

1

Can System of Systems Be Given Self-X
Requirement Engineering Capabilities?

Alisdair MacDiarmid, Peter Lindsay

School of Information Technology & Electrical Engineering,

The University of Queensland, Brisbane (St. Lucia), Australia 4072

Abstract. System of Systems (SoS) are a relatively recent phenomenon and present a whole
new set of challenges for systems engineers. The system elements of an SoS are often
managed and operated in a predominantly independent manner, over widely distributed
geographic locations and are subject to evolution with various rates of change. The goals of
the SoS itself often change over time. One purpose of this paper is to survey the literature on
requirements management issues that are brought to the fore as a result of these and other
SoS characteristics. We then explore a vision of how the key artefacts of requirements
engineering might need to evolve, together with their supporting tools and processes, in order
to better support the development, operation and maintenance of SoS’s. The vision is inspired
by the autonomic computing paradigm, in which computing systems are equipped with self-x
capabilities – such as self-configuration and self-healing – in order to manage themselves.
Rather than presenting a solution our purpose is to better understand the new requirements
engineering capabilities that will be required for SoS.

1. INTRODUCTION

Background. Recent advances in software and
hardware computational and processing
capabilities have led to systems that were
previously stand-alone now being connected to
each other and becoming increasingly dependent
on each other. Furthermore, the systems are
increasingly distributed, with system elements
many hundreds, or even thousands, of kilometers
remote from each other in many cases. This has
led, in turn, to the creation of System of Systems
(SoS’s), whereby a number of these distributed
systems grouped together constitute a larger,
over-arching system. Examples include the US
DoD Future Combat System (FCS), space
exploration missions, medical and health
management services, and air transport
operations (DiMario 2006; Hata, Kobashi et al.
2009; Jamshidi 2009).

Given that SoS are a relatively recent
innovation, there are many aspects that require
further understanding and are the subject of
significant research. This research is given added
impetus due to the increasing number, scale and
cost of SoS projects now being developed in
defence, space and commercial aviation

businesses. Furthermore, the potential offered by
SoS solutions is opening up research into new
applications in areas such as healthcare (Hata,
Kamozaki et al. 2007; Wickramasinghe,
Chalasani et al. 2007).

Requirements management is central to system
engineering activities, and this applies equally as
well to SoS applications. We survey the SoS
literature and highlight some of the particular
requirements management issues that are
brought to the fore by SoS. SoS characteristics
that present particular challenges to requirements
engineering include emergent properties,
independent management and/or operation of the
systems that make up an SoS, and a lifecycle
that is typically more evolutionary in nature than
the traditional standalone-system lifecycle
(Simpson and Dagli 2008). It is becoming clear
that the traditional human-centric-process
approach to requirement engineering cannot be a
complete solution for SoS and that new tools and
procedures will be required, taking better
advantage of advances in Information and
Communications Technology (Keating, Padilla
et al. 2008; Lewis, Morris et al. 2009).

Self-X Capabilities. We explore a vision of how
the key artefacts of requirements engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15110966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(such as goals, requirements specifications and
as-built/as-operated system specifications) might
need to evolve, along with their supporting tools
and processes, in order to best support the
development, operation and maintenance of an
SoS. The vision is inspired by the autonomic
computing paradigm, in which computing
systems (or requirements specifications, in our
case) are equipped with self-x capabilities in
order to “manage themselves given high-level
objectives from administrators” (Kephart and
Chess 2003).

Autonomic computing is a key approach to
dealing with the increasing complexity of
computer-based systems (Murch 2004). The four
self-x capabilities that Murch believes are most
important for achieving autonomous system
behaviour are self-configuring, self-healing, self-
optimising and self-protecting behaviours. Self-
configuring abilities enable autonomous
identification and management of system-
element functional and physical characteristics.
Self-healing capabilities involve self diagnosis
and repair of detected problems within the
system. Self-optimisation occurs where the
system monitors its own performance and

decides by itself how to improve execution.
Finally, self-protection is about the system
defending itself from malicious attacks from
external entities. Other self-x values, including
self-adaptation and self-organisation, are
discussed in the literature (Markose 2005;
Seebach, Ortmeier et al. 2007).

Figure 1 illustrates a model proposed by
(Kephart and Chess 2003) which represents an
implementation architecture of the elements in
an autonomic computing system.

Each system element consists of a managed
element and an autonomic manager. The
managed element corresponds to the classical
hardware or software configuration item, while
the autonomic manager is the part that enables
the system element to monitor the external
environment and its own ‘managed element’,
and execute plans based on their status. The
autonomic manager performs the self-x actions
through execution of policies in the monitor,
analyse, plan and execute cycle. The policies and
manner of their execution reside in the
knowledge component of the autonomic
manager.

Figure 1. Autonomic Computing Architecture

3

Research Motivation. Whilst there is a very
active research effort into understanding
autonomic computing and autonomous systems,
the target applications are predominantly
computer and IT systems (Murch 2004; White,
Hanson et al. 2004; Doyle, Kaminsky et al.
2005). Our motivation here is to explore the
potential for carrying across ideas from
autonomic computing to requirements eng-
ineering for SoS applications. Specifically, we
consider how SoS elements and their associated
requirement engineering artefacts might be
equipped with self-x capabilities such as self-
configuration and self-optimisation, in order to
address key SoS requirements management
issues. Rather than setting out a solution
however, this paper is concerned with
understanding requirements for SoS
requirements management, and exploring the
capabilities that will be required.

