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§1. Introduction. In 1985, Sarkozy [11] proved a conjecture of Erdos [2]
by showing that the greatest square factor s{n)2 of the "middle" binomial
coefficient (2n

n) satisfies for arbitrary e > 0 and sufficiently large n

where

In the following years, several results related to prime square factors of
binomial and multinomial coefficients were obtained (see [6]-[9]).

Erdos's stronger conjecture concerning a-th powers dividing binomial
coefficients was proved by the author [10] who showed that, for any
a > 2 , 0 < e < l and 0 =s k s m satisfying

\m-2k\<ml-e,

there is always an arbitrarily large prime p such that

HO-
if m is sufficiently large. For references to problems and results concerning
divisors of binomial coefficients, the reader may consult [3] or [4].

In this paper, we will generalize Sarkfizy's theorem to a-th powers dividing
binomial coefficients (2n

n
±d) for "comparatively small" d. For this reason, we

define for a &2 and |d|=£ n the integer sa(n, d) by

with qa(n,d) not being divisible by an a-th prime power. Constants cx,c2, c3

as well as implicit constants may only depend on the parameter a.

THEOREM 1. Let a s*2 and 0<e=£ 1. / /

then we have for sufficiently large n

log sa(n, d) = Can*
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26 J. W. SANDER

where

For a = 2 and d = 0, Theorem 1 implies SarkSzy's result. For a wider range
of d, we can show the following.

THEOREM 2. Let a 5* 2 and 0 < e < 1. If

\d\<n1-, (2)

then we have for any e'> 0 and sufficiently large n

we/(a + l+e+e ) ^ JQg sa(n, d) < n*'". (3)

Remark. The proof of Theorem 2 shows that the upper bound holds for
all

no-

where 1=£ b « a. In this case, we have

The proof also implies an explicit constant for the lower bound in (3), namely

/ i \

logsa(n,,

§2. An asymptotic formula concerning fractional parts. As an application
of a new exponential sum estimate, we recently proved

LEMMA 1 ([10], Theorem 3). LetJs* 1,2«P*£ n1/J, <r = (o-,, . . . , o-j) with
0 < <7, =£ 1 for 1 ssy =s / and

D(a) = D(a; P, n) = card \p « P: {4} < °)

w/iere {x} = x - [x] denotes the fractional part of the real number x. Then, for
arbitrary e>0, there is a positive constant c, such that

D(a) = o-,... o-MP) + OdP1-^10* p/[°*">2+p(J+2»2+*n-l/2)(log n)AJ).

COROLLARY. Let a 3= 2 and 0 =s p},< TJ «s 1 /or 1 =ej < a. / /
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POWERS DIVIDING BINOMIAL COEFFICIENTS 27

then

Proof. We have

I 1 = Y (-1)J I A(P,T),

where
D , ( P , T ) = D(CT)

with

{p,, for 7 € i,
Tj, for j£i,

for 0^7 < a. By Lemma 1, we get with J = a - 1

x i=nI(T7-pJ)

' ~ C i / a 2 +P ( a + 1 ) / 2 ~ < a 2 ( a ~ 1 ) / 2 ( a 2 ~ o + 1 ) ) ) ( ioe n)4°)

) 1 ) 4 a ) (8)

for suitable e and some c2 > 0. Notice that we did not make use of the lower
bound in (7) up to this point.

By partial summation, we thus deduce from (8) and the prime number
theorem in terms of 6{x) = Xp«x l°gP wi tn a sufficiently good error term (see
for instance [1], p. 113)

I logp = logP I 1

P

TJ -Pj)\ir(P) log P -

2

+ O(P1-cKlogn)4alogP)

+ O(P1-cHlogn)4"logP).

