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1. Introduction and the main result. Throughout the paper, K will denote a fixed
algebraically closed field. By an algebra is meant an associative, finite-dimensional
K-algebra with an identity. For an algebra A, we denote by mod A the category of finite-
dimensional right A-modules and by D the standard duality HomK (−, K) on mod A.
An algebra A is called self-injective if AA is an injective A-module, or equivalently,
the projective A-modules are injective. Prominent classes of self-injective algebras are
formed by the Frobenius algebras A for which there exists an associative, nondegenerate,
K-bilinear form (−,−) : A × A → K , and the symmetric algebras A for which there
exists an associative, symmetric, nondegenerate, K-bilinear form (−,−) : A × A → K .
By the classical theorems of Nakayama [30, 31], an algebra A is Frobenius (respectively,
symmetric) if and only if A ∼= D(A) in mod A (respectively, as A–A-bimodules). We
also mention that every self-injective algebra A is Morita equivalent to a Frobenius
algebra, namely to its basic algebra. Moreover, for every algebra B, the trivial extension
T(B) = B � D(B) of B by the B–B-bimodule D(B) is a symmetric algebra, and B is
a factor algebra of T(B). It follows also from a result of Nakayama [31] that the left
socle and the right socle of a self-injective algebra A coincide, and we denote them by
soc(A). Two self-injective algebras A and � are said to be socle equivalent if the factor
algebras A/ soc(A) and �/ soc(�) are isomorphic.

According to the remarkable Tame and Wild Theorem of Drozd [12], the class of
(finite-dimensional) K-algebras over K may be divided into two disjoint classes. One
class consists of the tame algebras for which the indecomposable modules occur, in
each dimension d, in a finite number of discrete and a finite number of one-parameter
families. The second class consists of the wild algebras for which the representation
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theory comprises the representation theories of all finite-dimensional algebras over
K (see [37, Chapter XIX]). Hence a classification of finite-dimensional modules is
only feasible for tame algebras. More precisely, following Drozd [12], an algebra A is
said to be tame if for any positive integer d, there exists a finite number of K [x]–A-
bimodules Mi, 1 ≤ i ≤ nd , which are finitely generated and free as left K [x]-modules
(K [x] is the polynomial algebra in one variable over K), and all but finitely many
isomorphism classes of indecomposable modules of dimension d in mod A are of the
form K [x]/(x − λ) ⊗K[x] Mi for some λ ∈ K and some i ∈ {1, . . . , nd}. Let μA(d) be
the least number of K [X ]–A-bimodules satisfying the above condition for d. Then
A is said to be of polynomial growth (respectively, domestic) if there exists a positive
integer m such that μA(d) ≤ dm (respectively, μA(d) ≤ m) for all d ≥ 1. Moreover,
from the validity of the second Brauer–Thrall conjecture, μA(d) = 0 for all d ≥ 1 if
and only if A is representation-finite (there are only finitely many isomorphism classes
of indecomposable modules in mod A).

One central problem of modern representation theory is the determination of
the module categories mod A of tame self-injective algebras A. Recently, the module
categories of all self-injective algebras of polynomial growth have been described
completely. It has been proved by the second named author [38] that a nonsimple
basic connected self-injective algebra A is of polynomial growth if and only if A is socle
equivalent to an orbit algebra B̂/G, where B̂ is the repetitive category of an algebra
B, being a tilted algebra of Dynkin or Euclidean type or a tubular algebra, and G
is an admissible infinite cyclic automorphism group of B̂. In particular, the Morita
equivalence classification of the self-injective algebras of polynomial growth splits
into two cases: the standard algebras whose basic algebras admit simply connected
Galois coverings, and the remaining nonstandard algebras (see [39]). We refer to the
survey article [40] for the Morita equivalence classification and the structure of module
categories of the self-injective algebras of polynomial growth.

In this paper, we are concerned with the problem of derived equivalence
classification of self-injective algebras of polynomial growth. For an algebra A, we
denote by Db(mod A) the derived category of bounded complexes from mod A. Then
two algebras A and � are said to be derived equivalent if the derived categories
Db(mod A) and Db(mod �) are equivalent as triangulated categories. Since Happel’s
work [17] interpreting tilting theory in terms of equivalences of derived categories,
the machinery of derived categories has been of interest to representation theorists.
In [33] Rickard proved his celebrated criterion: two algebras A and � are derived
equivalent if and only if � is the endomorphism algebra of a tilting complex over
A. Since a lot of interesting properties are preserved by derived equivalences (see
Section 2), it is for many purposes important to classify classes of algebras up to derived
equivalence, instead of Morita equivalence. In particular, for self-injective algebras the
representation types introduced above are invariants of the derived category.

