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Robustness of a Perturbed Topological Phase
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We investigate the stability of the topological phase of the toric code model in the presence of a uniform
magnetic field by means of variational and high-order series expansion approaches. We find that when
this perturbation is strong enough, the system undergoes a topological phase transition whose first- or
second-order nature depends on the field orientation. When this transition is of second order, it is in the
Ising universality class except for a special line on which the critical exponent driving the closure of
the gap varies continuously, unveiling a new topological universality class.

DOI: 10.1103/PhysRevLett.106.107203

Introduction.—The concept of topological quantum or-
der was introduced by Wen in the late 1980s to characterize
the chiral spin state supposed to be relevant for high-
temperature superconductivity [1]. Since then, it has been
shown to be crucial for characterizing different states of
matter, among which are fractional quantum Hall states,
and it has become the cornerstone of topological quantum
computation [2,3]. Topologically ordered quantum sys-
tems are mainly characterized by a ground-state degener-
acy which depends on the Euler-Poincaré characteristic.
For connected orientable surfaces, this number is directly
related to the genus. Topologically ordered states cannot
be characterized by local order parameters and thus fail
to be described by Landau symmetry-breaking theory.
Importantly, this nonlocality often implies anyonic statis-
tics and a robustness of the corresponding system with
respect to any local perturbation [2,4,5], so that they might
be used as reliable quantum memories [6]. However, it has
early been realized in the seminal paper of Kitaev [2] that
“Of course, the perturbation should be small enough, or
else a phase transition may occur.”

The main motivation of the present work is precisely to
investigate this robustness in the simplest model displaying
topological quantum order, namely, the toric code [2], and
in the presence of the simplest local perturbation, i.e., a
uniform magnetic field. This model, which might be im-
plemented in Josephson junction arrays [7], may indeed be
considered as the “Ising model of topological quantum
phase transitions” and has already been studied for special
directions of the field [8-12] (see also Ref. [13] for a
related problem in Wen’s model [14]). Here, we address
this problem for an arbitrary field direction and determine
the extension of the topological phase originating from
the zero-field limit. To compute this phase diagram,
one faces several difficulties since (i) the lack of a local
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order parameter prohibits any field-theoretical approach
to analyze the critical properties and (ii) one can neither
perform Monte Carlo simulations (sign problem) nor reli-
able exact diagonalizations (only small sizes are available).
Consequently, we combine two different techniques. First,
we perform high-order series expansion in the small-field
limit using perturbative continuous unitary transformations
(PCUT) [15] and compute the ground-state energy as well
as the low-energy gap. Unfortunately, although such an
expansion is very efficient to characterize second-order
transitions [11], it cannot locate first-order transitions
except in very special situations [12]. Second, we use a
variational approach based on infinite projected entangled
pair states (iPEPS) [16-18] which is, by contrast, espe-
cially sensitive to first-order transitions (see, for instance,
Ref. [19]). Combining these two methods, we determined
the boundaries of the topological phase of the toric code
model in an arbitrary uniform magnetic field. The resulting
phase diagram displays many interesting features since,
depending on the direction of the field, the breakdown of
the topological phase may be achieved through a first- or a
second-order transition. In the latter case, the universality
class is always of Ising type except on a special line where
the critical exponent driving the closure of the gap varies
continuously.

Model and limiting cases.—The Hamiltonian of the toric
code in a uniform magnetic field reads

H=—-JYA~IYB,~h- Yo,
K p i

where A; = [[;e;07 and B, = [;c, 07 (o{’s are the usual
Pauli matrices). Subscript s (p) refer to sites (plaquettes)
of a square lattice and i runs over all bonds where spins
are located [2]. Without loss of generality, we restrict our
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study to h, = 0, the spectrum being unchanged under
the transformation h, — —h,,.

In the zero-field limit, H is exactly solvable since
[A;, B,] = 0. As shown in Ref. [2], the ground-state de-
generacy depends on the surface topology so that the
system is topologically ordered. In this limit, the ground-
state energy per spin is e, = —J. Elementary excitations
are obtained by acting onto the ground states with o7
(charge excitations) or o7 (flux excitations) operators
which locally change the eigenvalues of Ay or B,. On a
torus, only pairs of such elementary excitations can be
created so that, in this case, one has an equidistant spec-
trum with an energy gap A = 4J. By contrast, for open
boundary conditions, the gap is A = 2J since one can
create states with only one charge or only one flux.
Charges and fluxes behave individually as hard-core bo-
sons but have mutual anyonic (semionic) statistics [2]. In
the opposite limit J = 0, the ground state is unique and
fully polarized in the field direction whatever the boundary
conditions so it is not topologically ordered anymore.
It is thus obvious that at least one phase transition occurs
between these two limiting cases.

In the presence of the field, Ay’s and B),’s are no longer
conserved so that H is no longer integrable. However, for
some special directions of the field, some mappings onto
well-known problems exist. In the following and without
loss of generality, we set J = 1/2.

