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ABSTRACT: 

This paper addresses the integration of a building model into the pose estimation of image sequences. Images are captured by an 

Unmanned Aerial System (UAS) equipped with a camera flying in between buildings. Two approaches to assign tie points to a 

generalised building model in object space are presented. A direct approach is based on the distances between the object coordinates 

of tie points and planes of the building model. An indirect approach first finds planes within the tie point cloud that are subsequently 

matched to model planes; finally based on these matches, tie points are assigned to model planes. For both cases, the assignments are 

used in a hybrid bundle adjustment to refine the poses (image orientations). Experimental results for an image sequence demonstrate 

improvements in comparison to an adjustment without the building model. Differences and limitations of the two approaches for point-

plane assignment are discussed - in the experiments they perform similar with respect to estimated standard deviations of tie points.  

1. INTRODUCTION

This paper addresses the estimation of the position and attitude, 

also referred to as pose or exterior orientation, of an Unmanned 

Aerial System (UAS) considering limitations that occur when 

using this type of platform. The range of civil applications of 

UAS is still growing and includes, for example, 3D 

reconstruction for visualization and planning, monitoring, 

inspection, cultural heritage, security, search and rescue and 

logistics. Most applications make use of the UAS technology as 

a flexible platform and have a need to know where the UAS is 

situated in relation to objects and often also in a world coordinate 

system. Due to their low weight and small cost, cameras are often 

used as sensors to capture the surroundings and to derive the pose 

relative to objects. However, from camera observations only, the 

scale of the scene and the pose in a world coordinate system 

cannot be derived. In addition, purely camera based orientation 

procedures like structure-from-motion (SFM) are affected by 

unfavourable error propagation if no loops are closed for single 

flight strips. To derive poses in a world coordinate system, 

classical approaches use Ground Control Points (GCPs) for 

indirect georeferencing and/or perform direct georeferencing 

based on the observations of Global Navigation Satellite System 

(GNSS) receivers and Inertial Measurement Units (IMUs). In 

case of UAS, direct georeferencing capabilities are limited due to 

payload restrictions and cost considerations. In addition, GNSS 

signal loss will occur more likely than in classical airborne 

scenarios, e.g. if the UAS flies through urban canyons. On the 

other hand, indirect georeferencing using GCPs is often time 

consuming, and it may be infeasible in certain scenarios. 

An alternative is to additionally use an existing generalised 

building model to improve the pose parameters of the images 

taken by a camera on board of the UAS. Whereas both the 

geometric accuracy and the level of detail of such models may be 

limited, the integration of this information into the bundle 

adjustment is helpful to compensate inaccurate camera positions 

measured by GNSS and drift effects of a purely image-based pose 

estimation. The integration of the building model does not only 
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increase the quality of the pose estimation, but it can also be 

helpful for applications such as 3D reconstruction for monitoring 

buildings at different epochs, because the reconstructed tie points 

for each epoch are related to the same model. Other application 

examples include the refinement and rendering of generalised 

building models.  

The integration of the building model into bundle adjustment is 

based on fictitious observations that require object points to be 

situated on building model planes. In this paper, we expand our 

previous method (Unger et al., 2016) with respect to the 

assignment of object points to model planes to overcome errors 

in the estimated model planes introduced due to wrong 

assignments. The assignments are found in object space. As an 

alternative to a simple distance criterion, we assess an indirect 

approach in two variants that aims at finding planes in the 3D tie 

point cloud and relate them to model planes based on certain 

criteria.  

The paper is structured as follows. The next section outlines 

related work in which a-priori knowledge about the objects 

visible to the sensor is introduced into pose estimation. Section 3 

introduces our hybrid bundle adjustment method. Section 4 

focuses on the generation of fictitious observations with two 

strategies, whereas Section 5 contains the overall workflow of 

sensor orientation and sparse scene reconstruction. Experiments 

using real data to investigate the two strategies are presented in 

section 6, before we conclude and give an outlook on future work 

in section 7. 

