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A B S T R A C T

Human interaction with multimedia devices occurs predominantly over inorganic glass surfaces. Scratch-in-
duced damage is a primary limitation in the suitability of brittle glasses for this purpose. However, neither truly
quantitative data nor a topo-chemical understanding of the underlying deformation process which would allow
for the development of improved materials is presently available.

Here, we present lateral nano-indentation experiments for determining the work of deformation which is
involved in the process of glass scratching. Using a series of hot-compressed vitreous silica with mild degrees of
structural densification, we derive relations between quantitative scratch hardness and the underlying glass
structure. We show that Young's modulus provides a clear rational for the observed variations in scratching
hardness. In the specific case of silica, the energy needed to generate a certain scratch volume corresponds to
roughly one tenth of Young's modulus. This relationship formally indicates that only about one tenth of the
bonds which are involved in the deformation process are broken in its course. However, comparison with a more
complex glass material with a certain fraction of two dimensional structural units and a strong ability for to-
pological adaption to local stress clearly indicates a deviation from this behavior. This opens a pathway to topo-
chemical engineering of scratch-resistant glasses.

1. Introduction

Despite the intriguing promise of extremely high intrinsic strength,
glasses remain ultimately brittle and usually break in catastrophic
ways, even when handled with care [1]. This apparent discrepancy has
triggered major efforts in the field of glass chemistry, aiming at the
conundrum of plastic deformation and local dissipation of mechanical
energy in brittle materials. It is assumed that through tailoring of
chemical composition and, thus, network topology of the solid glass
(denoted topo-chemistry in the following), the formation and growth of
defects which act as stress amplifiers [2] can be avoided on atomic level
and, thus, stronger glasses can be derived [3]. Such a tailoring of che-
mical composition would be a major breakthrough of the field, both in
terms of fundamental understanding and application, where glasses
have always been enabling materials in societal progress. For example,
human interaction with multimedia devices today occurs pre-
dominantly over inorganic glass surfaces. This holds for both haptic and
visual contact, for example, on smartphones, tablet personal computers
and other mobile or non-mobile electronic devices. In those, thin glass
sheet is used as a protective cover, barrier and substrate material.

Besides optical and chemical functions, it usually also determines the
mechanical performance of the respective interactive display. Most
critically, the glass component is to ensure high resistance to scratch
damage which compromises optical appearance and, at the same time,
presents the major source of strength-reducing surface flaws. Note-
worthy, scratch damage may be induced at each stage of the lifecycle:
besides actual use of the device, also during sheet production, packa-
ging and transport, display manufacture or, e.g., component assembly.
However, in contrast to the subject's fundamental importance, methods
of physical quantification and the understanding of the topo-chemical
basis of scratch-induced surface deformation are presently not well-
developed, presenting a major obstacle in the exploration of glass sur-
faces with higher scratch resistance.

To date, scratch testing is conducted mostly in phenomenological
ways [4–8]. These usually rely on applying a certain experimental
protocol to produce a scratch, and examine the thus-created groove by
visual inspection. In the archetype experiment a glass surface is scrat-
ched with a diamond stylus under monotonically increasing load. The
fundamental regimes of plastic deformation, radial cracking, median or
lateral cracking and chipping, and microabrasion are typically
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differentiated visually [4,9], and their onset is subsequently related to
the normal load which was applied on the scratching device. More
fundamental efforts to relate the defect resistance of glasses to their
composition and structure, on the other hand, rely on normal in-
dentation testing [3,10–12]. The hardness parameter which can be
extracted from such experiments is strongly dependent on the experi-
mental conditions. Its physical meaning and relation to material prop-
erties such as fracture toughness, brittleness or elasticity are therefore
not readily visible. As an early consensus, it was derived that the in-
dentation response of inorganic glasses results from the interplay of
elastic deformation, structural compaction and shear [13–15]. Tailoring
between these contributions has been assumed to enable the design of
glasses with reduced brittleness and improved defect resistance [16].
More recently, however, it was noted that the structural reactions
which underlie damage infliction are significantly more complex
[17,18].