(i) hy = 0—The first simple example is obtained when
the field points in the x (or z) direction. In this case,
the problem is equivalent to the two-dimensional (2D)
transverse-field quantum Ising model [8,9] which is known
to display a second-order transition for &, = 0.1642(2)
[20]. When both x and z components of the field are
nonvanishing, the Hamiltonian H is equivalent to the 3D
classical Z, gauge Higgs model [10]. In the plane i, = 0,
the phase diagram consists of two second-order lines which
originate from the Ising points (4, = 0 and #, = 0) and
intersect at a multicritical point located at the symmetric
point h, = h, = 0.1703(2) [11].

(1) h, = h, = 0—When the field points in the y direc-
tion, H is self-dual (its spectrum is invariant under the
exchange &, < J). In addition, it is isospectral to the 2D
quantum compass model [21] which is also equivalent to
that of the Xu-Moore model [22]. In this case, a first-order
transition occurs at the point 2, = J [12,19].

Methods: PCUT and iPEPS.—Away from these special
directions, no mapping onto existing models is known so
far. To analyze the full phase diagram, we have first com-
puted the low-energy spectrum using the PCUT (together
with the finite-lattice method [23]) in the small-field limit,
which has already been proven to be very efficient in this
context [11,12]. This approach provides a natural descrip-
tion in terms of dressed anyonic quasiparticles in the
thermodynamical limit. We focused on the ground-state
energy per spin ¢, and the one-quasiparticle gap A which
have been computed at order 10 and 8, respectively.

The lengthy expressions of these quantities can be found
in the supplemental material [24]. We emphasize that, at
such high orders, ¢y, (A) is determined with a relative
precision lower than 10™3 (1072) for all directions of the
magnetic field and inside the topological phase. Of course,
as for any series expansion, such error bars can only be
roughly estimated using various resummation schemes
(see Ref. [25] for a detailed discussion).

The PCUT method allows us to determine the set of
points (A, hy, h,) where A vanishes and hence where there
might be a continuous transition. However, we know that
for h, = h, = 0, the transition is first order and thus not
detectable by the condition A = 0. This is the main reason
for using a complementary tool based on a variational
approach, the so-called iPEPS algorithm, which also al-
lows us to estimate e, in the thermodynamic limit with a
rather good accuracy [17-19]. The main parameter in this
method is the so-called bond dimension D of the PEPS
tensors [16—18] which drives the amount of entanglement
of the ansatz states.

Our main motivation for choosing such ansatz states
is that eigenstates of the toric code (zero-field limit) are
described by D = 2 PEPS [26] whereas for J = 0, eigen-
states of H are D =1 (completely separable) states.
Obviously, in the large D limit, this variational method
gives the exact ground state but, in practice, we have
checked that the difference between D =2 and D =3
lies within the error bars of the PCUT calculation so that,
for the sake of simplicity, we restrict our analysis to D = 2
only. Once the bond parameter is fixed, one still has the
freedom to choose different ansatz states. Here, we choose
a PEPS structure similar to that proposed in Ref. [17], but
we allow four different tensors for the four spins of each
elementary plaquette (instead of two in Ref. [17]). Such a
choice leads to 8D* — 1 variational parameters (instead of
4D* — 1) and thus improves the results. Other technical
details of the algorithm have also been adapted to tackle
four-spin interactions.

One may argue that in order to capture the topological
properties of the ground state in the general case (such as
a nontrivial topological entropy [27]), one would need to
implement some gauge symmetries in the tensor network
ansatz [28]. But, such properties reflect nonlocal features
and are not crucial for computing local quantities such as
the ground-state energy.

Keeping all these approximations in mind, let us de-
scribe the general strategy to determine a transition point
and its nature (first or second order). For a fixed direction
of the field we wish to compute the critical value of the
field’s strength 7 beyond which the system is no more
in a topological phase. To do so, one proceeds in three
steps: (i) compute the iPEPS ground-state energy ell™S
for different values of 4 by minimizing the tensor parame-
ters; (ii) determine the point &* at which elPEPS < ¢fCUT
where ef“YT denotes the PCUT ground-state energy;
(iii) compute the value &, for which the one-quasiparticle
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gap vanishes using the PCUT expression of A and resum-
mation techniques. Then two situations must be distin-
guished. Either 4" > h., in which case we can trust the
PCUT result and its prediction of a second-order transition
at h.. The iPEPS approach is indeed variational and in-
validates the PCUT’s prediction when eFEPS < ¢FCUT. Or
h* < h,, in which case a transition occurs before the gap A
vanishes. This means that there are some level crossings
due to higher-energy levels which are not captured by
the PCUT approach, indicating a first-order transition
confirmed by the discontinuity of the slope of the iPEPS
energy [see, e.g., Fig. 1 (right)]. Note that one may indeed
directly compute the derivative of elPFS as a function of i
and look for singularities but this approach is less precise.
Obviously, the precision in the determination of 2* and &,
plays a fundamental role in this scheme. For a given
direction, the maximum orders at which we computed e
and A as well as the form of the chosen variational states
allow us to estimate the transition point with an accuracy
of a few percent as can be seen in Fig. 1.