In [3, Theorem 2.2] Asashiba proved that the derived equivalence classes of
connected representation-finite standard (respectively, nonstandard) self-injective
algebras are determined by the combinatorial data called the types, and the derived
equivalence classes of the standard and nonstandard representation-finite self-injective
algebras are disjoint.

A complete derived equivalence classification of the representation-infinite
domestic standard (respectively, nonstandard) symmetric algebras has been established
in our joint papers with Bocian [10] (respectively, [11]). In [22] we completed the
classification by showing that the derived equivalence classes of the standard and
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SYMMETRIC ALGEBRAS OF POLYNOMIAL GROWTH 279

nonstandard representation-infinite domestic symmetric algebras are disjoint. In fact,
we established in [22] the derived equivalence classification of all connected domestic
symmetric algebras by bound quiver algebras.

A derived equivalence classification of the nondomestic standard (respectively,
nonstandard) symmetric algebras of polynomial growth has been established in our
joint papers with Białkowski [6] (respectively, [7]). This classification is complete up
to certain scalar parameters occurring in the relations for which it seems intractable
by current methods to decide for which scalars the corresponding algebras are derived
equivalent.

The main open question in the derived equivalence classification of nondomestic
symmetric algebras of polynomial growth has been to distinguish the standard algebras
from the nonstandard algebras up to derived equivalence. This is subtle because the
stable Auslander–Reiten quivers of all these algebras consist only of stable tubes (see
[32, 39, 40]).

In this paper we solve this problem by proving the following main result and hence
complete (up to the scalars mentioned above) the derived equivalence classification of
the symmetric algebras of polynomial growth.

MAIN THEOREM. Let A be a standard self-injective algebra and � be a basic,
connected, nonstandard, nondomestic, symmetric algebra of polynomial growth. Then
A and � are not derived equivalent.

In particular, it follows that the derived equivalence classes of the standard and
nonstandard nondomestic symmetric algebras of polynomial growth are disjoint. For
a list of explicit representatives of the derived equivalence classes, we refer to Section 4
below.

The crucial tool for proving the main theorem are the so-called Külshammer ideals
defined by Külshammer in [25–28] for symmetric algebras of positive characteristic,
which have been shown by Zimmermann [42] to be invariants of derived equivalences.
These invariants are suitable for our purposes since the nonstandard nondomestic
self-injective algebras of polynomial growth occur only in characteristics 2 and 3; see
[9]. Moreover, in our proof of the Main Theorem we apply also a recent result of
Al-Kadi [1] describing the dimensions of the second Hochschild cohomology spaces
of the preprojective algebra of Dynkin type �4 and its unique proper deformation (in
the sense of [5]).

In fact, the Main Theorem completes also the derived equivalence classification of
tame symmetric algebras A with periodic modules (all modules in mod A without
projective direct summands are periodic with respect to the action of the syzygy
operator �A). Recall that �A assigns to a module M in mod A the kernel of a minimal
projective cover PA(M) → M. Since for the symmetric algebras A, the second syzygy
�2

A is the Auslander–Reiten translation τA = D Tr (as functors on the stable module
category mod A), the class of tame symmetric algebras A with �A-periodic module
categories coincides with the class of tame symmetric algebras A for which the stable
Auslander–Reiten quiver �s

A consists only of stable tubes. It has been proved recently
by Erdmann and Skowroński [13] that a nonsimple, basic, connected, symmetric
algebra is tame with periodic modules if and only if A is of one of the following
forms: a representation-finite symmetric algebra, a nondomestic symmetric algebra of
polynomial growth, or an algebra of quaternion type (in the sense of [13]). We refer to
[13, Chapter VII] and [15, Section 5] (see also [40, Section 8]) for a Morita equivalence
classification of algebras of quaternion type. The derived equivalence classification of
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all algebras of quaternion type has been established by the first author in [21, Section 5]
(see also [15, Propositions 5.4 and 5.8]).

For basic background on the representation theory, we refer to the books [4, 36, 37]
and to the survey articles [40] and [41].

2. Invariants of derived equivalences of algebras. The aim of this section is to
present some properties of algebras which are invariant under derived equivalences.

The following results of Rickard [35, Corollary 5.3] (symmetric case) and Al-
Nofayee [2] (self-injective case) establish invariance of the classes of symmetric algebras
and self-injective algebras under derived equivalences.

THEOREM 2.1. Let A and � be derived equivalent algebras. Then the following
equivalences hold.

(i) A is symmetric if and only if � is symmetric.
(ii) A is self-injective if and only if � is self-injective.

Recall that the two algebras A and � are said to be stably equivalent if the
stable module categories mod A and mod � (modulo projectives) are equivalent. The
following result proved by Rickard in [34, Corollary 2.2] (see also [35, Corollary 5.5]) is
fundamental for the study of stable and derived equivalences of self-injective algebras.

