linear combinations Lm can be
constructed using Equation (4):

I

∑
i=1

cim p̃i−qM,R,1−α

√
I

∑
i=1

c2
imṼ (pi) (4)

Here, qM,R,1−α is the equicoordinate (1−α) quantile of a M-variate normal
distribution with correlation matrix R, with its CDF denoted ΦM (q;0,R). The
quantile qM,R,1−α is chosen such that

ΦM (q = qM,R,1−α ;0,R) = P(Zm ≤ q, ∀m = 1, ...,M) = 1−α,

where Z is an M-variate normal random vector with elements Zm, m = 1, ...,M,
expectation 0 and correlation matrix R. Due to the specific choice of the quantile
qM,R,1−α , the probability that at least one of the M values of L is excluded by
the confidence limits is α if n→ ∞. Upper confidence limits can be calculated
accordingly. By using quantiles of the multivariate normal distribution, the number
of estimated linear combinations as well as the correlation between them is taken
into account.

When both increasing or decreasing trends are of interest, two-sided confi-
dence intervals can be calculated:
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I

∑
i=1

cim p̃i±q′M,R,1−α

√
I

∑
i=1

c2
imṼ (pi) (5)

Then, a quantile q′M,R,1−α
has to be chosen such that

ΦM,two−sided
(
q′ = q′M,R,1−α ;0,R

)
= P

(
|Zm| ≤ q′ ∀m = 1, ...,M

)
= 1−α.

Numerically, probabilities ΦM (q;0,R), ΦM,two−sided (q′;0,R) as well as quantiles
qM,R,1−α and q′M,R,1−α

can be calculated using the package mvtnorm (Hothorn et al.,
2001) in R. Following a similar approach as Piegorsch (1991) and Schaarschmidt
et al. (2008a, 2009), the correlation matrix R is computed depending on the known
constants cim and ni and the estimates π̃i and Ṽ (pi) in Table 3. For computational
details we refer to Schaarschmidt et al. (2008a).

Regarding the approaches of Agresti and Caffo (2000) and Price and Bonett
(2004), we investigated five different methods of adjustment. Table 3 summarizes
choices for p̃i and Ṽ (pi) in Equation (4), where g is the number of contrast coeffi-
cients with cim 6= 0 in the mth contrast. When referring to these confidence limits
below we use the notations in Table 3.

Table 3: Choices for p̃i and Ṽ (pi) in Equation (4)
Notation p̃i Ṽ (pi)
Wald Yi/ni pi (1− pi)/ni
add-1 (Yi +0.5)/(ni +1) p̃i (1− p̃i)/(ni +1)
add-2 (Yi +1)/(ni +2) p̃i (1− p̃i)/(ni +2)

add-2/g
(

Yi +
1
g

)
/
(

ni +
2
g

)
p̃i (1− p̃i)/

(
ni +

2
g

)
add-4/g

(
Yi +

2
g

)
/
(

ni +
4
g

)
p̃i (1− p̃i)/

(
ni +

4
g

)

3.3 Corresponding multiple tests

In order to use adjusted p-values instead of simultaneous confidence limits to per-
form the test procedure defined above, M test statistics have to be calculated:

Tm =
∑

I
i=1 cim p̃i√

∑
I
i=1 c2

imṼ (pi)
(6)

with adjustments listed in Table 3. The global null hypothesis H0 :
⋂M

m=1 Lm≤ 0 can
be rejected if max(Tm) > qM,R,1−α , i.e., if at least one of the test statistics exceeds
the critical value of an M-variate normal distribution.
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Corresponding to the above hypotheses, adjusted p-values for each of the
M contrasts can be computed as: 1−ΦM (q = Tm;0,R). In case of two-sided tests
1−ΦM,two−sided (q′ = Tm;0,R) has to be used instead.

3.4 Software

The availability of relevant and free statistical software is important in toxicol-
ogy, because fewer statisticians engage in pre-clinical statistics compared to clin-
ical statistics. The methods presented here are included in the R-package MCPAN

(Schaarschmidt et al., 2008b), which can be downloaded via CRAN of R. Before
use in regulatory toxicology, this software needs to be further validated in detail.

