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ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) is a diarrheagenic pathogen
that colonizes the gut mucosa and induces attaching-and-effacing lesions. EHEC em-
ploys a type III secretion system (T3SS) to translocate 50 effector proteins that hijack
and manipulate host cell signaling pathways, which allow bacterial colonization and
subversion of immune responses and disease progression. The aim of this study was
to characterize the T3SS effector EspW. We found espW in the sequenced O157:H7
and non-O157 EHEC strains as well as in Shigella boydii. Furthermore, a truncated
version of EspW, containing the first 206 residues, is present in EPEC strains belong-
ing to serotype O55:H7. Screening a collection of clinical EPEC isolates revealed that
espW is present in 52% of the tested strains. We report that EspW modulates actin
dynamics in a Rac1-dependent manner. Ectopic expression of EspW results in forma-
tion of unique membrane protrusions. Infection of Swiss cells with an EHEC espW
deletion mutant induces a cell shrinkage phenotype that could be rescued by Rac1
activation via expression of the bacterial guanine nucleotide exchange factor, EspT.
Furthermore, using a yeast two-hybrid screen, we identified the motor protein Kif15
as a potential interacting partner of EspW. Kif15 and EspW colocalized in cotrans-
fected cells, while ectopically expressed Kif15 localized to the actin pedestals follow-
ing EHEC infection. The data suggest that Kif15 recruits EspW to the site of bacterial
attachment, which in turn activates Rac1, resulting in modifications of the actin cyto-
skeleton that are essential to maintain cell shape during infection.

KEYWORDS EHEC, EPEC, Kif15, Rac1, Rho GTPase, actin, espW

The human pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropatho-
genic E. coli (EPEC) (1) and the mouse pathogen Citrobacter rodentium (CR) (2)

constitute a bacterial family that colonizes the intestinal mucosa and induces the
formation of attaching-and-effacing (A/E) lesions. The A/E lesions are characterized by
effacement of the brush border microvilli, intimate attachment of the bacteria to the
apical membrane of host epithelial cells, and induction of actin polymerization beneath
the attached bacteria (3). EPEC, EHEC, and C. rodentium employ a filamentous type III
secretion system (T3SS) (4), located within the locus of enterocyte effacement (LEE) (5),
to translocate a plethora of effector proteins directly from the bacterial cell into host
cell cytoplasm (6). Of the translocated effectors, five (Tir, EspZ, EspH, EspG, and Map) are
LEE encoded. The effector Tir plays a key role in formation of A/E lesions in vivo (7) and
in actin-rich pedestals in cultured cells (8). Following clustering by the LEE-encoded
outer membrane adhesin intimin, EPEC Tir (TirEPEC) and C. rodentium Tir (TirCR) bind Nck,
while EHEC Tir (TirEHEC) binds the adaptor proteins IRTKS and/or IRSp53 (9, 10) and
recruits the effector TccP/EspFu (11, 12). The Tir signaling pathways then converge on
N-WASP and the ARP2/3 complex, leading to actin polymerization (13).
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The actin cytoskeleton, which is targeted by many bacterial pathogens, is essential
for cell integrity, motility, membrane trafficking, and shape changes (14). Rho GTPases,
which belong to the family of Ras-related small GTPases, are key regulators of various
cellular processes, including actin polymerization, microtubule dynamics, vesicle traf-
ficking, cell polarity, and cytokinesis (15). The best-characterized members of the Rho
GTPase family are RhoA, Rac1, and Cdc42, the activation of which leads to the assembly
of stress fibers, lamellipodia/ruffles, and filopodia, respectively (16). Switching of Rho
GTPases from an inactive GDP-bound state to an active GTP-bound state is mediated
by guanine nucleotide exchange factors (GEFs). The switch back from the active GTP to
an inactive GDP-bound state is regulated by GTPase-activating proteins (GAPs). In their
GTP-bound conformation, Rho GTPases interact with and activate downstream target
effectors, such as serine/threonine kinases, tyrosine kinases, lipid kinases, lipases,
oxidases, and scaffold proteins (17). As Rho GTPases are important regulators of the
actin cytoskeleton, bacterial pathogens have evolved strategies to subvert their signal-
ing during infection.