2. RELATED WORK

An overview of UAS applications, platforms and sensors in 

remote sensing is given by Pajares (2015). Several authors deal 

with the integration of object knowledge other than GCPs into 

pose estimation and 3D reconstruction using images and/or other 

sensors. In general, we distinguish between “soft constraints” and 

“hard constraints” that are used to model additional knowledge 
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in an adjustment procedure (Rottensteiner, 2006). “Hard 

constraints” are related to constraints between the unknowns that 

have to be fulfilled exactly. McGlone et al. (1995) use such 

constraints to integrate generic knowledge about the captured 

objects into bundle adjustment. “Soft constraints” are modelled 

as observation equations for so called fictitious observations with 

an a-priori standard deviation. This type is used e.g. by Gerke 

(2011) to constrain image orientation with knowledge about 

horizontal and vertical lines in the scene. 

 

With respect to the type of a-priori knowledge of a scene, height 

models or 3D wireframe models e.g. 3D city models are 

employed frequently. Digital terrain models (DTM) are used to 

constrain the heights of object points in a hybrid bundle 

adjustment for satellite imagery by several authors (Strunz, 1993; 

Heipke et al., 2005; Spiegel, 2007). Lerner et al. (2006) present a 

method to use ray tracing based on initial pose parameters to 

directly constrain rays of homologous points of image pairs with 

a DTM. Hard constraints are used in a robust adjustment that 

derives image poses for image pairs. Experiments are only 

carried out using simulated data and images of a miniaturised 

scene. The idea to constrain the height of object points for nadir 

images captured by an UAS is found in (Geva et al., 2015). 

Assuming the pose of the first frame to be known, they also 

derive surface intersection constraints based on DTM heights that 

are used to form soft constraints for bundle adjustment. Avbelj et 

al. (2015) use a digital surface model (DSM) to refine the 

orientation of hyperspectral images in urban areas. They use 

building outlines extracted from the DSM to match them to lines 

in the images using statistical tests. Derived constraints are 

integrated into a Gauss-Helmert adjustment process. 

 

Läbe and Ellenbeck (1996) use lines to match images to building 

outlines. Their approach is based on a 3D wireframe model and 

the aim is to improve the orientation of aerial images in bundle 

adjustment. Matching lines are found using pose clustering and 

robust spatial resection to filter outliers. Li-Chee-Ming and 

Armenakis (2013) match lines found in UAS images to the edges 

of a Level of Detail 3 (LoD3) building model based on 

approximate pose parameters. They also apply their approach for 

indoor datasets and propose a solution to compute the initial pose 

based on line matches (Li-Chee-Ming and Armenakis, 2017). 

 

Eugster and Nebiker (2009) also use corresponding lines to refine 

the exterior orientation parameters. Lines are extracted from 

UAS images and from virtual views of a building model.  They 

use approximate image poses from the measurements of low cost 

sensors (IMU, barometer, GPS) that result from a direct 

georeferencing strategy. For the lines they apply relational 

matching. Orientation parameters are iteratively refined by 

spatial resection. The procedure is reported to result in an 

improvement in accuracy of a factor 3 to 4 in comparison to the 

pure direct georeferencing.  

 

Vysotska and Stachniss (2017) set up a constrained sliding 

window adjustment to refine laser scans of a ground platform 

moving in urban areas in 2D. Constraints are found by applying 

ICP to the scans. Approximate values for the starting pose are 

needed.  

 

Lothe et al. (2010) address monocular simultaneous localisation 

and mapping (SLAM) with a camera fixed in a car looking in the 

driving direction. They present a two-step post-processing 

method to limit drift effects. The first step is an ICP on sub blocks 

of the image sequence with a generalised building model (“coarse 

correction”), the second one consists of a constrained bundle 

adjustment that refines the image pose parameters (“fine 

correction”). 

 

Our method does not rely on direct matches of points, lines or 

planes as features, but instead assigns tie points to model planes 

in object space. Such correspondences lead to soft constraints 

represented by fictitious observations that are integrated into an 

overall hybrid bundle adjustment. The adjustment 

simultaneously refines image poses, object points and the 

building model. In an iterative process assignments of points to 

model planes are updated. The expected degree of generalisation 

of the model is explicitly covered by the a-priori standard 

deviations of the fictitious observations.  

 

 

3. ROBUST HYBRID BUNDLE ADJUSTMENT 

In our scenario, a UAS is equipped with a low-cost GNSS 

receiver and a camera that takes images in a multi-view 

configuration flying in between buildings. In addition, we 

assume to have knowledge about the scene in the form of a 

generalised building model represented by its vertices and faces. 

The topology is given by an ordered list of vertex indices that 

describe the boundary polygon of each model face. We refer to a 

model face as model plane.  

