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Abstract-Middleware for wireless sensor networks and 
middleware for context-aware applications both provide infor
mation abstraction and programming support for gathering, 
pre-processing, and managing sensor data. However the former 
mostly concentrates on optimising the operations of the re
source constrained hardware and simplifying access to the raw 
sensor data while the latter focuses on gathering sensor data, 
pre-processing it to the abstract context information required 
by the applications and providing reasoning on this data. 
In this paper, we explore the idea of enhancing middleware 
for context-aware applications with solutions from sensor 
networks middle ware to allow resource efficient and context
aware management of sensing infrastructure. The decisions on 
which sensor data needs to be delivered to the middleware 
for evaluation are based on current contextual situations. The 
approach allows to trade the level of confidence in context 
information for resource efficiency in context provisioning 
without a detrimental effect on the functionality of context
aware applications. 

I. INTRODUCTION 

Wireless sensing technologies are deployed in many real

world applications, such as automation, surveillance and 

inventory management [14]. The last decade has also seen 

a great progress on pervasive computing and in particular 

on context-aware applications that can adapt their behaviour 

to changes in the computing environment, user environ

ment, user activities and preferences. Decisions about such 

adaptions are based on evaluation of context information 

which has to be gathered, evaluated and reasoned upon. Data 

produced by sensors is one type of context information that 

these applications may require. 

To ease the complexity of software engineering of context

aware applications, the research in pervasive computing 

resulted in the development of various types of middleware. 

These middleware solutions encompass a rich set of features, 

including (i) general middleware operations e.g., context 

information gathering and management,(ii) support for ad

vanced reasoning on context, e.g., first order logic or de

scription logic (ontology) reasoning, and (iii) programming 

abstractions that ease development of context-aware appli

cations. However, these solutions typically do not provide 
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resource efficient context information gathering from large 

groups of sensors or large scale sensor networks in which 

individual sensors may not have global identification [1]. On 

the other hand, the scalability issues have been explored by 

the wireless sensor networks (WSN) community. There exist 

middleware solutions that have been specifically developed 

to cater for large scale sensor network deployments. The 

goal of these middleware solutions is primarily to facilitate 

data extraction from, potentially hundreds of thousands of 

resource constrained sensing devices [10]. Due to the scale 

of deployment, efficiency of operations and management are 

the main concern in the design and development of these 

middleware solutions. However, they usually lack awareness 

of the application requirements and operational objectives. 

These two types of middleware were developed in sep

aration by different communities and with different ob

jectives. However, enhancing one's functionalities with the 

incorporation of techniques from another [10] can bring 

unique advantages. For example, providing application-level 

situation awareness to the low-level sensing infrastructures 

that support middleware for context-aware computing will 

improve efficiency of resource management. It will allow 

to trade the level of confidence in context information 

for resource efficiency in context provisioning without a 

detrimental effect on the functionality of context-aware 

applications. 

In this paper we present an enhancement of a middleware 

for context-aware applications that uses a resource-efficient 

data collection algorithm developed for sensor networks and 

allows the middleware to gather context information from 

single sensors and from sensor networks while meeting the 

application requirements for context data quality. We have 

designed this extension and also implemented part of it as 

a proof of concept prototype. The design and prototype are 

developed as an extension of the ACoMS middleware [11] 

that is a middleware for reliable provisioning of context 

information. While the proposed enhancement is described 

as an extension of the ACoMS, the solution is generic 

and would be suitable for most logic-based middleware for 
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context-aware applications (Le. middleware that uses context 

information models, logic based reasoning on contextual 

situations, preference models, and sensor models). 

The structure of the paper is as follows. Section II presents 

an example scenario that demonstrates the usefulness of 

our proposed middleware enhancement. Section ill briefly 

describes the two primary components in this investigation, 

ACoMS and an algorithm developed for sensor networks to 

efficiently collect sensor data. Section IV describes neces

sary extensions to the middleware and the algorithm in order 

to achieve context-aware collection of sensor data. Section 

V reviews existing work focussing on resource preservation 

in the existing middleware for context-aware applications. 

Finally, we conclude in Section VI. 

II. MOTIVATING SCENARIO 

In this section, we describe an example scenario to 

elaborate the enhancement of the proposed middleware 

for context-aware applications (that is, making the sensing 

infrastructure context-aware and resource efficient while en

suring the Quality of Information of produced sensor data). 