Bacterial guanine nucleotide exchange factors, which belong to the SopE family, act
as bacterial Rho GEFs to activate the host Rho GTPase (18). The A/E pathogen effector
Map induces filopodia via Cdc42 at the site of attachment (19, 20), EspM promotes
stress fibers via RhoA activation (21), and EspT triggers ruffle and lamellipodia formation
by Rac1 (22). A/E pathogens also translocate effectors that inactivate Rho GTPases. EspH
globally inactivates DH-PH domain mammalian Rho-GEFs but not the bacterial Rho-
GEFs (23). Tir antagonizes the activity of Map as it downregulates formation of filopodia
(24), while EspO2 interacts with EspM2 and blocks formation of the stress fibers (25).

Using a transfection-based screen, we recently identified EspWEHEC as a regulator of
actin filament organization. EspW has been shown previously to be secreted by EHEC
and translocated into mammalian cells in a type 3-dependent manner (26). However,
until now, no function has been identified for this effector. The aim of this study was
to investigate the role of EspW during EHEC infection and its putative role as a Rho
GTPase regulator.

RESULTS
Screening of espW in EPEC clinical isolates. EspW is a 352-amino-acid effector and

is located in the SP17 pathogenic island, which also encodes EspM2 and members of
the NleG family (see Fig. S1A in the supplemental material). So far, EspW has been
reported only in EHEC O157:H7 and EPEC B171 (O111:H�) strains, with no homologs
among other bacterial species. Using the BLAST algorithm with EspW as the index
protein, we confirmed that it was present in the sequenced EHEC O157:H7 strains, in
five non-O157:H7 EHEC strains (O111:H�, O111:H11, O26:H11, O103:H2, and O103:H25),
and in Shigella boydii (Fig. S1B). Furthermore, a putative coding sequence for a
truncated version of EspW containing the N-terminal 206 amino acids (EspW1–206) was
present in two EPEC strains (CB9615 and RM12579) belonging to serotype O55:H7 (Fig.
S2), a progenitor of EHEC O157:H7 (27). In order to determine if either the long or short
versions of espW are present in other EPEC strains, we screened by PCR a collection of
132 clinical isolates available in our laboratory. This revealed that the long version of
espW is present in 52% of the tested stains (Table 1). Furthermore, espW1–206 was found
in 10 of the 132 (8%) strains tested (Table 1). Interestingly, 9 of the 10 espW1–206 genes
belonged to serotype O55:H7. Neither of the espW variants was found in C. rodentium
and the prototype EPEC strain E2348/69, while the prototype atypical EPEC strain
E110019 (O111:H9) contains the long version of espW.

EspW interacts with the C terminus of Kif15. In order to identify the EspW host
cell partner protein, we performed a yeast two-hybrid screen using a HeLa cell cDNA
library as bait and identified the carboxy terminus of Kif15, Kif151092–1368, as a putative
partner. The interaction was confirmed by direct yeast two-hybrid (DY2H). Importantly,
Kif151092–1368 interacted with the full-length EspW (Fig. 1B) but not with EspW1–206. To
further map the binding site of EspW to Kif15, five Kif15 truncation fragments were
generated and tested by DY2H (Fig. 1A). An empty pGAD-T7 plasmid was used as a
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negative control. No growth was observed on selected media (QDO) when yeast were
cotransformed with EspW and Kif151142–1347, Kif151142–1368, or the negative control. In
contrast, growth was seen following cotransformation with EspW and Kif151092–1347 or
Kif151092–1142 (Fig. 1C), suggesting that the C-terminus coil-coil domain of Kif15 plays
an important role in the interaction with EspW.

Kif15 localizes to the pedestals and colocalizes with EspW. We aimed to deter-
mine the localization of Kif15 during EHEC infection. However, we were unable to
detect endogenous Kif15, and localization of overexpressed Kif15 was difficult to detect
due to poor transfection efficiency. Accordingly, we determined the localization of
ectopically expressed Kif151092–1368, used in the DY2H, following EHEC infection of
transfected Swiss 3T3 cells. Cells expressing myc-green fluorescent protein (GFP)
were used as a negative control. Immunofluorescence (IF) microscopy revealed that
Kif151092–1368, but not GFP, localized to the actin pedestals at the site of EHEC
attachment (Fig. 1D). Interestingly, cells transfected with Kif151092–1368 and infected
with an EHEC ΔespW strain present a similar recruitment of Kif151092–1368 into the
pedestal (Fig. S3), suggesting EspW is not required for localization of Kif15 to the
pedestal.