In terms of lateral deformation (which includes scratching, but also
aspects of friction, wear and abrasion), some phenomenological un-
derstanding and correlation to chemical properties has been reached for
reactive polishing or grinding processes with the goal to improve on the
fabrication of optical-grade surfaces [17,19]. With some minor excep-
tions [9,20], systematic analysis of the scratching behavior itself re-
mains largely limited to soda lime silicate glasses [6,20–24]. Rather
than elucidating the chemical origin of deformation at the onset of
scratching, however, these studies focused on the emergence of cracks,
crack morphology and the underlying (transient) stress profiles [25]. A
first notion of scratching hardness was derived by Yoshida et al. [26],
using normal load and vertical contact area. Without entering into
details, they suggested that the scratching hardness of glasses is related
to the fracture mechanism, not the elastic behavior. Extending this
view, fracture ultimately occurs at the limits of plastic deformation.
Thus, the scratching hardness reflects the resistance of the considered
material to plastic deformation during quasi-static lateral indentation.
In the present report, we provide a chemical rational for this argument,
determining initially the work of nanoscale lateral deformation across
the plastic regime. Using the example of vitreous silica with different
degrees of off-set compaction, we obtain a direct dependence of de-
formation work on SieO bond density. This observation will enable the
design of glassy materials with specific tribological properties using
topo-chemical principles.

2. Materials and methods

For the present study, we selected silica as the archetype glass
material with the highest degree of structural compressibility among all
presently available oxide glasses. Its ability to compact originates from
the large free volume and reflects in an exceptionally low Poisson ratio
[27]. The structure of silica comprises tetrahedral units of [SiO4]4−

which are interconnected over all four edges to form a continuous
network of ^SieOeSi^ entities. The dominant super-structural units
are six- to eight-fold rings of tetrahedra. Bonding is strongly covalent
with the SieO bond cleavage energy of 624 kJ/mol [28]. Fracture is
usually assisted by adsorbed water [29], which reduces the energy of
bond cleavage to 163 kJ/mol [28]. In order to test the structural de-
pendence of lateral deformation, a set of samples is produced by com-
pacting chemically equivalent glasses within the regime of congruent
compression (< 1 GPa, see Fig. 1b) in which no changes occur in ion
coordination or topology. This enables us to attribute variations in
scratching hardness solely to variations in density.

2.1. Compression experiments

Compacted silica glass samples were prepared from commercially
available Suprasil 2 fused silica (Heraeus Quarzglass GmbH & Co. KG)
by isostatic compression in an internally heated gas pressure vessel,
similar to the procedure described in Refs. [30–35], Fig. 1a. For this,

individual bars of 5 × 5 × 25 mm3 in size were directly loaded into the
vessel and argon gas was employed as the compression medium. The
glasses were heated at constant pressure up to a temperature of 1523 K,
well above the glass transition temperature of Tg = 1393 K, and equi-
librated for 12 min to allow for complete relaxation to the respective
pressure. After equilibration above Tg, the glasses were cooled under
pressure at a rate of 10 K/min down to room temperature. Using this
method, silica glasses with frozen-in pressures of 100, 300 and 500 MPa
were produced. For reference, also an uncompressed sample was made
at 0.1 MPa, using the same time-temperature profile. Changes in the
density ρ were evaluated using Archimedes' principle with dry ethanol
as the immersion liquid. In order to minimize the influence of argon,
which is expected to diffuse into the glass surface during the high-
pressure treatments [32], the compacted glasses were subsequently
grinded with silicon carbide paper and polished to optical finish using a
water-based CeO suspension. The removed layer (~200 μm) was much
thicker than the expected argon in-diffusion zone [36]. Following the
approach of Davis et al. [37], infrared spectroscopic analysis revealed a
total water content of around 490 ± 13 ppm in all glasses, in-
dependent of the applied compression conditions.

2.2. Nano-indentation under normal load

Indentation experiments were conducted through instrumented
nano-indentation (G200, Agilent Inc.), using a Berkovich diamond tip
(Synton-MDP Inc.) and operating in the continuous stiffness measure-
ment (CSM) mode. The instrument's frame compliance and tip area
function were calibrated prior to the experiments on a fused silica re-
ference glass sample (Corning 7980, Corning Inc.) with known elastic
properties (Young's modulus E = 72 GPa and Poisson ratio ν= 0.18),
using the method proposed by Oliver and Pharr [38]. On each glass
specimen, five indentations with a depth limit of 2 μm were created at a
constant strain-rate of 0.05 s−1. The hardness H, defined as the load
divided by the projected contact area of the indenter tip FN/Ac, as well
as Young's modulus E were continuously recorded as a function of the
indentation depth d by applying a weak oscillation to the indenter tip
(Δd = 2 nm, f= 45 Hz) [12]. The value of E was deduced from the
reduced elastic modulus Er, according to Ref. [39]:
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with Ei = 1141 GPa and νi = 0.07 of the diamond tip, respectively.
Poisson ratios of the compacted silica glasses were calculated from the
longitudinal νL and transversal νT sound wave velocities, which were
determined by means of an echometer 1077 (Karl Deutsch GmbH & Co.
KG), equipped with 8–12 MHz piezoelectric transducers:
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All nanoindentation experiments were conducted in laboratory air
at ambient temperature of around 298 ± 3 K.