4 Simulation study

4.1 Parameter settings

We investigated the coverage probability of the simultaneous confidence limits in a
simulation study that focused on small to moderate sample sizes and ni = 100 for
nearly asymptotic behavior. Results for the situations I = 3,4,6,10, with balanced
sample sizes ni = 10,20,40,60,100 are summarized in Tables 4 and 5. Since most
designs in toxicology involve three dose groups and a negative control, the situation
I = 4 is the most relevant. Although sample sizes smaller than ni = 20 are hardly
reasonable from the perspective of power, sample sizes as small as ni = 10 can
be found in practice, e.g. in Kandori et al. (2005). Also, markedly unbalanced
sample sizes may occur, e.g., ni = 42, ...,74 in Bell et al. (2007). For this reason,
we investigated a number of unbalanced situations (Tables 6 and 7).

To assess the methods’ performance in the entire parameter space, 10,000
combinations {π1, ...,πI} were sampled from independent uniform distributions
[0,1]. For each of these combinations and sample size settings, 10,000 random sam-
ples {y1, ...,yI} were drawn from binomial distributions Bin(ni,πi). Limits were
considered to cover the true value when all estimated confidence limits included
the corresponding true linear combination Lm. Known values of πi, instead sam-
ple estimates, were used to calculate the correlation matrix in this main part of the
simulation study.

In an additional simulation study, we explored the coverage probabilities
of limits with a correlation matrix estimated from the samples. This was done for
a small subset of scenarios in order to show that the above simulations appropri-
ately characterize the proposed methods. We considered a balanced sample size of
40 with 4 groups. Analogously to the main study, combinations {π1, ...,πI} were
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Table 4: Lower 0.95 confidence limits in balanced designs: Proportion of situations
with coverage probability between 0.94 to 0.96

I n Wald add-1 add-2 add-2/g add-4/g
3 10 0.208 0.506 0.234 0.481 0.315
3 20 0.359 0.700 0.359 0.676 0.463
3 40 0.502 0.832 0.492 0.827 0.617
3 60 0.600 0.884 0.576 0.880 0.702
3 100 0.722 0.931 0.688 0.933 0.797
4 10 0.202 0.487 0.269 0.385 0.433
4 20 0.320 0.674 0.394 0.540 0.598
4 40 0.436 0.814 0.541 0.717 0.748
4 60 0.519 0.875 0.632 0.813 0.813
4 100 0.641 0.925 0.740 0.900 0.882
6 10 0.198 0.440 0.324 0.317 0.418
6 20 0.295 0.584 0.461 0.422 0.594
6 40 0.394 0.744 0.620 0.547 0.772
6 60 0.458 0.827 0.705 0.641 0.841
6 100 0.559 0.903 0.797 0.772 0.908

10 10 0.180 0.364 0.379 0.254 0.316
10 20 0.263 0.467 0.535 0.326 0.432
10 40 0.339 0.622 0.693 0.435 0.578
10 60 0.397 0.681 0.769 0.512 0.681
10 100 0.492 0.836 0.848 0.617 0.802

drawn from a uniform distribution, and random samples were drawn for each com-
bination. The coverage probability of each limit and computation method of the
correlation was calculated, resulting in only a negligible difference in the second
decimal position of the coverage probability value.

4.2 Criteria

Due to the discreteness of the binomial distribution, the coverage probability of
confidence limits for contrasts of proportions oscillates depending on πi and ni.
Confidence limit methods that exhibit coverage probabilities greater than or equal
to the nominal level for all parameter settings will, on average, necessarily be con-
servative. For this reason, Agresti and Coull (1998) and Brown and Li (2005), as
well as others, recommend confidence limit methods if their coverage probability is
close to the nominal level, but not necessarily for all cases equal to or greater than

9
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Table 5: Lower 0.95 confidence limits in balanced designs: Mean coverage proba-
bility for 10,000 randomly chosen settings