We next aimed to determine if Kif151092–1368 and EspW colocalized. For this, we first
tried to hemagglutinin (HA) tag EspW in EHEC; however, no signal could be detected by IF.
Therefore, we cotransfected cells with pRK5-HA-espW and pRK5-Myc-kif151092–1368. pRK5-
HA-mCherry served as a negative control. EspW and Kif151092–1368 colocalized, whereas
no colocalization was observed between mCherry and Kif151092–1368 (Fig. 1E). Interest-
ingly, EspW and Kif151092–1368 were also present at membrane sites showing actin
reorganization.

EspW triggers actin remodelling in a Rac1-dependent manner. In order to
determine if EspW is responsible for the observed actin reorganization (Fig. 1E), we
transfected cells with pRK5-HA-espW, pRK5-HA-espW1–206, or pRK5 encoding GFP as a
negative control. Immunofluorescence staining (Fig. 2A) and scanning electron micros-
copy (SEM) (Fig. 2B) revealed that the full-length EspW triggered formation of either
membrane ruffles (13% of transfected cells) or flower-shaped structures (42% of
transfected cells), which were rich in actin and colocalized with EspW (Fig. 2A to C).

TABLE 1 Distribution of espW and espW1–206 among 132 clinical EPEC isolatesa

Serogroup
(no. of strains)

No. of strains
carrying espW Serotype (no. of strains/total no. of strains tested)

ONT (3) 3 H7 (1/1); H45 (1/1); H� (1/1)
O13 (1) 1 H� (1/1)
O26 (13) 9 H� (4/8); H11 (5/5)
O49 (1) 1 H� (1/1)
O55 (24) 10 H� (3/11); H6 (5/5); H7 (1/5); H34 (1/3)
O86 (5) 3 H8 (0/2); H34 (3/3)
O104 (1) 1 H2 (1/1)
O109 (1) 1 H9 (1/1)
O111 (12) 5 H� (2/4); H2 (3/3); H9 (0/1); H12 (0/1); H21 (0/1); H25 (0/2)
O114 (3) 2 H� (0/1); H2 (2/2)
O119 (29) 14 H2 (4/11); H4 (0/1); H6 (10/17)
O123 (1) 1 H� (1/1)
O125 (3) 1 H6 (1/3)
O126 (4) 1 H� (1/1); H27 (0/3)
O127 (8) 3 H� (1/1); H6 (2/3); H27 (0/1); H40 (0/3)
O128 (6) 4 H� (0/1); H2 (4/4); H35 (0/1)
O142 (7) 5 H6 (3/3); H34 (2/4)
O153 (1) 1 H� (1/1)
O154 (1) 1 H9 (1/1)
O177 (1) 1 H11 (1/1)
aespW was present in 68 out of 132 EPEC strains screened; 10 out of the 64 PCR-negative strains (O26:H� [1
strain], O55:H� [5 strains], and O55:H7 [4 strains]) were espW1–206 positive. The following strains were espW
and espW1–206 negative: O2:H49 (1 strain), O6:H19 (2 strains), O45:H� (1 strain), O85:H� (1 strain), and O118:
H5 (2 strains).
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EspW1–206 showed aggregative localization dispersed within the cell with an actin
structure similar to those seen in the GFP control cells (Fig. 2A and B).

In order to determine if EspW-induced actin remodelling requires RhoA, Rac-1, or
Cdc42, we cotransfected HeLa cells with pRK5-HA-espW and a dominant negative of