2.3. Lateral nano-indentation and scratch testing

Lateral deformation and defect initiation were initially character-
ized in a ramp-load scratch test using the same nano-indentation set-up
as described above. This test comprises an indenter tip moving across
the glass surface under monotonically increasing load. Meanwhile, both
the indentation depth and the lateral force FL were continuously re-
corded [9]. On every glass specimen, 16 ramp-load scratch tests were
conducted across a length of Ls = 600 μm at a scratch speed of 50 μm/s
using a Berkovich diamond indenter tip in edge-forward orientation.
The peak load at the end of the scratch was set to 300 mN, resulting in a
constant loading rate of 25 mN/s. Prior to each test, the pristine glass
surface was pre-scanned with the Berkovich tip under a load of 50 μN.
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After scratching, a similar scan of the surface was conducted once again
for evaluating of the size of the residual scratch groove.

In addition to the ramp-load tests, scratches with a total length of
200 μm were created under varying constant load with the objective to
determine the work of deformation Ws required to scratch through a
certain glass volume Vs. For this, the loads were adjusted to reach an
anticipated indenter displacement (depth) into the surface layer of 500;
600 and 700 nm, respectively, using the data which were obtained from
ramp-load scratch testing. Equivalent to the ramp-load scratch test, all
constant-load scratching experiments were performed at a scratch
speed of 50 μm/s using a Berkovich diamond indenter tip in edge-for-
ward orientation. Three-dimensional data of scratch morphology were
collected post mortem through wide-field confocal microscopy (Zeiss
Smartproof 5, Zeiss). For judging the sensitivity of the evaluation pro-
cedure, an additional set of reference data was collected on a standard
borosilicate glass (commercial Borofloat-33, Schott), denoted BS. The
composition of this glass was 81SiO2-13B2O3-2Al2O3-4Na2O/K2O, with
ν = 0.198 ± 0.004, E = 61.1 ± 0.2 GPa and H= 7.07 ± 0.04 GPa.
Analyses were performed on the air-side of the pristine commercial
glass. This particular reference was chosen because of the fundamen-
tally different deformation behavior as compared to silica [12,15,40].

3. Results and discussion

3.1. Density and mechanical properties of compacted silica glass

Properties of the as-received compacted silica glasses are summar-
ized in Table 1. Relationships between the isostatic pressure as em-
ployed during hot compression and the density as well as selected
mechanical properties, including the Poisson ratio, Young's modulus
and hardness are illustrated in Fig. 1c. Raising the pressure from
0.1 MPa (ambient) to 500 MPa increases the density almost linearly

from 2.203 ± 0.001 g/cm3 up to 2.249 ± 0.001 g/cm3, i.e., a degree
of compaction of up to roughly 2%. In comparison, the overall ability of
permanent compaction of vitreous silica reaches as much as 21% under
pressures in the 10 GPa range [27,41–43], eventually even higher when
compaction is performed at elevated temperature [44]. The relatively
low pressures applied in the present study limit the degree of densifi-
cation (ρ − ρ0) / ρ0 (with the density at ambient pressure ρ0, Table 1) to
within the linear regime in which pressure-induced structural re-con-
figuration is neglected (Fig. 1b). Nevertheless, some distinct variations
in the mechanical performance are detected as a result of varying
physical density. According to previous studies, the atomic packing
density of glasses is directly related to the Poisson ratio, i.e., glasses
with an open network structure typically exhibit lower values of ν than
glasses more dense atomic packing [45,46]. Consequently, an increase
of the Poisson ratio is expected as a result of compaction [47,48]. In the
present case, a slight increase of the Poisson ratio from 0.153 ± 0.006
up to 0.168 ± 0.006 is seen for the silica glasses after the high-pres-
sure treatment, confirming this expectation.