 

The mathematical representation of the scenario is the one 

described by Unger et al. (2016), see also Fig. 1: Image 

coordinates are related to object coordinates and pose parameters 

using the collinearity equations. Object points observed as 

homologous points in images are referred to as tie points in this 

paper. The vertices of the model are another type of object points. 

They are not explicitly observed in the images. Due to the 

generalisation of the model, it is possible that they even do not 

correspond to real object points. Both types of points, tie points 

and vertices, are related to the building model by assigning them 

to corresponding model planes. The model planes are 

parameterised in local plane coordinate systems (x, y, z) that are 

related to the object coordinate system by six parameters each. 

These are three rotation angles and a 3D-shift 𝑃0 from the origin 

of the object coordinate system to that of the local one for each 

plane. 𝑃0 is initialised in the centre of gravity of the building 

model vertices of the plane. Initially, the x-y plane of the local 

system corresponds to the model plane and the z-axis 

corresponds to the plane normal 𝑁. As we want the adjustment to 

not only affect the reconstructed tie points but also the building 

model, each plane is parameterised in such a local coordinate 

system by two angles 𝛼, 𝛽 defining the direction of the normal 

and a translation  along the (local) z-axis. 

 

Using this parameterisation, the relation between an object point 

and a plane is described by its orthogonal distance 𝑑 to that plane 

following Eq. 1. 

 

 𝑑 = 𝑁(𝛼, 𝛽)𝑇 ⋅ 𝑃̅(𝑋, 𝑌, 𝑍) + 𝛿 (1) 

  

𝑃̅(𝑋, 𝑌, 𝑍) is the object point expressed in the plane’s local 

coordinate system. 𝑁(𝛼, 𝛽)𝑇 represents the plane normal 

parameterised by the two angles 𝛼, 𝛽 of the plane. 

 

For the hybrid bundle adjustment, the functional and the 

stochastic models of Unger et al. (2016) are used. In the 

stochastic model, we assume a constant a-priori level of accuracy 

for each observation type and uncorrelated observations.  

 

The following observation types are used: Next to the image 

coordinates of tie points, there are direct observations for the 
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projection centres of the cameras, obtained by the low cost GNSS 

receiver, and direct observations for the object space coordinates 

of the vertices of the building model. Two groups of fictitious 

observations relate object space coordinates of a point to planes 

of the building model using Eq. 1. The first group consists of the 

fictitious observations related to tie points and the second 

consists of the ones for the vertices of the building model. Both 

reflect the assumption that an object point that belongs to a plane 

should have a distance of zero (𝑑 = 0) to that plane which leads 

to the observation equation 𝑣𝑑 = 𝑁(𝛼, 𝛽)𝑇 ⋅ 𝑃̅(𝑋, 𝑌, 𝑍) + 𝛿, with 

𝑣𝑑  being the residual of the fictitious distance observation. As the 

model planes are affected by generalisation effects, the real 

distances of tie points may typically deviate from 0. We allow for 

only one fictitious observation per tie point, which means we do 

not model tie points as corner points. In contrast, vertices are 

assigned to multiple model planes; in this way the topology of 

the building model is considered in the adjustment. 

 

The aforementioned observations are used as inputs for a Gauss-

Markov model to estimate the following unknowns: 

- the pose parameters for each image (𝜔, 𝜑, 𝜅, 𝑋0, 𝑌0, 𝑍0) 

- the object space coordinates of the tie points (𝑋, 𝑌, 𝑍)𝑇𝑃 

- three parameters of each model plane (𝛼, 𝛽, 𝛿)  

- the object space coordinates of the vertices of the building 

model (𝑋, 𝑌, 𝑍)𝑉𝑇  

 

By introducing the plane parameters ,  and  and the 

coordinates of the vertices as unknowns into the adjustment, the 

building model planes can be corrected in case there are tie points 

that indicate such a change. Estimated changes for model planes 

are reflected by the parameters ,  and . The transformation 

parameters of the local plane coordinate systems R and P0 are 

constants in the adjustment. As the planes are connected by the 

vertices, the model plane topology is not changed. Vertices will 

move according to the planes they are connected to. The size of 

this movement is limited by the a-priori standard deviations of 

vertex coordinates. 