I n Wald add-1 add-2 add-2/g add-4/g
3 10 0.913 0.951 0.959 0.948 0.957
3 20 0.933 0.950 0.955 0.949 0.954
3 40 0.942 0.950 0.953 0.949 0.952
3 60 0.945 0.950 0.952 0.949 0.952
3 100 0.947 0.950 0.951 0.950 0.951
4 10 0.908 0.951 0.959 0.944 0.954
4 20 0.930 0.950 0.956 0.946 0.952
4 40 0.941 0.950 0.953 0.948 0.951
4 60 0.944 0.950 0.952 0.948 0.951
4 100 0.946 0.950 0.951 0.949 0.950
6 10 0.902 0.951 0.960 0.938 0.950
6 20 0.927 0.950 0.956 0.943 0.950
6 40 0.939 0.950 0.954 0.946 0.950
6 60 0.943 0.950 0.953 0.950 0.947
6 100 0.946 0.950 0.952 0.948 0.950

10 10 0.894 0.950 0.961 0.928 0.941
10 20 0.923 0.949 0.957 0.938 0.944
10 40 0.936 0.949 0.954 0.943 0.947
10 60 0.941 0.949 0.953 0.945 0.948
10 100 0.945 0.949 0.952 0.947 0.949

the nominal level. Accordingly, we present the proportion of 10,000 parameter
settings {πi, ...,πI} for which coverage probability was between 0.94 to 0.96. We
consider this to be the main criterion for recommending a method (Table 4). Addi-
tionally, the mean coverage probabilities over all 10,000 settings are given in Table
5. These values provide additional information whether the considered confidence
limit is, on average, liberal or conservative.

4.3 Results

The results for nominal 0.95 lower confidence limits in situations with balanced
sample sizes are summarized in Tables 4 and 5. In the case of 3,4, or 6 groups, the
add-1 limit achieved the highest proportion of coverage probabilities between 0.94
and 0.96, and a mean coverage probability closest to the nominal confidence level
0.95. However, for small sample sizes, such as ni = 10 or 20, and larger number

10

The International Journal of Biostatistics, Vol. 6 [2010], Iss. 1, Art. 15

DOI: 10.2202/1557-4679.1180

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 11.01.18 09:02



of groups, this method can be liberal for large proportions of settings. In these
situations, our results suggested that the add-2 method constitutes a better choice if
conservative performance is acceptable. The add-2/g and add-4/g methods tended
to be liberal for large number of groups. As expected, the Wald limit was more
liberal than all the other methods under all simulated situations.

Table 6: Lower 0.95 confidence limits in unbalanced designs: Proportion of situa-
tions with coverage probability between 94% to 96%

n1,n2,n3,n4 Wald add-1 add-2 add-2/g add-4/g
64, 32, 32, 32 0.513 0.864 0.509 0.862 0.723
80, 40, 30, 10 0.280 0.503 0.467 0.474 0.664
10, 30, 40, 80 0.147 0.312 0.608 0.241 0.497
20, 30, 50, 60 0.228 0.494 0.645 0.367 0.736
60, 50, 30, 20 0.382 0.800 0.495 0.765 0.717

Table 7: Lower 0.95 confidence limits in unbalanced designs: Mean coverage prob-
ability for 10,000 randomly chosen settings.

n1,n2,n3,n4 Wald add-1 add-2 add-2/g add-4/g
64, 32, 32, 32 0.941 0.950 0.953 0.948 0.952
80, 40, 30, 10 0.910 0.947 0.955 0.945 0.954
10, 30, 40, 80 0.903 0.951 0.961 0.941 0.952
20, 30, 50, 60 0.930 0.950 0.956 0.945 0.951
60, 50, 30, 20 0.934 0.950 0.953 0.947 0.952

For the unbalanced four group designs considered in Tables 6 and 7, the
add-2 and add-4/g limits approached the highest proportions of coverage probability
between 0.94 and 0.96. The add-2 limit is conservative in situations with extremely
small sample sizes. Especially when the control group sample size was small, the
performance of all limits became weak.