In addition to the Poisson ratio, also Young's modulus increases
approximately linearly with increasing degree of compaction from
72.0 ± 0.3 GPa up to 75.9 ± 0.3 GPa. Likewise, the hardness in-
creases from 9.17 ± 0.12 GPa up to 9.72 ± 0.07 GPa. Considering
Young's modulus first, the observed tendency agrees very well with
results from previous high-pressure studies not only on fused silica
[44,47–49] but also on other glass families [49–52]. Hirao et al. [50]
argued that the larger values of E noticed for (50 – x)MgO-xCaO-50P2O5

(x= 0; 25 and 50 mol%) glasses exposed to pressures of 6 GPa at ele-
vated temperatures of 0.75Tg are attributed to the increased bond
density in the permanently densified glasses. This conclusion was based
on the early semi-empirical model of Makishima and Mackenzie [53],
which considers the Young's modulus as a measure of the energy den-
sity stored inside the glass network. Following their concept, Young's

Fig. 1. (a) Experimental procedure of hot-com-
pression of vitreous silica. (b) Schematic re-
presentation of the pressure-dependence of the Si
speciation and density of vitreous silica: the
present experiments were conducted in the
highlighted low-pressure regime (red dashed
line). (c) Physical and mechanical properties of
silica glass as a function of the isostatic pressure
p: density ρ, Poisson ratio ν, Young's modulus E,
hardness H and network bond density ρB (see text
for details). Error bars indicate standard devia-
tions. The experimental errors for the density are
smaller than the size of the symbols. Data shown
in (b) were re-drawn from Ref. [61]. (For inter-
pretation of the references to color in this figure
legend, the reader is referred to the web version
of this article.)

Table 1
Density ρ, densification (ρ− ρ0) / ρ0, atomic packing density Cg, Poisson ratio v, Young's modulus E and hardness H of silica glass after hot compression at different isostatic pressures p.

p (MPa) ρ (± 0.001 g/cm3) (ρ− ρ0) / ρ0 (%) Cg ν (± 0.006) E (GPa) H (GPa)

0.1 2.203 – 0.457 0.153 72.0 ± 0.3 9.17 ± 0.12
100 2.214 0.5 0.459 0.158 72.6 ± 0.5 9.28 ± 0.11
300 2.228 1.1 0.462 0.162 75.0 ± 0.5 9.54 ± 0.11
500 2.249 2.1 0.466 0.168 75.9 ± 0.3 9.72 ± 0.07
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modulus is determined from the atomic packing density Cg and the
volume density of bonding, which is equal to the dissociation energy Gi

of each single glass constituent, weighted by its molar fraction fi,

∑=E C f G2 g i i (3)

For a single-oxide glass such like fused silica, the atomic packing
density Cg = ρV/M is estimated from the theoretical molar volume
V = 4/3πN(xrA3 + xrB3) occupied by the ions of the oxide AxBy, with
the molar mass M, divided by the effective molar volume of the glass.
The symbol N is the Avogadro number; rA and rB denote the radii of the
involved cation (rSi = 26 pm [28]) and oxygen anion (rO = 135 pm
[54]), respectively. The value of Gi for SiO2 (68 kJ/cm3) is tabulated in
Ref. [55]. From Eq. (3) it is evident that an increase of the density in the
absence of any compositional variations should lead to an equivalent
increase of the atomic packing density (see Table 1) and by extension,
Young's modulus of the glass. However, while the maximum densifi-
cation of the silica glass compressed at p = 500 MPa is limited to about
2.1%, Young's modulus exceeds the value of the uncompressed glass
specimen by about 5.4%. Such discrepancy has also been noticed, e.g.,
by Guerette et al. [44], though, its exact origin is not yet fully under-
stood. We suppose that the difference between the pressure derivatives
of ρ and E are related to higher sensitivity of the Young's modulus to
structural modifications of the short- and medium-range order. The
latter is usually not taken into account in the approach of Makishima
and Mackenzie [45]. Therefore, large deviations between the predicted
values of E and the experimental results may occur [56–60]. In prin-
ciple, when silica glasses are subjected to sufficiently high pressure, a
permanent densification of the glass network is achieved, on the one
hand, through changes the bond angle distribution and, on the other
hand, through variations in the ring statistics or silicon coordination
number [34]. With respect to the low pressures applied in the current
study, the latter effect may safely be excluded [61]. Instead, the

congruent compaction of the glass network is more likely to involve a
reduction of the SieOeSi bond angles and the increase of smaller three-
and four-membered silica rings at the expense of larger five- and six-
membered silica rings [34]. The resulting strain also affects the effec-
tive energetics of the SieO bond [28].