Present requirements models in the literature still
rely primarily upon human-centric processes in
specification of requirements or goals (Kephart
and Chess 2003). We would agree that there is
still a role for human involvement in specifying
goals in SoS but we suggest that this task also
needs to become part of the autonomous
behaviour of the SoS. In fact, the human role
will more so be the provision of global goals for
the SoS. The SoS will treat these global goals as
inputs, analyse them, plan their allocation
amongst elements of the SoS, assess the SoS
capability to achieve the goals, and monitor
achievement of the goals by the SoS. Where the
SoS believes it does not have the capability to
meet a goal, it could quite possibly present
necessary goals or requirements to the human
operator which identify new SoS elements that
need to be incorporated into the SoS architecture
to add desired functionality.

The self-configuring behaviour is represented by
the ability of the SoS to manage its own
requirements and goals, thus reducing the
complexity of the workload on the human
operator. Furthermore, the ability of the SoS to
ensure meaningful utility of its system elements
illustrates the self-optimising behaviour of the
SoS.

We see the above approach addressing certain
key issues that exist in engineering of SoS.
Questions that immediately arise from the
central issues we consider in this paper are:

(1) In what ways might we imbue SoS with the
ability to accurately capture, within goals and
requirements, evolving SoS needs?

(2) How may we improve means of mapping the
goals and requirements to the realised SoS
implementation?

We return to these questions in later sections of
the paper.

The remainder of this paper is arranged in the
following manner. In Section 2 we review the
literature on the different types of SoS that have
been identified, their key characteristics, and the
engineering challenges they present. We then go
on to present what we perceive as the key
characteristics of SoS in enabling self-x
requirement behaviours. Section 3 summarises
the nature of artefacts under different approaches
to requirements engineering, as background to
later discussion. We then marry our thoughts
from these two sections in Section 4
(“Requirements in SoS”) and discuss how
enabling self-x behaviour of goals and
requirements may address some of the current
SoS challenges. We then briefly discuss our
intended research and further work in Section 5.
In the final section we present our conclusions
from this paper.

2. SYSTEM OF SYSTEMS

Definition of an SoS? The definition of an SoS
is, in itself, a matter of some conjecture. Maier
noted in 1998 that there was “no widely
accepted definition of its meaning” (Maier 1998)
and we would suggest this still holds true today.
A key issue in the discussion relates to how we
differentiate between the definition of a system
and the definition of an SoS.

The ISO/IEC 15288:2008 Systems and software
engineering — System life cycle processes
standard defines a system as:

System - combination of interacting elements
organized to achieve one or more stated
purposes.

Further, the standard then defines each element
of a system as:

System Element - member of a set of elements
that constitutes a system.

Notes in the standard clarify that a “system
element can be hardware, software, data,
humans, processes (e.g., processes for providing

service to users), procedures (e.g., operator
instructions), facilities, materials, and naturally
occurring entities (e.g., water, organisms,
minerals), or any combination.”

We take the ISO/IEC 15288:2008 definitions of
a system and system element as sufficient, as
these definitions are very mature and have
resulted from extensive consideration, both prior
and during, the preparation of the standard.

Now we consider SoS definitions from the
literature. (Jamshidi 2009) presents a number of
definitions sourced from the literature, including
the following:

“System-of-systems integration is a method to
pursue development, integration,
interoperability, and optimization of systems to
enhance performance in future battlefield
scenarios [Pei, 2000];

Systems of systems exist when there is a
presence of a majority of the following five
characteristics: operational and managerial
independence, geographic distribution, emergent
behavior, and evolutionary development
[Jamshidi, 2005];

Systems of systems are large-scale concurrent
and distributed systems that are comprised of
complex systems [Jamshidi, 2005; Carlock and
Fenton, 2001];

SoSE involves the integration of systems into
systems of systems that ultimately contribute to
evolution of the social infrastructure [Luskasik,
1998].”

Jamshidi then proceeds to offer a further
definition whereby “systems of systems are
large-scale integrated systems which are
heterogeneous and independently operable on
their own, but are networked together for a
common goal”(Jamshidi 2009).

In addition, (Sauser and Boardman 2008)
include the term of autonomy. Their definition
of the desired autonomy is related to the SoS
constituent systems having the “ability to make
independent choices”.

A final definition worth reviewing is that from
the US DoD who define an SoS as “a set or
arrangement of systems that results when
independent and useful systems are integrated
into a larger system that delivers unique
capabilities” (DoD 2008).

We see there are a number of common themes in

these definitions including the integration of
constituent systems and a sense that the
constituent systems still operate to some extent
independently, although all should be
collaboratively working toward SoS goals.
Additionally, the notion of evolutionary
behaviour is included to highlight one of the key
differences from classic systems; namely, that
the lifecycle is not a single pass through the
engineering process but is more akin to natural
systems, where change is an expected
behavioural trait. Associated with this
evolutionary behaviour is the property of
emergence where some SoS behaviours are
derived from the combination of the constituent
systems, but not attributable in a direct sense to
one or more of these constituent systems.

There is also debate surrounding the
characteristics that may be associated only with
SoS, as opposed to being associated with any
system. The suggestion here is a taxonomic one,
whereby SoS may be differentiated from other
non-SoS systems by the inclusion or exclusion
of certain characteristics. (Maier 1998) suggests
that geographical location and component
system complexity, are not appropriate
classifiers as they do not meet “the test of being
discriminating characteristics for distinctly
different design approaches, when the
appropriate examples are considered.” However
others, as evidenced in (Jamshidi 2009) do see
these characteristics as forming part of a generic
SoS definition.

The preferred definition that we would propose
is of an SoS being:

A networked group of multi-scale SoS elements,
which exhibit independence and diversity, but
evolve together for a set of common goals.

We introduce the term ‘SoS Element’ in an
attempt to remove the ambiguity and confusion
that often occurs through the term system, or
even constituent system. In cases, where an SoS
element is itself an SoS, a suitable nomenclature
for each SoS will assist in removing confusion
about which SoS is the subject.

