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The first quantum cryptography protocol, proposed by Bennett and Brassard in 1984 �BB84�, has been
widely studied in recent years. This protocol uses four states �more precisely, two complementary bases� for the
encoding of the classical bit. Recently, it has been noticed that by using the same four states, but a different
encoding of information, one can define a protocol which is more robust in practical implementations, specifi-
cally when attenuated laser pulses are used instead of single-photon sources �V. Scarani et al., Phys. Rev. Lett.
92, 057901 �2004�, referred to as the SARG04 protocol�. We present a detailed study of SARG04 in two
different regimes. In the first part, we consider an implementation with a single-photon source: we derive
bounds on the error rate Q for security against all possible attacks by the eavesdropper. The lower and the
upper bound obtained for SARG04 �Q�10.95% and Q�14.9%, respectively� are close to those obtained for
BB84 �Q�12.4% and Q�14.6%, respectively�. In the second part, we consider a realistic source consisting of
an attenuated laser and improve on previous analysis by allowing Alice to optimize the mean number of
photons as a function of the distance. The SARG04 protocol is found to perform better than BB84, both in
secret-key rate and in maximal achievable distance, for a wide class of Eve’s attacks.
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I. INTRODUCTION

Quantum cryptography �1�, or quantum key distribution
�QKD�, is the most mature field in quantum information,
both in theoretical and in experimental advances. From the
very beginning of quantum information, it was clear that
QKD should be secure because of the no-cloning theorem,
and also that it should be implementable with available tech-
nology. However, both rigorous proofs of security and truly
practical implementations turned out to be serious chal-
lenges: one had to start from the situations which are easiest
to handle. But what is easy for a theorist �small number of
parameters, idealized components� is not what is easy for an
experimentalist �practical, real components�. Thence, re-
search in QKD mostly split into two fields: proving security
in theoretically idealized situations on the one hand, and re-
alizing practical prototypes on the other. Important advances
have been made in both directions; at present, while many
open problems remain in both fields, an urgent task consists
in bringing theory and application together again. Indeed, the
theoretical tools have recently been applied to study the se-
curity of practical implementations �2�. This paper aims at
the same goal, on a different protocol and with a different
approach.

In any implementation of QKD, there is a large number of
components which do not behave according to the simplest
theoretical model. Such is the source: QKD protocols based
on photon counting are most easily studied by assuming that
a single-photon source or a source of entangled photons is
used, but by far the most practical source is an attenuated
laser �3�. This practical implementation can lead to secure
QKD: the analysis of the security parameters, while more
complex than in the case of single photons, is definitely im-
portant. A drawback of the practical implementation was no-
ticed by some authors �4� and explicitly stated in 2000 by
Lütkenhaus and co-workers �5�: weak laser pulses contain

sometimes more than one photon; thus, if losses are expected
in the quantum channel �as they always are�, the eavesdrop-
per Eve may take advantage of the multiphoton pulses by
keeping some photons without introducing errors on those
that she lets pass. These attacks are known as photon-
number-splitting �PNS� attacks. Since then, several ways
have been found to counter PNS attacks. An especially
strong protection is obtained by introducing decoy states �6�;
this requires some modification of the experimental devices.
The idea behind the Scarani-Acín-Ribordy-Gisin 2004
�SARG04� protocol �7,8� is different and complementary:
one can keep the hardware exactly as it is, but modify the
classical communication between Alice and Bob �the so-
called sifting phase�. Note that one can implement both the
sifting of SARG04 and a monitoring using decoy states: this
is the protocol for which Tamaki and Lo have proved secu-
rity for one- and two-photon pulses �9�.

The goal of this paper is to improve the comparison be-
tween SARG04 and the original protocol of quantum cryp-
tography which uses four states, the one devised by Bennett
and Brassard in 1984 �BB84� �10�. The structure of the paper
is as follows.

�1� The protocol. In Sec. II, we recall the basics of the
SARG04 protocol and present its entanglement-based ver-
sion.

�2� Single-photon implementation. This is the content of
Sec. III. We compute a lower bound for security against all
possible attacks of the eavesdropper �in particular, the most
general coherent attacks� under one-way classical processing
by Alice and Bob—a study usually called unconditional se-
curity. The bound we obtain is Q�10.95% where Q is the
quantum bit error rate �QBER�. This bound is Q�12.4% for
the BB84 protocol �11,12�. An upper bound for security can
also be computed by giving an explicit attack by Eve. We
identify an incoherent attack which performs better than the
one which uses the phase-covariant cloning machine �13�.
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The SARG04 protocol is found to be certainly insecure in a
single-photon implementation as soon as Q�14.9%, the cor-
responding upper bounds for BB84 being Q�14.64%.

Thus, the lower and upper bounds for security under one-
way classical postprocessing are similar for both protocols.
However, suppose that the channel Alice-Bob is a depolariz-
ing channel, as is the case in all experiments performed to
date:

E����� = F������ + D�������� �1�

where F+D=1. The channel is then characterized by the
disturbance D, or equivalently, by the visibility V of the
fringes one can observe in an interferometric setup defined
by

F =
1 + V

2
, D =

1 − V

2
. �2�

Now, the link between the QBER and the visibility is differ-
ent for the two protocols: V=1−2Q for BB84, while V= �1
−2Q� / �1−Q� for SARG04. The comparison of the bound for
the visibility is unfavorable for SARG04.

�3� Attenuated laser pulses (Poissonian source), imper-
fect detectors. In Sec. IV, we consider the more realistic situ-
ation for which SARG04 was devised. Alice’s source is an
attenuated laser, producing weak pulses, that is, pulses with a
mean number of photons ��1. A first comparison between
SARG04 and BB84 in this implementation can be found in
the original references �7,8�. Here we improve significantly
on this analysis, although the study of ultimate security is
still beyond reach. Anyway, for a broad class of incoherent
attacks by Eve including various forms of PNS �14�, we can
compute the optimal secret key rate by optimizing over the
mean number of photons � describing the Poissonian statis-
tics. We work in the trusted-device scenario: Eve cannot take
advantage of the limited efficiency or of the dark counts of
Bob’s detectors. We find that the optimal mean number of
photon goes as �opt�2	t as a function of the transmission t
of the quantum channel, while the much smaller value �opt
� t holds for BB84 under identical conditions �15�. As a
consequence, the secret-key rate �proportional to the detec-
tion rate �t� decreases as t3/2 instead of the faster t2 decrease
of BB84. The limiting distance is also increased in SARG04
with respect to BB84, approximately by 10 km using typical
values of the parameters of the detector and the channel.
Thus, SARG04 compares favorably with BB84 in practical
implementations for this class of attacks.

The conclusions of both Secs. III and IV strongly suggest
that the same quantum correlations can be exploited differ-
ently according to the physical realization, by adapting the
classical encoding and decoding procedures.

II. SARG04 PROTOCOL

A. SARG04: Prepare-and-measure version

The SARG04 protocol was introduced in Ref. �7� in a
prepare-and-measure version. At the level of quantum pro-
cessing, it is exactly equivalent to BB84. Alice prepares one
of the four states belonging to two conjugated bases, e.g.,

�+z�
�0�, �−z�
�1�, �+x�= �1/	2���0�+ �1��, and �−x�
= �1/	2���0�− �1��. She sends the state to Bob, who measures
either �z or �x. The difference from BB84 appears in the
encoding and decoding of classical information.
The classical bit is encoded in the basis: �+z� and �−z� code
for 0, �+x� and �−x� code for 1. Since each basis codes for a
bit, it is natural in SARG04 to admit that the two bases are
chosen randomly with equal probability �16�.

In the sifting phase, Alice does not reveal the basis �this
would reveal the bit�: she discloses the state she has sent and
one of the states that code for the other value of the bit,
which are not orthogonal to the first one. There are thus a
priori four sifting sets: S++= ��+z� , �+x��, S−−= ��−z� , �−x��,
S+−= ��+z� , �−x��, and S−+= ��−z� , �+x��. For definiteness,
suppose �sent�= �+z� and �declared�= �+x�: Bob guesses cor-
rectly the bit if he measured �x and found �right�= �−x�; he
guesses wrongly the bit if he measured �z and found
�wrong�= �−z�. As usual, an error can happen only if the state
has been modified by an eavesdropper, or in the presence of
dark counts. In the absence of errors, the length of the sifted
key is 1

4 of the length of the raw key; in the presence of an
error rate Q, this length increases.

This encoding is better to protect secrecy against incoher-
ent PNS attacks when the source is not a single-photon
source. In fact, suppose that a pulse contained two photons
and Eve has kept one of them in a quantum memory. In
BB84, by listening to the sifting, Eve learns the basis: she
can measure the photon she has kept and learn the bit with
certainty. In SARG04, in the sifting Eve learns that the state
is either of two nonorthogonal states: she cannot learn the bit
with certainty. In order to learn the bit with certainty without
introducing errors, Eve has to implement an unambiguous
state discrimination on the three-photon pulses, which suc-
ceeds with probability 1

2 . This suggests that SARG04 should
be more robust than BB84 against incoherent PNS attacks. In
Refs. �7,8� it was shown that this intuitive reasoning is cor-
rect and gives a real advantage over BB84; we shall confirm
this conclusion with a significantly improved analysis in Sec.
IV.