With these findings, not only the pressure-induced increase of the
Young's modulus, but also the enhanced resistance against plastic de-
formation, as reflected by the hardness, can be explained. As already
noted, it is widely assumed that the indentation deformation of glasses
results from a competition between elastic deformation, densification
and volume-conservative shear flow [62]. The relative contribution of
the latter two processes varies strongly with the glass composition and
is controlled by a complex interplay between the atomic packing den-
sity [14,63], network dimensionality [27] and the propensity for
pressure-induced structural alterations at short- and medium-range
order [18]. In silica glasses, densification is favored over shear-medi-
ated plastic flow [64,65]. The underlying structural modifications
which govern the densification of silica glasses during indentation are
very probably equivalent to the mechanism responsible for the per-
manent compaction of the silicate network during isostatic compression
[40,66]. With this in mind, the pre-densification of the silica glasses by
hot compression is expected to diminish the ability to further densify
during the subsequent indentation experiments by simply off-setting
the degree of compaction. This results in an improved resistance against
the penetration of sharp objects as mirrored by the observed hardness
increase. This conclusion is well-supported by previous studies [67,68],
where a considerably lower tendency towards densification was seen in
glasses exposed to high pressures as compared to uncompressed refer-
ences.

3.2. Ramp load scratch testing

As noted in the introduction, during a ramp-load scratch test on
glass surfaces, the scratch morphology typically evolves from purely
plastic deformation at low load (micro-ductile regime), to micro-
cracking and chipping (micro-cracking regime) and, finally, abrasive
wear (micro-abrasive regime) [4,9]. While only little systematic data is
presently available, it seems that the loads required to activate each
different regime depend to a large extent on the composition of the
examined glass [5,26,69,70], but also on the scratching conditions, e.g.,
geometry and orientation of the indenter tip [71] or the scratching
speed [9,24,71]. In the present case, ramp-load scratch tests with
monotonically increasing loads from 50 μN up to 300 mN were per-
formed. The resulting scratch pattern was initially evaluated by optical
inspection. A typical such scratch pattern (created on the uncompressed
reference glass) is presented in Fig. 2a. With progressively increasing
load, a permanent scratch groove of increasing depth and width is
created. In parallel, the lateral force needed to displace the scratching
tip at constant speed also increases (Fig. 2b). At moderate load, fre-
quent chipping occurs alongside the scratch, originating from the in-
teraction between radial cracks and sub-surface lateral cracks reaching
the glass surface [5]. Interestingly, this is hardly visible in the in situ
recording of FL, indicating that cracking occurs during unloading, i.e.,
when the tip has passed the respective zone of the scratch. At further
increasing load, large amounts of debris mark the onset of the micro-
abrasive regime. This, in turn, is readily visible in the FL curve through
the occurrence of sudden discontinuities and pop-ins [9]. The onset
points of chipping and micro-abrasion are marked in Fig. 2.

When the normal load of scratching exceeds an onset value, the
scratch pattern is determined by cracking reactions instead of plastic
deformation. As cracking is largely affected by the presence of surface
(and sub-surface) flaws and the resulting local amplification of acting
stress, the onset values of chipping and micro-abrasion are distributed
according to a certain probability function [5,9]. For the present case,
this is shown in Fig. 3. The probability of defect formation increases
with the applied load. A comparison among the silica glasses with

Fig. 2. Example of a ramp-load scratch test on uncompressed silica glass conducted with a
Berkovich diamond tip in edge-forward orientation. (a) Optical micrograph of the re-
sulting scratch pattern. (b) Indenter displacement h and lateral force FL as a function of
the applied load FN, recorded by the nano-indenter. Dashed lines mark the onset of
chipping (region II) and micro-abrasion (region III), as determined by optical inspection
and derived from the first pop-in in the FL curve, respectively.
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different grades of compaction reveals a gradual expansion of the cu-
mulative distributions towards higher load. For example, chipping
(Fig. 3a) starts at low loads of 26–102 mN in the uncompressed silica
glass, whereas slightly higher loads of 38–197 mN are necessary to
induce chipping in the sample compacted at p= 500 MPa. Likewise,
the range of onset loads for the occurrence of micro-abrasion (Fig. 3b)
increases from 77–219 mN (p= 0.1 MPa) to 86–263 mN
(p = 500 MPa). This indicates a reduced susceptibility for both chip-
ping and abrasive wear for the compacted samples. The trend among
the individual datasets is very coherent in that an almost linear de-
pendence is seen between the location of the 50th percentile for the
normal load of chipping (CR) and micro-abrasion (AR), respectively,
and the degree of compaction (insets of Fig. 3).