 

In contrast to our previous work, the hybrid adjustment is made 

robust w.r.t. gross errors in the observations. Outliers are detected 

by an iterative reweighting of the observations based on their 

normalised residuals 𝑣𝑖̃ =
|𝑣𝑖|

𝜎𝑙𝑖

, where 𝜎𝑙𝑖
 is the a-priori standard 

deviation of the corresponding observation. It is the goal of 

reweighting to reduce the weights of observations that have large 

normalised residuals. We use the iteration scheme recommended 

by Förstner and Wrobel (2016) which consists of the Huber 

weight function for the first iterations, then iterates using the 

exponential weight function to reduce the weight of potential 

outliers and ends with an adjustment with the original weights 

after having eliminated the outliers. An observation is identified 

as an outlier and removed if its normalised residual 𝑣𝑖̃ is larger 

than three. 

 

We assign tie points to planes of the building model based on 

their estimated 3D positions, computed in a structure-from-

motion pipeline and a first robust adjustment without taking into 

account the building model. After this bundle adjustment, we 

make sure, that the two data sets (the 3D point cloud of tie points 

and the building model) refer to a common coordinate system 

(see section 5 for details). 

 

 

Figure 1: Relevant entities in our scenario (adapted from Unger et al. (2016)): Two poses i of the same camera with image coordinate 

axes (ui, vi), projection centres PCi and three rotation angles (i, i, i) with i  {1,2} represent the multi-view scenario where 

sensors capture an object point P with world coordinates X, Y, Z. The generalised building model is represented by its vertices 

VTk with  k  {1,2, … } in world coordinates and by the planes they are situated in. Each plane j has a local coordinate system  

(xj, yj, zj) where initially the local zj-axis is the plane normal Nj and xj, yj are axes in the plane. The origin of the coordinate system 

of plane j is 𝑃0,𝑗, and each plane coordinate system is rotated relative to the world coordinate system by three angles (j, j, j) 

that are not shown in the figure. Two angles α, β and a shift δ (bold arrow) along the local z-axis represent the parameterisation 

of the local plane. The orthogonal distance of an object point P to a corresponding plane of the building model is denoted by d.  
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4. ASSIGNMENT OF TIE POINTS TO MODEL PLANES 

The focus of this work lies in finding the assignments of tie points 

to model planes, given the inaccurate image poses and the 

generalised building model, to generate the first group of 

fictitious observations.  

 

In this section, two strategies for the assignment of tie points to 

model planes are discussed. The first one uses a simple distance 

criterion; the second strategy is based on finding planes in the tie 

point cloud and matching these planes to the planes of the 

building model.  

 

The second strategy can be executed in two different variants: the 

first variant extracts planes from the whole point cloud 

independent of the building model. Planes thus detected are 

matched to those of the model. The second variant uses the model 

planes as input and considers only points in the vicinity of a 

model plane in order to find a corresponding extracted plane; 

explicit plane matching is thus avoided. 

 

 

4.1 Point-to-model matching: The direct approach 

In our previous work, the assignment of a point to a plane was 

based on a simple distance criterion. Tie points were assumed to 

be related to the closest plane provided that the Euclidean 

distance from the plane was below a threshold. This threshold 

was selected in accordance with the accuracy and degree of 

generalisation of the building model and potential datum 

problems of the point cloud. It was chosen to be relatively large. 

As a result, many wrong assignments of tie points to model 

planes were found that led to wrong results.  

 

We therefore decided to refine this strategy by separating the 

initial datum effects from those mainly stemming from the 

generalisation, and solving for the datum in a first processing step 

(see section 5). Thus now we can use a significantly reduced 

threshold for the Euclidean distance of tie points to the model 

planes; it is set in accordance with the size of the generalisation 

effects we expect to occur. We use the same value as for the a-

priori standard deviation of the fictitious observations that relate 

tie points to model planes. 

 

4.2 Plane-to-model matching: The indirect approach 

This is an alternative strategy to first search for planes, referred 

to as extracted planes, in the tie point cloud instead of directly 

relating tie points to model planes. The aim is to find model 

planes that correspond to the extracted planes. Based on these 

plane-to-model correspondences, tie points are assigned to model 

planes: If a corresponding plane is found, a point belonging to the 

extracted plane leads to a fictitious observation that relates this 

tie point to the corresponding model plane. 

 

For both variants mentioned above, planes are detected in the tie 

point cloud using Maximum Likelihood Estimation SAmple 

Consensus (MLESAC) (Torr and Zisserman, 2000). MLESAC is 

a variant of RANSAC that does not just maximise the number of 

inliers but rather maximises their likelihood. The algorithm 

requires the maximum allowable distance of points to a plane as 

a parameter. The proportion of outliers is automatically estimated 

by the algorithm. 