Furthermore, we choose the use of system-of-
systems as opposed to the plurality of systems-
of-systems as we suggest that in a practical
sense, as opposed to a theoretical sense, there
remains a boundary to our SoS, even though it is
made up of very many individual SoS elements.
Therefore, ultimately there is an overall singular

5

SoS boundary between the SoS and the external
environment. By multi-scale we acknowledge
that an SoS may have certain SoS elements that
do not warrant the ‘large-scale’ definition.
However we would suggest that these smaller
scale SoS elements may be just as relevant and
significant to the SoS because of other
characteristics, such as complexity or
evolutionary nature etc. For example, an
autonomous Unmanned Aerial Vehicle (UAV),
in some hypothetical Future Combat SoS, may
be viewed as an essential element due to its
multi-role capabilities but would not necessarily
be described, in itself, as a large-scale system.
Certain independent SoS elements may
additionally for example, at some point in time,
evolve into an SoS within the overall SoS e.g.
our previous individual UAV may become
grouped with other unmanned, autonomous
systems to form an SoS within the Future
Combat SoS. Indeed the converse may equally
occur. Independence and diversity reflect, and
allow for, autonomous behaviour within the SoS.
Explicit in our definition is the notion that the
SoS is evolutionary in nature and change is
expected as a usual element of the SoS lifecycle.
Finally we allow for the SoS to exist in response
to the achievement of one or more goals.
Otherwise, why would the SoS exist? ‘Goal’
and ‘requirement’ are both used within
requirements engineering. Our approach is to
primarily talk of goals, with ‘requirement’
viewed as a specialisation of ‘goal’.

So, now in the next section, we turn to reviewing
the key characteristics that have been identified
in the SoS definitions.

Characteristics of SoS. The term
‘characteristics’ is used here interchangeably
with other terms in the literature, such as
‘properties’ (Bjelkemyr, Semere et al. 2007).

One characteristic of many SoS’s is that one or
more of their elements are managed and/or
operated by different organizations. For
example, (Maier 1998) gives this as one of the
defining characteristics of an SoS. Indeed,
(Maier 1998) asserts that a system without
operational and managerial independence of its
elements is not an SoS. Additionally, he claims
that the validity of these two properties is the
definitive classification of a system as an SoS,
“no matter the complexity of the subsystems.”
The essence of Maier’s operational and
managerial independence is the concept that the

SoS elements are capable of, and further, do
operate independently. So, while the SoS
elements have some joint purpose, they are
capable of separate operation, with individual
purpose, if at some point they were no longer
part of the SoS. By way of contrast, Maier does
not believe that other proposed characteristics
such as complexity are suitable for
differentiating between SoS and non-SoS
instances. Maier is suggesting that complexity,
whether low or high, is not a discriminating
characteristic between SoS and non-SoS
systems; not that SoS or non-SoS may in fact be
complex entities. This view is supported by
(Sheard and Mostashari 2009) who propose in
their recent work that “systems-of-systems are
often, but not always, complex systems.”
However, this view on the relationship between
SoS and complexity is questioned by other
research, including (Bjelkemyr, Semere et al.
2007) where their proposed taxonomy does
suggest SoS and non-SoS may be differentiated
by the degree to which the system in question
exhibits complexity. Indeed, (Bjelkemyr,
Semere et al. 2007) have, in their work,
suggested that operational and managerial
independence are a subset from the set of
complex properties that may arbitrarily be
exhibited by both SoS and non-SoS. The
characteristics of operational and managerial
independence have been discussed by others in
furthering the characterisation of SoS
(DeLaurentis 2008; Keating, Padilla et al. 2008;
Lewis, Morris et al. 2008).

Interestingly, operational and managerial
independence have been associated with the SoS
characteristic of autonomy (Sauser and
Boardman 2008). This is due to the sense of
independence which is engendered by the term
autonomy, with its obvious links to the
operational and managerial independence
characteristics. There are a couple of points
worth mentioning in relation to the Sauser et al
suggestion of autonomy as an SoS characteristic;
the first explicitly raised by Sauser et al, while
the second we suggest based on their work. In
the first case, Sauser et al state that “the
autonomy characteristic might express extremes
of creative disobedience and conformed
acquiescence.” This suggests that SoS
behaviour, as determined by the autonomy
characteristic of the SoS, may exist on some
continuum. (DeLaurentis 2008) supports this
viewpoint with the autonomy characteristic as

part of a three dimensional taxonomy, where a
control axis may extend from fully centralized
(no autonomous behaviour) to fully autonomous.

The evolutionary nature of SoS, with the non-
coherent changes within SoS elements, changes
in the SoS environment and unknown order of
these various changes is discussed elsewhere by
(Sauser and Boardman 2008). However, what is
not stated explicitly, but which, as our second
point, we would suggest, is the relation of
autonomy to the evolutionary characteristic.
Whilst it is desirable that the SoS elements retain
the independence attributes of the autonomy
characteristic, for the SoS is to be meaningful we
need the SoS elements to exercise their
autonomous behaviour such that the
evolutionary behaviour of the SoS is towards its
nominated purpose. There needs to be some
collaborative means by which this balance is
managed or, if need be, a determination is
agreed that the SoS element needs to be replaced
or removed from the SoS. Requirements
engineering (RE) of the SoS may form part of
the solution in addressing the issues raised by
these two points, related to the autonomy
characteristic.

Collaboration between SoS elements. We
have so far made indirect reference to a key SoS
characteristic that warrants further discussion,
namely collaboration. Collaboration between
SoS elements is vitally important if the SoS is
expected to achieve some higher order goals. It
is necessary via collaboration to support SoS
element awareness of other SoS element
functionality, expected SoS element physical
and logical states, levels of autonomy and
impact of emergence on SoS elements. (Maier
1998) proposes a taxonomic grouping of SoS’s
into three classifications based on the nature of
how their elements collaborate to set and achieve
overall SoS goals. These are directed,
collaborative and virtual. (DoD 2008) added a
fourth type: acknowledged. The 4 types will be
explained briefly below.