This result is obtained in analogy to the construct of indentation
crack resistance as proposed by Kato et al. [72]. Fitting a sigmoidal
function to the cumulative probability plot of the data, the load at
which the failure probability reaches a value of 50% is approximated.
Values of CR and AR are summarized in Table 2. The present results

suggest the creation of more defect resistant silica glasses as a result of
compaction. This is a significant observation, as the reverse trend of a
decreasing crack resistance has been noticed in previous studies in-
volving normal indentation on isostatically compressed glasses
[18,52,65,73–75]. This was rationalized through the reduced ability to
further densify [15,16,72]. As a consequence, normal indentation
cracking is initiated at lower load [67,68].

On first view, this apparent contradiction highlights the mechanistic
difference between normal and lateral indentation testing. In particular,
it clearly shows that conclusions on surface defect resistance from
normal indentation testing are overly simplistic as they do not ne-
cessarily reflect the actual damage mechanism. According to earlier
observations of Le Houérou et al. [5] derived from ramp-load scratch
tests on a number of soda-lime silicate glasses of varying chemical
composition, the probability of chipping is related to the atomic
packing density of glasses. Apart from that, it was tentatively argued
that the amount of non-bridging oxygen species in the respective glass
type affects the type of fracture or slipping reaction in the vicinity of the
scratching stylus. Also, a more open structure is usually more prone to
water attack, which is a key parameter in the initiation of surface cracks
[76]. As for the present case, we are considering a fully-polymerized
network of silica tetrahedra in which the density is varied without
varying the degree of polymerization. The observed decrease in the
cumulative probability of chipping (or abrasive cracking) with in-
creasing degree of compaction partially confirms Le Houérou's ob-
servations [5]. Similar but less pronounced observations as with chip-
ping are also made on the occurrence of microabrasion.

Further insight is obtained from closer inspection of the data shown
in Fig. 3. The actual difference between all curves lies in the steepness
of the underlying probability function, not in the occasional onset va-
lues of cracking at low load. This means that the observed difference
among the different samples (which is only on the high-load side) is
very likely caused by a decrease in the likelihood for the scratching tip
to intersect or initiate a crack-inducing flaw. Such a probability de-
crease can be a direct result of the hardness variation which is induced
by compaction: compacted glasses exhibit higher hardness, thus, higher
resistance against penetration of the employed Berkovich tip (Fig. 1c).
For clarity, load-displacement curves are provided in Fig. 4a. The vo-
lume and surface area which are then probed by the indenter result
directly from the geometry of the Berkovich tip. In the scratching ex-
periment, the resulting scratch groove is wider (and deeper) at lower
hardness. For example, the probed surface area (groove width) is about
5% smaller and the probability of finding a crack-inducing flaw de-
creases in the samples which were compacted at p = 500 MPa (Fig. 4b).

In consequence, when the lateral force rather than the normal load
is considered in the analysis the above trend for AR disappears, Fig. 5a.
For CR (Fig. 5b) which occurs at lower load, the trend of increasing
resistance to lateral fracture with increasing degree of compaction re-
mains present, although somewhat less pronounced.

Due to the strong dependence on experimental conditions and the
presence of surface flaws, material insights from fracture experiments
are strongly limited. The primary focus of the present report is therefore
on the crack-free regime of scratching. As shown in Fig. 6, the present
ramp-load tests exhibit a micro-ductile regime within the loading range
of up to ~50 mN in which no cracking is observed and the relation

Fig. 3. Cumulative probability f of the load FN at the onset of (a) chipping and (b)
abrasion during ramp load scratch testing of silica glass as a function of the isostatic
pressure p. Dashed lines are sigmoidal fits to the experimental results; the insets display
the pressure-dependence of the chipping resistance CR and abrasion resistance AR, re-
spectively, which are defined as the loads at a failure probability of 50%.