THEOREM 2.2. Let A and � be derived equivalent self-injective algebras. Then A and
� are stably equivalent.

This together with the following theorem of Krause and Zwara [24] shows that the
hierarchy of tame self-injective algebras is preserved by derived equivalences.

THEOREM 2.3. Let A and � be stably equivalent algebras. Then A is tame
(respectively, domestic, of polynomial growth) if and only if � has the same property.

For a self-injective algebra A, denote by �s
A the stable Auslander–Reiten quiver of

A, obtained from the Auslander–Reiten quiver �A of A by removing the projective
vertices and the arrows attached to them.

We have the following important consequence of Theorem 2.2.

COROLLARY 2.4. Let A and � be derived equivalent self-injective algebras. Then �s
A

and �s
� are isomorphic as translation quivers.

For an algebra A, consider the enveloping algebra Ae = Aop ⊗K A of A. Recall
that the category mod Ae of finite-dimensional right Ae-modules is equivalent to the
category of finite-dimensional A–A-bimodules. Moreover, A is self-injective if and only
if Ae is self-injective. The algebra A is a right Ae-module, via a(x ⊗ y) = xay for a ∈ A,
x ∈ Aop, y ∈ A. We may then consider the Hochschild cohomology algebra

HH∗(A) = Ext∗Ae (A, A) =
⊕
i≥0

Exti
Ae (A, A)

of A, which is a graded commutative K-algebra with respect to the Yoneda product
(see [16, Corollary 1]). We note that HH0(A) is isomorphic to the centre Z(A) of A.

The following theorem proved by Rickard in [35, Proposition 2.5] (see also [18,
Theorem 4.2] for a special case) shows that Hochschild cohomology yields invariants
under derived equivalences.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089510000698
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 23 Jan 2018 at 12:22:07, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089510000698
https://www.cambridge.org/core


SYMMETRIC ALGEBRAS OF POLYNOMIAL GROWTH 281

THEOREM 2.5. Let A and B be derived equivalent algebras. Then HH∗(A) and
HH∗(B) are isomorphic as graded K-algebras.

COROLLARY 2.6. Let A and B be derived equivalent algebras. Then the centres Z(A)
and Z(B) are isomorphic as K-algebras.

We also note the following fact (see [18, Lemma III.1.2]).

THEOREM 2.7. Let A and B be derived equivalent algebras. Then the Grothendieck
groups K0(A) and K0(B) are isomorphic.

3. Külshammer ideals. A prominent role in the proof of our main result is
played by Külshammer ideals, introduced by Külshammer for symmetric algebras
over algebraically closed fields of positive characteristic. These form a decreasing
sequence of ideals of the centre of an algebra, and this sequence has been shown by
Zimmermann [42] to be invariant under derived equivalences. We recall the definition
of Külshammer ideals below; for more details on these invariants, we refer to [20, 23,
25–29].

Let K be an algebraically closed field of characteristic p > 0 and A be a symmetric
K-algebra, i.e. there exists an associative, symmetric, nondegenerate, K-bilinear form
(−,−) : A × A → K . For a K-subspace M of A, denote by M⊥ the orthogonal
complement of M inside A with respect to the form (−,−). Moreover, let K(A) be
the K-subspace of A generated by all commutators [a, b] := ab − ba, for any a, b ∈ A.
For any n ≥ 0, set

Tn(A) = {
x ∈ A | xpn ∈ K(A)

}
.

Then, by [25–28], the orthogonal complements Tn(A)⊥, n ≥ 0, are ideals of the centre
Z(A) of A, called Külshammer ideals. They form a descending sequence

Z(A) = T0(A)⊥ ⊇ T1(A)⊥ ⊇ T2(A)⊥ ⊇ T3(A)⊥ ⊇ · · · .

In fact, Külshammer proved in [29] that the equation (ξn(z), x)pn = (z, xpn
) for any

x, z ∈ Z(A) defines a mapping ξn : Z(A) → Z(A) whose image ξn(Z(A)) = Tn(A)⊥ is
precisely the nth Külshammer ideal.

Then we have the following theorem proved recently by Zimmermann [42,
Theorem 1] showing that the Külshammer ideals are derived invariants.

THEOREM 3.1. Let A and B be derived equivalent symmetric algebras over an
algebraically closed field of positive characteristic p. Then there is an isomorphism
ϕ : Z(A) → Z(B) of the centres of A and B such that ϕ(Tn(A)⊥) = Tn(B)⊥ for all
nonnegative integers n.

Hence the sequence of Külshammer ideals gives new derived invari-
ants, for symmetric algebras over algebraically closed fields of positive
characteristic.

For using Külshammer ideals in the context of derived equivalence classifications,
one has to be able to perform explicit computations with them and for this we
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shall later give explicit symmetrizing bilinear forms on the symmetric algebras under
consideration.