 

First variant: In the first variant, MLESAC is used on the whole 

point cloud. We sequentially extract a plane, exclude the inliers 

with respect to connected components from the given point cloud 

of 3D tie points and then search for the next plane in the 

remaining point cloud. This is done until a given number of 

planes has been found, no more planes are found or the number 

of points found per plane is repeatedly smaller than a threshold. 

 

We allow for multiple extracted planes per model plane. This 

reflects the fact that only parts of a larger generalised model plane 

might be found in the tie point cloud. In order to do so, for each 

plane thus detected, the related points are projected onto that 

plane and connected components are found using alpha shapes 

(Edelsbrunner et al., 1983) with a given radius 𝜗𝛼 that defines the 

maximum distance of points to the shape. Points which are part 

of the largest connected component are kept as inliers and are 

then used to determine the plane parameters. The points of the 

boundary of the connected component in the refined extracted 

plane define its boundary polygon.  

 

In the next step, correspondences between the extracted planes 

and the model planes are found. We check each combination of 

an extracted plane and a model plane for correspondence. For 

each such pair, we compute the angle between the normal vectors 

and the orthogonal distance of the centre of gravity (COG) of the 

boundary points of the extracted plane from the model plane. 

Both the angle and the distance must be smaller than pre-defined 

thresholds for the pair to become a candidate for a 

correspondence. Another criterion to be fulfilled is that the 

polygon and the model plane must overlap. To check this 

requirement the COG of the boundary points of the extracted 

plane is projected to the model plane. If the projection of the COG 

is outside the boundary polygon of the model plane the candidate 

is eliminated. 

 

In a last step, tie points of extracted planes are eliminated if their 

orthogonal projection onto the matching model plane falls 

outside the model plane's boundary polygon. Tie points inside the 

boundary of the model plane finally lead to fictitious 

observations that relate those points to the corresponding model 

plane. 

 

Second variant: In the second variant, no separate matching step 

is required, because for each plane a corresponding extracted 

plane is searched for in the points in its vicinity only. For each 

model plane, we extract all points having a distance to that plane 

smaller than a given threshold and a projection onto the model 

plane that is inside the model plane boundary. The parameters of 

an extracted plane are then computed using MLESAC. To further 

reduce the search space, MLESAC is configured to only find 

planes with normal vectors that do not exceed a given angular 

distance to the normal of the model plane. Similar to the first 

variant, only points of the largest connected component and 

inside the planes boundary polygon are kept and are assumed to 

correspond to the model plane. These points lead to the fictitious 

observations relating tie points to model planes. 

 

 

5. PROCESSING STEPS 

Our overall workflow is listed in table 1. The first step is a 

structure-from-motion pipeline in which homologous points and 

initial values for image poses and 3D object point coordinates are 

derived. This is done using an image sequence and, if available, 

GNSS observations for the projection centre positions of the 

images as inputs. Subsequently, we run a robust bundle 

adjustment including the images and GNSS observations without 

considering the building model (step 2). In this adjustment 

process, gross errors in the image observations are identified and 

eliminated. Image poses and tie point coordinates are refined. In 
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subsequent steps, image observations are not tested for more 

gross errors. In this way, we separate outliers in the image 

coordinates of homologous points from those in the fictitious 

observations of tie points that are found in subsequent steps. 

Thus, we make sure that wrong fictitious observations do not lead 

to the elimination of potentially correct image observations. We 

assume the GNSS observations to be sufficient to define the 

datum of the image block in these first two steps. 

 

 

Step 1 Image matching and SFM to derive tie points and 

image poses. 

Step 2 Robust bundle adjustment including only images 

and, if available, direct observations of projection 

centres. 

Step 3 Initial establishment of relations between tie 

points and model planes with one of the 

assignment methods. 

 Step 4 Hybrid bundle adjustment including the 

planes, robust with respect to fictitious 

observations for tie points on model planes. 

Step 5 Establishment of relations between tie points 

and model planes using one of the assignment 

methods. 

Step 6 Final hybrid adjustment. 

Table 1: Workflow of pose estimation. 

