

Mukbel, RM; Ghaith, AO; Halaweh, MA; Abo-Shehada, MN (2017) Prevalence of Giardia Assemblages Among Equines in Jordan. Journal of equine veterinary science, 57. pp. 1-7. ISSN 0737-0806 DOI: https://doi.org/10.1016/j.jevs.2017.05.014

Downloaded from: http://researchonline.lshtm.ac.uk/4646384/

DOI: 10.1016/j.jevs.2017.05.014

Usage Guidelines

 $Please \ refer \ to \ usage \ guidelines \ at \ http://researchonline.lshtm.ac.uk/policies.html \ or \ alternatively \ contact \ researchonline@lshtm.ac.uk.$

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/

Accepted Manuscript

Prevalence of Giardia assemblages among equines in Jordan

Rami M. Mukbel, Abeer O. Ghaith, Marwan Abu Halaweh, Mahmoud N. Abo-Shehada

PII: S0737-0806(17)30410-0

DOI: 10.1016/j.jevs.2017.05.014

Reference: YJEVS 2332

To appear in: Journal of Equine Veterinary Science

Received Date: 24 April 2017

Revised Date: 23 May 2017

Accepted Date: 24 May 2017

Please cite this article as: Mukbel RM, Ghaith AO, Halaweh MA, Abo-Shehada MN, Prevalence of *Giardia* assemblages among equines in Jordan, *Journal of Equine Veterinary Science* (2017), doi: 10.1016/j.jevs.2017.05.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Prevalence of Giardia assemblages among equines in Jordan	1
	2
Rami M. Mukbel ^{1*} , Abeer O. Ghaith ¹ , Marwan Abu Halaweh ² ,	3
Mahmoud N. Abo-Shehada ³	4
	5
	6
¹ Faculty of Veterinary Medicine, Jordan University of Science and Technology,	7
Irbid, 22110, Jordan. <u>rmmukbel@just.edu.jo</u> , abeerghaith_vet@hotmail.com	8
² Department of Biotechnology and Genetic Engineering, Faculty of Science,	9
Philadelphia University, Jerash, 19392, Jordan. halaweh@hotmail.com	10
³ Faculty of Epidemiology and Population Health, London School of Hygiene and	11
Tropical Medicine, University of London, London, WC1E 7HT, UK.	12
mnshehada@hotmail.com	13
	14
	15
*Corresponding Author: Rami M. Mukbel	16
Email address: <u>rmmukbel@just.edu.jo</u>	17
Telephone: 00962795170357	18
Fax: 0096227201081	19
	20
	21

Abstract

A cross-sectional study was carried out on 400 equines holdings (326 horses and 23 74 donkeys) samples to determine the prevalence of Giardia assemblages A, B 24 and E in Jordan. Identifying the Giardia assemblages was carried out using 25 ELISA as a screening test and PCR-RFLP targeting Beta giardin loci. In 26 addition, PCR targeting triose phosphate isomerase gene (tpi) specific for 27 assemblage A and B were used as confirmatory. 34 samples tested positive by 28 ELISA for Giardia with an apparent prevalence of 8.5%. The PCR-RFLP test 29 confirmed Giardia assemblages in 30 of the 34 ELISA-positive samples giving a 30 true prevalence of 7.7% (95% CI; 4.8-10.1). Of the 30 positive animals/holdings, 31 18, 4 and 8 had assemblage A, B and E. Assemblage A was significantly ($p < 10^{-10}$ 32 0.05) more prevalent when compared to assemblages B and E. The total infection 33 34 rates of *Giardia*, assemblage B and E were significantly (p < 0.05, Chi-square) higher in donkeys 14.8%, 2.7%, 5.5% compared to horses 5.8%, 0.6%, 1.2%, 35 respectively. Analysis of risk factors revealed that only season was significantly 36 associated with the different Giardia assemblages. Autumn (OR = 0.09) was 37 associated with Giardia infection regardless of the assemblage type as reducing 38 factor. The odds of infection of assemblage A and E increased in winter (OR =39 40 (6.8) and spring (OR = 4.5), respectively. *Giardia* assemblages A, B, and E infect both horses and donkeys in Jordan with potential impact on human and animal 41 health and the odds of infections is significantly associated with season. 42

43

Keywords: Giardia assemblages; donkey; horse; prevalence; risk factors; 44 climate; season; Jordan 45