The scenario illustrates the idea of dynamically adapting 

behaviour of the sensing infrastructure to the applications' 

operational objectives. As a result the middleware supports 

efficient resource management and addresses scalability is

sues with regard to adapting large scale sensor networks as 

the sensing infrastructure for pervasive computing. 

A building is being constantly monitored for detecting 

potential fire hazard. The building is equipped with sensing 

devices for monitoring object movement, temperature and 

smoke density level. In the daily operations when readings 

are normal, the selection of a sensor set should be optimised 

(i.e., putting some sensors into sleep mode) to preserve 

limited resources, such as communication bandwidth and 

battery life. In the case of emergency (detected by abnormal 

sensor readings), the system should adapt the set of sensors 

to improve situation awareness; that is, the system may in 

tum wake up additional sensors and collect their readings 

or even fuse sensors' data to increase the confidence of their 

observations. The set of sensors chosen for the monitoring 

task should be dynamically adapted to the applications' 

operational objectives (in this example scenario, preserve 

energy or improve certainty of situation recognition). 

III. MAIN SYSTEM COMPONENTS 

Our goal is to enhance the middleware supporting context

aware applications in order to make its sensing context

aware and resource efficient. We used the PACE! ACoMS 

middleware for this enhancement. There are two reasons for 

this choice: 

• The PACE middleware [8], [9] is a platform for gather

ing, evaluating and disseminating context information 

to context-aware applications. Its aim is to ease the 

development of context-aware applications through its 
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comprehensive modelling techniques and programming 

support/abstraction. The formal models of context, and 

also situation and preference models allow to move the 

evaluation of context information from applications to 

middleware simplifying development of context-aware 

applications. The PACE has been already extended 

to the ACoMS [11] that can provide reliable context 

provisioning, Le. can dynamically replace sensors when 

the sensors fail or the Quality of Information (QoI) 

of context information they provide does not meet the 

application requirements. The replaced sensors can be 

of different kind provided that the data they provide 

can be pre-processed to the abstract context information 

required by the applications (e.g., a location technology 

can be at run time replaced by a different location tech

nology). This extension added, among others, sensor 

models and models of preprocessing of sensor data to 

the original PACE models. As the platform is model 

based it can be further extended to provide a situational 

awareness at the level of sensor data gathering . 

• We have access to the PACE!ACoMS middleware1 and 

therefore we are able to develop a proof of concept 

prototype that shows how some algorithms for energy 

efficient sensor data retrieval in sensor networks can 

support the middleware for context-aware applications. 

In this section, in order to provide a background for the 

description of the proposed enhancement, we briefly de

scribe the models and architecture of the PACE! ACoMS 

middleware (which for simplicity we will call ACoMS in the 

rest of the paper). We also describe an algorithm developed 

for energy efficient retrieval of data in sensor networks 

that will be used in our proposed middleware enhancement 

presented in Section IV. 

A. The ACoMS middleware 

The architecture of the ACoMS middleware is shown in 

Figure 1. In the ACoMS, application developers describe 

context information used in the application in the form 

of context models (denoted as Application Context 

Model in Figure 1) using a modelling language called CML 

(Context Modelling Language), which is developed based 

on ORM (Object Role Modelling) [7]. The CML modelling 

approach leverages the graphical notations to represent the 

information and their relationships. An example of the CML 

context model is provided in the following section. In addi

tion, the middleware uses models of (i) contextual situations 

(higher level abstraction defined on context facts), (ii) user 

preferences that need to be evaluated when such situations 

are detected, and (iii) adaptation rules triggered by the sit

uations (shown as Situation Models, Preferences 

and Adaptation Rules in Figure 1, respectively). 

1 Refer to http://sourceforge.netJprojectsJpace-frameworkl 
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Figure l. The ACoMS system architecture. 

The application context models abstract raw data gathered 

from the sources of context information (i.e., sensors). Such 

raw data may need to be pre-processed to acquire the 

form defined by the context model (abstract context fact). 

If run-time replacement of a context information source 

is needed or the sources of context information are to 

be dynamically configured/activated when the applications 

start, then a mapping is required from the context facts 

to the appropriate sources of raw context data (i.e., sen

sors), through the appropriately assigned data pre-processing 

models. The sensor and pre-processing models required to 

support this mapping are shown in Figure 1 in grey and are 

described in [11]. 