B. SARG04: Entanglement-based version

In order to determine a lower bound on the secret-key rate
we will consider the equivalent entanglement-based version
of the SARG04 protocol �9,17�. To this end we define the
encoding operators

A�� = �0���z� + �1���x� �3�

where �, �= ±1. Instead of preparing a state and sending the
qubit to Bob, Alice prepares randomly one of the states

A�� � 1��+� =
1
	2

��0���z� + �1���x�� �4�

and sends the second qubit to Bob. Measuring Alice’s qubit
then in the computational basis ��0� , �1�� prepares Bob’s qubit
in one of the four states used by the protocol. In order to
decode the information sent by Alice, Bob applies one of the
four operators
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B�� =
1
	2

���0��− �x� + ��1��− �z�� . �5�

After that, Bob measures his qubit in the computational ba-
sis.

Let us show that this description is indeed equivalent to
the prepare-and-measure protocol described above. The
preparation by Alice is equivalent since a measurement in the
z basis performed on the first qubit described by one of the
states A�� � 1��+� leads with equal probability to one of the
states ��z� , ��x�. On the other hand, Bob’s measurement is

B��
† �0��0�B�� =

1

2
�− �x��− �x� ,

B��
† �1��1�B�� =

1

2
�− �z��− �z� , �6�

where �, �=±. Thus, his measurement corresponds to mea-
suring his qubit in either the z or x basis �18�.

We dispose now of all the tools to tackle the security
studies on the SARG04 protocol. As announced, we consider
first the case of single-photon sources and will tackle the
more realistic case of attenuated lasers in Sec. IV.

III. SINGLE-PHOTON SOURCES

A. Generalities: The scenario for security proofs

In this section we investigate the security of the SARG04
protocol, assuming that Alice is sending out single photons
encoding the bit values. First of all, we compute a lower
bound on the secret-key rate using the results presented in
�11,12�. Then we compare those bounds to the bounds de-
rived with proofs based on entanglement distillation �9�. Af-
ter that we determine an upper bound on the secret-key rate
for the SARG04 protocol. To this aim we explicitly construct
an attack by Eve. This attack is incoherent, i.e., acting on
each qubit individually and measuring each qubit right after
the basis reconciliation.

B. Lower bound on the secret key rate

1. Review of the approach

Let us start by summarizing the results presented in
�11,12�, where a computable lower bound on the secret-key
rate for a general class of QKD protocols using one-way
classical postprocessing has been derived. We use the
entanglement-based description of the protocol. Alice pre-
pares n qubit pairs at random in one of the states defined in
Eq. �4� and sends the second qubit of each pair to Bob. Eve
might now apply the most general attack on all the qubits
sent to Bob. Bob applies at random one of the operators
defined in Eq. �5� on the qubits he received. After that Alice
and Bob symmetrize their qubit pairs by applying a random
permutation on them. On the other hand, Alice and Bob ran-
domly choose for each qubit pair to apply the bit-flip opera-
tion ��x � �x�. Both of those transformations commute with
their measurement in the z basis. It has been shown in �11�
that after randomly applying these transformation the form

of the state describing Alice’s and Bob’s system is Bell di-
agonal, independently of the protocol. Its eigenbasis is given
by ���+��n1��−��n2��+��n3��−��n4�, where n1+n2+n3+n4

=n and the states ��±� , ��±� denote the Bell basis. Apart
from that the state is symmetric with respect to exchanging
the different qubit pairs. The only free parameters are the
eigenvalues of the density operator. Those depend on the
distribution of the quantum information, i.e., on the QKD
protocol. It is important to note that when assuming that Eve
has a purification of this state, i.e., 	ABE= ���ABE���, for
some state ���ABE, then her power is never underestimated. It
has then been shown in �11,12� that a lower bound on the
secret-key rate can then be determined considering only two-
qubit density operators. In particular, for a given QBER Q, a
lower bound on the secret-key rate �assuming that Alice and
Bob apply optimal error correction and privacy amplifica-
tion� is given by

r 
 r1 = sup
A�←A

inf
�AB��Q

R��A�BE� �7�

with

R��A�BE� = �S��A�E� − S��E�� − H�A��B� . �8�

Here, S�H� denotes the von Neumann �Shannon� entropy.
It is important to take some space to describe these objects in
detail.

�1� The first apparent thing is that Alice does something
to her bit string A which transforms it to A�. This is called
preprocessing. It is a classical operation, known only to her
�just note that in the original formula, Eq. �2� in �11�, there
appears also the possibility, denoted V there, that Alice dis-
closes something of her preprocessing publicly: neglecting
this possibility here, we can nevertheless obtain a lower
bound�. We consider here that Alice applies this preprocess-
ing to each bit value independently. Thus, she can only flip
her bit values with a certain probability. Note that this trans-
formation reduces the information Bob has about Alice’s bit
string, but it turns out that it penalizes Eve more than Bob,
which implies that this preprocessing increases the secret-
key rate. Obviously, Alice will choose the preprocessing
which maximizes the rate, whence the supremum in Eq. �7�.

�2� The set �Q can be assumed to contain only two-qubit
Bell-diagonal density operators which are compatible with
the measured QBER Q. In order to be more precise we have
to introduce the following notation. We denote by 	0
=trE�E���+�AB��+� � �0�E�0���, where E denotes a general
map applied by Eve �we do not impose that this map is
unitary, since we are going to consider in the following the
state shared by Alice and Bob after sifting�. Let us denote
now by Aj and Bj the decoding and encoding operators de-
fined by the considered protocol. For the SARG04 protocol,
these are the operators defined in Eqs. �3� and �5�, respec-
tively. The state describing Alice’s and Bob’s qubit pairs af-
ter sifting can be considered to be

	1 = D1�	0� = C
j

Aj � Bj	0Aj
†

� Bj
† �9�

where C is a normalization constant which may depend on 	0
�recall that, e.g., in SARG04, the length of the sifted key
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varies with the amount of errors�. Recall that this state is
measured by Alice and Bob in the z basis. Using this nota-
tion we can now define the set �Q. It contains any state of the
form

	2 = �1P�+ + �2P�− + �3P�+ + �4P�− �10�

with

�1 = ��+�	1��+� ,

�2 = ��−�	1��−� ,

�3 = ��+�	1��+� ,

�4 = ��−�	1��−� . �11�

Those coefficients have to satisfy the normalization condi-
tion and the fact that the state 	2 has to be compatible with
the estimated error, Q. Since the state is measured in the
computational basis this implies

�1 + �2 = 1 − Q ,

�3 + �4 = Q . �12�

The considered protocol, i.e., the map D1 confines the �’s
further. Let us denote now by �AB��Q the state describing
Alice’s and Bob’s qubit. Eve is supposed to hold a purifica-
tion of this state, i.e., �ABE is pure. Obviously, one must
suppose that Eve has made the best attack, whence the infi-
mum in Eq. �7�.

�3� The density matrix �A�E is the state of the joint sys-
tem of Alice and Eve, after Alice has performed the prepro-
cessing.

�4� As for R��A�BE�: if one replaces the von Neumann
entropy S by the Shannon entropy H, this boils down to
H�A��E�−H�A��B�= I�A� :B�− I�A� :E�, giving the usual
Csiszár-Körner bound �19� �see Eq. �29� below�. What ap-
pears in Eq. �7� is thus its quantum analog, given that Eve is
allowed to keep her systems quantum.

Now, we have announced that one can compute a lower
bound on the secret-key rate considering only two-qubit
Bell-diagonal states. Precisely, this is true if Alice’s prepro-
cessing is bitwise. In general, it holds that if Alice’s prepro-
cessing is applied to strings of n bits, then one can restrict
attention to Eve’s collective attacks on n pairs. If we denote
by rn the corresponding bound for the secret-key rate r, one
has r
rn
r1; it is an open problem whether strict inequali-
ties hold.

In summary, we are going to compute the lower bound on
the secret-key rate if Alice applies a bitwise preprocessing,
i.e., Eq. �7�. The quantity R��A�BE� is given in Appendix A as
an explicit function of the �i. This expression is independent
of the protocol: as mentioned above, only the constraints on
the �i, that is, the set �Q, depend on the protocol. Possible
improvements on the bound may come from more-than-one-
bit preprocessing, and/or from revealing a part of the prepro-
cessing publicly.

2. Lower bound for SARG04

The SARG04 protocol uses all the four sifting sets S�� �a
different bound is found if one considers a modified protocol
which uses only two sets; see Appendix B�. One finds after
some algebra

�1 = C��+�	0��+� ,

�2 = C���−�	0��−� + ��−�	0��−� + ��+�	0��+�� ,

�3 =
C

2
���−�	0��−� + ��+�	0��+�� ,

�4 =
C

2
�4��−�	0��−� + ��−�	0��−� + ��+�	0��+�� . �13�

The following relations then hold:

�4 + 3�3 = 2�2, �14�

�4 
 �3. �15�

Supposing that we leave �2=x free, we obtain �1=1−Q−x
from Eq. �12�, �3=x−Q /2 and �4=3Q /2−x from Eq. �14�;
the positivity of �3 and Eq. �15� restrain x to lie in the range
�Q /2 ,Q�. We optimize r1 and find it positive provided Q
10.95%. If we had neglected the preprocessing, we would
have found Q9.68%, the same value obtained by Tamaki
and Lo �9,20�.

C. Single photon: Upper bound—an incoherent attack

As we noticed at the end of Sec. III B 1, the bounds we
have just obtained may be subject to some future improve-
ment when more complex preprocessing strategies are taken
into account. In the meantime, we can easily derive an upper
bound by computing explicitly a possible attack by Eve. We
consider an incoherent attack, that is an attack consisting of
�i� a unitary operation U coupling the qubit flying to Bob to
Eve’s systems; �ii� a suitable measurement on Eve’s systems,
after hearing the result of the sifting but before any other
classical processing �this is the difference with collective at-
tacks�.