By the lower bound in (7), the corollary follows.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579300006811
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 11 Jan 2018 at 09:28:18, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579300006811
https://www.cambridge.org/core


28 J. W. SANDER

§3. Proof of Theorem 1. First we show that, without loss of generality,
d s* 0. Suppose d < 0. Since

for n, = n + d and dl = — d > 0, it suffices to prove that

(log Mi)<* .< , . . . ! • . ,+ . , (9)

because then, by the theorem,

(log n,

But (9) follows easily from (1). Therefore, we may assume in the sequel

(10)
„!/«

/i \ 1 + e *

(lOg/l)1

Let

say. Then, for all p,

a - v /T2» + <*1 r » 1 r« + rfl\ [|o8(2«+d)
«>O\L P J LP J L P J / o = l

1 ̂  j .
lOg/>

thus

pp«^2n + d. (11)

Moreover, we have for (2n + d)1/a+1<p=s(2n + d)1 / a

and for

j 8 p « a - l . (13)
Define

?' = a[fj' (14)
such that

sa(n, d)a= n Py"- (15)
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POWERS DIVIDING BINOMIAL COEFFICIENTS 29

Obviously,

vP*PP, (16)
and, by (13), we have for (2n + d)1/a<p^2n + d

?, = <>. (17)

Now, setting

and

we deduce from (15) and (17) that

sa(n,d)a= II Py'=U0U, (18)

where

and

o= n
psX

n , p -
X<p«(2n+d) / a

Collecting (11), (16) and (10), we obtain by Chebyshev's theorem ([1],

p. 55) for sufficiently large n

logt/0= I log/>*<•*£ I A

< 2 log n
logX

« 2 log n — 1 — log In - log log n 1
logn \ a /

=£l2a-^ . (19)
log/i

Now we turn our attention to U. By (12) and (14), we get

log U = £ i yp log p = a £ i o logA (20)

where £ ((j) denotes the condition

It is easily seen that, for real numbers x and 0« S < 1,

l, fo r l -8«2{x}<2-25or2-5^2{x} ,

0; f o r 2 W < 1 i ; o r 2 _ 2 ^ 2 { x } < 2 : i ;
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30 J. W. SANDER

By (10), we have for lmj<a,p> X and sufficiently large n

n d d /2T\1/a dlogn
K l (22)

o' J\ \ zn / n •
with some c3 > 0 and

A = A(n)=- *
Oog»r"

Setting

we thus obtain from (20) and (21)

log U = a £ ia logp, (23)
E2(j) or E-,0) (l«j<a), E,(a)

where £2(7) and E3(j) denote the conditions

1 _4 < 2 f4} < 2 _^
and

>{?}•
By (22), we have for 1« j < a

I log/>= I logp- I logp
E(P) H(p) E(j>)

E2(j) or E3(y) E2(j) H3(j)

= I logp + O I logp ,
B(p) \ X<p«(2n+d)' '°

2-c3A«2{n/pJ}

where E(p) indicates that p is subject to some arbitrary conditions including
X<p^(2n + d)1/a. Applying this process successively to the sum in (23) for
j = 1,2,..., a -1, we deduce

\ogU = a X logp + O| max X l°gP |- (24)
X-=p«(2n+d)1/<I \ 1«J<" x<ps(2n+d) ' '~

E2(J) (l«J<o), Ei(u)

Again by (22), we have for 1 =s j < a

I logp= X logp+ I logp- I logp
E(P) £(P) E(p) E(p)

= I logp + O I logp +O I logp
E(p) \ X<pc(2n+d)1 /a / \ X<p=s(2n+d) '°

{n/pJ}3.2 \l-c3A«2{n/pJ}<l / \ (n/pJ}s=l-c3A

with £(p) as above. Using this equality successively in (24) for
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POWERS DIVIDING BINOMIAL COEFFICIENTS 31

j = 1,2,..., a -1, we obtain

log U = a X log p
X<p«(2n+d) l /"

WpJ> = 5 (1<J<O) , B,(a)

+ O max max £ logo I, (25)

where / runs over intervals and | / | denotes the length of /.
Obviously, by (22),

a<nUia-i)-1/a\ (26)

Therefore, we may apply the corollary with p, = 0, T} = 1 (j ?*jo) and [ pJo, TJO] = /
for the appropriate j 0 . Then we get from (25)

logt/ = a X , logp + O(A«1/a). (27)

For t e N, we set
l/a

Then we define for 1 «s t =s T intervals

For a prime p e 7,(1« r « T), we have

that is

2n + d

or

Hence, we have for X<p^(2n + d)1/a

2 ~ ^ — *>/>e/2fc (28)
IL P J

for some 1« k « [ T/2], and

jOpeJjfc., (29)

for some l«fe=st(
For real x and 0« 5 < 1, we clearly have

-[x]-[x + 8]e{0,1}
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32 J. W. SANDER

and

Thus

' l , if 2\[2x + 8] and [x]*[
1, if 2Jf[2x + 8] and [x] = [x + 8],

[0, otherwise.