FIG 1 Kif15 interacts with EspW. (A) Schematic representation of Kif15. (B) Direct yeast two-hybrid assay revealed that EspW,
but not EspW1–206, interacts with Kif151092–1368. (C) EspW interacts with Kif151092–1368, Kif151092–1347, and Kif151092–1142, but not
Kif151142–1368 and Kif151142–1347, by direct yeast two-hybrid assay. (D) Following infection of transfected Kif151092–1368 (green)
cells, Kif151092–1368 localized at the actin (red) pedestals (white arrows), under adherent EHEC (magenta). DNA was visualized
by Hoechst staining (blue). (E) Ectopically expressed Kif151092–1368 (green) colocalized with EspW (red) and actin (magenta), but
not mCherry, in Swiss 3T3 cells. Bar, 10 �m.
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FIG 2 EspW induces actin rearrangement. (A) Ectopic expression of HA-EspW (green) induces either actin (red) ruffles or
flower-shaped structures. No actin modification can be observed with HA-EspW1–206 or GFP (green). DNA was visualized by
Hoechst staining (blue). White arrows indicate colocalization of EspW with actin. Bar, 5 �m. (B) SEM of transfected cells. (C)
Quantification of actin structure observed in transfected cells.
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each of the GTPases (Rac1N17, RhoAN19, and Cdc42N17). The cotransfected cells were
assessed by IF for the presence of actin-rich flower-shaped structures. This revealed that
inactivation of either RhoA or Cdc42 had no effect on the ability of EspW to induce actin
reorganization (Fig. 3A). In contrast, inhibition of Rac1 significantly compromised the
ability of EspW to induce actin rearrangements (Fig. 3A and B).

Deletion of espW induces cell shrinkage that could be overcome by Rac1
activation. To assess the role of EspW during infection, cells were infected for 3 h with
wild-type (WT) EHEC, an EHEC ΔespW strain, or an EHEC ΔespW strain complemented
with pEspW. Immunofluorescence reveals that infection with the EHEC ΔespW strain

FIG 3 EspW-induced actin reorganization is Rac1 dependent. (A) Cotransfection of HA-EspW (red) with myc-Rac1N17 (green), but not with
GFP, Myc-Cdc42N17, and Myc-RhoAN19, inhibited actin (blue) rearrangement (white arrow). Bar, 10 �m. (B) Quantification of cotransfected
cells showing actin rearrangement. The percentage was calculated by counting 100 transfected cells (in triplicate) from three independent
experiments. Results are presented as means � SD. *, P � 0.05.
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induced significant cell shrinkage (56%) compared to infection with WT EHEC (12%)
(Fig. 4A). Partial complementation was observed for the cell infected with the EHEC
ΔespW strain complemented with pEspW (32%) (Fig. 4C).

To determine if the cell shrinkage was linked with lack of activation of Rac1, cells
were infected with an EHEC ΔespW strain overexpressing EspT, an effector known to
activate Rac1 (22). The EspTW/A mutant, lacking the GEF activity of EspT, was used as a
negative control (Fig. 4B). Expression of WT EspT significantly reduced cell shrinkage
(31%) compared with cells infected with the EHEC ΔespW strain complemented with
pEspTW/A (50%) (Fig. 4C).

In order to confirm that the cell shrinkage was caused by the lack of Rac1 activation,
we chemically induced activation of Rac1 during infection by adding 100 nM sphin-

FIG 4 EHEC ΔespW mutant induces cell shrinkage. (A) Shrinking of cells (visualized by IF, with actin in green and DNA in blue, and SEM)
was observed following infection with an EHEC ΔespW strain in comparison to cells left uninfected or infected with WT EHEC (red) or
an EHEC ΔespW strain complemented with pEspW. Bar, 5 �m. (B) Cells infected with the EHEC ΔespW strain expressing EspTw/A shrunk
compared to cells infected with the EHEC ΔespW strain expressing WT EspT. Bar, 5 �m. (C) Quantification of phenotype observed in
panel B (100 infected cells in triplicate) following infection with WT EHEC, an EHEC ΔespW strain, and EHEC ΔespW strains expressing
EspW (ΔespW/EspW), EspT (ΔespW/EspT), and EspT W/A (ΔespW/EspT W/A). *, P � 0.05.
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gosine 1-phosphate (S1P) to the culture medium (28) and quantified the number of
shrunken cells after infection (Fig. 5A and B). S1P treatment significantly reduced
shrinking of cells infected with the EHEC ΔespW strain from 53% to 33% (Fig. 5B). These
results suggest that EspW activates Rac-1, which stabilizes the shape of infected cells.

DISCUSSION

In this study, we found that espW is common among clinical EHEC and EPEC isolates;
an espW orthologue is also found in Shigella boydii. The majority of the EPEC strains
contain the full-length espW gene, while others, mainly belonging to EPEC O55:H7,
encode a truncated EspW isoform. Although the truncated form of EspW does not
induce actin reorganization, it is possible that it has other biological functions.