5 Approximative power calculation
Although the main focus of this article is confidence limit estimation, users may
be interested in power calculation for the global test on trend. Bretz and Hothorn
(2002) derive an approximative calculation for the power of multiple contrast tests
for binary data. Their method is based on a Wald-type test statistic, using the maxi-
mum likelihood estimators for variance estimation, and a pooled variance estimator
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under the null hypothesis. This method can be easily adapted to the test statistic
presented in Section 3.3, assuming that we wish to detect an increasing trend us-
ing Williams contrasts with the global null hypothesis H0 :

⋂M
m=1 Lm ≤ 0 and the

alternative H1 :
⋃M

m=1 Lm > 0. Under the alternative, we assume true proportions
πi and sample sizes ni. Then, for large ni, a single test statistic follows a normal
distribution with expectation

E (Tm) =
∑

I
i=1 cimπ̃∗i√

∑
I
i=1 c2

imπ̃∗i
(
1− π̃∗i

)
˜/n∗i

(7)

and variance V (Tm) = 1, where π̃∗i = (niπi +0.5)/(ni +1) and n∗i = ni + 1, e.g.
for the add-1 adjustment. The M test statistics jointly follow an M-variate nor-
mal distribution with e being the vector of expectations with elements E (Tm), and
correlation matrix R as defined in Schaarschmidt et al. (2008a). The power to
reject the global null hypothesis is the probability that at least one Tm exceeds
the equi-coordinate critical value qM,R,1−α . It can, therefore, be calculated us-
ing: 1−ΦM

(
qM,R,1−α ;e,R

)
or, equivalently, using a central multivariate nor-

mal distribution after subtracting the vector of expected values from the quantiles:
1−ΦM

(
qM,R,1−α − e;0,R

)
. A simulation study involving a variety of settings

revealed that only a negligible difference in the second decimal position exists be-
tween the values of approximate and simulated power. In Table 8, the approximate
power calculation is compared to simulated power (10,000 replications) for tests on
increasing trend with nominal level α = 0.05, using the add-1 adjustment. The ex-
pected values πi for two different dose response shapes, which could be underlying
the data in Table 2, were assumed, and power is calculated for balanced samples
sizes ni = 10,20,40,60.

Table 8: Approximate and simulated power of tests for increasing trend (α = 0.05)
using add-1 adjustment

ni π1 π2 π3 π4 Approximate power Simulated power
10 0.30 0.30 0.30 0.50 0.1763 0.1802
10 0.05 0.05 0.20 0.50 0.7224 0.7650
20 0.30 0.30 0.30 0.50 0.2863 0.3300
20 0.05 0.05 0.20 0.50 0.9592 0.9596
40 0.30 0.30 0.30 0.50 0.4868 0.4713
40 0.05 0.05 0.20 0.50 0.9996 0.9994
60 0.30 0.30 0.30 0.50 0.6484 0.6345
60 0.05 0.05 0.20 0.50 1.0000 1.0000
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Table 8 shows marked differences between the calculated and the simulated
power for the smallest group wise sample size ni = 10. For such small sample sizes,
the approximate power calculation may show even larger deviations from the true
power than the deviations displayed in Table 8, depending on the chosen parameter
combination. However, taking into account the uncertainty in assuming π1, ...,πI ,
the method of approximate power calculation is a helpful tool in experimental de-
sign involving moderate sample sizes.

6 Evaluation of the examples
Applying the add-1 method to the chronic toxicity data presented in Table 1 led to
the approximate simultaneous 0.95 confidence limits listed in Table 9. Since all
three linear combinations were significantly larger than 0, we concluded that there
is a significant increase in the mortality rate with increasing dosage. Pooling the 50
mg/kg and 100 mg/kg dose groups led to the most pronounced change in mortality
rate compared to the untreated control group.