 

In step 3, the building model is considered for the first time. It 

must be available in the same coordinate system as the results of 

step 2. In our workflow this is the GNSS coordinate system, but 

the datum of the initial image block might be inaccurate due to 

using the low-cost GNSS receiver. Step 3 has to account for this 

and consists of the first assignment of tie points to model planes 

based on their estimated 3D positions from step 2 and the initial 

plane parameters to set up the fictitious observations. This is done 

following one of the approaches from section 4. For the direct 

approach, the threshold for the Euclidean distance of tie points to 

model planes is set to the size of the expected initial datum 

differences. For the indirect approaches, the same thresholds as 

in subsequent steps are used. The known relations of vertices to 

planes form the second group of fictitious observations which are 

not changed during subsequent steps.  

 

Steps 4 and 5 are then applied in a repeated way: In step 4, one 

iteration of the hybrid robust adjustment is carried out. In step 5, 

tie points are assigned to model planes based on the estimated 

parameters of step 4 using one of the approaches described in 

section 4. For the direct approach, the threshold is now set to the 

a-priori standard deviation of the fictitious observations that 

relate tie points to model planes. The indirect approaches use the 

same thresholds as in step 3. The assignments are then used to 

update the fictitious observations. Steps 4 and 5 are carried out in 

an alternating fashion until convergence of the adjustment. Note 

that in step 4 only planes containing more than a pre-defined 

minimum number of tie points are considered in the adjustment.  

 

Finally, in step 6, fictitious observations identified as outliers are 

removed and the remaining fictitious observations are kept to run 

the hybrid adjustment with the original weights to compute the 

final results. 

 

 

6. EXPERIMENTS 

The sequence for our experiments was captured by a gimbal-

stabilised camera attached to our UAS, a manually controlled DJI 

                                                                 
1 http://www.agisoft.com/ 

Matrice 100 quadrocopter, during a flight in between buildings 

of our campus. The buildings are 4 to 30 m high and the flying 

height above ground varied between 20 m in the beginning and 2 

m at the end of the flight. 

 

We used a Zenmuse X3 camera. It has a fixed focus, 3.61 mm 

focal length and a 1/2.3" CMOS sensor having 4000x3000 pixels 

and a pixel size of 1.5 μm. Images were taken automatically every 

2 seconds. The image sequence consists of 183 images with an 

average ground sampling distance of 6 mm/pix. In the process we 

use direct GNSS observations for the projection centres of the 

first 30 images only to show that our method can cope with such 

a configuration. 

 

A 3D city model with Level of Detail 2 (LOD2), freely available 

for the whole city of Hanover, is used as ground control 

information. Like the GNSS observations, the model is given in 

WGS84/UTM Zone 32. The GNSS observations delivered by the 

copter are pre-processed internally, most probably with a filter 

that includes IMU and barometric measurements (details of this 

process are not available).  

 

Image distortion was eliminated prior to processing based on 

available interior orientation parameters. We used the 

commercial software package Agisoft PhotoScan1 for steps 1 and 

2, considering only the first 30 GNSS observations for the 

positions of the projection centres. On average, each tie point was 

observed in almost six images. The viewing direction is almost 

orthogonal to the flight direction and the facades. The image 

coordinates of the homologous points serve as observations and 

the estimated camera poses and object point coordinates as initial 

values for our adjustment. We only consider observations of 

points that are observed in at least three images. Although the 

adjustment carried out by PhotoScan is robust, we found that 

some of the exported observations still fall in the group of 

outliers, since we use stricter constraints. Therefore, we repeat 

step 2 with our own robust bundle adjustment before going on 

with the remaining steps. 

 

The a-priori standard deviations of the observation types that 

form the stochastic model are set as follows: 

 

Image coordinates 𝜎𝑖𝑚𝑔 ±0.75 pix 

GNSS obs. of projection centres 𝜎𝐺𝑁𝑆𝑆 ±3 m 

Building model vertices 𝜎𝑉𝑇 ±0.5 m 

Fictitious distance for tie points 𝜎𝑑𝑇𝑃
 ±0.3 m 

Fictitious distance for vertices 𝜎𝑑𝑉𝑇
 ±0.01 m 

 

𝜎𝑉𝑇 reflects the accuracy and generalisation effects of the vertices 

of the building model. 𝜎𝑑𝑇𝑃
 describes the deviation of the model 

planes due to the generalisation.  