Virtual SoS lack any central purpose and are
generally, at most, informally guided by the
users. Maier points to the World Wide Web as a
virtual SoS example, where there is minimal
control and “the purposes the system fulfills are
dynamic and change at the whim of the users.”
Acknowledged SoS have structure at the SoS
level, constituting managerial resource and
operational objectives, as well as fully

independent SoS elements, in the sense of
ownership, funding and purpose. Some fielded
communication systems could be described as
acknowledged SoS, as centrally coordinated data
fusion takes place on communications
transceived by different types of transmission
(Very High Frequency, High Frequency,
Satellite). There is a fine line distinction
between acknowledged and collaborative SoS
types. Collaborative SoS are basically the same
as acknowledged SoS, except the collaboration
is more expected and inherent between the SoS
elements. However, the central SoS authority
still does not mandate execution of the SoS
elements. In contrast, a directed SoS is typified
by low levels of collaboration. In this case the
central SoS authority controls, mandates and so
directs the formulation and lifecycle of the SoS
elements.

Collaboration within SoS occurs for many
purposes and is required in the realisation of
many other characteristics. Some of these
characteristics have already been mentioned,
while others can be found elsewhere in the
literature (Bjelkemyr, Semere et al. 2007; Lewis,
Morris et al. 2008; Boxer and Garcia 2009).

Engineering of SoS. Some suggest that the
engineering effort to enable collaboration within
SoS may be obtained through employment of
readily available and classical systems
engineering approaches. Clark is one proponent
of the view that SoS may be managed using
“processes as documented in the SE standards:
IEEE1220, EIA/IS-632, ISO 15288, and the
guide: ISO TR 19760” without the need for
additional processes, specifically for SoS (Clark
2009). Others such as Dallal-Shwartz et al. state
that “classical methods address ‘single (stand
alone) system’ development and do not include a
network layered view, and as such, they are
ineffective for SoS execution” (Dallal-Shwartz,
Rabinowitz et al. 2009).

It is worth noting that an engineered SoS not
only comprises physical SoS elements but the
attendant design artefacts, which may include
Concept of Operations (CONOPS) and ‘As
Built’ specifications. All these artefacts require
ongoing management by owners.

An integral facet of classical systems
engineering which is used to capture and manage
functionality, physical attributes and necessary
interfaces within and between non-SoS system
elements is requirements engineering. We

7

believe that in SoS, requirements engineering
will continue to play a vital role in enabling the
necessary collaboration but, the implementation
and realisation of the requirements engineering
approach may be quite different. Table 1 lists
the four types of SoS and illustrates the
respective requirements engineering relationship
we believe exists in each case.

The breakdown of requirements engineering
characteristics by SoS type is only a first step
and a number of questions become apparent if
we are to determine appropriate requirements
engineering techniques for SoS, and
correspondingly when we should use a particular
approach. At this point, we remind the reader of
two questions posed in the Introduction
regarding implementation of SoS:

(1) In what ways might we imbue SoS with the
ability to accurately capture, within goals and
requirements, evolving SoS needs?

(2) How may we improve means of mapping the
goals and requirements to the realised SoS
implementation?

When we consider these questions in the context
of Table 1, some further questions arise,
including:

(a) As an evolving SoS generates new needs,
which in turn drive new global goals, what
structures are required to facilitate collaboration
of goals and requirements between SoS elements
and, where applicable, central authorities?

(b) What methodologies will enable this
collaboration to occur in a timely manner, and
additionally, in an optimal manner?

(c) Which roles may requirements engineering
play in SoS assessment of extant implementation
capabilities against evolving needs?

(d) How may we structure SoS Element-to-SoS
Element collaboration so that it will inform the
SoS of additional functionality required to
achieve desired global goals?

Questions (a) and (b) follow on from question
(1), while questions (c) and (d) relate to question
(2). Before we are able to go any way towards
answering these questions, we need to assess
what requirements engineering representations
are already available for consideration. This we
do in Section 3, after which, we will return to
consider these questions in the Section 4.

SoS Type RE Relationship

Directed Classical RE methods;

Each SoS element clearly defined by central RE authority;

SoS RE evolution controlled and coordinated by central authority;

Central allocation of requirements.

Acknowledged RE performed by SoS central authority;

RE also performed independently by SoS elements;

Infrequent collaboration of RE artefacts.

Collaborative RE performed by SoS elements;

Central authority limited to expression of global SoS goals;

High levels of RE collaboration;

Virtual No central authority RE input;

SoS element RE informal and irregular, if at all.

Table 1: SoS Type to RE Characteristic

3. REQUIREMENTS REPRESENTATIONS

This section briefly summarises different
approaches to requirements engineering and the
nature of the key artefacts, tools and processes

involved, as background to our discussion of
capability improvements required for SoS.

Traditional Textual Approach. The
requirements engineering methodology most
associated with classical systems engineering is

that of text based representations. This approach
is ubiquitous across many industries and is still
the method used on many projects today to
capture a customer’s desired needs in a
contractual format. However, even with the use
of data based tools such as CORE and DOORS,
the limitations of this methodology is being
recognized due to increasing complexity in
implementation (Alexander and Stevens 2002;
Weber and Weisbrod 2002). This may be due to
various factors including the number of system
elements or systems, the number of stakeholders
who may be widely distributed and where there
is incomplete definition of operators’ needs at
the beginning i.e. the system in question has to
incrementally evolve over time.