4. Derived normal forms of nondomestic symmetric algebras of polynomial growth.
In this section we present derived normal forms, i.e. representatives of the derived
equivalence classes, of the connected nondomestic symmetric algebras of polynomial
growth.

Consider the following families of bound quiver algebras (in the notation of
[7]):

�2:

•������α
�� γ �� •

β
��

α2γ = 0, βα2 = 0, γβγ = 0, βγβ = 0,
βγ = βαγ , α3 = γβ

�′
2:

•������α
�� γ �� •

β
��

α3 = γβ, βγ = 0,
βα2 = 0, α2γ = 0

�3(λ), λ ∈ K \ {0, 1}:

•������α
�� σ �� • �����	 β

��
γ

��

α4 = 0, γα2 = 0, α2σ = 0,
α2 = σγ + α3, λβ2 = γ σ , γα = βγ ,

σβ = ασ

�′
3(λ), λ ∈ K \ {0, 1}:

•������α
�� σ �� • �����	 β

��
γ

��

α2 = σγ , λβ2 = γ σ ,
γα = βγ , σβ = ασ

�5:

•
β �� •

α

��
γ

��
δ �� •
σ

��

α2 = γβ, α3 = δσ , βδ = 0, σγ = 0,
αδ = 0, σα = 0, γβγ = 0, βγβ = 0,

βγ = βαγ

�′
5:

•
β �� •

α

��
γ

��
δ �� •
σ

��

α2 = γβ, βδ = 0, βγ = 0, σγ = 0,
αδ = 0, σα = 0, α3 = δσ

�9:

•
γ

��•
δ

��

β		������ ε



������

•
α

�������� •ξ

��������

βα + δγ + εξ = 0, γ δ = 0, ξε = 0,
αβα = 0, βαβ = 0, αβ = αδγβ

�′
9:

•
γ

��•
δ

��

β		������ ε



������

•
α

�������� •ξ

��������

βα + δγ + εξ = 0, αβ = 0, ξε = 0,
γ δ = 0
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A1(λ), λ ∈ K \ {0, 1}:

• α �� •
γ

��
σ �� •
β

��

αγα = ασβ, βγα = λβσβ,
γαγ = σβγ , γασ = λσβσ

A4:

•
γ

��•
δ

��

β		������ ε



������

•
α

�������� •ξ

��������

βα + δγ + εξ = 0, αβ = 0, γ ε = 0,
ξδ = 0

Note that the algebra �′
9 is just the preprojective algebra of Dynkin type

�4.

It has been proved in [8, Theorems 1 and 2] and [9, Theorem 1.1] that

• �2 and �′
2 are symmetric algebras of tubular type (3, 3, 3), and �2

∼= �′
2 if and

only if char K 
= 3. Moreover, �2 and �′
2 are socle equivalent.

• �3(λ) and �′
3(λ), λ ∈ K \ {0, 1}, are symmetric algebras of tubular type

(2, 2, 2, 2) and �3(λ) ∼= �′
3(λ) if and only if char K 
= 2. Moreover, �3(λ) and

�′
3(λ) are socle equivalent.

• �5 and �′
5 are symmetric algebras of tubular type (2, 4, 4), and �5

∼= �′
5 if and

only if char K 
= 2. Moreover, �5 and �′
5 are socle equivalent.

• �9 and �′
9 are weakly symmetric algebras of tubular type (3, 3, 3), and �9

∼= �′
9

if and only if char K 
= 2. Furthermore, �9 and �′
9 are symmetric algebras if

and only if char K = 2. Moreover, �9 and �′
9 are socle equivalent.

• A1(λ), λ ∈ K \ {0, 1}, are symmetric algebras of tubular type (2, 2, 2, 2).
• A4 is a symmetric algebra of tubular type (3, 3, 3).

It follows also from [7, Theorem 2.1] that �′
i is a geometric degeneration of �i for

i ∈ {2, 5, 9}, and �′
3(λ) is a geometric degeneration of �3(λ) for λ ∈ K \ {0, 1}.

Consider also the following family of the trivial extensions of Ringel’s tubular
canonical algebras:

�(2, 2, 2, 2, λ), λ ∈ K \ {0, 1}:

•

α2



��
��

��
��

��
��

��
��

•
β2

���������������

• η ��
ξ

�� •

α1

������������������
β1

���������������

γ1
���������������

σ1



��
��

��
��

��
��

��
��

•
γ2

���������������

•

σ2

������������������

α1α2 + β1β2 + γ1γ2 = 0, α1α2 + λβ1β2 + σ1σ2 = 0, ηα1 = 0, α2η = 0, ξβ1 = 0, β2ξ =
0, ηγ1 = ξγ1, γ2η = γ2ξ , ησ1 = λξσ1, σ2η = λσ2ξ .
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�(3, 3, 3):

•
α3

��������������� •α2��

• η ��
ξ

�� •

α1

���������������

β1
���������������

γ1



��
��

��
��

��
��

��
��

•
β3

��������������� •
β2

��

•

γ3

������������������
•

γ2
��

α1α2α3 + β1β2β3 + γ1γ2γ3 = 0, ηα1 = 0, α3η = 0, ξβ1 = 0, β3ξ = 0, ηγ1 = ξγ1, γ3η =
γ3ξ , α2α3ξα1α2 = 0, β2β3ηβ1β2 = 0, γ2γ3ηγ1γ2 = 0.