Even within the class of incoherent attacks, the full opti-
mization is a hard task. The problem is not really at the level
of the unitary U. In fact, since both Alice’s and Bob’s system
are qubits, Eve’s ancilla may be taken without restriction to
be four dimensional. Thus, the action of the unitary on states
of the form ���A�R�E can be specified by only 16 parameters,
not all independent—apart from the requirement of unitarity,
we have imposed a symmetry on the set of states, namely,
that U realizes a depolarizing channel �1� between Alice and
Bob with the same D for ��� belonging to the x or to the z
basis. In summary, the unitary is defined by a number of
parameters which is small �at least for numerical optimiza-
tion�. What is not known at all a priori, is the kind of mea-
surement Eve has to perform on her system, which would
give her the best information on Alice’s and Bob’s bits. Here,
we choose a specific kind of measurement that can be de-
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fined for any U �Helstrom measurement, see below� and op-
timize the parameters of U in order to maximize Eve’s infor-
mation in such a measurement. The best U found with this
method is not the phase-covariant cloning machine, i.e., the
cloner which copies all the states of the x and the z bases
with the same fidelity �13�.

This result is interesting in itself because it shows that
cryptography and cloning are clearly different tasks. In fact,
the “states to be copied” are the same ones in SARG04 as in
BB84, so the optimal cloner is the phase-covariant cloning
machine in both cases. It turns out this cloner enters also the
construction of the optimal incoherent eavesdropping for
BB84; for SARG04, however, it is not the case. The cause of
the difference is clear: in optimal cloning, one wants to op-
timize the fidelity of the output states to the input state; in
optimal incoherent eavesdropping, one wants to optimize
Eve’s information, and this is a priori a completely different
problem.

1. Eve’s unitary operation

We start by describing the unitary U which we have
found. It is defined by its action on the z basis of the qubit
flying from Alice to Bob and on a reference state used by
Eve as

U��z�A�R�E = 	F��z�B�0�E1
����D��E2

+ 	D�− �z�B�1�E1
�0�E2

�16�

with �=± and ����D��=	1−D /F�0�+�	D /F�1�. Here, D
��0, 1

2
� is the only free parameter of the transformation.

Note that Eve’s system is only three dimensional; we used a
two-qubit notation for convenience. In fact, with this nota-
tion, the action of the unitary in the x basis is similar to its
action on the z basis, but the roles of E1 and E2 are reversed:
writing with �=±, one has

U��x�A�R�E = 	F��x�B����D��E1
�0�E2

+ 	D�− �x�B�0�E1
�1�E2

.

�17�

We suppose in the following that Alice publicly announces
the set ��+z� , �+x�� �i.e., Alice actually sends one of these
two states�, and that Bob accepts the bit. It has been verified
that thanks to the symmetries of the attack, all the following
still holds if Alice sends another state and/or announces an-
other set.

Bob’s states. Suppose for definiteness that Alice sends the
state �+z�. If we trace over Eve’s system, we get Bob’s state

	B
+z = F� + z��+ z� + D� − z��− z� . �18�

Thus the effective channel induced on Alice-Bob by Eve’s
attack is a depolarizing channel �1� with disturbance D. If
Bob measures his qubit in the z basis, then he will accept the
�wrong� conclusive result �−z� with probability pacc

z =D. If
Bob now measures his qubit in the x basis, he will accept the
�right� conclusive result �−x� with probability pacc

x = �−x�	B�
−x�=1/2. The quantum bit error rate after sifting is therefore

Q =
pacc

z

pacc
z + pacc

x =
D

1/2 + D
. �19�

Note that, contrary to the case of BB84, Q�D; for small
values of D we have actually Q�2D. We shall come back to
this point in the comparison with BB84, Sec. III D below.

Eve’s states. After sifting, Eve has to distinguish between
four states, corresponding to the two possible states an-
nounced by Alice and the two cases in which Bob accepts the

item. We write these states as ��̃E
ab�, where a�b�� �0,1� de-

notes Alice’s �Bob’s� classical bit:

��̃E
00� = B�− x�U� + z��R� =

1
	2

�	1 − 2D�00� + 	2D��−�� ,

�20�

��̃E
01� = B�− z�U� + z��R� = 	D�10� , �21�

��̃E
10� = B�− x�U� + x��R� = 	D�01� , �22�

��̃E
11� = B�− z�U� + x��R� =

1
	2

�	1 − 2D�00� − 	2D��−�� ,

�23�

with ��−�= �1/	2���01�− �10��. Note that these states are not
normalized, but the square of their norms corresponds to the
probabilities with which they appear. Eve should now distin-
guish at best between these four states.

2. Eve’s measurement: Helstrom strategy

We suppose that Eve uses the Helstrom strategy to guess
Alice’s bit �21�. This strategy, which may not be the optimal
one for the present problem, consists in measuring the ob-
servable

MA = 	E
A=0 − 	E

A=1 �24�

where

	E
A=j =

1
1
2 + D

���̃E
j0���̃E

j0� + ��̃E
j1���̃E

j1�� . �25�

Some analytical results, which provide also a different per-
spective on Helstrom’s strategy, are given in Appendix C.
Here we just sketch the calculation that can also be imple-
mented numerically from the beginning. There are three pos-
sible outcomes e for Eve’s variable E. The probability of
each outcome is

pE=e = �me�	E�me� �26�

with 	E= 1
2	E

A=0+ 1
2	E

A=1. The information Eve gets on Alice’s
bit is

I�A:E� = H�A� − H�A�E� = 1 − 
e

pE=eH�A�E=e�

= 1 − 
e

pE=eh�pA=0�E=e� �27�

where h is binary entropy and where
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pA=0�E=e = pA=0

pE=e�A=0

pE=e
=

1

2

pE=e�A=0

pE=e
�28�

with pE=e�A=0= �me�	E
A=0�me�. This information is plotted to-

gether with Bob’s information I�A :B�=1−h�Q� as a function
of the QBER, Eq. �19�, in Fig. 1. The curve of I�A :E� for the
attack using the phase-covariant cloning machine, taken
from Ref. �8�, is included for comparison. Our attack is
slightly more efficient in the interesting region.

Actually, if Eve performs the measurement of MA, she has
a good guess on Alice’s bit but very poor information on
Bob’s bit �the only thing she knows is that Bob’s bit is equal
to Alice’s with probability 1−D�. Similarly, with reversed
roles, if Eve measured MB=	E

B=0−	E
B=1: numerically, the

I�B :E� so found is equal to I�A :E� found when measuring
MA; but now, Eve has poor information on Alice’s bit. For
BB84 and the six-state protocols, measurements have been
explicitly found which attain the optimal value for both Al-
ice’s and Bob’s bits. We did not find such a measurement
here. However, this is not important: before starting error
correction and privacy amplification, Alice and Bob must
choose whether to perform the direct or the reverse recon-
ciliation; thus Eve can simply choose the suitable measure-
ment.

3. Bound on the secret-key rate

An upper bound on the attainable secret-key rate using
one-way communication and single-bit preprocessing is
given by the Csiszar-Körner bound �19� which reads

r  Rsk = max
A�←A

�I�A�:B� − I�A�:E�� �29�

where A� is the result of a local processing of Alice’s vari-
ables. The need for this maximization went unnoticed in the
field of QKD until very recently �11�, but is indeed present in
the original paper. Here, we consider the case when the pro-

cess A→A� consists in Alice’s flipping her bit with some
probability q. Bob’s information is now

I�A�:B� = 1 − h�Q�� �30�

where

Q� = �1 − q�Q + q�1 − Q� . �31�

As for Eve’s information, it can be calculated with Eq. �27�
upon changing pA=0�E=e to

pA�=0�E=e = �1 − q�pA=0�E=e + qpA=1�E=e. �32�

Figure 2 displays the upper bound on the secret-key rate
Eq. �29�, with and without Alice’s bit flipping �top� and the
corresponding optimal value of q �bottom� as a function of
the QBER. We can see that this preprocessing allows Alice
and Bob to slightly increase the bound on the QBER where
the achievable secret-key rate becomes zero. In the case

FIG. 1. Bob’s and Eve’s information on Alice’s bit �before her
possible preprocessing� for our individual attack and the attack us-
ing the phase-covariant �PC� cloning machine.

FIG. 2. Top: upper bound Rsk on the secret-key rate obtained
with the attack under study with �solid lines� and without �dotted
lines� Alice’s optimal preprocessing, as a function of the QBER.
Bottom: corresponding value of the optimal q. The preprocessing
slightly increases the bound where the achievable secret-key rate
becomes 0 �which we find to be 14.9%�.
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where Alice performs bitwise preprocessing as we consider
here, this bound is 14.9%. Alice will do this preprocessing
only for a QBER close to the bound of 14.9%, with q in-
creasing as the QBER increases. At the bound, q=0.5: Alice
flips half of her bits, so that both Bob’s and Eve’s informa-
tion on her bits is completely randomized. After this optimal
preprocessing, Fig. 1 would look as follows: both I�A :B� and
I�A :E� stay the same up to Q�14.6%; then suddenly both
drop rapidly to zero, with their difference given in the left
graph of Fig. 2.

No preprocessing was taken into account in Ref. �8� for
the attack using the phase-covariant cloner. When one in-
cludes bitwise preprocessing, the bound for that attack
moves from 15.03% to 15.12%. Consequently, the attack
presented here is still more efficient from Eve’s standpoint.