The system maintains context models for each applica

tion it serves. Heterogeneous context sources (i.e., sensors) 

provide the system at run-time with fact instances (i.e., 

abstracted from sensor data) that conform to the application 

context models. This allows reuse of context information 

by many applications and reduces the burden on resource

constrained sensors and communication networks. For exam

ple, if many applications of the same user require location 

information, each application will include location context 

fact in its model but they will share one fact instance 

(location reading for the user). 

B. The HiCoRE algorithm 

The HiCoRE [4] is a mining algorithm developed for 

sensor networks that mines for highly correlated rules from 

gathered sensor data at aggregation points (i.e., base station). 

A highly correlated rule signifies the relationships between 

attributed sensor nodes, which can be used to infer sensors' 

data and reduce the amount of sampling required (as long as 

correlation rules hold). The HiCoRE algorithm is presented, 

as pseudo-code in Algorithm 1. 

The HiCoRE algorithm takes a batch of frequent trans

actions, bj, (that is, the set of sensor data that is fed 

into the algorithm) and computes a correlation rule R. 
The steps 1-2 initialise the algorithm and define variables 
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Algorithm 1 The HiCoRE Algorithm: Miner 

1: SET FT_List, Top_FT; 
2: SET maxSupport, highestSupport, thresholdSupport; 
3: Obtain energy levels of sensors in S and sort them in ascending order of energy 

levels. sorted energy lists Energys = eo, el, ... , eq. 
4: Generate the covariance matrix. C=atrix. 
5: Using a bitmap, initialise two sensors in S with greatest probability measure from 

C=atrix and Energys. 
6: Transpose continuous transaction values in bj to discrete values. 
7: for i = 1 to length(FT_List) do 
S. S 

FT Count (ti) 
. current upport = length(bj) 

9: if currentSupport > maxSupport then 
10: maxSupport = currentSupport 
11: end if 
12: end for 
13: if highestSupport >= thresholdSupport then 
14: R = getRules (Top_FT) 
15: else if Number of bits set> 2 then 
16: if all bits set then 
17: Reset all bits to 0 
IS: else 
19: Remove one bit reflecting current highest correlation in matrix C=atrix 
20: end if 
21: end if 
22: Return R. 

that are needed to store the frequent transactions and their 

respective counts; these include FT_Li st that is a list of the 

frequent transactions, FT_Count (td that represents the 

occurrence count of a frequent transaction ti, and Top_FT 

that denotes the most frequent transaction in the FT_List. 

Following this, step 3 is responsible for keeping track of 

the energy levels of sensor nodes in the sensor group, S, 
which is updated at each algorithm iteration. The covariance 

matrix, Cmatrix, for all attributes of sensors in the group is 

generated in step 4. In step 5, a binary bitmap is used for 

the algorithm to give preference to highly correlated sensor 

attributes in the covariance matrix generated and sensors 

with the biggest variance in their energy levels. Here, we 

also wish to give preference to choosing antecedent sensors 

that have the greatest energy level to conserve energy on 

low-energy consequent sensors. In step 6, continuous sensor 

values are transposed to discrete values to generate rules and 

to reduce processing complexity. The steps 7-12 then obtain 

the highest Support from transactions already in the 

FT_List. In the final pass (steps 13-21), the rules that meet 

the user-defined threshold Support are generated. After 

these rules have been generated, they can then be filtered by 

a rule confidence threshold and filtered rules could then be 

used by the aggregator to control operations of sensors that 

send data to it. 

Once the correlation rule is generated, the consequent sen

sor readings can be inferred, as long as the antecedent sensor 

values remain. For example, let us assume the following 

rule exists in the system that consists of two multi-modality 

sensors (capable of measuring light intensity and ambient 

temperature), sensor Sl and S2. The system can then decide 

whether any of these sensors can be put into sleep to preserve 

local or global resources (e.g., communication bandwidth, 

power). 



sieTnperature : mid 1\ S�ight : low --+ Stight: low 

As long as the antecedent sensor values, sfemperature 
and S�ight, hold, the system can then infer sensor sfi9ht 
readings and put it into sleep mode. Therefore, less com

munication bandwidth as well as transmission power are 

required to propagate raw data from individual sensor nodes 

to the higher level components. More information about 

HiCoRE and its performance evaluation is described in [4]. 