For the reasons identified above and as a result
of an observed increase in evolutionary rate of
change, due to the rise and rise of computational
and electronic capabilities, traditional text based
approaches are not directly suitable for SoS
implementations. By the term directly, we mean
that text based semantics may still play some
role but we would not expect classical text based
requirements specifications to be sufficient. The
knowledge management task quickly overloads
human capabilities, so tools and methods are
required for structuring the information, and
enabling support in the understanding and
management of it.

Scenario/Use Cases Approach. Scenarios and
use cases are further tools that are used
extensively in classical systems engineering.
Furthermore, while initially used independently
within environments such as requirement
identification workshops, they have more
recently been incorporated into software
applications, such as the OMG UML (OMG
Cited 2010) and SySML (OMG Cited 2010).
They assist in providing pictorial views of how
systems are used by various stakeholders, and
the sequence of events within the operation of a
system. (Alexander and Stevens 2002) have
raised what may be a limiting issue whereby
“when there are many use cases, fitting them
together is a serious problem.” Various
scenarios may be created from the combination
and permutation of the many use cases.

The discussion above does not imply that use
cases and scenarios have reached some “used-
by” date. They may always have a place in
illustrating some of the ways the SoS may
operate, but on their own they do not adequately

capture system dynamics such as, for example,
the range of different reconfigurations possible.
In an SoS context, there is a combinatorial
explosion in the number of different cases that
need to be considered and this also drives the
need to investigate better ways of structuring
such information. Indeed, there is research
being undertaken into improved techniques that
aim to address the problems associated with
these issues, such as scenario to requirements
mapping (Alrajeh, Ray et al. 2007).

The advent of use cases and scenarios
highlighted another instance of language
implementation which has generated further
confusion at times within the field of systems
engineering as mentioned in Section 2; namely
the use of ‘goal’ versus ‘requirement’.

Modelling Techniques. Goal-oriented
requirements analysis has become a rich source
of study, especially with its ability to assist in
formulating modelling techniques of
requirements and goals. Two important
approaches to goal oriented representation of
requirements engineering are KAOS (Dardenne,
Van Lamsweerde et al. 1993) and Non-
Functional Requirements (NFR) framework
(Mylopoulos, Chung et al. 1999). KAOS
presents formal semantics for requirements
modelling which are useful in describing many
facets of systems, including stakeholders, or
agents in the artificial intelligence sense, goals
and events. The NFR framework and KAOS
share some common concepts; namely those of
goals, agents and AND/OR/XOR relationships.
However, while KAOS is more so concerned
with the investigation of design possibilities
from high level goals, the NFR framework looks
more specifically at the non-functional
requirements and goals. (Letier 2001), who
employs KAOS in his work, suggests that the
goal oriented approach to requirements
engineering is appropriate as goals “are well
suited to support the exploration of alternative
designs involving multiple agents and the
handling of agent misbehaviours.” Furthermore,
he recognises that “the introduction of a new
agent arises from the need to fulfill some
system-wide goals.” Therefore, although an SoS
was not under consideration here, the goal
oriented approach seems to offer promise in SoS
applications.

UML and SySML (OMG Cited 2010; OMG
Cited 2010) are two modelling tools that have

9

found extensive use, in the first instance within
the software domain, and then broader use
within the larger systems engineering domain.
They provide the practitioner with object
oriented visual representations of a system,
through the use of diagrams. The types of
diagram available include behaviour, structure,
activity, use case and block – all representing
different views in an attempt to elicit greater
understanding for system stakeholders and
designers. However, UML and SySML have
weaknesses for use in requirements engineering
including, weak support for diagram
connectivity, weak support for allocation
hierarchy and, weak mathematical foundations
(Fogarty and Austin 2009).

Use of Meta-Models. In addition to the work
on KAOS and the NFR framework, there has
been very active research in the application of
meta-modelling for requirements engineering
(Navarro, Mocholi et al. 2006; Brottier, Baudry
et al. 2007; Goknil, Kurtev et al. 2008). Meta-
modelling is useful as it allows us to capture
core goal concepts and relationships. The goal
metamodel is typically constructed by
identifying goal artefacts, or characteristics,
together with any attributes associated with these
artefacts, and the relationships between artefacts.
(Goknil, Kurtev et al. 2008) for example,
construct a core metamodel where
‘Requirement’, ‘Stakeholder’ and ‘Relationship’
are some of the artefacts. The ‘Requirement’
artefact has ‘ID’, ‘Name’, ‘Description’,
‘Priority’, ‘Reason’ and ‘Status’ as attributes,
and has a relationship to the ‘Stakeholder’
artefact of one to many. Furthermore, meta-
models may be “tailored according to the
specific needs of expressiveness.” (Navarro,
Mocholi et al. 2006). This, in turn, enables
multiple models to be generated from a single
meta-model for different customizations or
instances.

A common theme in the literature is the
incorporation of other requirements engineering
techniques in the creation of meta-models, in
attempts to address shortfalls which otherwise
exist in these other techniques. So, we see
(Brottier, Baudry et al. 2007) suggest a multi-
part process where firstly, two textual
specifications are parsed into specification
models, which are instances of an Input
Language Meta-model. Secondly, these discrete
specification models undergo model
transformation into intermediate models, which

are instances of a second Core Requirements
Meta-model. Finally these intermediate models
are combined into a global requirements model.
Similarly, (Goknil, Kurtev et al. 2008) propose a
meta-model of the SySML tool with mapping to
a Core Requirements Meta-model which
“contains common concepts identified in
existing requirements modelling approaches.”
These “existing requirements modelling
approaches” include goal oriented and of course
SySML.