D. Single photon: Comparison with BB84 protocol

In the previous paragraphs, we have provided lower and
upper bounds for the security of SARG04 in a single-photon
implementation, under the assumptions of one-way classical
processing and bitwise preprocessing on Alice’s side. The
corresponding bounds for BB84 are known from Refs.
�11,12�. The results are for the lower bound,

extract a key if�BB84 Q � 12.4 % ,

SARG04 Q � 10.95 % ;
� �33�

and for the upper bound

abort if�BB84 Q � 14.6 % ,

SARG04 Q � 14.9 % .
� �34�

Looked at that way, SARG04 compares almost on equal
grounds with BB84 in a single-photon implementation.

Experimentalists would, however, have a different look.
Consider for a moment a detector with no dark counts, or
more realistically, a situation in which the number of dark
counts is negligible compared with the detection rate. In all
practical experiments to date, the noise is such that the ef-
fective channel E between Alice and Bob becomes a depo-
larizing channel �1� characterized by its visibility V.

In BB84, for such a channel, the error rate on the sifted
key is independent of the state ���: in fact, when the good
basis has been chosen, one has simply pright= �1+V� /2 and
pwrong= �1−V� /2. Consequently

Q =
pwrong

pright + pwrong
=

1 − V

2
�BB84� . �35�

In SARG04, the situation is different. If Bob chooses the
good decoding basis �which is not the basis in which the
qubit was encoded�, then whenever he accepts, he guesses
always right, and this happens with probability pright=

1
2 in-

dependently of V. If Bob chooses the wrong decoding basis
and accepts, then he always guesses wrongly; and this hap-
pens with probability pwrong= �1−V� /2. Thus

Q =
pwrong

pright + pwrong
=

1 − V

2 − V
� 1 − V �SARG04� . �36�

Note that we have already derived this formula above, Eq.
�19� with D= �1−V� /2. For a fixed visibility, the QBER of
SARG04 is almost twice the QBER of BB84. In this sense,
the bounds of SARG04 compare unfavorably to those of
BB84 in a single-photon implementation �22�.

IV. PRACTICAL IMPLEMENTATION

As we stressed in the Introduction, it has not yet been
possible to give the most general security criteria without
adding assumptions about some simplified components.
While theory progresses, experimentalists need realistic fig-
ures to design their experiments and to evaluate their results.
These figures must take into account all the meaningful pa-
rameters characterizing Alice’s source, the line �“quantum
channel”� linking Alice to Bob and Bob’s detectors.

To compute these figures, we have to make several as-
sumptions, which will be stated precisely in what follows,
but in general fall into two categories.

�1� We restrict the class of Eve’s attacks, taking into ac-
count only incoherent attacks, among which the PNS and its
variants play the most important role. This assumption leads
to an underestimate of Eve’s power.

�2� We also have to specify the kind of check that Alice
and Bob perform on their data. Apart from the estimate of
the QBER, Alice and Bob can check the transmission of the
line and more precisely the statistics of the number of
photons.

The section is structured as follows. First, we describe the
source, the line, and the detectors �Sec. IV A�, the expected
parameters in the absence of Eve �Sec. IV B�, and the hy-
potheses on Eve’s attack �Sec. IV C�. Then we present the
results of numerical optimizations �Sec. IV D�; in the case of
perfect optical visibility V=1, we provide also approximate
analytical formulas. The last subsection �Sec. IV E� is de-
voted to a balance of the results obtained for SARG04, in
comparison with BB84.

A. Description of the source, the line, and the detectors

1. Alice’s source

Alice encodes her classical bits in light pulses; since a
reference for the phase is not available to Eve and to Bob,
the effective state prepared by Alice is a mixture which is
diagonal in the photon-number basis:

	A = 
n=0

�

pA�n��n���n�� �37�

where �n�� represents the state in which n photons are
present in the state ���. In most practical QKD setups, Al-
ice’s source is an attenuated laser pulse, so

pA�n� = p�n��� = e−��n

n!
, �38�

the Poissonian distribution of mean photon number �. In this
paper, the formulas where the notation pA�n� �or pB�n�, see
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below� appears explicitly are general; all the others suppose
Eq. �38� to hold.

2. Alice-Bob quantum channel

The quantum channel which connects Alice and Bob is
characterized by the losses �, usually given in dB/km �for
optical fibers at the telecom wavelength 1550 nm, the typical
value is ��0.25 dB/km�. The transmission of the line at a
distance d is therefore

t = 10−�d/10. �39�

The probability that Bob receives n photons is

pB�n� = 
m
n

pA�m�Cm
n tn�1 − t�m−n = p�n��t� �40�

through Eq. �38�, where Cm
n =m ! /n ! �m−n�!. The other

meaningful parameter of the channel is the fidelity of the
transmission F �or the disturbance D=1−F�. We assume a
depolarizing channel �1�:

E�� + z�� = F� + z��+ z� + D� − z��− z� �41�

= 1
2 � + x��+ x� + 1

2 � − x��− x� + �off-diagonal terms� .

�42�

and recall the link �2� between the parameters F and D, and
the visibility V.

3. Bob’s detectors

Bob uses single-photon counters with a limited quantum
efficiency � and a probability of dark count per gate pd. For
simplicity of writing, in some intermediate formulas we shall
write �̄=1−� and p̄d=1− pd. The gate here means that Bob
knows when a pulse sent by Alice is supposed to arrive, and
opens his detectors only at those times; so here, “per �Bob’s�
gate” and “per �Alice’s� pulse” are equivalent. Typical values
nowadays are ��0.1 and pd�10−5–10−6 for the detection of
photons at telecom wavelengths.

B. Bob’s detection and error rates

Bob receives n photons with probability pB�n� given in
Eq. �40�. We want to compute his detection and his error
rate. For definiteness, we suppose from now on that Alice
sends �sent�= �+z�, and publicly declares this state and
�declared�= �+x�. Bob guesses correctly if he measures in the
x basis and finds �ok�= �−x�; he guesses wrongly if he mea-
sures in the z basis and finds �wrong�= �−z�.

Among the peculiarities of SARG04 which must be dis-
cussed, is the role of double clicks. In BB84, when both
detectors click, the item is discarded: in fact, a double click
can appear only if �i� Bob has received and detected two
photons, in the wrong basis, or �ii� Bob has detected just one
photon but has had a dark count in the other detector; in both
cases, there is no way to tell the value of the bit sent by
Alice. In SARG04, things are different because Bob guesses
correctly the bit when he measures in the “physically wrong”
basis �basis x with our convention�. A double click may mean

precisely that the basis chosen by Bob is not the one chosen
by Alice, and this gives the information on the bit. But the
dark count case is still there, and introduces errors. In this
paper, for simplicity we suppose that items with double
clicks are discarded from the key, as in BB84; however, their
rate is monitored, to prevent Eve from achieving an effective
modification of � �see Sec. IV C�.

1. Zero-click rate

When n photons arrive, the probability of not having any
click is independent of the basis chosen by Bob and is given
by

p0�n� = �1 − pd�2�1 − ��n. �43�

The corresponding zero-click rate is C0=�n
0pB�n�p0�n�
= �1− pd�2p�0��t��, i.e., there are no dark counts and no pho-
ton is detected.

2. Sifted key and QBER

The accepted-click rate on Bob’s side is the sum of two
terms. When Bob measures in the z basis, he accepts the
�wrong� bit if there is one click in the �−z� detector �whether
it is due to a photon or to a dark count�, and no click in the
�+z� detector. When n photons arrive, the probability of hav-
ing a click only on the �−z� detector is

pacc
z �n,V� = 

k=0

n

Cn
kFkDn−k�p̄d�̄k��1 − p̄d�̄n−k�

= �1 − pd���1 − F��n − �1 − pd��1 − ��n� ,

�44�

with Cn
k =n ! /k ! �n−k�!. The accepted-click rate in the z basis

is then Cacc
z �V�=�n
0pB�n�pacc

z �n ,V�; using some standard
calculation �23�, we obtain for a Poissonian distribution

Cacc
z �V� = �1 − pd��p�0�F�t�� − �1 − pd�p�0��t�� � .

�45�

In the limit �t��1 �and pd�1, which is always the case�,
one finds Cacc

z �V��D�t�+ pd. We highlighted the depen-
dence of these quantities on V because it will be important
for what follows.

When Bob now measures in the x basis, he accepts the
�right� bit if he gets a click on the �−x� detector, and no click
on the �+x� detector. Because of Eq. �42�, we just have to
change F to 1

2 in the previous formulas:

pacc
x �n� = �1 − pd���1 − �/2�n − �1 − pd��1 − ��n� , �46�

so that for Poissonian sources Cacc
x = �1− pd��p�0��t� /2�− �1

− pd�p�0��t���� 1
2�t�+ pd. Since the two bases are ran-

domly chosen, the global probability for Bob to accept a
click is

pacc�n,V� =
1

2
pacc

x �n� +
1

2
pacc

z �n,V� , �47�

and the accepted-click rate on Bob’s side �i.e., the length of
the sifted key� is
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Cacc�V� =
1

2
Cacc

x +
1

2
Cacc

z �V� . �48�

All the items Cacc
x being correct and all the items Cacc

z �V�
being wrong, the QBER is

Q =
1
2Cacc

z �V�
Cacc�V�

. �49�

For pd��t��1 and D�
1
2 , we find

Q � 2D + 2
pd

�t�

 Qopt + Qdet, �50�

Cacc�V� �
1

4
�t��1 + Qopt + 2Qdet� . �51�

As expected, the sifted-key rate increases in the presence of
errors. Note also that the QBER is twice the one expected for
BB84, for the same parameters: now, � is going to be larger
for SARG04 than it is for BB84, so that Qdet is not really
larger; however, D is fixed by the visibility: SARG04 is thus
more sensitive to losses of visibility than BB84 is.