IV. A CONTEXT-AWARE AND RESOURCE EFFICIENT 

CONTEXT MANAGEMENT SYSTEM 

To achieve context-aware provisioning of sensor data we 

designed the ACoMS extension; the HiCoRE algorithm is 

one element in this extension. Figure 2 shows the new ar

chitecture - ACoMS+ which consists of three components: 

The HiCoRE algorithm mines correlated rules from ob

served sensor data and ranks these discovered rules based on 

the ranking metrics. These ranking metrics are defined by 

application designers for a set of application-specific objec

tives and are a function of sensor's physical characteristics 

and specifications (e.g., energy level, power consumption, 

sensitivity). In addition, application designers may also spec

ify the fusion logic to deal with cases when more than one 

sensor fulfil the requirements of the information provisioning 

task and high confidence of context information is needed. 

The information quality evaluator calculates the run-time 

information quality of actual sensor data using techniques 

of information fusion; for example, computing the entropy 

or certainty of resulting information against the information 

quality requirements specified by applications. Information 

about the quality evaluation (including techniques of choice 

and adaptation thresholds) is optionally specified as the QoI 

policies by application designers. 

The ACoMS framework provides context information pro

visioning services to multiple context-aware applications(as 

described in the previous section) and in addition provides 

such services to the HiCoRE algorithm and the information 

quality evaluator, for their context-aware operations. 

The addition of the HiCoRE algorithm and the informa

tion quality evaluator allows to capture the multidimensional 

information quality metrics of a sensor network; that is, it 

allows the ACoMS+ to rank the discovered correlation rules 

based on sensors' specifications, and it supports verification 

of information quality based on sensors' real-time obser

vations. This hybrid approach is needed for sensor driven 

systems, as the QoI of sensing data not only depends on 

properties of the sensor fusion algorithm, but also depends 

on the quality of raw data received from individual sensor 

nodes [13], [15]. The quality of raw sensor data in turn 

depends on various sensor's physical characteristics and 

specifications, such as sampling rate, accuracy. 
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Figure 2. The ACoMS+ system architecture. 
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Figure 3. The application context model (simplified). 

In the ACoMS+ architecture, the ACoMS framework sup

ports correlation rule mining and information quality verifi

cation by providing relevant application context information 

(via application context models) and sensor specification 

metadata (via the sensor context model). 

The following sections discuss each of the three compo

nents in more detail. 

A. Scenario based ACoMS models 

We will use the scenario presented in Section II to 

illustrate how the ACoMS framework can provide context

awareness to the sensing infrastructure. Figure 3 illustrates 

the application context model for this scenario. 

This application context model captures a range of context 

information including: (i) the relationship between entities 

(people, places), and (ii) the properties and activities of 

entities. It has context facts of two types: profiled and 

sensed fact types. Profiled information is user-supplied, and 

is therefore initially very reliable, but often becomes out 



of date, while sensed context information is usually highly 

dynamic and prone to noise and sensing errors. This classifi

cation of information types allows context information to be 

managed and processed according to the characteristics of its 

type. Another important property of the context modelling 

approach that is shown in this example is its ability to 

capture Quality of Information. The certainty metadata of a 

context fact type (location hasTernperat ure temperature) 

indicates the required confidence of the individual fact 

instance gathered from the sensors. The information quality 

evaluator uses this quality requirement to verify whether 

information supplied by the given set of sensors (selected 

by a correlation rule) fulfils the needs of the applications. 

The ACoMS framework allows definition of situations 

that require adaptation. Each situation is defined using the 

basic context fact types from the application context models. 

The ACoMS uses a variant of first order logic for defining 

situations as illustrated below in two example situations for 

the presented scenario: 

fireHazard(loc) : 
3event. af fectedBy[loc, event] 
• event = "fire" 
/\ hasTemperature(loc, temp) 
/\ temp> 60degC 

highSmokeLevel(loc) : 
3smkDensity 
• hasSmokeDensity[loc, smkDensity] 
• smkDensity = "high" 

The ACoMS framework also provides a way for devel

opers to specify preferences. Example preferences for the 

scenario are given below: 

pI = 

p2 = 

when emergency(event) 
/\ highSmokeLevel(loc) 

rate 0.8 

when emergency(event) 
/\ fireHazard(loc) 

rate Ii 

where 7\ stands for obligation. 

These preferences tune the degree to which each element 

contributes to emergency situations - high8mokeLevel 
and fireH azard. The preference model allows customised 

tuning of individual applications to different circumstances. 