Table 9: Simultaneous 0.95 lower add-1 confidence limits for Williams-type con-
trasts of the proportions presented in Table 1.
Comparison Contrast coefficients Lower limit Estimate
C1: Control vs. high −1 0 0 1 0.069 0.300
C2: Control vs. medium & high −1 0 0.5 0.5 0.078 0.250
C3: Control vs. all doses −1 0.3̄ 0.3̄ 0.3̄ 0.014 0.150

Next, we evaluated the histopathological findings of the 28-day toxicity
study in rats (Tab. 2). We applied the add-1 adjustment and calculated multiplicity-
adjusted p-values. For the three Williams contrasts C1: π250mg/kg− π0mg/kg; C2:
(π250mg/kg+π50mg/kg)/2−π0mg/kg; and C3: (π250mg+π50mg+π10mg)/3−π0mg/kg,
we obtain p-values 1.7e− 07, 7.4e− 06 and 2.0e− 04, respectively. The minimal
p-value smaller than 0.05 reveals the presence of a dose-related trend, and because
the smallest p-value was obtained for contrast C1, we concluded that an increase
in the high 250 mg/kg dose dominated this trend. An alternative approach to eval-
uating this dataset consisted of employing a closed test to identify the minimum
observed effect dose by performing Williams trend tests with stepwise omission
of the highest remaining dose. In the second step, this approach already yielded a
non-significant p-value of 0.052 for the trend test without the 250 mg/kg dose, i.e.,
250 mg/kg was the minimum observed effect dose.
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7 Discussion
This paper shows how trends among ordered binomial proportions can be detected
without the strong assumption of linearity in settings with small or moderate sam-
ple size. Although the use of multiplicity-adjusted p-values is common, the use
of simultaneous confidence limits allows further interpretation with respect to the
effect size and shape of the dose-response relationship.

A simulation study showed that the computationally simple add-1 and add-2
adjustments perform better than the commonly used Wald limit. The methods pro-
posed here fill the gap between methods that are appropriate for designs with large
sample sizes (e.g., 100 per group) when central limit theorem holds for the Wald
limit, and designs involving small sample sizes of 20 or less, which are not appro-
priate in trials with a binomial response due to insufficient power. A comparison
of the different adjustments revealed that the add-1 adjustment provides a simple
and acceptable solution for one-sided confidence limits. Advantages of the small
sample adjustments investigated here are their simplicity and computational avail-
ability. Additionally, due to the simplicity of the methods, an approximate power
calculation can be derived using previous results of Bretz and Hothorn (2002).

In toxicology, downturn effects at high doses may sometimes occur. The
Williams test is relatively robust against slight non-monotonicity, because of its
pooling properties, but may yield misleading results in the presence of significant
downturns. When monotonicity is in doubt, modified Williams-type contrasts for
downturn alternatives are available (Bretz and Hothorn, 2003). Combining their
approach with the methods discussed in this article is straightforward, and involves
replacing the Williams-type contrast matrix with the modified matrix proposed by
Bretz and Hothorn (2003). In cases when even a relaxed monotonicity assump-
tion appears inadequate, Dunnett-type comparisons for proportions may be applied
instead (Holford, 1989, Piegorsch, 1991, Schaarschmidt et al., 2009).

When the underlying trend is, in fact, linear, the Williams test exhibits lower
power compared to alternative methods. However, in the case of Gaussian variables,
this loss in power is modest (Williams, 1971, Bretz, 2006), except when the sample
size allocated in the control group is unusually small (Bretz, 2006).

Exact procedures are often recommended for binomial proportions and de-
signs with small or moderate sample sizes. Such methods are available and dis-
cussed extensively for the one-parameter problem, or when only simple null- hy-
potheses of no effect are considered. However, when two or more parameters are
considered simultaneously, and confidence intervals are of interest in addition to
p-values, the use of exact methods becomes either controversial, even in relatively
simple problems (Roehmel, 2005), or simply impossible due to the computational
burden of inverting exact binomial tests. Furthermore, requiring an exact method
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means that the size of the test is smaller than or equal to α . Due to the discrete-
ness of the binomial variable, and hence of the test statistics, exact tests have size
smaller than α for almost all parameter settings, especially if sample sizes are small
and proportions are close to 0 or 1 (e.g. Brown et al., 2001). As a consequence, the
test (and the corresponding confidence interval) is more conservative than nomi-
nally required. However, applying a conservative test in cases when the alternative
hypothesis describes the hazardousness of the compound is counterintuitive under
the precautionary principle.