Although modelling and, more specifically,
meta-modelling is very useful as described
above, it is by definition not reality, and this can
lead to relationships between elements of a
system being allowed to deviate from a true
representation of the desired system. This is
recognised and mathematical foundations are
offered as a possible solution (Fogarty and
Austin 2009).

Mathematical Treatments. We briefly touch
upon current uses of mathematical treatments
(“formal methods”) within requirements
engineering research. Logical mathematical
treatment or modelling is of benefit as it assists
in ordering relationships in a structured, precise
and non-ambiguous manner. This is in contrast
to natural language usage, as typified within
classical requirements specifications, where
concepts are often defined in terms of each
other, in a circular manner. A presented analogy
is the dictionary where “words are always
defined in terms of other words, which can lead
to definitions directly or indirectly referring back
to themselves.” (Dickerson 2008)

Within the context of requirements engineering,
set-theoretic and logical semantics are used to
define rules and structure between requirement
relationships and attributes. Typical expressions
use first order logics, semi-lattices to order sets
of requirements and event calculus, which is
particularly useful in capturing temporal impacts
of discrete events. Precise semantics are a pre-
requisite for tool support.

In this section we have briefly discussed some of
the different representation approaches to
requirements engineering. We will now bring
together some of the relevant points we have
raised in this and the previous section, with the
aim of suggesting possible avenues of interest
regarding requirements engineering of SoS.

4. REQUIREMENTS IN SOS

Some Concepts. In Section 2 we identified
some questions which highlight some of the
issues faced in improving requirements
engineering of SoS. In this section we present a
preliminary review of those questions in the
context of the self-x management model initially
discussed in the Introduction. This will only be
a first step along the path of further studying our
ideas to formulate solutions to these questions.

We will first discuss question (1), together with
the associated questions (a) and (b), which are
repeated here for reference.

Question (1). In what ways might we imbue SoS
with the ability to accurately capture, within
goals and requirements, evolving SoS needs?

(a) As an evolving SoS generates new needs,
which in turn drive new global goals, what
structures are required to facilitate collaboration
of goals and requirements between SoS elements
and, where applicable, central authorities?

(b) What methodologies will enable this
collaboration to occur in a timely manner, and
additionally, in an optimal manner?

In these questions, we are not concerned with the
physical pathway or communications protocol,
although these are equally challenging in their
own right. Our interest lies in considering the
possible ways of structuring the goals and
requirements information for collaboration.
What defines or limits the goal and requirement
information we need to share between SoS
elements? Would the structure be dependent on
whether collaboration was between two SoS
elements, as opposed to an SoS element and the
central authority?

We believe Maier’s concept of managerial and
operational independence needs to exist where
goal and requirement changes will be detected
and can be managed promptly, and as necessary.
We noted previously that the concept of
managerial and operational independence is
related to the SoS characteristic of autonomy.
We suggest this is where self-x requirements
engineering capabilities may offer some benefits
to the SoS issues underlying the above
questions. Autonomy is the essential
characteristic of the autonomic computing model
shown in Figure 1. In Figure 2 below, we apply
the intent of Figure 1 to a proposed ‘autonomic
requirements manager’.

Figure 2. Autonomic Requirements Manager

11

We discuss Figure 2 by way of example.

Imagine, if you will, an Unmanned Aerial
System (UAS) with radar and infra-red imaging
capabilities. This UAS is managed and operated
by an air platform organisation, and forms part
of a border protection SoS. The UAS would
conform to our definition of an SoS element, as
detailed previously in the paper. Other SoS
elements could include a national coordination
centre, which performs the role of an ‘SoS
central authority’ as mentioned in Table 1;
ground patrol personnel within various
organizations including police, emergency
services and customs; health systems for medical
checks and maintenance of medical records; and,
sea going systems managed and operated by the
Navy and Coastguard.

The goals assigned to the UAS may take the
form of models, where each goal model is an
instance of the goal meta-model. More goals
would exist for other components of the air
platform organisation. These models may be
thought of as the ‘knowledge’ component within
the autonomic models for each SoS element.
The SoS element ‘autonomic requirements
manager’ continually performs the Monitor-

Analyse-Plan-Execute cycle. As depicted in
Figure 2, self-configuration of the air platform
organisation goals and requirements would occur
through operation of the ‘autonomic
requirements manager’. Furthermore, we would
propose that the contents of the ‘knowledge’
block imbues the SoS element with the
characteristic of self-knowledge. The collection
of goal and requirement models provides a
description of the SoS element contribution to
global SoS needs.

Figure 3 extends the concept introduced in
Figure 2 to a number of SoS elements and
illustrates some of the collaboration exchanges
which aim to address our posed questions.

The ability of the SoS to collaborate on such
issues as goal decomposition and allocation, via
the autonomous sharing and management of goal
models, brings us closer to realizing self-
configuration of the SoS. Additionally, because
this process is significantly performed through
these model driven engineering methods, we
would expect new goals to be processed in a
quicker time by the SoS, compared to current
methodologies which rely predominantly on
human assessment.

Figure 3. SoS Element Collaboration

We now turn to discuss question (2), together
with the associated questions (c) and (d) from
Section 2, which are also repeated here for
reference.

Question (2). How may we improve means of
mapping the goals and requirements to the
realised SoS implementation?

(c) Which roles may requirements engineering
play in SoS assessment of extant implementation
capabilities against evolving needs?

(d) How may we structure SoS Element-to-SoS
Element collaboration so that it will inform the
SoS of additional functionality required to
achieve desired global goals?

If we return to our example, the case may exist
where the UAS infra-red capability was not
implemented in the initial fielding of the
equipment. However, due to increases in
nocturnal border incidents, the national
coordination centre determines that an infra-red
capability within the SoS is a new goal.