Using a two-hybrid screen, we identified Kif15 as a specific partner of the full-length
EspW isoform. Human Kif15 is a multimeric protein of 1,388 amino acids which belongs
to the kinesin family (29). It has an N-terminal motor domain (residues 19 to 375)
followed by a long alpha-helical rod-shaped stalk predicted to form an interrupted
coiled coil. The C-terminal region has been shown to contain a putative actin interact-
ing region (residues 743 to 1333) (30). Moreover, in HeLa cells, Kif15 has been shown
to concentrate on spindle poles and microtubules in early mitosis and to localize with
actin in late mitosis (31). One possibility is that Kif15 switches binding from one filament
system to the other, while another possibility is that Kif15 associates with the most
abundant cytoskeletal filament system (31). In this study, we mapped the EspW binding
site to a segment of Kif15, amino acids 1092 to 1142. This segment is a known binding
site for both Ki-67 (1017 to 1237) and actin (743 to 1333). The exact role of Kif15 during
infection is still unclear, as labeling of EspW in EPEC did not allow us to localize the
effector during infection. However, its recruitment to the pedestal during EPEC infec-
tion is independent of EspW. We therefore hypothesize that Kif15 recruits EspW and
determines its spatial distribution, similar to the function of NHERF1 or NHERF2 toward
the effector Map (32).

EPEC and EHEC, like many other enteric pathogens, target actin cytoskeleton as part
of their infection strategy. The hallmark of EPEC and EHEC infection of cultured cells is
formation of actin pedestal-like structures underneath the attached bacteria. In EPEC,
formation of these structures is dependent on the effector Tir and activation of N-WASP
and independent of activation of mammalian Rho GTPases (33). However, EspH, which
is a global inhibitor of endogenous mammalian GEFs (23), is required for efficient actin

FIG 5 Rac1 activation prevents cell shrinkage. (A) Immunofluorescence microscopy of Swiss cells
(visualized with actin in green and DNA in blue) infected (magenta) with the WT or ΔespW EHEC strain
in the presence or absence of 100 nM S1P. The presence of S1P prevented cell shrinkage. Bar, 10 �m. (B)
Quantification of phenotype observed in panel B (100 cells in triplicate) infected with the WT or ΔespW
EHEC strain in the presence (white bar) or absence (black bar) of S1P. *, P � 0.05.

Sandu et al. Infection and Immunity

September 2017 Volume 85 Issue 9 e00244-17 iai.asm.org 8

 on F
ebruary 12, 2018 by LO

N
D

O
N

 S
C

H
O

O
L O

F
 H

Y
G

IE
N

E
 &

 T
R

O
P

IC
A

L M
E

D
IC

IN
E

http://iai.asm
.org/

D
ow

nloaded from
 

http://iai.asm.org
http://iai.asm.org/


pedestal elongation (34), suggesting that Rho GTPases are partially involved in this
process. Importantly, EPEC and EHEC translocate several effectors, belonging to the
SopE family, which have a GEF activity toward mammalian Rho GTPases (18). In vitro,
EspT, which activates Rac1, triggers formation of ruffles or lamelipodia, and in vivo it
induces expression of KC and tumor necrosis factor alpha (TNF-�) (35). In this study, we
found that EspW also appears to activate Rac1, either directly or indirectly, in a
compartmentalized fashion; this is in contrast to EspT, which has a more global effect.
Nonetheless, the phenotype of espW deletion could be partially complemented by espT,
suggesting some activity overlap. Due to poor solubility, we were not able to identify
whether EspW directly activates Rac1. Importantly, multiple biological systems revealed
that activation or inhibition of the Rho GTPase has to be fine-tuned both spatially and
temporally. Their overactivation or inhibition have detrimental effects leading to acti-
vation of alarm signals (36) or apoptosis (37). During EPEC infection, activation of Cdc42
is limited to the bacterial binding sites (19), followed by rapid inhibition by Tir (19). The
effector EspO, expressed by a selection of EPEC and EHEC strains, has been reported to
inactivate EspM2 (RhoA GEF). Interestingly, deletion of espO1 and espO2 leads to cell
shrinkage in an EspM2-dependent manner (25). Rac1 and RhoA have antagonistic
effects (38). Interestingly, we found that cells infected with EHEC expressing EspM1 and
EspM2 but missing EspW undergo cell shrinkage. This cell shrinkage phenotype was not
associated with decreased cell attachment or with any signs of cell death, including
nucleus condensation, loss of membrane permeability, or membrane blebbing, for the
duration of the experiment. Interestingly, we found that EPEC and EHEC strains
expressing EspM also express either EspT or EspW, suggesting that activation of RhoA
and Rac1 need to be coordinated during infection. Furthermore, deletion of Rac1
impairs focal adhesion complex formation and cell spreading (39). Taken together,
these observations suggest that EPEC and EHEC have developed a complex mechanism
to control cell shape by manipulating the localization and activation of RhoA and Rac1.
Any dysregulation leading to an uncontrolled activation leads to dramatic cell mor-
phology changes. Further studies will be needed in order to understand the spatio-
temporal regulation of the Rho GTPase during EPEC and EHEC infections.