46

1. Introduction 47 Giardia duodenalis (also known as G. lamblia and G. intestinalis) is very 48 common intestinal pathogen of humans and domestic animals worldwide in both 49 temperate and tropical climate zones [1]. Acute Giardia infection is 50 characterized by diarrhea in both humans and animals, while chronic infection in 51 children and young animals are reportedly associated with failure to thrive, 52 wasting and malabsorption syndrome. Giardia is usually transmitted by the 53 fecal-oral route, both directly and indirectly [2, 3]. The G. duodenalis is the 54 only known species that infects human and most mammals [4]. It is considered as 55 species complex, which has eight assemblages (A to H) identified by sequencing 56 the ribosomal RNA gene and have been supported by sequencing other genes [3]. 57

Assemblages A and B were most commonly isolated from humans and58presumed zoonotic [5]. In addition, there is more variation with assemblages59where it can be divided into sub-assemblages as AI, AII, and AIII, according to60glutamate dehydrogenase (gdh) gene sequences [4].61

Compared to other animals, only few studies have been conducted to 62 investigate Giardia infecting equine, mainly horses. Infection rate varied 63 between 1.5 % in China to 71% in the USA [6-12]. On the other hand, there is 64 only one report about Giardia infection among donkeys in China [13]. In Jordan, 65 although giardiasis was included in WHO's neglected diseases initiative [14], 66 Giardia infection was never evaluated in animals, and there are only few reports 67 on Giardia prevalence in human [15-19]. Recently, two assemblages of Giardia 68 were isolated from 48 Jordanian human patients where assemblage A was found 69 70 in 44.9% of samples while assemblage B was found in 57.1% of samples [20].

The main objective of the study reported here is to investigate the	71
prevalence of Giardia assemblages A, B and E infections in horses and donkeys.	72
Furthermore, potential risk factors associated with Giardia infection were	73
explored.	74
	75
2. Methods	76
2.1 Study area and population	77
Four out of the 12 Jordanian Governorates located in four climate zones	78
were included in the study: Irbid, Mafraq, the Jordan River Valley and Amman.	79
The Irbid area is located at the north-western parts of Jordan characterized by	80
warm temperate climate mostly planes and semi-hilly in nature. Equines are	81
mainly used in the studied areas for transportation and ploughing lands. The	82
Jordan River Valley is the natural western border of Jordan and situated 200 to	83
400 meters below sea level and is characterized by having a warm steppe	84
climate. On the other hand, the Mafraq area is located at the eastern part of	85
Jordan characterized by cool desert climate. The Amman area is located at the	86
middle part of Jordan characterized by cool rainy climate and is considered	87
mountainous in nature and is located at about 1000 meters above sea level.	88
Equines are mainly used in the studied areas for transportation and ploughing. As	89
the capital of Jordan, equines are mostly used in Amman for sports and	90
horseback riding.	91
The average seasonal rainfalls were reported to be 775.5, 386.6, 144.7	92
and 0.0 mm during winter, autumn, spring and summer seasons respectively	93
(Source: Jordan Metrological Department).	94

The grazing season starts in January and finishes in March in the river	95
valley (warm steppe climate), while in the other areas, it is usually between	96
February through May on green grazing and from June to august in the aftermath	97
of wheat and barley and other crops.	98

Equines in Jordan are individually owned, with the exception of few99horse stables kept for riding and sport activities. In underdeveloped areas, they100are used for farming and transportation. While in desert areas, mainly donkeys101are used for transhumance sheep and goat farming. Horses are used by tourists102for horseback riding and exploring attraction sites such as Petra and Dead Sea.103Only horses kept in big stables are vaccinated against tetanus, herpesvirus and104influenza.105

106

107

118

119

2.2 Sample size determination

The prevalence of Giardia among horses in Jordan or the Middle East has 108 not been previously reported. However, as there is no previous work on the 109 prevalence of Giardia assemblages' among equines in Jordan or the Middle East, 110 prevalence rate of 50% was assumed. According to Thrusfield [21] for an 111 expected prevalence of 50%, the approximate number of samples to be examined 112 is 384 at 95% level of confidence and 5% absolute precision. Representative 113 samples were selected according to estimated density in each study area. A total 114 of 400 samples were collected. The study had at least 80% power at the 5% 115 significance level to detect an odds ratio $(OR) \ge 2$ for risk factors present in 50% 116 of controls, and an $OR \ge 3$ for those present in 20% of controls. 117