�(2, 4, 4):

•
α2

���������������������

• η ��
ξ

�� •

α1

��																			

β1
���������������

γ1



��
��

��
��

��
��

��
��

•
β4

��������������� •
β3

�� •
β2

��

•

γ4

������������������
•

γ3
�� •

γ2
��

α1α2 + β1β2β3β4 + γ1γ2γ3γ4 = 0, ηα1 = 0, α2η = 0, ξβ1 = 0, β4ξ = 0, ηγ1 = ξγ1,
γ4η = γ4ξ , β2β3β4ηβ1β2 = 0, β3β4ηβ1β2β3 = 0, γ2γ3γ4ηγ1γ2 = 0, γ3γ4ηγ1γ2γ3 = 0.

�(2, 3, 6):

•
α2

��





















• η ��
ξ

�� •

α1

����������������������

β1
����������������

γ1

��





















•
β3

���������������� •
β2

��

•

γ6

����������������
•

γ5
�� •

γ4
�� •

γ3
�� •

γ2
��

α1α2 + β1β2β3 + γ1γ2γ3γ4γ5γ6 = 0, ηα1 = 0, α2η = 0, ξβ1 = 0, β3ξ = 0,
ηγ1 = ξγ1, γ6η = γ6ξ , β2β3ηβ1β2 = 0, γ2γ3γ4γ5γ6ηγ1γ2 = 0, γ3γ4γ5γ6ηγ1γ2γ3 = 0,
γ4γ5γ6ηγ1γ2γ3γ4 = 0, γ5γ6ηγ1γ2γ3γ4γ5 = 0.

A direct calculation shows that �(2, 2, 2, 2, λ) ∼= T(C(2, 2, 2, 2, λ)),
�(3, 3, 3) ∼= T(C(3, 3, 3)), �(2, 4, 4) ∼= T(C(2, 4, 4)) and �(2, 3, 6) ∼= T(C(2, 3, 6)),

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089510000698
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 23 Jan 2018 at 12:22:07, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089510000698
https://www.cambridge.org/core


SYMMETRIC ALGEBRAS OF POLYNOMIAL GROWTH 285

where C(2, 2, 2, 2, λ), C(3, 3, 3), C(2, 4, 4) and C(2, 3, 6) are the canonical algebras of
tubular types (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) and (2, 3, 6), respectively.

The following derived equivalence classification of the standard nondomestic
symmetric algebras of polynomial growth follows from [6, Theorem] (see also [19]
for the derived equivalence of trivial extensions of tubular algebras) and the facts
described above.

THEOREM 4.1. Let A be a connected standard nondomestic symmetric algebra of
polynomial growth. Then A is derived equivalent to one of the following algebras:
� two simple modules: �′

2 and �′
3(λ), λ ∈ K \ {0, 1};

� three simple modules: �′
5 and A1(λ), λ ∈ K \ {0, 1};

� four simple modules: �′
9 (char K = 2) and A4;

� six simple modules: �(2, 2, 2, 2, λ), λ ∈ K \ {0, 1};
� eight simple modules: �(3, 3, 3);
� nine simple modules: �(2, 4, 4);
� ten simple modules: �(2, 3, 6).

Note that in the cases of four, eight, nine and ten simple modules, the above
classification does not depend on a scalar. Moreover, for any λ ∈ K \ {0, 1}, the centres
of the algebras �′

2 and �′
3(λ) are not isomorphic ([6, Lemma 2.2]), and hence �′

2
and �′

3(λ) are not derived equivalent, by Corollary 2.6. Similarly, the centres of the
algebras �′

9 and A4 are not isomorphic ([6, Lemma 4.6]), and hence �′
9 and A4 are not

derived equivalent. Moreover, for any λ ∈ K \ {0, 1}, the algebras �′
5 and A1(λ) have

nonisomorphic stable Auslander–Reiten quivers (see the proof of the Main Theorem),
and hence are not derived equivalent, by Corollary 2.4. Therefore, the classification is
complete up to the scalars λ ∈ K \ {0, 1} occurring in the algebras �′

3(λ) and A1(λ).
We do not know how to decide for which scalars λ,μ ∈ K \ {0, 1} the algebras �′

3(λ)
and �′

3(μ) (respectively, A1(λ) and A1(μ)) are derived equivalent.
It has been proved in [9, Theorem 1.1] that the nonstandard nondomestic

symmetric algebras of polynomial growth occur only in characteristics 2 and 3.
Furthermore, the following theorem proved in [7] gives the derived equivalence
classification of these algebras (when comparing with the results of [7] please note
that the algebra �10 occurring there is not symmetric and therefore does not have to
be considered here).