In this paper, we discussed situations, in which simple binomial proportions
are assumed to characterize the toxicologically interesting effects. However, due
to competing risks, the crude incidence rates may result in biased estimates of the
effects of interest. As an example, consider an evaluation of tumor incidences in
long-term carcinogenicity studies confounded by mortality without cause-of-death
information. For such data, related procedures based on mortality-adjusted poly-k
estimates are available (Schaarschmidt et al., 2008a). Related procedures for the
evaluation of graded histopathological findings and differential blood counts may
serve as a subject for future research.

The approach discussed above concerns a one-way layout, and does not
allow to include covariate information. However, testing trends for Williams-type
contrasts while correcting for covariates is straightforward in the generalized linear
model with the binomial family, logit link, and a subsequent application of the
methods described by Hothorn et al. (2008) for multiple contrasts. In this approach,
the effect would be described in terms of odds ratios rather than differences of
proportions. However, its small sample properties have not been examined so far;
the necessity of applying adjustments and their available options for small sample
sizes may provide additional topics for further research.

References
Agresti A, Caffo B. (2000) Simple and effective confidence intervals for proportions

and differences of proportions result from adding two successes and two failures.
American Statistician 54(4):280–288.

Agresti A, Coull A. (1998) Approximate is better than ”exact” for interval estima-
tion of binomial proportions. American Statistician 52(2):119–126.

Armitage P. (1955) Tests for linear trends in proportions and frequencies. Biomet-
rics 11(3):375–386.

Bell DR, Clode S, Fan MQ, Fernandes A, Foster PMD, Jiang T, Loizou
G, MacNicoll A, Miller BG, Rose M, Tran L, White S. (2007) Toxicity
of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in the Developing Male Wistar(Han)

15

Hothorn et al.: Williams-Type Procedure for Rates

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 11.01.18 09:02



Rat. II: Chronic Dosing Causes Developmental Delay. Toxicological Sciences
99(1):224–233.

Bretz F. (2006) An extension of the Williams trend test to general unbalanced linear
models. Computational Statistics & Data Analysis 50(7):1735–1748.

Bretz F, Hothorn LA. (2002) Detecting dose-response using contrasts: asymptotic
power and sample size determination for binomial data. Statistics in Medicine
21(22):3325–3335.

Bretz F, Hothorn LA. (2003) Statistical analysis of monotone or non-monotone
dose-response data from in vitro toxicological assays. ATLA-Alternatives to Lab-
oratory Animals 31:81–96.

Brown LD, Cai TT and DasGupta A. (2001) Interval estimation for a binomial
proportion. Statistical Science 16:101–133.

Brown L, Li X. (2005) Confidence intervals for two sample binomial distribution.
Journal of Statistical Planning and Inference 130(1-2):359–375.

Cai TT. (2005) One-sided confidence intervals in discrete distributions. Journal of
Statistical Planning and Inference 131(1):63–88.

Carriere KC. (2001) How good is a normal approximation for rates and propor-
tions of low incidence events? Communications in Statistics - Simulation and
Computation 30(2):327–337.

Dunn OJ. (1964) Multiple Comparisons Using Rank Sums. Technometrics 6(3):
241–249.

Dunnett CW. (1955) A multiple comparison procedure for comparing several
treatments with a control. Journal of the American Statistical Association
50(272):1096–1121.

Holford TR, Walter SD and Dunnett CW (1989). Simultaneous interval estimates
of the odds ratio in studies with two or more comparisons. Journal of Clinical
Epidemiology 42:427–434.

Hothorn LA. (1994) Multiple comparisons in long-term toxicity studies. Environ-
mental Health Perspectives 102:33–38.