In Figure 3, we show a ‘principal autonomic
manager’ and a ‘autonomic requirements
manager’. The ‘principal autonomic manager’
represents the core manager described by
(Kephart and Chess 2003) in Figure 1, with the
interfaces to the physical components; in our
example the hardware and software interfaces of
the UAS. We suggest the ‘principal autonomic
manager’ contains a library of capability models,
as well as goal-to-capability associations. These
associations give a possible insight into how
self-assessment by SoS elements may assist the
SoS in determining whether an extant capability
is available to satisfy some new goal, or whether
new SoS elements or components may be
necessary. In our example, the UAS SoS
element would determine, through
communications between the ‘autonomic
requirements manager’ and the ‘principal
autonomic manager’, as well as via collaboration
with other SoS element ‘principal autonomic
managers’, that its infra-red capability would
meet the SoS goal. The allocated goal model in
the UAS ‘autonomic requirements manager’
would be associated with the infra-red capability
model in the UAS ‘principal autonomic
manager’.

Awareness of options within the SoS, for a given
global goal implementation would allow for
optimal self-organisation of the SoS. The

capabilities of an infra-red system on a sea-based
SoS element may be superior to the UAS infra-
red capability in our border protection SoS.
Hence, self-optimising requirements engineering
behaviour may be shown by the choice of SoS
element goal allocation.

Our discussion in this section is preliminary and
has the purpose only of highlighting how self-x
requirement engineering behaviour may assist in
addressing certain SoS issues. This paper serves
to prompt further questions, and illustrates the
effort still to be undertaken. How, for example,
would a non-functional requirement fit into this
self-x requirements engineering paradigm? The
structure of the necessary goal or requirement
meta-model may hold the key, but questions like
this require further consideration. It is worth
noting that discussion also highlights other
related issues, such as configuration
management of implemented SoS, that also
require consideration. Perhaps, in time, the
UAS, like all SoS elements, will be a
Commercial-Off-The-Shelf (COTS) item with
the capability models and autonomic goal
interfaces as part of the baseline purchase, pre-
installed into the software and hardware. Will
we see, as with other interfaces, the goal meta-
model, capability models and autonomic
interfaces being defined within agreed
international standards?

5. FUTURE RESEARCH

Future Work. We intend to continue our
research into understanding the requirements
engineering issues of SoS. This research will
based around the development of a goal meta-
model which enables self-x goal and
requirement reasoning behaviour. There are
other areas of interest to us which we plan to
research, including supply chain management
and configuration management, where we
believe similar issues and questions to those
raised in SoS, may exist.

An example SoS will be chosen to investigate
validity of the proposed goal meta-model.

6. SUMMARY & CONCLUSION

In this paper we have undertaken some
preliminary steps in our journey of discovering
whether SoS can be given self-x requirements
engineering capabilities. We introduced the
autonomic computing architecture and discussed
its structure. Additionally, we posed a couple of

13

central questions related to the challenges of
goal and requirement engineering within SoS.
Following this, we proceeded to give a
comprehensive review of SoS definitions,
highlighting the many existing in the literature.
We have offered our own definition, which
includes a number of terms that we believe add
value to the ongoing discussion. It was noted in
our literature survey that there does not appear,
at this time, to be any internationally recognised
standard for SoS.

In our section on characteristics of SoS, we
showed how Maier’s operational and managerial
independence has been associated with the
characteristic of autonomy. We suggested that
autonomy is, in turn, related to the evolutionary
characteristic of SoS, in as far as autonomous
behaviour of SoS elements is such that the
evolutionary behaviour of the SoS is towards its
nominated goals. This lead to discussion around
the collaboration classification of SoS. We
reviewed the four classification types given in
the literature; directed, acknowledged,
collaborative and virtual. Then we suggested a
breakdown of requirements engineering
characteristic by these four SoS classification
types and, considered our initial SoS goal and
requirements engineering questions in the
context of this breakdown.

After a brief review of some different
requirements representations being presently
researched and applied within SoS, particularly
the use of model driven engineering approaches,
we proceeded to a discussion on how we suggest
the use of an autonomic goal management model
may enable self-x goal and requirements
engineering behaviour. We posited how this
behaviour may assist in meeting the SoS
challenges given in our central questions of the
paper. However, we demonstrated that there are
further questions and research efforts which
need to be considered on our journey.

REFERENCES

Alexander, I. F. and R. Stevens (2002). Writing
Better Requirements, Pearson Education
Ltd.

Alrajeh, D., O. Ray, et al. (2007). "Extracting
requirements from scenarios with ILP."
Inductive Logic Programming 4455: 64-
78.

Bjelkemyr, M., D. Semere, et al. (2007). "An

engineering systems perspective on
system of systems methodology." 2007
1st Annual IEEE Systems Conference:
185-191.

Boxer, P. J. and S. Garcia (2009). Enterprise
architecture for complex system-of-
systems contexts. 2009 IEEE
International Systems Conference
Proceedings, Vancouver, BC.

Brottier, E., B. Baudry, et al. (2007). "Producing
a global requirements model from
multiple requirement specifications."
11th IEEE International Enterprise
Distributed Object Computing
Conference, Proceedings: 390-401.

Clark, J. O. (2009). System of Systems
Engineering and Family of Systems
Engineering From a Standards, V-
Model, and Dual-V Model Perspective.
New York, IEEE.

Dallal-Shwartz, I., G. Rabinowitz, et al. (2009).
"Fan-out" model and methodology for
"system of systems" development. 2009
IEEE International Systems Conference
Proceedings, Vancouver, BC.

Dardenne, A., A. Van Lamsweerde, et al.
(1993). "GOAL-DIRECTED
REQUIREMENTS ACQUISITION."
Science of Computer Programming
20(1-2): 3-50.