THEOREM 4.2. Let A be a connected nonstandard nondomestic symmetric algebra of
polynomial growth. Then A is derived equivalent to one of the following algebras:
� two simple modules: �2 (char K = 3) and �3(λ), λ ∈ K \ {0, 1} (char K = 2);
� three simple modules: �5 (char K = 2);
� four simple modules: �9 (char K = 2).

The above classification is complete up to the scalars λ ∈ K \ {0, 1} occurring in
the algebras �3(λ). We do not know how to decide for which scalars λ,μ ∈ K \ {0, 1}
and K of characteristic 2, the algebras �3(λ) and �3(μ) are derived equivalent.

5. Proof of the Main Theorem. Let � be a basic, connected, nonstandard,
nondomestic, symmetric algebra of polynomial growth over K . Then it follows from
Theorem 4.2 that either char K = 3 and � is derived equivalent to the algebra �2 or
char K = 2 and � is derived equivalent to one of the algebras �3(λ), λ ∈ K \ {0, 1},
�5, or �9.
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Assume now that A is a standard self-injective algebra over K which is derived
equivalent to �. Then, by Theorems 2.1, 2.2 and 2.3, A is a nondomestic symmetric
algebra of polynomial growth. Moreover, by Corollary 2.6, the centres Z(A) and Z(�)
are isomorphic, and hence A is connected, because � is connected (by assumption
on �). Since A is by assumption a standard algebra, we conclude that A is derived
equivalent to one of the algebras listed in Theorem 4.1. Furthermore, it follows from
Theorem 2.7 that the Grothendieck groups K0(�) and K0(A) are isomorphic, and
hence the quivers Q� of � and QA of A have the same number of vertices (see [4, II.3
and III.3]). Finally, by the general theory of self-injective algebras of tubular type (see
[40, Section 5], or [39, Section 3]), we know that the stable Auslander–Reiten quivers
�s

�5
and �s

�′
5

consist of �1(K)-families of stable tubes of tubular type (2, 4, 4), while
the stable Auslander–Reiten quivers �s

A1(λ), λ ∈ K \ {0, 1}, consist of �1(K)-families of
stable tubes of tubular type (2, 2, 2, 2). Hence, by Corollary 2.4, �5 (respectively, �′

5)
is not derived equivalent to an algebra A1(λ), λ ∈ K \ {0, 1}.

Moreover, �2 is not derived equivalent to �′
3(λ), since the former is of tubular

type (3, 3, 3) and the latter is of tubular type (2, 2, 2, 2). Similarly, �3(λ) is not derived
equivalent to �′

2.
Finally, �9 is not derived equivalent to A4 since their centres have different

dimensions. In fact, the centre of �9 is of dimension 5, generated by the unit element
1 and the (one-dimensional) socles of the four projective indecomposable modules; on
the other hand, the centre of A4 has an additional basis element βα − ξε − γ δ and
hence has dimension 6 (cf. also [6, Lemma 4.6]).

Therefore, in order to prove the Main Theorem, it remains to show that

(1) for char K = 3, the algebras �2 and �′
2 are not derived equivalent;

(2) for char K = 2 and λ,μ ∈ K \ {0, 1}, the algebras �3(λ) and �3(μ)′ are not
derived equivalent;

(3) for char K = 2, the algebras �5 and �′
5 are not derived equivalent;

(4) for char K = 2, the algebras �9 and �′
9 are not derived equivalent.

In order to prove (1)–(3), we will use the sequences of Külshammer ideals, as
described in Section 3. To this end we have to provide below explicit associative,
nondegenerate, symmetric bilinear forms on the algebras occurring in (1)–(3). It is well
known that such a form exists (i.e. that an algebra A is symmetric) if and only if there
is a K-linear form � : A → K , called a symmetrizing form, such that �(ab) = �(ba)
for all a, b ∈ A and the kernel of � does not contain any nonzero left or right ideal
of A.

The algebras in (4) cannot be distinguished by the Külshammer ideals; for proving
(4), we shall use a recent result of Al-Kadi [1] on the second Hochschild cohomology
of the two algebras involved.

(1) Let char K = 3. For both of the algebras �2 and �′
2, a K-linear basis consisting

of the different nonzero paths is given by

B = {e1, α, α2, α3 = γβ, α4 = αγβ = γβα, γ, αγ, e2, β, βα, βαγ }.