Hothorn T, Bretz F and Genz A. (2001) On multivariate t and Gauss probabilities
in R. R News 1(2):27–29.

Hothorn T, Bretz F and Westfall P. (2008) Simultaneous Inference in General Para-
metric Models. Biometrical Journal 50:346–363.

Kandori H, Suzuki S, Asamoto M, Murasaki T, Mingxi T, Ogawa K, Shirai, T.
(2005) Influence of atrazine administration and reduction of calorie intake on
prostate carcinogenesis in probasin/SV40 T antigen transgenic rats. Cancer Sci-
ence 96(4):221–226.

Leuraud K, Benichou J. (2006) A comparison of stratified and adjusted trend tests
for binomial proportions. Statistics in Medicine 25(3):529–535.

16

The International Journal of Biostatistics, Vol. 6 [2010], Iss. 1, Art. 15

DOI: 10.2202/1557-4679.1180

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 11.01.18 09:02



National Toxicology Program. (2009) Description of NTP Study Types - Expanded
overview. http://ntp.niehs.nih.gov [5 May 2009].

OECD408 (1998) Repeated Dose 90-Day Oral Toxicity Study in Rodents. OECD
Paris: adopted 21st September 1998.

Piegorsch WW. (1991) Multiple comparisons for analyzing dichotomous response.
Biometrics 47(1):45–52.

Price RM, Bonett DG. (2004) An improved confidence interval for a linear function
of binomial proportions. Computational Statistics & Data Analysis 45(3):449–
456.

Roehmel J. (2005) Problems with existing procedures to calculate exact uncondi-
tional p-values for non-inferiority/superiority and confidence intervals for two
binomials and how to resolve them. Biometrical Journal 47(1): 37–47.

Rucker G, Schwarzer G, Carpenter J, Olkin, I. (2009) Why add anything to nothing?
The arcsine difference as a measure of treatment effect in meta-analysis with zero
cells. Statistics in Medicine 28(5):721–738.

Schaarschmidt F, Sill M, Hothorn LA. (2008a) Poly-k-trend tests for survival ad-
justed analysis of tumor rates formulated as approximate multiple contrast test.
Journal of Biopharmaceutical Statistics 18(5):934–948.

Schaarschmidt F, Gerhard D, Sill M. (2008b) MCPAN: Multiple comparisons using
normal approximation. R package version 1.1-7.

Schaarschmidt F, Biesheuvel EHE, Hothorn LA. (2009) Asymptotic simultaneous
confidence intervals for many-to-one comparisons of binary proportions in ran-
domized clinical trials. Journal of Biopharmaceutical Statistics 19(2):292–310.

Shirley E. (1977) Nonparametric equivalent of Williams test for contrasting increas-
ing dose levels of a treatment. Biometrics 33(2): 386–389.

Shirley E. (2007) Correspondence: Tests for a simple tree order restriction with
application to dose-response studies. Applied Statistics 56:493–497.

Tang ML, Ng HKT, Guo JH, Chan W, Chan BPS. (2006) Exact Cochran-Armitage
trend tests: comparisons under different models. Journal of Statistical Computa-
tion and Simulation 76(10):847–859.

Williams DA. (1971) Test for differences between treatment means when several
dose levels are compared with a zero control. Biometrics 27(1):103–117.

Williams DA. (1972) Comparison of several dose levels with a zero dose control.
Biometrics 28(2):519–531.

Woo GH, Shibutani M, Ichiki T, Inoue K, Hirose M. (2007) A repeated 28-day
oral dose toxicity study of nonylphenol in rats, based on the Enhanced OECD
Test Guideline 407 for screening of endocrine-disrupting chemicals. Archives of
Toxicology 81(2):77–88.

17

Hothorn et al.: Williams-Type Procedure for Rates

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 11.01.18 09:02


	The International Journal of Biostatistics
	Evaluation of Incidence Rates in Pre-Clinical Studies Using a Williams-Type Procedure
	Evaluation of Incidence Rates in Pre-Clinical Studies Using a Williams-Type Procedure
	Abstract