DeLaurentis, D. A. (2008). "Appropriate
modeling and analysis for systems of
systems: Case study synopses using a
taxonomy." 2008 IEEE International
Conference on System of Systems
Engineering, SoSE 2008.

Dickerson, C. E. (2008). "Towards a logical and
scientific foundation for system
concepts, principles, and terminology."
2008 IEEE International Conference on
System of Systems Engineering, SoSE
2008.

DiMario, M. J. (2006). "System of systems
interoperability types and characteristics
in joint command and control."
Proceedings of the 2006 IEEE/SMC
International Conference on System of
Systems Engineering: 222-227.

DoD (2008). Systems Engineering Guide for
Systems of Systems. S. a. S.

Engineering. Washington, DC:
ODUSD(A&T)SSE, Office of the
Deputy Under Secretary of Defense for
Acquisition and Technology.

Doyle, R. P., D. L. Kaminsky, et al. (2005).
Autonomic computer system managing
system, has processor to transit
management of managed system from
manual control of administrator to
autonomic control of adaptive process,
when certain level of trust is built, Int
Business Machines Corp; IBM Corp.

Fogarty, K. and M. Austin (2009). "System
Modeling and Traceability Applications
of the Higraph Formalism." Systems
Engineering 12(2): 117-140.

Goknil, A., I. Kurtev, et al. (2008). "A
metamodeling approach for reasoning
about requirements." Model Driven
Architecture - Foundations and
Applications, Proceedings 5095: 310-
325.

Hata, Y., Y. Kamozaki, et al. (2007). "A heart
pulse monitoring system by air pressure
and ultrasonic sensor systems." 2007
IEEE International Conference on
System of Systems Engineering, Vols 1
and 2: 104-108.

Hata, Y., S. Kobashi, et al. (2009). "Human
health care system of systems." IEEE
Systems Journal 3(2): 231-238.

Jamshidi, M. (2009). Systems of Systems
Engineering: Principles and
Applications, CRC Press.

Keating, C. B., J. J. Padilla, et al. (2008).
"System of Systems Engineering
Requirements: Challenges and
Guidelines." Engineering Management
Journal 20(4): 24-31.

Kephart, J. O. and D. M. Chess (2003). "The
vision of autonomic computing."
Computer 36(1): 41-+.

Letier, E. (2001). Reasoning about Agents in
Goal-Oriented Requirements
Engineering. Departement d'Ingenierie
Informatique, Universite Catholique de
Louvain. PhD Thesis.

Lewis, G., E. Morris, et al. (2008). "Engineering
systems of systems." 2008 2nd Annual
IEEE Systems Conference: 403-408.

Lewis, G. A., E. Morris, et al. (2009).
Requirements engineering for systems
of systems. 2009 IEEE International
Systems Conference Proceedings,
Vancouver, BC.

Maier, M. W. (1998). "Architecting principles
for systems-of-systems." Systems
Engineering 1(4): 267-284.

Markose, S. M. (2005). "Computability and
evolotionary complexity: markets as
complex adaptive systems (CAS)." The
Economic Journal 115(504): F159-F192.

Murch, R. (2004). Autonomic Computing,
Prentice Hall.

Mylopoulos, J., L. Chung, et al. (1999). "From
object-oriented to goal-oriented
requirements analysis."
Communications of the ACM 42(1): 31-
37.

Navarro, E., J. A. Mocholi, et al. (2006). "A
metamodeling approach for
requirements specification." Journal of
Computer Information Systems 46: 67-
77.

OMG. (Cited 2010). "SySML Specification."
from http://www.omgsysml.org/.

OMG. (Cited 2010). "UML Specification." from
http://www.uml.org/.

Sauser, B. and J. Boardman (2008). "Taking
hold of system of systems management."
EMJ - Engineering Management Journal
20(4): 3-8.

Seebach, H., F. Ortmeier, et al. (2007). Design
and construction of organic computing
systems. 2007 IEEE Congress on
Evolutionary Computation, Vols 1-10,
Proceedings. New York, IEEE: 4215-
4221.

Sheard, S. A. and A. Mostashari (2009).
"Principles of Complex Systems for
Systems Engineering." Systems
Engineering 12(4): 295-311.

Simpson, J. J. and C. H. Dagli (2008). "System
of systems: Power and paradox." 2008
IEEE International Conference on
System of Systems Engineering, SoSE
2008.

Weber, M. and J. Weisbrod (2002).
"Requirements engineering in

15

automotive development - Experiences
and challenges." IEEE Joint
International Conference on
Requirements Engineering, Proceedings:
331-340.

White, S. R., J. E. Hanson, et al. (2004). An
architectural approach to autonomic
computing. Los Alamitos, IEEE
Computer Soc.

Wickramasinghe, N., S. Chalasani, et al. (2007).
"Healthcare system of systems." 2007
IEEE International Conference on
System of Systems Engineering, Vols 1
and 2: 312-317.

BIOGRAPHY

Alisdair MacDiarmid is currently undertaking a
PhD in Systems Engineering at the University of
Queensland. His present research interests
include the application of requirements
engineering methods to complex systems,
including System of Systems (SoS); autonomous
systems; and, formal methods. Alisdair has
extensive experience as a practicing systems
engineer, gained from involvement on defence
projects and from work performed in the
commercial aerospace industry.

Dr Peter Lindsay is Boeing Professor of Systems
Engineering at the University of Queensland. He
has held academic and research positions at the
University of NSW, the University of
Manchester and the University of Illinois at
Urbana-Champaign. He is co-author of two
books on formal specification and verification of
software systems. He has been involved with
safety and security critical applications in areas
such as air traffic control, embedded medical
devices, ship-board defence, emergency service
dispatch systems, and an international
diplomatic network. His current research
interests include engineering of complex
systems, safety-critical systems, and formal
methods of system development.