 

In the iterations of the hybrid adjustment (steps 4 and 5), for the 

direct approach of tie point assignment, we choose to take into 

account fictitious distances for points to planes only if the 

distance is smaller than 0.3 m. As described before, this threshold 

is chosen in accordance with the expected degree of 

generalisation of the model 𝜎𝑑𝑇𝑃
. In step 3, the initialisation, we 

use a higher threshold of 2 m, because of the low GNSS accuracy 

to obtain as many correct assignments as possible with some 

outliers only.  
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For the indirect approach of tie point assignment, the following 

parameters are set. The distance for points to planes found using 

MLESAC is again set to 0.3 m according to 𝜎𝑑𝑇𝑃
. We use this 

value to be left with as few wrong fictitious observations as 

possible accepting, that only 68% of the points of a plane w.r.t. 

𝜎𝑑𝑇𝑃
 might be found. The radius to find connected components 

within extracted planes is set to 𝜗𝛼 = 3 m to allow for some 

larger plane regions with few tie points. The choice of 𝜗𝛼 is not 

critical as points outside the boundary polygon of model planes  

are rejected later. The maximum angle between normal directions 

of extracted and model planes is set to 15°. We thus allow for 

some differences in case of inaccurate initial values and 

especially for small planes or in case only small parts of planes 

are extracted. For the indirect approach without the reduced 

search space, the maximum distance of an extracted plane’s COG 

to a model plane is chosen to be 1 m. For the variant with reduced 

search space, the maximum distance to consider points for 

extracting a corresponding plane also is set to 1 m. Both distance 

thresholds are used also in the initialisation phase (step 3), which 

is sufficient for our test data. With the 1 m distance at least some 

corresponding plane points are found even with inaccurate initial 

values. This distance is assumed to be large enough to find planes 

that are inaccurate in the model and have to be corrected within 

the adjustment based on tie point observations. For both 

approaches, planes are used only if at least 15 points are assigned 

to them. In our experience, the pose of planes described by fewer 

tie points often is not stable. 

 

Figure 2: Result of step 2 for a 150 m by 120 m building complex: 

LOD2 model (grey), camera poses (red), tie points color 

coded by height from blue (low) to yellow (high). 

Differences of the tie point cloud to the model are 

highlighted by black arrows. GNSS was used only within 

the orange ellipse. 

 

Figure 2 shows the captured scene with the 183 camera poses, 

5701 tie points after step 2 and the generalised building model. 

GNSS for the projection centres was used only for the first 30 

images in the beginning of the image sequence (lower right 

corner, orange ellipse). Shift, rotation and scale differences of the 

tie point cloud to the building model are highlighted with red 

arrows: Tie points forming vertical planes are off the model 

planes they should correspond with. 

 

 

Table 2 shows some statistics of the robust adjustment (step 2) 

with just the images and GNSS observations (1. column) and the 

robust hybrid adjustment with the direct (2. column) and both 

indirect approaches (3. and 4. column; 4. column with reduced 

search space). With respect to the estimated mean standard 

deviations of the tie points 𝜎̂𝑇𝑃, the integration of the building 

model in all variants leads to an improvement from meter range 

to about a decimetre. As planes are found for at least some tie 

points of each image, the 𝜎̂𝑇𝑃 values are not split into tie points 

with and without a fictitious observation. There is almost no 

difference in the 𝜎̂𝑇𝑃 as the whole image block profits from the 

planes. The numbers of found fictitious observations for tie 

points per approach show that the direct approach finds the most 

assignments. The indirect approach that searches the whole tie 

point cloud can only assign points to planes if it is able to extract 

the candidate plane. As not all planes are found by the MLESAC, 

the approach yields the lowest number of fictitious observations. 

Also, the indirect approach with reduced search space finds less 

points then the direct approach. The values for 𝜎̂𝑇𝑃 for all three 

approaches are virtually identical. 

 

The number of outliers does not change after the adjustment of 

step 2. This means that no detectable outliers were present in the 

fictitious observations of any of the approaches. Potentially 

remaining wrong assignments can thus not be detected. 

 

Figure 3 shows the resulting tie points and the estimated building 

model for the direct and for the indirect (reduced) approach. 

Points with the same colour belong to the same plane, while grey 

points are not assigned to any plane. Both results show no visible 

offsets like in figure 2. The initial building model is not shown as 

the differences can only be seen in higher zoom levels. Orange 

ellipses highlight planes that were found only using the indirect 

approach with reduced search space.  

 

The indirect approach without reduced search space, which is not 

shown in the plot, finds fewer planes then the direct approach. 