Table 2
Chipping resistance CR, abrasion resistance AR, effective friction coefficient μeff and
scratch hardness Hs of silica glass after hot compression under different isostatic pressures
p.

p (MPa) CR (mN) AR (mN) μeff Hs (GPa)

0.1 54 121 0.209 6.71 ± 0.23
100 63 128 0.199 6.77 ± 0.18
300 77 119 0.196 6.97 ± 0.12
500 91 154 0.196 7.26 ± 0.17
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between lateral force and normal load is approximately linear. In-
creasing degree of structural compaction reduces the slope of the FL-FN
curve and, hence, the effective friction coefficient μeff = FL/FN (inset of
Fig. 6). According to Fig. 2, the scratch groove of this experiment is a
result of elastic-plastic deformation. Thus, other than assumed in
Coulomb's law, both adhesive and plowing forces contribute to the
value of μeff. At present, we refrain from the effort of analytical se-
paration of the two contributions due to the complex indenter geometry
employed in the present study.

3.3. Constant load scratch testing

Following ramp-load testing, constant-load scratch tests were

Fig. 4. (a) Indentation load-displacement curves
for uncompressed silica and a glass hot-com-
pressed at an isostatic pressure of p= 500 MPa.
(b) Resulting width of the scratch groove during
ramp-load scratch testing with a Berkovich dia-
mond tip in edge-forward direction. The inset of
(b) depicts the variation in indentation volume.
For clarity, the difference in required load to
generate a groove-width of 1000 nm is marked.

Fig. 5. Cumulative probability f of the lateral load FL at the onset of (a) chipping and (b)
abrasion during ramp load scratch testing of silica glass as a function of the isostatic
pressure p. Dashed lines are sigmoidal fits to the experimental results and the insets
display the pressure-dependence of the chipping CR and abrasion resistance AR, respec-
tively, which are defined as the loads at a failure probability of 50%.

Fig. 6. Relationship between lateral force FL and load FN during ramp load scratch testing
of silica glass as a function of the isostatic pressure p. The inset displays the pressure-
dependence of the effective friction coefficient μeff, derived from the slope of linear re-
gression of FL over FN.

Fig. 7. Constant load (FN = 45 mN) scratch test on uncompressed silica glass conducted
with a Berkovich diamond tip in edge-forward orientation, showing (a) the lateral force FL
as recorded by the nano-indenter during displacement over a scratch length of
Ls = 200 μm and (b) a confocal micrograph of the resulting scratch groove. The gray area
corresponds to the work of deformation.
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performed within the region of elastic-plastic deformation. An example
is provided in Fig. 7, using a load of 45 mN on uncompressed silica. The
loading curve is given in Fig. 7a in terms of lateral force and dis-
placement. Fig. 5b is a confocal micrograph of the corresponding
scratch groove.

The effective work of deformation Ws is derived from the integral of
FLdL across the length of the scratch Ls, Ws = ∫ FLdLS (Fig. 8a). A first
question is how sensitive this parameter is to even slight differences in
glass structure. Due to the contribution of plowing friction, clearly, Ws

strongly depends on the depth of the scratch groove and, thus, hardness
of the material (see Fig. 4). We therefore determined the deformed vo-
lume Vs as the volume of the scratch groove during scratching (neglecting
the occurrence of pile-up) and referenced Ws to Vs, Hs =Ws / Vs,

∫ ∫= =V A dl d
tan β

dl3
2tans

2

(4)

with the Berkovich edge-forward contact angle β= 12.95° and the

indentation depth d. Noteworthy, through this way of in situ evaluation,
we integrate over both plastic and elastic contributions to deformation.

The value of Hs reflects the work required to deform a certain vo-
lume of material through scratching. As shown in Fig. 8a, within the
examined range of normal load, there is a linear correlation betweenWs

and Vs and, thus, Hs is a constant parameter for each sample. In the
following, Hs is denoted scratching hardness, corresponding to the si-
milar use of this term by Yoshida et al. [14]. We find a clear, ap-
proximately linear dependence of Hs on the isostatic pressure employed
during hot-compression (Fig. 8b), resulting in a relative increase of Hs

by about 8% for the silica glass with the highest degree of compaction
of about 2%. This compares to a normal hardness increase by about 6%
under the same conditions. The relation between Hs and the regular
(normal indentation) hardness H is shown in the inset of Fig. 8b. The
absolute value of Hs/H clearly depends on experimental conditions and
is, therefore, not discussed further at this stage. However, some sig-
nificant conclusions can be drawn from the present observations: for
one, there is no strong trend in the value of Hs/H as a function of silica
density, within the range of observation. The slight increase of Hs/H
which is seen with increasing isostatic pressure lies fully within the
experimental accuracy. As a consequence, the scratching hardness Hs

can be estimated directly from the normal hardness H. This observation,
on the other hand, confirms our expectations that the present extent of
compaction does not cause any major structural re-configuration be-
sides congruent densification. Therefore, we do not expect variations in
the principle mechanism of deformation which would facilitate (or
prevent) lateral indentation over normal indentation.