For example, the preference p2 states that it is certainly an 

emergency given that there is a fire hazard at loco 
Situation detection triggers adaptations and these can 

also include an adaptation of the sensing infrastructure. For 

example, the HiCoRE algorithm can be adapted from low 

energy sensing used for daily monitoring purposes (when 

only data from a small subset of sensors selected based on 
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Figure 4. The sensor context model (simplified). 

the HiCoRE correlation rules is delivered to the ACoMS+ 

middleware) to a thorough sensing required for situation 

awareness in case of emergency. 

The ACoMS, in addition to the application context models 

also uses models of sensors. Figure 4 shows a simplified 

sensor context model which captures sensor's specifications 

and relevant physical characteristics. This information can be 

used by the HiCoRE algorithm to perform correlation rules 

mining and to estimate a quality score for each discovered 

correlation rule. 

B. Context-aware HiCoRE 

The extended HiCoRE algorithm uses context information 

provided by the ACoMS framework to perform correlation 

rule mining. The context-aware operations include: (i) the 

use of context information of individual applications to mine 

correlation rules that are dependent on the applications' 

operational objectives (e.g., selectively mine sensor data for 

particular information type required by applications). An 

application may define a number of operational objectives 

(such as to preserve energy or to improve information 

accuracy), therefore, the criteria for correlation rule mining 

should be appropriately adapted to the desired objective 

of the applications; (ii) the use of context information of 

sensors (e.g., specifications) to rank the discovered correla

tion rules based on each application operational objective; 

and (iii) the use of situation based triggering to change the 

objectives (e.g., from energy preservation to better situation 

awareness). 

Figure 5 shows the relevant components in Figure 5(a) 

(with reference to Figure 2) and an example of the correla

tion rules mining and information quality evaluation in the 

ACoMS+, in Figure 5(b). 

Figure 5(b) shows an example of the HiCoRE's corre

lation rule mining. In this example, we assume that there 

are n sensors 81,82, . . .  , 8n, and each sensor produces a 

measurement of its type (e.g., temperature). Upon receiving 

sensor data from the sensor nodes, the HiCoRE algorithm 

mines correlation rules according to a set of application 

specific objectives (e.g., to preserve energy, 01. or to im

prove information accuracy, O2). Let assumes the discovered 

correlation rules are R1,I, R1,2 and R1,3 for the energy 
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Figure 5. An example of context-aware operations in the ACoMS+. 

conservation goal 01. The rule Rl,2 states sensors 81 and 

82,83,84 are correlated and we can infer the value of 

sensors 82,83,84 from sensor 81; therefore, only sensor 

81 is required to perform sampling. 

Each correlation rule will likely affect more than one 

sensor. For example, although rule R1,2 only need sensor 81 
to be in operation, the HiCoRE will still be able to provide 

the estimated values for sensors 82,83,84 to upper system 

components upon request, as long as the correlation holds. 

In this case, the HiCoRE may choose to select the best, send 

all, or fuse sensor data for the information provisioning task. 

The fusion logic (shown in Figure 2) is a component for 

capturing these fusion decision of individual applications. 

At the time when the correlation rules are discovered 

the extended HiCoRE assigns a score (specific to a desired 
application objective) to each rule. The score is a measure 

of the 'goodness' of the rule in achieving the application 

objective and is calculated based on the characteristics of 

the sensors that are described in the correlation rule. These 

scoring schemes are described by application designers at 

design time as the ranking metrics (shown in Figure 2). A 

scoring schema is a function of various sensor's properties. 

For example, for energy conservation the function can be a 

combination of the battery level and power consumption. 

In our example, the rule Rl,2 of the objective 01 scores 

84%, as only sensor 81 will actually consume energy. By 

assigning a score to each rule, the solution provides a way to 

rank the alternatives of sensor selection for each application 

objective. In the same example, when an application changes 

the operational objective to improve accuracy of information, 

it may choose rule R2,b as the combination of sensors 

81,82 is able to achieve higher confidence of sensor data 

based on their specifications. 

When a rule is selected (Le., Rl,2 or R2,I, depending 

on the application objective), the operations of sensors 

described in the rule will be adapted accordingly. 
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C Information quality evaluator 

In addition to supporting context-awareness and resource 

efficiecy of the sensing infrastructure, the ACoMS+ provides 

assurance of information quality by allowing application 

designers to optionally define the QoI policies, as shown in 

Figure 2. These QoI policies describe not only the evaluation 

metrics (e.g., certainty, timeliness), but also the choice of 

technique for the evaluation (e.g., Bayesian network, hidden 

Markov model, Kalman filter [6]). Profile of the quality 

evaluation can be described as a SensorML process model2, 

which is used by the ACoMS to model pre-processing of 

raw sensor data. Through the QoI policies, the ACoMS+ 

allows the application designers to specifically define quality 

assurance strategies to evaluate fused context information 

that is critical to their applications. 