2.3 Samples and sampling

In the period from September 2014 to August 2015, a total of 400	120
systematic fecal samples were collected using a list of equine holdings in each of	121
the included areas. A total of 400 households were systematically selected as	122
every 5th on the holdings list was sampled. Most of the holdings (376, 94%) had	123
one animal only while 22 (5.5%) holdings had 2-5 animals and two stables of 30	124
and 70 horses. One animal from holdings with 1-5 animals and 10-20% of	125
animals from holdings with more than 5 heads were randomly selected and	126
sampled from each holding. One hundred holdings were sampled during each	127
season employing 25 holdings from each climate zone. Thus, 400 different	128
equine households in the study areas were employed ($n=326$ horses and $n=74$	129
donkeys). The age of enrolled horses ranged from 2 months to 22 years, with 218	130
females and 182 males. The age of enrolled donkeys ranged from 1 to 9 years,	131
with 22 females and 52 males. Sampled animals appeared healthy with no	132
clinical sign of diarrhea or weight loss.	133
At least 5 grams of fecal samples were collected directly from the rectum	134
using clean disposable gloves. The collected sample was mixed well and	135

aliquots were preserved by transferring 0.5 grams of the fecal sample to 2 ml136tubes contains 1 ml 2.5% potassium dichromate and stored at 4°C until being137tested. At the time of sample collection, five variables including; the time of138sample collection, equine species, animal age, gender and location were recorded139and entered in MS Excel file.140

141

2.4 The Enzyme-Linked Immunosorbent Assay (ELISA) 142

All fecal sample were screened for *Giardia* using commercial ELISA kit, 143 (RIDASCREEN®, R-Biopharm, Germany) detecting *Giardia*-specific antigen 65 144

(GSA 65) according to manufacturer's instructions. The color change was	145
detected using the ELISA reader (Dynatech MR5000, Guernsey, UK) at a wave	146
length of 450 and 630. The samples were considered positive if the reading	147
exceeded the negative control by 0.150 OD according to manufacturer's	148
instruction. The test was reported with 96 % sensitivity and 100% specificity	149
according to the manufacturer's instructions.	150
	151
2.5 DNA extraction	152
All ELISA positive Giardia samples were subjected to DNA extraction	153
using QIAamp DNA stool mini kit (Qiagen, Hilden, Germany) according to	154
manufacturer instructions with modification. Before extraction, samples were	155
subjected to 5 cycles of freezing under liquid nitrogen and thawing at 95°C to	156
break down the cyst walls. Extracted DNA was stored at -20°C for further PCR	157
analysis [22].	158
	159
2.6 PCR amplification and RFLP analysis	160
DNA molecular analysis was performed using nested PCR for the	161
amplification of targeted region within the β -giardin gene. In the first PCR	162
reaction primer pair; forward G7 (5'-	163
AAGCCCGACGACCTCACCCGCAGTGC-3') and the reverse primer G759 (5'-	164
GAGGCCGCCCTGGATCTTCGAGACGAC-3') were used to amplify a 753bp	165
fragment [23]. The second PCR reaction amplifying 511bp fragment was	166
performed using internal primers pair; forward G5 (5'-	167
GAACGAACGAGATCGAGGTCCG-3') and the reverse G5 (5'-	168
CTCGACGAGCTT CGTGTT-3') [24]. PCR cocktail for both reactions	169

consisted of 10µM of each primer, 12.5µl of MasterMix (Promega, Germany),	170
$2\mu g$ BSA and $4\mu l$ of DNA templet in a total volume of $25\mu l$. PCR was carried out	171
in the thermocycler (Gene Pro Thermal Cycler, model TC-E-96G, China) under	172
the following conditions: initial denaturation for 5 min at 96°C, 35 cycles (20 sec	173
at 95°C, 30 sec at 53°C and 45 sec at 72°C) followed by a final extension of 7	174
min at 72°C. The second PCR cycling condition was like the first PCR run	175
except the extension time was for 50 sec and final extension time was for 10 min.	176

The amplified products were digested using 10 U/µl of HaeIII (New 177 England BioLabs, R0108L, UK) in a final volume of 20µl for 3 h at 37°C. 178 Digested pattern visualized on 3% agarose gel with ethidium bromide stain used 179 for assemblage analysis, according to previous reports [24]. Appropriate 180 negative and positive controls for each assemblage were employed. The test has 181 a high sensitivity and specificity comparable to ssrRNA giardia gene [23]. To 182 confirm the RFLP findings another PCR assay using assemblage A and B 183 specific primers targeting the triose phosphate isomerase (*tpi*) gene was 184 performed as described by Bertrand et al. [22]. 185