Phase diagram.—A sketch of the 3D phase diagram is
shown in Fig. 2 and can be summarized as follows. First,
we find that the transition point & = (0, 1/2, 0) is part of a
2D first-order transition sheet S;. Second, the second-order
transition lines of the i, = 0 plane give rise to a 2D
second-order transition sheet S, (defined by A = 0)
when the y component of the field is nonvanishing.
These sheets that intersect on a nontrivial line define the
boundaries of the topological phase. Given the difficulty
for investigating the full 3D space with iPEPS, we focused
on some special planes in which we determined the coor-
dinates of the intersection point of S| and S,. For instance,
in the (0, hy, h;) plane, we found that this intersection
occurs around the point 2 = (0,0.49,0.11). When the
transition is second order, the gap is expected to behave
as A ~ (h — h,)* in the vicinity of the critical point ..
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FIG. 1 (color online). Comparison of iPEPS and PCUT
ground-state energy for two different field directions. The width
of the (gray) band defining /.. results from different Dlog Padé
approximants. Left: & = h(1,0,1) and A" > h, indicating a
second-order transition at /.. Right: h = h(cos{Z, sinfZ, costZ
and h* < h, indicating a first-order transition at h*.

Note that here we do not have access to the dynamical
exponent z and to the correlation length exponent » inde-
pendently but only to their product. For all investigated
directions, we found that z» was compatible with the well-
established Ising value zv = 0.630(1). This leads us to
conclude that S, lies in the Ising universality class (as
was already found in the plane hy, = 0 [10,11]) for all
directions except for the special case h, = h,.

The multicritical line.—As discussed in [10,11] for
h, = 0, the two second-order transition lines merge in a
multicritical point at 4, = h, for which the gap exponent is
clearly different from the Ising value. The most important
result of the present study is that when i, # 0, this multi-
critical point gives rise to a multicritical line on which this
exponent varies continuously. First of all, let us point out
that the multicritical line intersects S; around the point
h = (0.17,0.46,0.17). Once again these values are ob-
tained with a relative precision of a few percent. Along
this multicritical line, we have computed the exponent zv
using standard resummation techniques based on Dlog
Padé approximants (see Ref. [25] for details). Our results
are displayed in Fig. 3 and show that this exponent varies
from 0.69 at h, = 0 up to a value close to 1 at h, = 0.46
along this line. Except in the range 4, € [0.20, 0.35], one
gets a rather good convergence suggesting that divergen-
cies observed in this region are due to spurious poles in
the Dlog Padé approximants. We thus conjecture that zv
varies continuously and that its variation of ~50% cannot
be attributed to extrapolation errors and reveals a new
universality class. Since it is not associated to a symmetry
breaking but rather reflects the breakdown of a topological
phase, we will call it topological.

At this stage, it is difficult to determine the key ingre-
dients for a system to belong to this class (since we do not
have any local order parameter) but it is likely that the
mutual semionic statistics of charges and fluxes is one of
them. More generally, let us underline that continuously

0.5

FIG. 2 (color online). Sketch of the 3D phase diagram. Dots
correspond to Ising points and the diamond is the self-dual point
of the h, line. Light gray lines (green) are the intersections of
the first-order sheet S; and the second-order sheet S, (computed
from the bare series given in the supplemental material [24]).
The multicritical line 4, = h, with continuously varying critical
exponents is shown in dark gray (red).
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FIG. 3 (color online). Ceritical exponent zv as a function of h,
along the line i, = h, computed for various Dlog Padé approx-
imants [m, n]. Strange behaviors near h, =~ 0.3 are likely due
to spurious pole structures and should not be considered as
relevant.

varying critical exponents are not common in two-
dimensional quantum systems. During the completion of
this work, some conformal quantum critical lines in 2 + 1
dimensions have been proposed [29,30] but their relevance
for the toric code in a magnetic field is still an open
question.

Discussion and outlook.—In the present work, we have
determined the boundaries of the topological phase of the
toric code in a field using two state-of-the-art and comple-
mentary methods. This topological “bubble” is made of
first-order and second-order sheets. Interestingly, second-
order transitions seem to be in the Ising universality class
except on a multicritical line on which the gap vanishes
with continuously varying exponents giving rise to a new
topological universality class. Of course, it would also be
valuable to study the large-field limit of this model to
investigate the outer part of the bubble. Notably the fate
of the first-order line observed in the i, = 0 plane [10,11]
is an interesting question. Finally, a complete understand-
ing of the low-energy spectrum of the topological phase
certainly requires the study of bound states as already
seen in the transverse-field case [12].
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