Finally, allowing for Alice’s preprocessing, the mutual in-
formation between Alice and Bob is

I�A�:B� = Cacc�V��1 − h�Q��� �52�

with Q� related to Q �Eq. �49�� as in Eq. �31�.

3. Double-click rate

The calculation of the double-click rates C2
x,z is similar

to the one of Cacc
x,z . For each basis, it holds that C2

x,z

=�n
2pB�n�p2
x,z�n� where p2

x,z�n� is the probability of a
double click conditioned on the fact that exactly n photons
reach Bob. Consider first the z basis: one has to modify Eq.
�44� in order to describe a click in both detectors, so we have
to replace �p̄d�̄k� with �1− p̄d�̄k�. Thence

p2
z�n,V� = 1 − �1 − pd���1 − F��n + �1 − D��n�

+ �1 − pd�2�1 − ��n. �53�

The double-click probability in the x basis is obtained by
replacing both F and D by 1

2 ; by comparison with Eqs. �43�
and �46�, one finds

p2
x�n� = 1 − p0�n� − 2pacc

x �n� . �54�

For Poissonian sources, this yields �23�

C2
z�V� = 1 − �1 − pd��p�0��t�F� + p�0��t�D� �

+ �1 − pd�2p�0��t�� , �55�

and C2
x = �1− �1− pd�p�0��t� /2��2. Having written down all

Bob’s parameters, we can move on to present the class of
attacks by Eve that we consider.

C. Eve’s attacks: Hypotheses, information, and constraints

1. Overview of the hypotheses

Some of the hypotheses on Eve’s attacks have been rap-
idly introduced in the previous sections. Here we make the
exhaustive list of the assumptions.

Hypothesis 1. Eve performs incoherent attacks: she at-
tacks each pulse individually, and measures her quantum sys-
tems just after the sifting phase. This hypothesis allows us to
perform explicit calculations of an upper bound for the
secret-key rate. We shall say more on these attacks in the
next section �Sec. IV C 2�. The hypothesis of incoherent at-
tacks implies in particular that after sifting, Alice, Bob and
Eve share several independent realizations of a random vari-
able distributed according to a classical probability law. Un-
der this assumption and the assumption of one-way error
correction and privacy amplification, the Csiszár-Körner
bound applies �19� and the achievable secret-key rate is
given by Eq. �29� �24�.

Hypothesis 2. Eve can replace the actual channel with a
lossless channel. This allows her to take advantage of the
losses: she can block pulses on which she has poor or no
information, keep some photons out of multiphoton pulses,
etc. Because of Eve’s intervention, the pulses that reach Bob
obey the statistics pB�E�n�, a priori different from the ex-
pected one �40�. The most general assumption would consist
in leaving pB�E�n� completely free, and estimate Eve’s infor-
mation from it. The most conservative assumption consists in
requiring pB�E�n�= pB�n� for all n, and aborting the protocol if
this requirement is not satisfied; this is the spirit of decoy-
state protocols �6�. In this paper, we choose an intermediate
requirement: we constrain Eve to reproduce the expected
count rates Cacc

x ,C2
x, and the rate of no detection �note that

the rate of inconclusive detections will be reproduced as
well�. This assumption is consistent with the idea of intro-
ducing no modification in the hardware: without allowing for
decoy states and/or more detectors, these rates are the only
parameters that can be measured. Eve has also a constraint
on Cacc

z and C2
z , though of a different nature: these two quan-

tities must depend on a single parameter V according to Eqs.
�45� and �55�.

Hypothesis 3. We work in the trusted-device scenario.
While the optical error D in the quantum channel �the imper-
fect visibility� is entirely attributed to Eve’s intervention, we
assume that Eve has no access to Bob’s detector: � and pd
are given parameters for both Bob and Eve. Eve will of
course adapt her strategy to the value of these parameters,
but she cannot modify them �25�.

2. More on the class of attacks

In Hypothesis 1, we have explained that we restrict our
attention to incoherent attacks. Here is a detailed description
of Eve’s strategy. Eve, located immediately outside Alice’s
station, makes a nondemolition measurement of the number
of photons n in each pulse. This does not introduce any error
because 	A �Eq. �37�� is diagonal in the Fock basis. Based on
this information, Eve implements an attack K with probabil-
ity pK�n�, so that the channel Alice-Bob is of the form

	B = E�	A� = 
n

pA�n�
Kn

pK�n�EK��n���n��� . �56�

These are the attacks that we investigate.
Storage attack S. If n
2, Eve can choose to store k�n

photons, while forwarding the remaining n-k photons to Bob
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on the lossless line. When Alice reveals the states, Eve
makes the measurement that maximizes her information,
thus guessing Alice’s bit correctly with probability pk=1/2
+ �1/2�	1−1/2k. This is the original type of PNS attack �5�.
After Alice’s possible preprocessing �bit flip with probability
q�, Eve’s guess is correct with probability pk�= �1−q�pk

+q�1− pk�; whence Eve’s information becomes

IS�k� = 1 − h�pk�� �57�

conditioned on Bob’s accepting the item. We denote by
s�k�n� the probability that Eve, having chosen to perform a
storage attack, stores exactly k photons.

Intercept-resend attack I. If n
3, the four states ����n,
with ���= �±z� or �±x�, become linearly independent. Eve
can then perform an unambiguous discrimination of the sent
state, whose probability of success is

pOK�n� = 1 − �1

2
���n−1�/2�

�58�

�for n�3, this is a numerical result �8��. In case of success,
Eve has full information about the bit and she forwards m
new photons to Bob prepared in the state ��� �any value m is
chosen with probability r�m�n��. Otherwise, she blocks the
item. Note that this strategy, contrary to the storage attack,
requires neither a quantum memory �obviously� nor a loss-
less line: having succeeded in unambiguous discrimination,
Eve has the new photons prepared by an accomplice of hers
who is close to Bob’s laboratory. This form of PNS attack
was first discussed by Dušek and coworkers �26�. After Al-
ice’s preprocessing, Eve’s information in case of success be-
comes

II�n� 
 II = 1 − h�q� , �59�

again conditioned on Bob’s accepting the item.
Unitary interaction U. Both the S and the I attacks pro-

vide Eve with information only thanks to the losses, and do
not introduce any error in Alice-Bob correlations �V=1�. If
there is a reduced visibility V=1−�, Eve can also take ad-
vantage of it by performing an attack which introduces some
errors �and no losses�. Noting that information on pulses
with n
2 can be obtained using S or �for n
3� I, we sup-
pose that errors will be introduced only to gain information
about n=1 items. Moreover, as mentioned above, � is typi-
cally quite small: instead of tackling the very hard problem
of optimizing this family of attack, for simplicity we choose
a representative, namely the attack developed in Sec. III C.
As described there, she obtains an information

IU�D̃� = 1 − 
e

pE=eh�pA�=0�E=e� . �60�

The important point to stress is that in the unitary operation

U one must insert a value D̃= 1
2 �1− Ṽ� which is in general

larger than the average error D �in other words, ṼV�. This
is because Eve introduces only errors in a fraction of the
pulses, so in those items she can introduce more perturbation
than the average �27�.

Blocking B. Eve blocks all the n photons. In this case of
course, Bob receives nothing and can accept the item only in

the case of a dark count. On the one hand, Eve is willing to
block a pulse only when she has little or no information on it
�typically, one- and two-photon pulses�. On the other hand,
Alice and Bob will always choose � such that Eve will not
be able to block all single- and two-photon pulses without
changing Bob’s expected detection rate. Therefore, we set

pB�n� = 0 for n 
 3. �61�

Letting the photons pass L. Finally, Eve may be forced to
let all the photons in the pulse go to Bob in order to preserve
the counting rates. In this case, Bob may accept the item but
Eve does not get any information on Alice’s bit. However,
we shall consider

pL�n� = 0 for all n . �62�

The reason is as follows. For n=1, Eve applies the U strat-
egy which does not reduce the counting rates and gives her
some information �for V=1, the U strategy with a distur-

bance D̃=0 is equivalent to pL�1��. For n�1, when losses
are large enough, that is at not too short distances, condition
�62� is obviously part of the best strategy for Eve. So the
only effect of this condition is to prevent us from studying
SARG04 at short distances �for the values of the parameters
used below, in particular for �=0.1, the shortest distance at
which constraints can be satisfied is found to be �24 km�.

Note that, for the qubit encoding, the channel �56� be-
haves as a depolarizing channel. In fact, attacks S and I do
not introduce any error, and attack U was shown in Sec. III C
to induce a depolarizing channel between Alice and Bob.

A comment is needed about the exhaustiveness of our list
of attacks. We have stressed enough that U is not optimized.
The list of zero-error attacks, on the contrary, is fairly com-
plete among the incoherent PNS attacks for the analysis of
SARG04 �28�. One may well construct more general strate-
gies: e.g., for n=5, Eve may try I on three photons, and if
she does not succeed, she performs S on the remaining two.
However, the mean number of photons � will be chosen
small enough so that the meaningful items are those with n
3, n=4 items playing the role of a small correction, and all
the higher-number items being completely negligible.