186

2.7 Statistical analysis

187

Data were stored in a database and analyzed using Epi-Info 7 (CDC,188Atlanta, Georgia) and SPSS version16.0 [25]. The true prevalence was calculated189using apparent prevalence, test sensitivity and specificity according to Rogan and190Gladen [26] . The 95 % confidence interval was calculated for the prevalence.191Chi-square analysis was used to test the association among the proportions, and192the odds ratios were calculated. The dependent variables were:Giardia infection193regardless of the assemblage type, Giardia assemblage A or B or E infections194

status, coded as 0 (negative) or 1 (positive) for each. A total of five variables	195
(categories) were tested: species (donkey and horse), gender (male and female),	196
age groups (less than and older than 5 years), climate (cool temperate rainy, cool	197
desert, warm steppe, and warm temperate rainy), and season (spring, summer,	198
autumn, and winter). The screening for the significant variables to be used in the	199
final logistic regression was conducted using Chi-squared test. The variables that	200
were statistically significant $p < 0.2$ (two sided) were included in the	201
multivariable model forward selection. P value of < 0.05 was considered	202
significant.	203
	204

3. Results	205
Table 1 summarizes the true prevalence results. Of the 400 samples	206
screened by ELISA test, 34 were positive for Giardia infection giving an	207
apparent prevalence of 8.5% (95% CI; 5.8-11.2). The PCR-RFLP test confirmed	208
Giardia assemblages in 30 of the 34 ELISA positive samples giving a true	209
prevalence of 7.7% (95% CI; 4.8-10.1). Of the 30 positive animals, 18 had	210
assemblage A (63% of infected equines and 68.4% of infected horses), 4 had	211
assemblage B (13.3% of infected equines and 10.5% of infected horses) and 8	212
had assemblage E (23.3% of infected equines and 21.1% of infected horses).	213
PCR targeting <i>tpi</i> gene for assemblage A or B confirmed the results for RFLP.	214

Assemblage A was significantly more prevalent in equines compared to215assemblages B and E (X^2 = 10.7, 2 d.f., P = 0.005). There was no significant216difference between the prevalence of assemblages B and E (X^2 = 1.35, 1 d.f., P =2170.24). There was no mixed infection with *Giardia* assemblages. The infection218rates of *Giardia* regardless of assemblage type, assemblage B and E were219

ACCEPTED MANUSCRIPT significantly (p < 0.05, Chi-square) higher in donkeys 14.8%, 2.7% and 5.5% 220 221 compared to horses 5.8%, 0.6% and 1.2%, respectively. 222 The Chi-square results for the association of *Giardia* assemblages and analysis of evaluated risk factors are summarized in Table 2a, b and c. Only 223 species and season were associated (p < 0.2) with *Giardia* infection regardless of 224 the assemblage type in equines (Table 2a). After forward selection, only the 225 season autumn was significantly associated with *Giardia* infection (Table 3). 226 Similarly, species and season were associated (p < 0.2) with *Giardia* assemblage 227 E infection (Table 2c) and after forward selection the model revealed that only 228 spring season was associated (Table 3). Of the five variables/categories, age 229 group and season were associated (p < 0.2) with *Giardia* infection assemblage A 230 in equines (Table 2b) and after forward selection the model had only winter 231 season (Table 3). With regard to Giardia assemblage B infection, species was 232 the only variable associated (p < 0.1) with this assemblage in the univariable 233 analyses only. 234

4. Discussion

235

236

To the authors' knowledge, this is the first report evaluating Giardia 237 prevalence and risk factors among horses and donkeys in different geographical 238 and climate zones in Jordan. The results showed Giardia true prevalence rate 239 among equines in Jordan to be 7.7% using ELISA and PCR-RFLP tests. Horses 240 and donkeys living in the included locations were found to be infected with 241 Giardia assemblages A, B and E. Also, the findings of the research reported here 242 demonstrated significantly higher true prevalence of Giardia assemblages A 243 (4.6%) when compared to assemblages B and E. Donkeys had higher infection 244

rate than horses, 14.8% and 5.8% respectively. This is considered the first report	245
of the infection in donkeys with Giardia assemblages A and E worldwide, while	246
the only publication on donkeys and Giardia [13] they do found only assemblage	247
B. Seasons were associated with the infection with high odds during winter and	248
spring and low odds during autumn depending on the type of <i>Giardia</i>	249
assemblage.	250

Table 4a summarizes the previous reports on Giardia infection, 251 regardless of assemblages and occurrence among equines worldwide. Previous 252 reports on equines were all in horses except one [13] which included countries of 253 the Middle East, Europe, and North and South America. Infection rates varied 254 between 0 % in California and Nevada in the United States to 19.6% in Iraq 255 employing different diagnostic tests. Most studies used the microscopy test (n = 256 8) or direct immune fluorescent antibody test (3). The current work showed a 257 lower true prevalence among horses (6.0%) in Jordan using ELISA and PCR 258 tests than most reported rates. The tests used had a high sensitivity and 259 specificity using one sample [23, 27]. In addition, the nature of horse husbandry 260 with restricted movement, limited grazing and low density, might have played a 261 role in lowering the infection rate compared to other parts of the world. 262