For the second observation, we consider a typical borosilicate glass,
referred to as BS. For comparison, data are included in Fig. 8. Here, a
very clear difference is seen in Ws, in its volume dependence Hs and in
the ratio of Hs/H. Most obviously, this shows that Ws is strongly sen-
sitive to chemical composition, reflecting its applicability for dis-
criminating the mechanical response of different glasses. Additionally,
it suggests that Hs/H is composition-dependent, even though it ap-
peared constant for the series of compacted silica glasses. This further
signifies the complex relationship between scratch hardness and normal
hardness. That is, structural parameters which are usually hidden
within the notion of interacting contributions of compaction and shear
have a different impact on normal and lateral indentation. For example,
also in brittle glasses, lateral deformation is certainly affected by ad-
hesive forces and stick-slip reactions which do not contribute to normal
indentation. The present finding indicates that the dependence of these
latter effects on molecular structure (as determined by chemical com-
position or thermo-mechanical history) is significant even within the
narrow class of silicate glasses.

In Fig. 9, the value of Hs is related to the network bond density ρB.
For the BS reference glass, the value of ρB is taken from the sum of the
densities of SieO, AleO and IVB-O, assuming that only these bonds
contribute to the formation of a three-dimensional glass network. This
application has been chosen to obtain a qualitative view at the relation
between the number of bonds which are involved in the scratching
process and the observed scratching energy. BS is included in this
analysis as a point of reference, for the moment ignoring the variation
in bond strength as compared to the silica variants. As shown in Fig. 1c,
in compacted silica glasses, the variation in network bond density is a
direct result of network densification: there are no changes in network
topology. Thus, with increasing degree of compaction, a linearly in-
creasing number of bonds is involved in the deformation process.
Consequently, also the scratch energy increases linearly. When com-
paring to the bulk energy, however, there is a difference of about one
order of magnitude between both values for the compacted silica
glasses as well as the BS reference glass. This result formally indicates
that in ten involved bonds only one is broken during the process of
deformation. Together with the previous observations, this particular
finding gives rise to the conclusion that as a rough initial guide, the
scratching hardness is about one tenth of Young's modulus for the

Fig. 8. (a) Relationship between the work of deformation Ws and the scratch volume Vs of
silica glass as a function of the isostatic pressure p. The inset of (a) depicts the experi-
mental set-up from which the value of Vs was derived (see text for details). (b) Pressure-
dependence of the scratch hardness Hs, which was derived from the slope of linear re-
gression ofWs over Vs. The inset displays the scratch hardness over the hardness Hs/H as a
function of p. For comparison, the experimental data for a commercially available
Borofloat 33 glass specimen, referred to as BS, was added.
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observed cases of compacted silica glass and the BS reference glass. In
detail, however, the relation between Hs and E is clearly more complex
(see inset of Fig. 9). This is certainly related to the increasing structural
complexity of borosilicates and other glasses, which enable more
complex topological reactions in answer to local mechanical load,
opening a pathway to topo-chemical engineering of scratch-resistant
glasses.

4. Conclusions

We used lateral nano-indentation for evaluating the fracture onset
and the work of deformation which is involved in the process of glass
scratching. For this, we employed lateral force analysis and path in-
tegration during ramp-load tests and constant-load tests on a series of
hot-compressed vitreous silica glasses. The glasses exhibited mild de-
grees of structural densification, for which we derived relations be-
tween quantitative scratch hardness and the underlying glass structure.
The density of network-forming bonds was identified as the primary
factor in the resistance to lateral deformation. We show that Young's
modulus provides a clear rational for the observed variations in
scratching hardness. As a rule of thumb, the scratching energy density is
roughly one tenth of Young's modulus. This formally indicates that only
about one tenth of the bonds which are involved in the deformation
process are broken in its course. However, comparing this observation
to a more complex glass material with a certain fraction of two di-
mensional structural units and a strong ability for topological adaption
to local stress clearly indicates a deviation from this behavior. This
opens a pathway to topo-chemical engineering of scratch-resistant
glasses.
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