Based on these information policies, the information qual

ity evaluator checks the information quality of sensors' real

time observations, as shown in Figure 5(b). The result of the 

quality evaluation is associated with an objective-specific 

correlation rule. 

Following the same example that we discussed 

in the last section, we have QoIBayesian(R ) certainty 1,2 
and QoI!�1:;:�ry(R2,1). For objective 01. the 

QoI!�r::��;(Rl,2) states the correlation rule R12 
has certainty level 74%, and Bayesian network is used f�r 

the evaluation. In this example, we assume the application 

decides to fuse data from the four sensors 8I, 82, 83 and 

84. It should be noted that only sensor 81 value is gathered 

from the actual sensor node, while the other values are 

estimated according to the correlation rule, R12. Should 

the certainty level be below the required cert�inty level 

specified by the applications, the ACoMS+ evaluates the 

alternative correlation rules recorded in the HiCoRE and 

performs the adaptation accordingly. The same evaluation 

processes apply when applications change their operational 

objectives (e.g., from preserving energy 01 to improving 

accuracy of information O2). 
The information quality evaluator provides a way for the 

ACoMS+ to be application specific QoI-aware while keeping 

resource allocation transparent to the high-level context

aware applications. 

V. RELATED WORK 

The efficient management of the sensing infrastructure 

is an important element lacking in most context-aware 

middleware solutions. Although there exist solutions that 

investigate this problem and provide some controls of the 

underlying sensing infrastructure, they fall short in various 

aspects. The ACoMS [11] is a middleware solution that 

has been extended based on the PACE framework to ad

dress sensor heterogeneity and fault-tolerant provisioning 

of context information. However, its approach to efficiently 

2http://vast.uah.eduiSensorML 



manage its sensing infrastructure is relatively primitive in 

comparison to the solution proposed in this paper. More 

specifically, in the ACoMS sensors are assumed to be single

adminstrative entities (Le., a sensor network is treated as a 

single sensor). The RUNES middleware [5], as many others 

(e.g., the Gaia middleware [3], the Solar architecture [2], 

the PICO framework [12]), has similar "direct-to-sensor" 

assumption as the ACoMS middleware, despite the fact 

that a middleware of sensor network is used for managing 

the underlying sensors' operations. The main concern here 

is that efficient management of the sensing infrastructure 

depends on the individual underlying sensor network mid

dleware solution, and application context information and 

operational objectives are not fully utilised for more adaptive 

and efficient management of the sensing infrastructure. 

In the design of a context-aware and resource efficient 

sensing infrastructure presented in this paper, we introduced 

two dimensions of quality metrics of the discovered corre

lation rules and a way to evaluate them. The design uses 

sensor's specifications to estimate the 'goodness' of the 

rule in achieving the application objective and uses sensor 

real-time observations to verify the resulting information 

quality. The idea is based on, so called, local and global 

information quality evaluation in the wireless sensor network 

community. For example, Zahedi et. al. [15] explores the 

idea of combining sensors' characteristics and properties of 

fusion algorithm to assure information integrity and quality 

of sensor networks. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we presented the design of a context-aware 

and resource efficient sensing infrastructure for context

aware applications. The contribution is the enhancement 

of the sensing infrastructure of a model based middleware 

for context-aware applications. The proposed enhancement 

extends the HiCoRE algorithm and incorporates it into 

the middleware for context-aware applications to achieve 

resource efficient context information provisioning from 

large groups of sensors or large scale sensor networks. The 

HiCoRE mines sensor data to discover correlations that 

can be used to save energy and/or bandwidth (by putting 

sensors into low-power mode or by inferring sensors' data if 

correlations exist rather than requiring the sensors to perform 

sampling). We also described the information quality eval

uator that can provide assurance of quality of information. 

The presented design has been already partially implemented 

and tested; the HiCoRE algorithm has been integrated with 

the middleware for context-aware applications. The full 

development, e.g. evaluation of context information quality, 

is still in progress. 
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