Setting x = n/pa and 8 = d/p", we obtain from (22), (28) and (29) for

>" J
1, if P^hk for some l^fc^^T] and {n/pa}^ \-{d/pa),
1, if peI2k-i for some 1«fc«ri(T+l)] and {n/pa}<\ ~(d/pa),
0, otherwise.

Therefore, (27) implies with (22)

[(T+D/2]

log 1/ = a Z I log p
k=l CEJ,t-i.l»/ll''l<

[(T-l

= a !

logp + O(A«1/a)

)

logp + O[ I logp)

'/<•). (30)

Clearly,

for some l^do^^- Assume that, for fixed do,l^do^d, there is a prime
p,X<p^(2n + d)i/a, satisfying p"\(n + d0). By the definition of X, we have

n + d0 2n + d
2<

for sufficiently large n. Hence, for each 1 =£ d0 € d, there is at most one prime
p>X satisfying pa\(n + d0). Thus, by (31) and (10),

d
logp= X £ \o%p<d\o%n<\nxla.

do=\ X<.p&(2n+d)Ua

p"\(n+d0)
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POWERS DIVIDING BINOMIAL COEFFICIENTS 33

Now (30) yields

[JCT+D]
E log p + O(\n1/a). (32)

With regard to (26), we are able to apply the corollary to the main term in
(32), namely

k-x exp (-Vlog:

WpJ>s>l(l«.

for sufficiently large n and l^fc=s[3(^+1)], where

Therefore, we obtain from (32)

(A""1 \

2) (2n + dy<° ^ Dik + O ( ^ i p T T ) + O(A^-). (33)
Obviously,

hence

/ l \ 1 / a 1

fc>[J(r+i)] * \T/ logn'

Now (33) together with (22) implies

a - l oo

(2n)1/a l^Dk

With (18) and (19), this completes the proof of Theorem 1.

§4. Proof of Theorem 2. We need the following old result due to Kummer,
where e(n; p) denotes the order of the prime p in the positive integer n.

LEMMA 2 ([5], p. 116). For non-negative integers m and n,

e((m+n);p)

equals the number of "carries" that occur when m and n are added in p-adic
notation.
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34 J. W. SANDER

The upper bound in (3) follows immediately for all d =£ n from (18), (16),
(12) and Chebyshev's theorem (see [1], p. 55). In order to show (5), we copy
the proof of Theorem 1 with a few modifications. With (4), (22) will be
replaced by

d d /2T\b/a b

for b^j<a and p>X. Changing the condition 1 *sj<a into b^j<a in
(24), (25) and (27), we get upper bounds for log U. This finally leads to the
claimed inequality (5).

In order to prove the lower bound in (3), we consider the set

where

-HH
and K = J-a. By Lemma 1 and the prime number theorem, we get

card « 4 ( i

n1/u+c)

with

For any pe M, we have

\p]+e<n<pJ+*\ (35)

- (K<j^J), (36)

and

{p'}<2' (37)

Write n in p-adic notation, namely

For K <j ^ /, we have by (36)

2

3 lpJ) pJ
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thus

This implies for

POWERS DIVIDING

P

P

5*7

2

3

BINOMIAL

/ 1
\ P 2

COEFFICIENTS

1 \ 2
PV > 3

1

P'

35

(K « / < / ) . (38)

By (37), we get in a similar fashion

«K-.<5P- (39)

By (2) and (35),

where again d 3» 0 is assumed without loss of generality. Writing d in p-adic
notation, too, we therefore get

d = dK_2p + .. . + d0

with integers dh0^d}<p. Thus we have by (35), (38) and (39)

n = nJp
J+... + nK_lp

K-1+... + n0,

n + d = n'jpJ + ... + n'K..1p
K-1+ ... + n'o,

where

By Lemma 2,

2n + d

which means that each peM satisfies p"\(2"n
+d). Hence we conclude by (34)

sa(n,d)» n p^

thus

for sufficiently large n. By the definition of J, this yields the lower bound of
Theorem 2 and (6).
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