3. Eve’s information and constraints

We are now able to write down formulas for I�A� :E� and
for the constraints that Eve must satisfy. For each n, Eve uses
strategy X with probability pX�n�, so that we have

pB�1� + pU�1� = 1, n = 1, �63�

pB�2� + pS�2� = 1, n = 2, �64�

pS�n� + pI�n� = 1, n 
 3. �65�

Under this family of attacks, Eve’s information on Alice’s
bits after sifting and preprocessing is
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I�A�:E� = pA�1�pU�1�IU�D̃�pacc�1,Ṽ�

+ 
n
2

pA�n��pS�n�
k=1

n−1

s�k�n�IS�k�pacc�n − k,1�

+ pI�n�pOK�n�II� 
m
1

r�m�n�pacc�m,1�� �66�

where the pacc�n ,V� are given in Eq. �47�.
Eve is going to choose her parameters in order to maxi-

mize I�A� :E�, under the constraints described in Hypothesis
2. To write down these constraints, one first notes that the
number of photons that reach Bob is distributed according to

pBE�n � 0� = �n,1pA�1�pU�1� + 
m�n

pA�m�pS�m�s�m − n�m�

+ 
m
3

pA�m�pI�m�pOK�m�r�n�m� , �67�

pBE�n = 0� = 1 − 
n�0

pBE�n� . �68�

Of course, there is no reason for pB�E�n� to be Poissonian,
even if pA�n� is. Now, according to Hypothesis 2, Eve is
constrained to satisfy


n

pBE�n�p0�n� 
 
n

pB�n�p0�n� , �69�


n

pBE�n�pacc
x �n� 
 

n

pB�n�pacc
x �n� , �70�


n

pBE�n�p2
x�n� 
 

n

pB�n�p2
x�n� , �71�


n

pBE�n�pacc
z �n,1� + q�1��pacc

z �1,Ṽ� − pacc
z �1,1��


 
n

pB�n�pacc
z �n,V� , �72�


n

pBE�n�p2
z�n,1� + q�1��p2

z�1,Ṽ� − p2
z�1,1��


 
n

pB�n�p2
z�n,V� �73�

with V the average visibility that Eve chooses to introduce
and q�1�= pA�1�pU�1� the only cases where Eve introduces

errors. Note that the value of Ṽ is defined by Eqs. �72� and
�73�.

The five constraints �69�–�73� are actually not indepen-
dent and can be reduced to the following set �derivation in
Appendix D�:

P� BE · �� �1� = P� B · �� �1� , �74�

P� BE · �� �1/2� = P� B · �� �1/2� , �75�

pA�1�pU�1��D̃ = P� B · ��� �F� − �� �1�� , �76�

where we have stored the probabilities pB�n� and pB�E�n� in

the vectors P� B and P� B�E and where the vectors �� �x� depend
only on the detector’s efficiency �, their respective compo-
nents being �n�x�= �1−x��n for all n
0. In particular, the

last condition �76� together with �63� determines the error D̃
that Eve can introduce on all the one-photon pulses that she

does not block. As expected, this relation reduces to D̃=0 in
the case V=1.

In the case where Alice holds a Poissonian source with

mean photon number �, we have P� B ·�� �x�= p�0�x �t��,
whence Eqs. �74�–�76� read explicitly

P� BE · �� �1� = p�0��t�� , �77�

P� BE · �� �1/2� = p�0��t�/2� , �78�

p�1���pU�1��D̃ = p�0��t�F� − p�0��t�� . �79�

D. Optimization over Eve’s strategy and Alice’s
parameters

We have at present collected all the pieces that are needed
for our study. For any fixed value of � and q, Eve is going to
choose her parameters pX�n�, s�k�n�, and r�m�n� in order to
maximize I�A� :E� �Eq. �66�� under the constraints �77�–�79�.
Alice and Bob must choose � and q in order to maximize Rsk
�Eq. �29��, with I�A� :B� given in Eq. �52� and with I�A� :E�
computed as just described. This double optimization will be
done numerically; for the case V=1, we shall also provide
some analytical approximations, both as a consistency check
for the numerics and as a tool for practical estimates.

1. Restricting the number of free parameters

Even in the perspective of using a computer, we have to
simplify the problem further: the number of free parameters
is a priori infinite. In particular, we have to discuss the prob-
abilities s�k�n� and r�m�n� associated, respectively, with the S
and I attacks. These are related to the number of photons that
Eve forwards to Bob. We first notice that the constraints �77�
and �78� can be satisfied up to the order O��t��3 by setting

pBE�1� = �t − ��t�2, �80�

pBE�2� =
1

2
��t�2, �81�

and all the others pB�E�n�2�=0; that is, for each item, Eve
forwards either one or two photons to Bob. We consider that
Eve forwards two photons only after some I attacks, because
this does not cost her any information; whereas, were she to
forward two photons in an S attack, fewer photons would be
left in her quantum memory to estimate the state. When Eve
performs the I attack on a three-photon pulse, she can for-
ward either one or two photons; when she performs it on a
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higher-n pulse, she always forwards two photons. In conclu-
sion, we assume

s�k�n� = �k,n−1 for all n , �82�

r�2�3� = 1 − r�1�3� , �83�

r�m�n� = �2,m for all n 
 4. �84�

Summarizing, the free parameters for Eve’s attack are

�pU�1�,pS�2�,pS�3�,pI�3,2�,pS�4�,…,pS�nmax�� �85�

where pI�3,2�= pI�3�r�2�3� and nmax is a cutoff in the number
of photons allowed in a pulse—we have chosen nmax=7 in
what follows, although a posteriori we verified that nmax=5
would have given the same results except for the shortest
distances that we considered. This choice of free parameters,
in particular the choice of pI�3,2� instead of r�2�3�, is useful
because all the constraints �79�–�81� become linear in the
parameters; of course, one must add a fourth linear con-
straint, namely,

pS�2� + pI�3,2�  1. �86�

Maximization of a function �here, Eve’s information� under a
set of linear constraints is achieved in MATLAB with the pre-
defined function “fmincon.” At this point, we can run our
numerical optimization of � as a function of the distance.

2. Results, part 1: Eve’s parameters

We have run our software with the following parameters:
�=0.25, �=0.1, pd=10−5. These are not the very best values
that we can achieve in the laboratory, but we have already
used them many times and it will be useful for comparison,
especially with Ref. �15�. The numerical simulation achieves
a faithful result only for d�24 km, because of Eq. �62�, and
for V�0.92 �recall that for V�0.825 the secret-key rate be-
comes zero even in a single-photon implementation; it is
then not astonishing that the visibility becomes more critical
when Eve can take advantage also of multiphoton pulses�.
Here is what is observed for the optimal parameters of Eve’s
attack.

�1� n=1. pU�1� is always zero for V=1. This means that
in this case Eve blocks all the single-photon pulses. For V

�1, it turns out that D̃ is constant at the value D̃0=0.191
over all the distances �more precisely, over all the distances
for which the best preprocessing by Alice consists in doing
nothing, which are all the region of interest as will be ex-
plained later�. The value of pU�1� is thus determined by Eq.
�79�.

�2� n=2. pS�2� is between zero and one. This means that
Eve cannot block all the two-photon items.

�3� n=3. pS�3� is zero, pI�3,2� is between zero and one.
That is, when the pulse contains three photons, Eve always
performs the I attack; sometimes she sends out one photon
and sometimes two. Actually, this rate of forwarding two
photons is already enough to reproduce the constraint �81�,
as is implied by the following item.

�4� n
4. pS�n�=1: Eve performs always the S attack.

Remarkably, most of the features of Eve’s optimal attack
can be rederived analytically and the derivation is indepen-
dent of the form of the pA�n�. This is expected, because Eve
first measures the number of photons n, then adapts her strat-
egy to her result; thus, the frequency of occurrence of any
value of n does not play any role in defining her best attack
for each n—although it will of course determine the fraction
of information that each attack provides her. The price to pay
for the analytical approach is that, to avoid getting lost, one
had better neglect the constraint �81� on two photons. We
present this analytical derivation in Appendix E. In summary,
a numerical approach, which assumes a Poissonian distribu-
tion for Alice’s source and can deal with the full set of con-
straints, and an analytical one, in which the independence of
the source’s statistics is explicit but the constraints must be
simplified, converge to the same result: we have indeed
found Eve’s optimal attacks within the class which we are
considering, independently of the statistics of Alice’s
source—our assumptions on Eve’s attacks are reasonable
provided the source is such that pA�1�� pA�2�� pA�3�. . .

3. Results, part 2: � and Rsk

Having Eve’s best attack, we can compute for any dis-
tance the optimal value of � and the corresponding upper
bound Rsk on the secret-key rate. The results of numerical
optimization are shown in Fig. 3. Several points are worth
stressing.

�1� We recall first that these results are valid for a large
but still restricted class of attacks by the eavesdropper, ac-
cording to the hypotheses described in Secs. IV C and
IV D 1. Moreover, the curve for V=0.95 depends also on our
choice of introducing a U attack only on the n=1 pulses.
Thus, Rsk is an upper bound on the achievable secret-key
rate, which remains to be computed.

�2� The optimal value of � is above 0.1 for all the range
that we considered, both for V=1 and for V=0.95; for d
=24 km and V=1 we have �opt=1.55. In contrast to the case
of BB84 �15�, � does not decrease faster to zero as the criti-
cal distance approaches.