MATERIALS AND METHODS
Bacterial strains, growth conditions, and cell culture. The bacterial strains used in this study and

their origins are listed in Table 2. Bacteria were grown from a single colony in Luria-Bertani (LB) broth in
a shaking incubator (200 rpm) at 37°C for 18 h or on agar supplemented with ampicillin (100 �g/ml) or
kanamycin (50 �g/ml). For cell infections, EHEC strains were grown in LB in a shaking incubator (200 rpm)
at 37°C for 8 h and then subcultured (1/500) in Dulbecco’s modified Eagle’s medium (DMEM) with low
glucose and grown overnight at 37°C without agitation in a 5% CO2 incubator (primed culture).

Saccharomyces cerevisiae (AH109) was grown in YPDA medium (20 g/liter Difco peptone, 10 g/liter
yeast extract, 2% glucose, and 0.003% adenine hemisulfate) for 48 h at 30°C. For the yeast two-hybrid
screen, clones containing interaction partners were selected on high-stringency quadruple-dropout
(QDO) medium lacking leucine, tryptophan, histidine, and adenine in the presence of X-�-Gal (Clontech
Laboratories, Inc.). Successful transformation with bait and prey plasmids was selected by plating on
double-dropout (DDO) medium lacking leucine and tryptophan. Bait-prey interactions were assessed by
streaking the transformed clones from DDO onto QDO selection medium.

Swiss 3T3 and HeLa cells were maintained in DMEM with 4,500 mg/ml glucose (Sigma) or DMEM with
1,000 mg/ml glucose (Sigma), respectively, supplemented with 10% (vol/vol) heat-inactivated fetal calf
serum (FCS; Gibco), 4 mM GlutaMAX (Gibco), and 0.1 mM nonessential amino acids at 37°C in 5% CO2.

Plasmids and molecular techniques. Plasmids used in this study are listed in Table 2, and primers
are listed in Table S1 in the supplemental material.

The EHEC ΔespW (ICC1111) strain was generated using a lambda red-based mutagenesis system (40)
in which espW was replaced by a kanamycin cassette. Plasmid pSB315 was the source of the kanamycin
resistance gene (aphT), which was purified following EcoRI restriction digestion. Primer pair P23/P24 was
used to PCR amplify espW with 500-bp upstream and downstream flanking regions from E. coli O157:H7
(85-170) genomic DNA. The PCR product was cloned into TOPO Blunt II vector (Invitrogen), and espW was
removed by inverse PCR using the primer pair P25/P26. The linear PCR product was then EcoRI digested
to allow ligation of the kanamycin cassette. The insert was then amplified using the primer pair P23/P24
and the PCR product electroporated into WT EHEC containing pKD46 encoding the lambda red
recombinase. Transformants were selected on kanamycin plates, and the deletion of espW was confirmed
by PCR and DNA sequencing (using primer pair P27/P28).

espW and espW1–206 were cloned into the bacterial expression vector pRK5-HA following amplification
from 85-170 genomic DNA using primer pairs P1/P2 and P1/P3, generating plasmids pICC1727 and
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pICC1728. mCherry was amplified from pmcherry-miniSOG-C1 (41) using primers P4/P5, generating
plasmid pICC1396. Plasmid pICC1727 was used as the template to amplify espW (P10/P11) and further
cloned into pSA10 (42), generating plasmid pICC1732.