In Jordan, donkeys are exposed to humans, dogs, cats and wild life either 263 directly or indirectly. During the grazing season, donkeys are an integral 264 component of small ruminant (sheep and goats) flocks providing means of 265 transportation for the shepherd and carrying their tools. Also, in some flocks, 266 donkeys are equipped with a bell around its neck and used as a small ruminant 267 flock leader followed by the whole flock in travelling, replacing the head ram. 268 Thus donkeys, especially during the grazing season (spring and summer) are 269

relatively more exposed to environmental contamination with Giardia from	270
infected sheep, goats, dogs and cats. On the other hand, movement of horses is	271
commonly more restricted as they are kept in stables where they are exposed to	272
dogs, cats and wild animals in addition to humans but less so with sheep and	273
goats in contrast with donkeys.	274

Reports evaluating Giardia assemblages in equines are available from six 275 countries in Europe, one country in South America and China (Table 4b). Four 276 studies reported the occurrence of assemblage A in six European countries, 277 Colombia and China. The contribution of both Assemblages A and B to infection 278 ranged from 0 to 50 % while that of assemblage E ranged from 0 to 100%. The 279 current results demonstrated higher proportions of assemblage A in infected 280 horses (68.4%) and donkeys (46%). The prevalence rate in the paper presented 281 here is considered high when compared with the prevalence rate of Giardia in 282 horses worldwide (Table 4b). 283

Other studies reported that B as the dominant assemblage in horses [7, 12, 284 28]. The variability in the dominant assemblage infecting equines in different 285 countries/areas, especially the presumed zoonotic variants (A and B), might be 286 affected by environmental factors, season and management factors including the 287 contamination of the pasture and/or water resources with human and animal 288 waste. Zhang et al. [13] study on donkeys in China identified 4, 1 and 3 subtypes 289 of *Giardia* assemblage B only. 290

Most studies reported the occurrence of assemblage E in horses (Table2914b). The percent of assemblage E among evaluated samples ranged from 0% to292100%. In Jordan, among infected samples, 21% of the horses and 36% of the293

donkeys had assemblage E with percentages ranked second after assemblage A	294
and ahead of assemblage B and similarly the prevalence (Table 1). Assemblage E	295
has been reported as the dominant assemblage in cattle and sheep [29-31]. Thus,	296
in Jordan, assemblage E is expected to occur more in equines especially donkeys	297
where most (98%) of domestic animal populations are sheep and goats which	298
have a close association with donkeys.	299

Although this study had the limitation of being conducted during one year 300 period, seasonal influence on the Giardia infection rate, regardless of 301 assemblages, was clear in this paper. The prevalence was highest in the winter 302 (13%) and spring (10%) compared to the summer (6%) and autumn (1%). In 303 Jordan, spring and summer are the main grazing seasons. The increase in the 304 odds of infection in winter can be explained by the contamination of the barns, 305 water and the pasture with infective Giardia cysts from infected animals. This is 306 exacerbated by overcrowded conditions and the rain water flushing the cysts into 307 the environment, spreading them over a wider area exposing the infection to 308 other animals. 309

In the United Kingdom, it is believed that transmission of Giardia is 310 increased by heavy rain [32]. In Jordan, the winter, autumn and spring seasons 311 are wet while the summer is dry with reported shortages of water. Although the 312 effect of rain falls in autumn on cyst dispersal is minimal compared to winter and 313 spring. This may be explained by soil aridity caused by the long hot dry summers 314 which kill the infective cysts and dries out the soil to a significant depth 315 facilitating the absorption of the precipitation occurring during the autumn 316 season washing down the cysts from the topsoil without significant runoff. Thus 317 Giardia contamination in the environment is reduced. 318

The prevalence of assemblage A is significantly higher in winter (6.8%)	319
while assemblage E was highest in the spring, this can be explained by the source	320
of the infection. As assemblage A presumed to be zoonotic with a winter peak	321
concomitant with the rainy season and the highest rainfall in Jordan. This may be	322
due to the contamination of water resources with the human and animal waste.	323
Conversely, assemblage E which is not considered as zoonotic is more common	324
in hoofed farm animals [29-31]. The peak prevalence of this assemblage is in the	325
grazing season (spring) and may indicate the role of grazing animals in	326
contaminating the environment. Also, giardiasis is more common in young	327
animals as age resistance usually occurs over time. Spring is the lambing and	328
kidding season with the largest population of susceptible young lambs and kids	329
which would potentially shed large numbers of Giardia cysts leading to the	330
consequent high environmental contamination in the spring.	331