The missed planes are either small or the points are scattered and 

are therefore not considered as part of the largest connected 

component. While fewer correspondences are found, the 

remaining correspondences are more likely correct as they must 

be part of a plane and its largest connected component. This 

means that isolated points are not accepted to correspond to a 

plane. Even if they are close to a plane, they have a higher 

probability to belong to structures not represented in the model 

in comparison to points which are part of a connected plane 

component. This behaviour can also be seen for the indirect 

approach with reduced search space as shown in figure 3, e.g. in 

the areas highlighted by black ellipses.  

 

Approach Images, 

GNSS 

Direct Indirect Indirect, 

Reduced 

#images 183 183 183 183 

𝜎̂0 0,70 0.67 0.68 0.68 

𝜎̂𝑇𝑃𝑋
 [m] 3.10 0.10 0.10 0.09 

𝜎̂𝑇𝑃𝑌
 [m] 3.33 0.09 0.10 0.09 

𝜎̂𝑇𝑃𝑍
 [m] 4.16 0.08 0.10 0.08 

#fict. obs. tie pts 0 3431 3026 3256 

#object points 5701 6423 6423 6423 

#observations 67485 74630 74225 74455 

#unknowns 18201 21192 21192 21192 

#outliers 487 487 487 487 

Table 2: Results of the (hybrid) adjustment on the test 

sequence. 
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Another advantage of the approach without reducing the search 

space is that points which are part of extracted planes that were 

not matched to any model plane are not assigned to the model. 

This is shown in figure 4, where a façade is represented as one 

plane in the model. In reality, it consists of a roof above doors 

and a ramp used for deliveries. These are detected as planes and 

points assigned to these planes are not assigned to any model 

plane. The figure also shows that the estimated model plane is 

hardly affected by rotations due to wrong assignments of, e.g., 

ground points. 

 

 

 
Figure 4: Side view on a slice of a building shown in the initial 

(blue) and adjusted model (grey). Structures not 

represented by the model are well covered with tie points 

(e.g. the roof plane highlighted by the ellipse) and are not 

assigned to the model plane. The initial and the estimated 

model planes have very similar parameters. 

 

 

7. CONCLUSION AND FUTURE WORK 

The presented method improves the pose estimation of an image 

sequence captured by an UAS by integrating a generalised 

building model into the adjustment. The integration is done based 

on fictitious observations that are found using a direct approach 

and two variants of an indirect method. The direct approach uses 

only a distance criterion, while the indirect approach extracts 

planes in the tie point cloud and matches them to the building 

model to generate fictitious observations. The pose estimation is 

carried out in a hybrid adjustment in which outliers in the 

homologous points and in the fictitious observations are handled 

separately.  

 

Our experiments show that both approaches for generating the 

fictitious observations lead to an improvement of estimated tie 

points w.r.t. their estimated standard deviations. Significant 

differences between the different results were not found. 

 

One advantage of the plane-to-model matching is that it finds 

planar structures not represented in the model. These might be 

helpful to generate additional tie features in future. In addition, 

points close to these planes can be assumed to not belong to a 

close by model plane. 

 

In our future work, we will evaluate the method on longer image 

sequences and with different facades. To further analyse the 

method, we will compare the estimated tie points and the 

estimated model to reference data e.g. using independent check 

points, a more detailed and accurate point cloud or a building 

model with higher level of detail. Also, we plan to analyse 

combinations of the assignment methods. 

 

In addition, the stochastic model will be refined to separate 

systematic errors of the GNSS receiver from smaller random 

errors. This will be done by introducing global shifts and 

rotations that cover a systematic offset of the GNSS. Its relative 

accuracy can then be assumed to be more accurate than the one 

used in our current stochastic model.  

 

Finally, while in this paper, we describe the method as a post-

processing step, we see the potential to apply it incrementally in 

a real-time or near-real-time scenario which is needed e.g. for 

augmented reality or search and rescue applications.  

 

 

 

 

 

 

 
Figure 3: Estimated tie points of the hybrid adjustment with the direct (left) and the indirect (reduced) approach (right) plotted with the 

estimated building models in top view. Points with the same color were assigned to the same model plane. Tie points that are not 

matched to a plane are shown in grey. Orange ellipses highlight planes, that were found only using the indirect approach. Black 

ellipses denote areas, where correspondences were rejected by the indirect approach. 
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