Also for both algebras � = �2 and � = �′
2, the centre is as K-vector space

generated as follows:

Z(�) = 〈1, α2, α3, α4, βαγ 〉K .
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It follows from [8, Section 4] (or can be checked directly) that a symmetrizing
form � ′ on the standard algebra �′

2 is given by assigning 1 to α4 and βαγ , and
0 to all other elements of the basis B.

Note that we cannot use the same form for the nonstandard algebra �2, since
� ′(γβ) = 0 whereas � ′(βγ ) = � ′(βαγ ) = 1, i.e. the form is not symmetric.
Instead, a symmetrizing form � on �2 is given by assigning 1 to α4, to βαγ

and to α3 = γβ, and assigning 0 to all other elements of the basis B.
Now we have to examine the commutator subspaces.
First, we consider the standard algebra �′

2. Since βγ = 0, we obtain

K(�′
2) = 〈γ, β, αγ, βα, γβ, βαγ − αγβ〉K .

In particular, α3 = γβ ∈ K(�′
2) from which it follows that

T1(�′
2) := {x ∈ �′

2 | x3 ∈ K(�′
2)} = J(�′

2),

where J(�′
2) denotes the ideal generated by the arrows of the quiver. (In fact,

the basis elements other than α in J(�′
2) clearly belong to T1(�′

2) since their
third powers vanish.)

For the first Külshammer ideal, we therefore get

T1(�′
2)⊥ = (J(�′

2))⊥ = soc(�′
2),

that is, the sequence of Külshammer ideals for �′
2 has length 2.

Secondly, we consider the nonstandard algebra �2. Now, βγ = βαγ is
nonzero, and the commutator subspace is

K(�2) = 〈γ, β, αγ, βα, γβ − βαγ, βαγ − αγβ〉K .

In particular, α 
∈ T1(�2) := {x ∈ �2 | x3 ∈ K(�2)}. But then α3 ∈ Z(�2) is
orthogonal (with respect to the form � above) to all elements in T1(�2). Thus,
the sequence of Külshammer ideals takes the form

soc(�2) ⊂︸︷︷︸
1

T1(�2)⊥ = 〈α3, α4, βαγ 〉K ⊂︸︷︷︸
2

Z(�2),

where the numbers under the inclusion signs denote codimensions. Since the
sequences of Külshammer ideals for the algebras �′

2 and �2 have different
lengths (and different codimensions), we can conclude from Theorem 3.1 that
�′

2 and �2 are not derived equivalent.

(2) Let char K = 2 and λ,μ ∈ K \ {0, 1}. For both types of algebras �3(λ) and
�3(μ)′, a K-linear basis consisting of the different nonzero paths is given by

B = {e1, e2, α, β, σ, γ, α2, ασ, β2, γ α, α3, β3}.

In fact, note that for �3(μ)′ we have that α4 = (σγ )2 = μσβ2γ = μασγα =
μα4, from which α4 = 0 follows since μ 
= 1. Similarly, one checks that γα2 =
βγα = γ σγ = 0 and α2σ = ασβ = σγ σ = 0 in �3(μ)′, and that β4 = 0 in
�3(λ) and �3(μ)′.
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For both types of algebras � = �3(λ) and � = �′
3(μ), the centre has a basis

of the form

Z(�) = 〈1, α + β, α2, β2, α3, β3〉K .

It follows from [8, Section 4] (or can be checked directly) that a symmetrizing
form � ′ on the standard algebra �3(μ)′ is given by assigning 1 to α3, μ−1 to
β3, and 0 to all remaining elements of the basis B.

Note that we cannot use the same form for the nonstandard algebra �3(λ),
because 0 = � ′(α2) = � ′(σγ + α3) = 0 + 1 = 1. Instead, a symmetrizing form
� for �3(λ) is given by assigning 1 to α3 and to α2, λ−1 to β3, and 0 to all
remaining elements of the basis B.

The commutator subspaces for both � = �3(λ) and � = �3(μ)′ are
generated as vector space as follows:

K(�) = 〈σ, γ, ασ, γ α, γ σ − σγ, γ σβ − σβγ 〉K .

Note that the only crucial difference in the relations is that α2 = σγ for
the standard algebras �′

3(μ), whereas α2 = σγ + α3 for the nonstandard
algebras �3(λ). This means that the element γ σ − σγ in the commutator
space equals μβ2 − α2 for �′

3(μ), and λβ2 − α2 + α3 for �3(λ), respectively.
This has consequences for the spaces T1(�) = {x ∈ � | x2 ∈ K(�)}. Namely,
let

√
μ be the unique square root of μ in K (recall that K is algebraically

closed, and of characteristic 2). Then we get for the standard algebras that
α + √

μ β ∈ T1(�′
3(μ)), whereas there is no analogous element in T1(�3(λ)).