Our study was conducted on apparently healthy adult animals which 332 resulted in the limited effect of age on the prevalence. On the other hand, it is 333 important to study these subclinical animals which serve as reservoir for Giardia 334 that infect humans and other animals. In addition, although samples were 335 collected from 4 different areas representing variable climate zones, there was 336 only a limited effect on *Giardia* prevalence. The relative proximity between 337 these areas (with 70 km radius), the free movement of animals and trading, and 338 339 transhumance type of grazing adopted in the Middle East could all explain the minimal area effect on the prevalence. 340

Although using β -giardin PCR-RFLP is a sensitive technique in detecting341Giardia assemblages, more work is needed to detect sub-assemblages to confirm342the zoonotic nature of the assemblages found compared to the sub-assemblages343

found infecting humans in Jordan. In addition, the absence of mixed assemblages	344
infection in our study might need confirmation using other gene target. Finally,	345
wider studies including other animal species and drinking water quality are	346
needed to document the transmission dynamic of Giardia in Jordan.	347

348

5. Conclusions

349

The current study documente	d for the first time the prevalence of Giardia	350
including assemblages A, B and E in	equine in Jordan and assemblages A and E	351
in donkeys worldwide. The dominan	ce of the presumed zoonotic assemblage A	352
in this study may indicate the role of	equines as a source of environmental	353
contamination with Giardia with all	impact on human and animal health in	354
Jordan.		355

356

357

Acknowledgments

This work was supported by research fund from Deanship of Research at Jordan358University of Science and Technology [grant number 264/2015] and Jordanian359Scientific Research fund [grant number Agr/1/08/2013]. We would like to thank360Dr. Musa Alshehabat and Dr. Wael Hananeh for their help in manuscript361revision.362

363

References 364

[1] Thompson RCA. Giardia infections. In: Palmer SR, Soulsby EJL, Torgerson P,	365
Brown D, editor. Zoonoses. 2 ed. Oxford: Oxford University Press; 2011. p. 522-35.	366
[2] Barry MA, Weatherhead JE, Hotez PJ, Woc-Colburn L. Childhood parasitic	367
infections endemic to the United States. Pediatr Clin North Am 2013;60:471-85.	368
[3] Plutzer J, Ongerth J, Karanis P. Giardia taxonomy, phylogeny and epidemiology:	369
Facts and open questions. Int J Hyg Environ Health 2010;213:321-33.	370
[4] Feng Y, Xiao L. Zoonotic potential and molecular epidemiology of Giardia species	371
and giardiasis. Clin Microbiol Rev 2011;24:110-40.	372
[5] Heyworth MF. Giardia duodenalis genetic assemblages and hosts. Parasite	373
2016;23:13.	374
[6] Qi M, Zhou H, Wang H, Wang R, Xiao L, Arrowood MJ, et al. Molecular	375
identification of Cryptosporidium spp. and Giardia duodenalis in grazing horses	376
from Xinjiang, China. Vet Parasitol 2015;209:169-72.	377
[7] Kostopoulou D, Casaert S, Tzanidakis N, van Doorn D, Demeler J, von Samson-	378
Himmelstjerna G, et al. The occurrence and genetic characterization of	379
Cryptosporidium and Giardia species in foals in Belgium, The Netherlands,	380
Germany and Greece. Vet Parasitol 2015;211:170-4.	381
[8] Stojecki K, Sroka J, Cencek T, Dutkiewicz J. Epidemiological survey in Leczynsko-	382
Wlodawskie Lake District of eastern Poland reveals new evidence of zoonotic	383
potential of Giardia intestinalis. Ann Agric Environ Med 2015;22:594-8.	384
[9] Traversa D, Otranto D, Milillo P, Latrofa MS, Giangaspero A, Di Cesare A, et al.	385
Giardia duodenalis sub-Assemblage of animal and human origin in horses. Infect	386
Genet Evol 2012;12:1642-6.	387
[10] Veronesi F, Passamonti F, Caccio S, Diaferia M, Piergili Fioretti D.	388
Epidemiological survey on equine cryptosporidium and giardia infections in Italy and	389
molecular characterization of isolates. Zoonoses Public Health 2010;57:510-7.	390
[11] Xiao L, Herd RP. Epidemiology of equine Cryptosporidium and Giardia infections.	391
Equine Vet J 1994;26:14-7.	392