espW and espW1–206 were amplified using primers P10/P12 with plasmids pICC1727 and pICC1728,
respectively, and were cloned into the EcoRI/BamHI restriction sites of pGBT9 (Clontech), generating
plasmids pICC1714 and pICC1715. Kif151092–1368 was identified as a binding partner for EspW by a yeast
two-hybrid screen (Clontech). kif151092–1368 was amplified by PCR with primers P13/P14 and cloned into
pGAD-T7-AD (Clontech) using NdeI/XhoI as restriction sites, generating plasmid pICC1723. We used
plasmid pICC1723 as a template to amplify kif151142–1347, kif151092–1347, and kif151142–1368 with primers
P15/P16, P17/P16, and P15/P18, respectively. The genes were cloned into pGAD-T7 using NdeI/XhoI
restriction sites, generating plasmids pICC1724, pICC1725, and pICC1726. Plasmid pICC1752, containing
kif151092–1142, was generated by inverse PCR using plasmid pICC1723 as the template and phosphorylated
primers P19/P20. kif151092–1368 was cloned into the EcoRI/HindIII sites of the bacterial protein expression
vector pRK5-Myc (Clontech) following amplification using primer pair P21/P22 and plasmid pICC1723 as
a template, generating plasmid pICC1914. EPEC clinical isolates were screened first for the presence of
espW by PCR using primer pair P29/P30. We further screened all of the espW-negative strains for the
presence of espW1–206 using primer pair P31/P32.

Yeast two-hybrid assays. Yeast two-hybrid screening using EspW as prey and a cDNA library as bait
was performed as described previously (43). Briefly, a pretransformed MATCHMAKER HeLa cell cDNA
library (Clontech) was screened according to the manufacturer’s protocol for proteins interacting with
EspW. The lithium acetate method was used to transform pGBT9-espW (pICC1714) (Table 2) into yeast
strain AH109 (MATa), and transformants were selected on Trp-minus-synthetic-defined agar plates.
Following mating with the Y187 (MAT�) yeast strain containing the cDNA library, diploids cells were
selected on DDO and QDO media for selection of protein interactions. The cDNA-containing pGADT7
plasmid was rescued from positive clones and the cDNA identified by DNA sequencing. The prey
plasmid and derivatives (Table 2) were then retransformed into AH109 either on its own to
determine possible self-activation or with pICC1714 or pICC1715 to confirm interaction by direct
yeast two-hybrid assay.

TABLE 2 List of strains and plasmids

Strain or plasmid Description/function Source/reference

Strains
85-170 EHEC O157:H7, stx mutant 44
ICC1111 85-170 ΔespW This study
AH109 S. cerevisiae MAT� mating type with ADE2, HIS3, MEL1, and LacZ reporters for

interaction and TRP1 and LEU2 selection markers
Clontech

Y187 S. cerevisiae MAT� mating type with MEL1 and LacZ reporters and TRP1 and
LEU2 selection markers

Clontech

Plasmids
pRK5-HA (Ampr) Eukaryotic expression vector of HA-tagged protein 45
pICC1396 pRK5 expressing HA-tagged mCherry This study
pICC1727 pRK5 expressing HA-tagged EspW This study
pICC1728 pRK5 expressing HA-tagged EspW1–206 This study
pRK5-myc (Ampr) Eukaryotic expression vector of myc-tagged protein Clontech
pICC563 pRK5 expressing myc-tagged GFP 46
pRK5-myc-Rac1N17 pRK5 expressing myc-tagged Rac1N17 47
pRK5-myc-RhoAN19 pRK5 expressing myc-tagged RhoAN19 47
pRK5-myc-Cdc42N17 pRK5 expressing myc-tagged Cdc42N17 47
pICC1914 pRK5 expressing myc-tagged Kif151092–1368 This study
pSA10 (Ampr) pKK177-3 derivative containing lacI 42
pICC1732 pSA10 derivative expressing EspW This study
pICC461 pSA10 derivative expressing EspT 22
pICC1205 pSA10 derivative expressing EspTW/A 22
pKD46 (Ampr) Coding for the lambda red recombinase 40
pSB315 (Kanr) Coding for the kanamycin resistance aphT cassette 48
TOPO Blunt II (Kanr) TOPO cloning of blunt PCR products Invitrogen
pGBT9 Gal4 DNA binding domain, selective for �Trp medium expression for proteins