More precisely, we have

T1(�′
3(μ)) = 〈α + √

μβ, σ, γ, α2, ασ, β2, γ α, α3, β3〉K

and

T1(�3(λ)) = 〈σ, γ, α2, ασ, β2, γ α, α3, β3〉K .

From this we can determine the first Külshammer ideals and their codimensions
as follows. For the standard algebras, we obtain (using the symmetrizing form
� ′ above)

soc(�′
3(μ)) ⊂︸︷︷︸

1

T1(�′
3(μ))⊥ = 〈α2 + √

μβ2, α3, β3〉K ⊂︸︷︷︸
3

Z((�′
3(μ)).

In fact, � ′((α2 + √
μ β2)(α + √

μ β)) = � ′(α3 + μβ3) = 1 + μμ−1 = 0 since
char K = 2; on the other hand, α2 
∈ T1(�′

3(μ))⊥ because α + √
μ β ∈

T1(�′
3(μ)), similarly for β2.

For the nonstandard algebras, we get (using the symmetrizing form � above)

soc(�3(λ)) ⊂︸︷︷︸
2

T1(�′
3(λ))⊥ = 〈α2, β2, α3, β3〉K ⊂︸︷︷︸

2

Z((�3(λ)).

Because of the different codimensions we can again conclude by Theorem 3.1
that �3(λ) and �′

3(μ) are not derived equivalent, as claimed.
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(3) Let char K = 2. For both of the algebras �5 and �′
5, a K-linear basis consisting

of the different nonzero paths is given by

B = {e1, e2, e3, α, β, γ, δ, σ, αγ, α2 = γβ, βα, α3 = δσ, σδ, βαγ }.
Also for both of the algebras � = �5 and � = �′

5, the centre is as vector space
generated as follows:

Z(�) = 〈1, α2, α3, σ δ, βαγ 〉K .

It follows from [8, Section 4] (or can be checked directly) that a symmetrizing
form � ′ on the standard algebra �′

5 is given by assigning 1 to the socle elements
α3, βαγ and σδ, and assigning 0 to all other elements of the basis B.

Note that one cannot use the same symmetrizing form for the nonstandard
algebra �5 since � ′(γβ) = 0 
= 1 = � ′(βαγ ) = � ′(βγ ), i.e. the form is not
symmetric on �5.

In fact, a symmetrizing form � for �5 is given by assigning 1 to α3, βαγ , σδ

and also to α2, and assigning 0 to all other elements of the basis B.
We shall need the commutator subspaces. It turns out that the only crucial

difference comes from the fact that βγ = 0 in �′
5, whereas βγ = βαγ is nonzero

in �5. Hence, we get

K(�) = 〈β, γ, δ, σ, βα, αγ, δσ − σδ, βαγ − αγβ, X〉K ,

where X = γβ for �′
5, and X = γβ − βγ for �5, respectively. This has the

following implication for T1(�) := {x ∈ � | x2 ∈ K(�)}. Namely, since α2 =
γβ, we have α ∈ T1(�′

5), but α 
∈ T1(�5). More precisely, denoting by J(�) the
ideal generated by the arrows of the quiver, we obtain

T1(�′
5) = J(�′

5),

whereas

T1(�5) ⊂ J(�5)

has codimension 1. (In fact, it is easy to see that all other basis elements of the
ideal J(�) are contained in T1(�).)

Now we examine the first Külshammer ideals T1(�)⊥. First we consider the
standard algebra �′

5. Here we get

T1(�′
5)⊥ = (J(�′

5))⊥ = soc(�′
5) = 〈α3, σ δ, βαγ 〉K .

In fact, α2 
∈ T1(�′
5)⊥ since α ∈ T1(�′

5) and � ′(α2 · α) = � ′(α3) = 1.
On the other hand, for the nonstandard algebra �5, we have that α2 is

orthogonal to all elements in T1(�5) since α 
∈ T1(�5) (and α2 · w = 0 for every
arrow w 
= α in the quiver), that is,

T1(�5)⊥ = 〈α2, α3, σ δ, βαγ 〉K .

Since the first Külshammer ideals have different codimensions inside the centre,
we can conclude by Theorem 3.1 that �5 and �′

5 are not derived equivalent, as
claimed.
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(4) Let char K = 2. The algebras �9 and �′
9 cannot be distinguished by their

Külshammer ideals. Instead we shall use Hochschild cohomology. It has
recently been shown by Al-Kadi ([1], theorems 3.1 and 4.1) that

dimK HH2(�9) = 4 and dimK HH2(�′
9) = 3.

Therefore, applying Theorem 2.5, we conclude ([1], corollary 4.2) that �9 and
�′

9 are not derived equivalent.
This completes the proof of the Main Theorem. �
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