[12] Santin M, Cortes Vecino JA, Fayer R. A large scale molecular study of Giardia	393
duodenalis in horses from Colombia. Vet Parasitol 2013;196:31-6.	394
[13] Zhang XX, Zhang FK, Li FC, Hou JL, Zheng WB, Du SZ, et al. The presence of	395
Giardia intestinalis in donkeys, Equus asinus, in China. Parasit Vectors 2017;10:3.	396
[14] Savioli L, Smith H, Thompson A. Giardia and Cryptosporidium join the 'Neglected	397
Diseases Initiative'. Trends Parasitol 2006;22:203-8.	398
[15] Nimri LF. Cyclospora cayetanensis and other intestinal parasites associated with	399
diarrhea in a rural area of Jordan. Int Microbiol 2003;6:131-5.	400
[16] Nimri LF, Meqdam M. Enteropathogens associated with cases of gastroenteritis in a	401
rural population in Jordan. Clin Microbiol Infect 2004;10:634-9.	402
[17] Nimri LF. Prevalence of giardiasis among primary school children. Child Care	403
Health Dev 1994;20:231-7.	404
[18] Youssef M, Shurman A, Bougnoux M, Rawashdeh M, Bretagne S, Strockbine N.	405
Bacterial, viral and parasitic enteric pathogens associated with acute diarrhea in	406
hospitalized children from northern Jordan. FEMS Immunol Med Microbiol	407
2000;28:257-63.	408
[19] Abdel-Dayem M, Al Zou'bi R, Hani RB, Amr ZS. Microbiological and	409
parasitological investigation among food handlers in hotels in the Dead Sea area,	410
Jordan. J Microbiol Immunol Infect 2014;47:377-80.	411
[20] Hijjawi N, Yang R, Mukbel R, Yassin Y, Mharib T, Ryan U. First genetic	412
characterisation of Giardia in human isolates from Jordan. Parasitol Res	413
2016;115:3723-9.	414
[21] Thrusfield M. Veterinary Epidemiology. 3 ed. London: Blackwell; 2007.	415
[22] Bertrand I, Albertini L, Schwartzbrod J. Comparison of two target genes for	416
detection and genotyping of Giardia lamblia in human feces by PCR and PCR-	417
restriction fragment length polymorphism. J Clin Microbiol 2005;43:5940-4.	418
[23] Caccio SM, De Giacomo M, Pozio E. Sequence analysis of the beta-giardin gene	419
and development of a polymerase chain reaction-restriction fragment length	420

polymorphism assay to genotype Giardia duodenalis cysts from human faecal	421
samples. Int J Parasitol 2002;32:1023-30.	422
[24] Lalle M, Jimenez-Cardosa E, Caccio SM, Pozio E. Genotyping of Giardia	423
duodenalis from humans and dogs from Mexico using a beta-giardin nested	424
polymerase chain reaction assay. J Parasitol 2005;91:203-5.	425
[25] SPSS. SPSS. 16 ed. Chicago, USA: SPSS Inc; 2007.	426
[26] Rogan WJ, Gladen B. Estimating prevalence from the results of a screening test.	427
Am J Epidemiol 1978;107:71-6.	428
[27] Vidal AM, Catapani WR. Enzyme-linked immunosorbent assay (ELISA)	429
immunoassaying versus microscopy: advantages and drawbacks for diagnosing	430
giardiasis. Sao Paulo Med J 2005;123:282-5.	431
[28] Traub R, Wade S, Read C, Thompson A, Mohammed H. Molecular characterization	432
of potentially zoonotic isolates of Giardia duodenalis in horses. Vet Parasitol	433
2005;130:317-21.	434
[29] Thompson RC. The zoonotic significance and molecular epidemiology of Giardia	435
and giardiasis. Vet Parasitol 2004;126:15-35.	436
[30] Geurden T, Berkvens D, Casaert S, Vercruysse J, Claerebout E. A Bayesian	437
evaluation of three diagnostic assays for the detection of Giardia duodenalis in	438
symptomatic and asymptomatic dogs. Vet Parasitol 2008;157:14-20.	439
[31] Tzanidakis N, Sotiraki S, Claerebout E, Ehsan A, Voutzourakis N, Kostopoulou D,	440
et al. Occurrence and molecular characterization of Giardia duodenalis and	441
Cryptosporidium spp. in sheep and goats reared under dairy husbandry systems in	442
Greece. Parasite 2014;21:45.	443
[32] Boxall AB, Hardy A, Beulke S, Boucard T, Burgin L, Falloon PD, et al. Impacts of	444
climate change on indirect human exposure to pathogens and chemicals from	445
agriculture. Environ Health Perspect 2009;117:508-14.	446
[33] Butty ET. Detection of Cryptosporidium and Giardia doudenalis in equines in	447
Nineveh, Iraq. Iraqi J Vet Sci 2011;25:4.	448