�3� Alice’s preprocessing is nontrivial �q�0� only in the
critical region where the presence of dark counts bends the
curve below the linear �in logarithmic scale� regime. In prin-
ciple, one tends to avoid working in that region.

As in the case of Eve’s parameter, we complement the
numerical optimization with some analytical studies, even at
the price of some approximations: this is useful both to le-
gitimate the numerical result and to provide formulas for
rapid estimates. We consider �t��1 and obviously pd�1.
We suppose that Eve forwards always one photon to Bob,
thus taking the one-photon constraint �80� at the leading or-
der and neglecting the two-photon constraint �81�; in addi-
tion, we restrict to the case V=1, whence constraint �79� is
automatically satisfied, and we neglect Alice’s preprocessing
by setting q=0. From the study of Eve’s attack we know that
we can set pU�1�=0, pS�3�=0, and pS�n
4�=1. For a Pois-
sonian source then

I�A:B� � ��t�

4
+ pd��1 − h„Q���…� , �87�
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I�A:E� �
�

4 ��tIS�1� + 1
2 p�3����1 − IS�1��

+ 
n
4

p�n����IS�n − 1� − IS�1��� , �88�

with

Q��� =
1

2 + �t�/2pd
. �89�

These are nonalgebraic functions, so the analytical maximi-
zation of Rsk is still impossible; but it is easily done numeri-
cally. It yields a careful estimate of both � and Rsk in the
typical working regime �40–70 km in Fig. 3�, diverges for
shorter distances, and underestimates the limiting distance.

Thus, in practice, one can use these two equations to esti-
mate the optimal parameters and to keep away from the lim-
iting distance.

In order to reach analytical approximate solutions to the
maximization problem, we further neglect the correction 1
−h�Q� in the expression of I�A :B� �i.e., we suppose �t�
� pd�, the contribution of the pulses with n
4 photons in
the expression of I�A :E�, and the factor e−� in p�3���—this
last assumption is the worst one, because we are dealing with
��1 at short distance. That leads to

Rsk �
�

4
�1 − IS�1����t −

�3

12
� . �90�

The optimum is

Rsk �
�

3
�1 − IS�1��t3/2 for �opt = 2	t . �91�

These values are plotted in Fig. 3 together with the result of
the exact numerical optimization. We see that the approxima-
tions are rough as expected but grasp the correct order of
magnitude. Finally note that, contrary to the case of BB84
�15�, we have not been able to find a closed analytical ex-
pression for the limiting distance, the difference here being
that � does not fall rapidly to zero when approaching this
distance.

E. Attenuated laser: Comparison with BB84 protocol

Finally, we compare the performances of the SARG04
and those of the BB84 under identical conditions, from Ref.
�15�. Since Alice’s preprocessing was not taken into account
in that work, for coherence we compare the results for
q=0—it is not difficult to see that the contribution of this
preprocessing in BB84 is numerically negligible, as it is for
SARG04 �29�.

The optimal � and the upper bound Rsk on the secret-key
rate are plotted in Fig. 4. We see that SARG04 allows an
increase of the secret-key rate at moderately large distance,
and of the limiting distance. It seems that BB84 achieves a
better secret-key rate at short distance. Although we cannot
make any final commitment because we have made hypoth-
eses that prevent us from studying that regime, one might
understand it from the following argument: at short distance,
Eve can do essentially no PNS attack for inefficient detec-
tors; therefore, the sifting ratio becomes the important
parameter—now, in SARG04 only one-quarter of the items
are kept, while in BB84 half of the items are kept.

The present analysis supersedes the one made in Refs.
�7,8�, which supposed a fixed value of � for all distances.

V. CONCLUSION

In conclusion, we have studied the SARG04 protocol for
two different types of source of light on Alice’s side.

For the implementation using single-photon sources, we
have obtained a lower and an upper bound for security
against all possible attacks by the eavesdropper. These
bounds are close to those obtained for the BB84 protocol.

FIG. 3. �Color online� Optimal � and upper bound Rsk on the
secret-key rate per pulse �logarithmic scale� for Poissonian sources
as a function of the distance, for �=0.25, �=0.1, and pd=10−5, and
for V=1 and 0.95. The full thick lines are the result of the numerical
optimization, considering also Alice’s preprocessing; the dashed
thick lines are the same, without Alice’s preprocessing �q=0�. The
full thin lines are the analytical approximations for V=1, Eq. �91�;
the dashed thin line in the upper figure is the critical value �
=2	3t at which Rsk=0 according to the approximate formula �90�.
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However, if a channel of a given visibility is available, then
the QBER of SARG04 is twice the QBER of BB84. Inter-
estingly, the upper bound for SARG04 was obtained for an
incoherent attack based on a unitary which is not the phase-
covariant quantum cloner.

For the realistic implementation using an attenuated laser
�Poissonian source�, we have restricted the class of Eve’s
attacks to incoherent attacks, in particular the most studied
forms of PNS attacks. In this case, SARG04 performs better
than BB84, both in the achievable secret-key rate and in the
limiting distance.

These results strengthen the conclusion of Refs. �7,8,30�:
once quantum correlations have been distributed, different
ways of encoding and decoding the classical information
lead to different performances according to the physical
characteristics of the setup. The full potentialities of this in-
sight have still to be developed.
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APPENDIX A

In this appendix we give more details about the calcula-
tion of the lower bound. The following is not specific to the
SARG04 protocol, but can be applied to any protocol. As
discussed in Sec. III B, in order to compute a lower bound on
the secret-key rate, we can consider the state that Alice and
Bob share before the preprocessing to be of the form �10�,
which we rewrite here:

	2 = �1P�+ + �2P�− + �3P�+ + �4P�−. �A1�

Eve holds a system which makes a purification of 	2:

���ABE = 	�1��+�AB�00�E + 	�2��−�AB�01�E + 	�3��+�AB�10�E

+ 	�4��−�AB�11�E. �A2�

Eve’s and Bob’s partial states are, respectively,

	E = diag��1,�2,�3,�4�, 	B =
1

2
1 �A3�

whence S�	E�=−�i�iln �i and S�	B�=1.
When Alice has measured �0� or �1�, Bob and Eve share

one of the states

��0�BE � A�0���ABE = �0�B�	�1�00� + 	�2�01��E + �1�B�	�3�10�

+ 	�4�11��E, �A4�

��1�BE � A�1���ABE = �0�B�	�3�10� − 	�4�11��E + �1�B�	�1�00�

− 	�2�01��E, �A5�

which give in the computational bases

	E
0 =�

�1 	�1�2

	�1�2 �2

�3 	�3�4

	�3�4 �4

� , �A6�

	E
1 =�

�1 − 	�1�2

− 	�1�2 �2

�3 − 	�3�4

− 	�3�4 �4

� , �A7�

and

	B
0 = ��1 + �2

�3 + �4
� = �1 − Q

Q
� , �A8�

FIG. 4. �Color online� Optimal � and upper bound Rsk on the
secret-key rate per pulse �logarithmic scale� for Poissonian sources
as a function of the distance, for �=0.25, �=0.1, and pd=10−5, and
for V=1,0.95. Thick lines, SARG04 �identical to Fig. 3, with q
=0�; thin lines, BB84, under the same conditions.
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	B
1 = ��3 + �4

�1 + �2
� = �Q

1 − Q
� . �A9�

If q= pA��A denotes the probability for Alice to flip her bit
�preprocessing�, the state of Alice and Eve is

	A�E =
1

2
���1 − q��0��0� + q�1��1�� � 	E

0 + �q�0��0� + �1 − q��1�

��1�� � 	E
1� =

1

2
�0��0� � �E

0 +
1

2
�1��1� � �E

1 , �A10�

where �E
0 = �1−q�	E

0 +q	E
1 and �E

1 =q	E
0 + �1−q�	E

1 . Then,

S�	A�E� = 1 +
1

2
S��E

0� +
1

2
S��E

1� . �A11�

With similar notations,

S�	A�B� = 1 +
1

2
S��B

0� +
1

2
S��B

1� . �A12�

Finally,

R��A�BE� = S�	A�E� − S�	E� − �S�	A�B� − S�	B�� =
1

2
�S��E

0�

+ S��E
1� − S��B

0� − S��B
1�� + 1 − S�	E� . �A13�

This is the function which must be optimized over the �i
compatible with the constraints �which define the protocol�
and over the bitwise preprocessing:

r1 = sup
q��0,0.5�

inf
��s

R��A�BE� . �A14�

APPENDIX B

In the main text, we have computed the lower bound for
the SARG04 protocol implemented with single-photon
sources. One might ask what happens if the SARG04 proto-
col is modified if only two “opposite” sifting sets, say S++
and S−−, are used instead of all the four.

The interest in the two-set protocol is a practical one. The
sifting of the four-set protocol requires Alice to use a random
bit for each item �for instance, if she has sent �+z�, she must
still decide whether to announce S++ or S+−�. In a true imple-
mentation, the production of local random bits is one of the
most time-consuming tasks. In the two-set protocol, an easier
sifting procedure can be implemented: for instance, Bob re-
veals whether he has got a detection in the + or in the −
detector. If Alice has sent a state in S++�S−−�, the detection in
−�+� is conclusive: then, Alice tells Bob whether the bit is
accepted or discarded. Obviously, no random bit is needed
for such a sifting.