in yeast
Clontech

pICC1714 pGBT9 derivative expressing EspW This study
pICC1715 pGBT9 derivative expressing EspW1–206 This study
pGAD-T7-AD Yeast two-hybrid prey expression vector Clontech
pICC1723 pGAD derivative expressing Kif151092–1368 This study
pICC1724 pGAD derivative expressing Kif151142–1347 This study
pICC1725 pGAD derivative expressing Kif151092–1347 This study
pICC1726 pGAD derivative expressing Kif151142–1368 This study
pICC1752 pGAD derivative expressing Kif151092–1142 This study
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Infection of Swiss 3T3 and HeLa cells. Forty-eight hours prior to infection, Swiss 3T3 or HeLa cells
were seeded in 24-well plates containing 13-mm glass coverslips (VWR International) at a density of 5 �
105 cells per well. Before infection, the cells were washed 3 times with phosphate-buffered saline (PBS)
and the medium was replaced with fresh DMEM without FCS. Cells in 24-well plates were infected with
20 �l of primed cultures. The plates were then centrifuged at 200 rpm for 5 min at room temperature,
and infections were carried out for 3 h at 37°C in 5% CO2 without agitation. After infection, monolayers
were washed at least 10 times in PBS to remove the bacteria and were fixed for immunofluorescence (to
assess cell morphology) as described below.

For sphingosine 1-phosphate (S1P) (Sigma-Aldrich) treatment, S1P was dissolved in dimethyl sulfox-
ide (DMSO) (Sigma-Aldrich) and added to DMEM to attain a final concentration of 100 nM.

Transfection. Swiss 3T3 and HeLa cells were transfected for 24 h using Lipofectamine 2000
(Invitrogen) and GeneJuice (Merck Millipore), respectively, according to the manufacturer’s instruc-
tions.

Immunofluorescence and microscopy. Coverslips were fixed with 3% paraformaldehyde (PFA) for
15 min before washing 3 more times with PBS. Cells were quenched for 10 min with 50 mM NH4Cl,
permeabilized for 4 min in PBS– 0.2% Triton X-100, and washed 3 times in PBS. The coverslips were
blocked for 15 min in 0.2% bovine serum albumin (BSA)–PBS before incubation with primary and
secondary antibodies. The primary antibodies mouse anti-hemagglutinin (HA) (Cambridge Bioscience),
chicken anti-Myc (Millipore), and rabbit polyclonal anti-O157 (Roberto la Ragione, Veterinary Laboratory
Agency, United Kingdom) were used at a dilution of 1:500. Coverslips were incubated with the primary
antibody for 1 h, washed 3 times in PBS, and incubated with the secondary antibodies. AMCA-, Cy2-,
RRX-, or Cy5-conjugated donkey anti-mouse, anti-chicken, and anti-rabbit antibodies (Jackson Immu-
noResearch) were used as secondary antibodies. All dilutions were in PBS– 0.2% BSA. Actin was detected
with tetramethyl rhodamine isothiocyanate (TRITC)-conjugated phalloidin (1:500 dilution) (Sigma), phal-
loidin Alexa Fluor 350, or phalloidin Oregon green 488 (1:100 dilution) (Invitrogen). DNA was stained with
4=,6-diamidino-2-phenylindole (DAPI) (1:1,000 dilution). Coverslips were mounted on slides using Pro-
Long Gold antifade reagent (Invitrogen) and examined by conventional epifluorescence microscopy
using a Zeiss Axio LSM-510 microscope. Images were deconvoluted, processed using Axio Vision 4.8 LE
software (Zeiss), and trimmed using Adobe Photoshop CS4.

SEM. For scanning electron microscopy (SEM), cells were washed 3 times in phosphate buffer, pH 7.4,
and then fixed with 2.5% glutaraldehyde in phosphate buffer, pH 7.4. Cells were washed 3 times in
phosphate buffer before being postfixed in 1% osmium tetroxide for 1 h. Cells were then washed 3 times
in phosphate buffer and dehydrated for 15 min in graded ethanol solutions from 50% to 100%. The cells
were then transferred to an Emitech K850 critical point drier and processed according to the manufac-
turer’s instructions. The coverslips were coated in gold/palladium mix using an Emitech Sc762 mini
sputter. Samples for SEM were then examined blindly at an accelerating voltage of 25 kV using a JEOL
JSM-6390.

Statistical analysis. All data were analyzed with GraphPad Prism software, using one-way analysis of
variance (ANOVA). Results were expressed as means and standard deviations (SD). Statistical significance
was determined by a two-tailed Student t test. A P value of �0.05 was considered significant.
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