The intuition based on incoherent attacks suggests that the
two- and the four-set protocols are equivalent: after all, Eve
has to distinguish among the same four states before sifting
takes place; and after sifting, her knowledge is the same in
both protocols. While this equivalence probably holds in-
deed, the lower bound computed with our method is slightly
less favorable in the two-set case. In fact, one finds after
some algebra

�1 = C̃��+�	0��+� ,

�2 = C̃���−�	0��−� + 2��−�	0��−�� ,

�3 = C̃��+�	0��+� ,

�4 = C̃�2��−�	0��−� + ��−�	0��−�� �B1�

where ��±�= �1/	2����−�± ��+�� and C̃=C /2 with C defined
in Eq. �9�. Note that C is not the same as in Eq. �13�; also,
the structure of Eq. �13� would be recovered if we replaced
the states ��±� by the incoherent mixture 1

2 ��−���−�+ 1
2 ��+�

���+�.
The constraints imposed by �B1� are less tight than those

imposed by Eq. �13�: actually, �1 and �3 are unconstrained
but for Eq. �12�. For �2 and �4, it is easy to see that �2

−2�4=−3C̃��−�	0��−�0 and symmetrically �4−2�2=

−3C̃��−�	0��−�0, whence

�2

2
 �4  min�2�2,Q� . �B2�

Using this constraint, the optimization of r1 gives a lower
bound Q8.90% �Q7.74% if we had neglected prepro-
cessing�. Thus, the lower bound obtained for the two-set pro-
tocol is worse than the one found for the original four-set
protocol. This is not a conclusive proof of inequivalence, in
so far as we do not know whether each bound is tight.

APPENDIX C

The calculations leading to the expression of Eve’s infor-
mation �27� plotted in Fig. 1 can be done analytically up to
some extent. The three eigenvalues of MA are �±
= ±2	D�2−3D� / �1+2D� and �0=0, whence the natural la-
beling for the index e of the main text is

e � �0, + ,− � . �C1�

In the basis where �00�
 ê1, �01�
 ê2, and �10�
 ê3, and with
�±= �	D±	2−3D� /	1−2D, the corresponding normalized
eigenvectors are

�m±� =
1

1 + 1
2�±

2� �±

1

− 1
2�±

2 � ,

�m0� =
1

	2 − 3D�
	D

	1 − 2D

	1 − 2D
� .

One sees that the calculation is heavy, and since the function
�27� is not algebraic, ultimately one must make use of the
computer; that is why these analytical results are of limited
utility. Still, we can use them to obtain more insight on Hel-
strom’s strategy. In fact, the general calculation scheme de-
scribed in the main text can be described as follows.
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�1� When Eve finds the positive eigenvalue �+, she
guesses Alice’s bit to be 0 �see the definition of MA�; when
she finds the negative eigenvalue �−, she guesses Alice’s bit
to be 1. These two cases appear with the same probability
�pE=+= pE=−� and Eve’s guess is correct with the same prob-
ability pguess= pA=0�E=+= pA=1�E=−.

�2� With probability pE=0, Eve finds the eigenvalue �0,
from which she cannot draw any conclusion. Indeed, it is the
case: �m0�MA�m0�=0 implies �m0�	E

A=0�m0�= �m0�	E
A=1�m0�,

whence pE=0�A=0= pE=0�A=1= pE=0. Consequently, using Bayes’
rule �28�, we find pA=0�E=0= 1

2 .
Following these remarks, Eve’s information �27� can be re-
written as

I�A:E� = �1 − pE=0��1 − h�pguess�� . �C2�

APPENDIX D

In this appendix we show how the five constraints
�69�–�73� reduce to the three conditions �74�–�76�, as
claimed in Sec. IV C 3.

Using the expression �43� for p0�n�, we can rewrite the
first constraint �69� as


n

pBE�n��1 − ��n 
 
n

pB�n��1 − ��n �D1�

which is Eq. �74�. By replacing the expression �46� for
pacc

x �n� into Eq. �70�, we find that this second constraint is
satisfied by adding to Eq. �D1� the condition


n

pBE�n��1 − �/2�n 
 
n

pB�n��1 − �/2�n �D2�

which is Eq. �75�. Finally, because of Eq. �54�, the third
constraint �71� is automatically satisfied if the first two are.
In summary, the first three constraints �69�–�71� are equiva-
lent to the two conditions �74� and �75�.

Consider now constraint �72�. From Eq. �44�, we have

pacc
z �n,1� = pd�1 − pd��1 − ��n for all n , �D3�

pacc
z �1,Ṽ� = �1 − pd��D̃ + pacc

z �1,1� , �D4�

whence the left-hand side �LHS� of Eq. �72�, up to the factor
�1− pd�, reads

pA�1�pU�1��D̃ + pdP� BE · �� �1� .

Using again Eq. �44�, the RHS of Eq. �72�, up to the factor
�1− pd�, reads


n

pB�n���1 − F��n − �1 − ��n� + pdP� B · �� �1� .

Since we have already imposed �74�, equality of these two
expressions is obtained if and only if �76� holds.

Finally, we have to discuss Eq. �73�. From Eq. �53� we
note that p2

z�1,V� is actually independent of V because this
parameter appears in the combination F+D=1. In particular,

p2
z�1, Ṽ�= p2

z�1,1� whence the LHS of Eq. �73� becomes

1 − �1 − pd��1 + P� B�E · �� �1�� + �1 − pd�2P� BE · �� �1� ,

which is entirely determined by Eq. �74� and is independent

of Ṽ. However, the RHS of Eq. �73� does depend on V.
Consequently, for the strategies that we have considered,
constraint �73� is automatically satisfied by Eq. �74� if V=1
and cannot be satisfied exactly if V�1. In this last case,
however, the discrepancy is rather small. In fact

p2
z�n,V� = p2

z�n,1� + n�D�1 − �1 − ��n−1� + O��D�2

and the leading term in the discrepancy will be the one as-
sociated with n=2, that is,

pBE�2��p2
z�2,V� − p2

z�2,1�� � pBE�2�2�2D . �D5�

Specifically, for a Poissonian source the discrepancy is
�C2

z�V�−C2
z�1��, i.e., using Eq. �55�

�p�0�x� + 1� − �p�0�xF� + p�0�xD�� = FDx2 + O�x3�

with x=�t�, consistent with Eq. �D5� using Eq. �81�. Since
typical values are ��0.1 and D�1%, this discrepancy is
small. Thus, we can assume that Eq. �73� is satisfied as well,
and we have proved that the constraints �69�–�73� reduce to
�74�–�76�claimed.

APPENDIX E

In this appendix, we rederive the results on the optimal
parameters for Eve’s attack that have been obtained by nu-
merical optimization �see sec. IV D 2. As we said there, we
work in a more restricted setting, by neglecting the possibil-
ity of double counts: Eve forwards always one photon �if
any� to Bob, that is, s�m�n�=r�m�n�=�m,1 for all n. We also
neglect Alice’s preprocessing, which makes very minor
modifications in the end �i.e., q=0�. However, we do not
assume that Alice’s source is Poissonian.

We study the constraints first. Since Eve forwards only
one photon to Bob, pB�E�n�1�=0 and pB�E�0�=1− pB�E�1�.
Constraint �75� cannot be satisfied, but at long distance this
is supposed to be a very small contribution. Constraint �74�
reads pB�E�1�=C where C= �P� B ·�� �1�−1� /� depends only on
parameters that are outside Eve’s control; and

pBE�1� = pA�1�pU�1� + pA�2�pS�2� + 
n
3

pA�n��pS�n�

+ pI�n�pOK�n�� .

The constraint �76� is of the form pA�1�pU�1�= �1/ D̃�C�

where C�=P� B · ��� �F�−�� �1�� /� depends only on parameters
that are outside Eve’s control. Using these two constraints,
we can express pA�1�pU�1� and pA�2�pS�2� as a function of
the other parameters. The quantity that Eve must optimize
�Eq. �66�� reads now
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I�A:E� = pA�1�pU�1�IU�D̃��̃ + pA�2�pS�2�IS�1�� + 
n
3

pA�n�

��pS�n�IS�n − 1� + pI�n�pOK�n��� = ��C�K�D̃�

+ 
n
3

pA�n�pS�n�L�n� + C IS�1� + 
n
3

pA�n�pOK�n�

��1 − IS�1��� �E1�

where we have defined �̃= pacc�1, Ṽ�, �= pacc�1,1� and

K�D̃� =
1

D̃
� �̃

�
IU�D̃� − IS�1�� , �E2�

L�n� = IS�n − 1� − IS�1� − pOK�n��1 − IS�1�� . �E3�

In writing Eq. �E1� we made explicit use of the constraints
and of pI�n�=1− pS�n� for n
3. The problem of finding

Eve’s best attack is thus reduced to the study of K�D̃� and of
L�n� for all n. These functions are independent of the statis-
tics pA�n� of Alice’s source.

The function K�D̃� depends only on one free parameter D̃
and is independent of the distance. Therefore, Eve will maxi-
mize her information by introducing always the same

amount of error D̃0, the one that maximizes K�D̃�. If we

insert �=0.1 and pd=10−5 in �̃ /�, the maximum is obtained

for D̃0�0.191, which is exactly the value found by the nu-
merical optimization.

The study of the L�n� is just as easy. In fact, by using the
explicit expressions �57� for IS�n� and �58� for pOK�n�, one
sees that L�3��−0.054 while L�n��0 for n
4. Thence
Eve’s information �E1� is maximized by the choice pS�3�
=0 and pS�n
4�=1: Eve performs always the I attack when
n=3 and the S attack when n
4. Again, this is exactly what
has been found in the numerical optimization.
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