[34] Pavlasek I, Hess L, Stehlik I, Stika V. [The fist detection of Giardia spp. in horses	449
in the Czech Republic]. Vet Med (Praha) 1995;40:81-6.	450
[35] Beelitz P, Gobel E, Gothe R. [Spectrum of species and incidence of endoparasites	451
in foals and their mother mares from breeding farms with and without anthelmintic	452
prophylaxis in upper Bavaria]. Tierarztl Prax 1996;24:48-54.	453
[36] Johnson E, Atwill ER, Filkins ME, Kalush J. The prevalence of shedding of	454
Cryptosporidium and Giardia spp. based on a single fecal sample collection from	455
each of 91 horses used for backcountry recreation. J Vet Diagn Invest 1997;9:56-60.	456
[37] Bray RE, Wickler SJ, Cogger EA, Atwill ER, London C, Gallino JL, et al.	457
Endoparasite infection and Cryptosporidium/Giardia in feral horses on public lands. J	458
Equine Vet Sci 1998;18:41-3.	459
[38] Forde KN, Swinker AM, Traub-Dargatz JL, Cheney JM. The prevalence of	460
Cryptosporidium/Giardia in the trail horse population utilizing public lands in	461
Colorado. J Equine Vet Sci 1998;18:38-40.	462
[39] Atwill ER, McDougald NK, Perea L. Cross-sectional study of faecal shedding of	463
Giardia duodenalis and Cryptosporidium parvum among packstock in the Sierra	464
Nevada Range. Equine Vet J 2000;32:247-52.	465
[40] Frederick J, Giguere S, Sanchez LC. Infectious agents detected in the feces of	466
diarrheic foals: a retrospective study of 233 cases (2003-2008). J Vet Intern Med	467
2009;23:1254-60.	468
[41] Olson ME, Thorlakson CL, Deselliers L, Morck DW, McAllister TA. Giardia and	469
Cryptosporidium in Canadian farm animals. Vet Parasitol 1997;68:375-81.	470
[42] Gomes AD, Barretta C, Ziegler DP, Sausen L, Stoever N, Sangioni LA, et al.	471
Prevalência de Cryptosporidium spp e Giardia sp em equinos estabulados no Jockey	472
Club de Santa Maria - RS, Brasil. Ciência Rural 2008;38:2662-5.	473
[43] De Souza PNB, Bomfim TCB, Huber F, Abboud LCS, Gomes RS. Natural	474
infection by Cryptosporidium sp., Giardia sp. and Eimeria leuckarti in three groups	475

of equines with different handlings in Rio de Janeiro, Brazil. Vet Parasitol	476
2009;160:327-33.	477

478

the second second

Table 1

True prevalence of *Giardia* assemblages detected in equines (n=400) using the480ELISA test and confirmed by PCR-RFLP analysis targeting Beta giardin loci and481digested with HaeIII enzyme during September 2014 to August 2015.482

Subtype	No. +ve	True prevalence (95% CI)	_	
А	18	4.6* (2.7-7.1)		
В	4	1.0 (0.02-2.0)		
Е	8	2.1 (0.8-3.9)		
Total	30	7.7 (4.9-10.1)		
*Significant	Chi-squar test $= 1$	10.7, 2 d.f., P = 0.005	4	183

484

479

Table 2a

Univariate association between potential risk factors and *Giardia* infection 487 positivity regardless of the assemblage type, by ELISA and PCR-RFLP tests 488 among 400 equines during the period September 2014 to August 2015 in Jordan 489

Variable	Category	Coding	Total No.	+ <i>ve</i> %	Р
		-		(n = 30)	
Species	Horses	0	326	5.8 (19)	0.01
	Donkeys	1	074	14.8 (11)	
Gender	Female	0	218	6.4 (14)	0.29
	Male	1	182	8.7 (16)	
Age group	Up to 5	0	229	8.3 (19)	0.47
(Years)					
	>5	1	171	6.4 (11)	
Climate	Cool temperate rainy	1	100	7.0 (7)	0.39
	Cool desert	2	100	9.0 (9)	
	Warm steppe	3	100	10 (10)	
	Warm temperate rainy	4	100	04 (4)	
Season	Spring	1	100	10.0 (10)	0.01
	Summer	2	100	06.0 (6)	
	Autumn	3	100	01.0(1)	
	Winter	4	100	13.0 (13)	

490

486

Ctill have

Table 2b

Univariate association between potential risk factors and *Giardia* Assemblage A 492 infection positivity by ELISA and PCR-RFLP tests among 400 equines during 493 the period September 2014 to August 2015 in Jordan 494

Variable	Category	Coding	Total No.	+ve %	Р
		-		(n = 18)	
Species	Horses	0	326	4.0 (13)	0.30
	Donkeys	1	074	6.9 (5)	
Gender	Female	0	218	4.1 (9)	0.88
	Male	1	182	4.4 (8)	
Age group	Up to 5	0	229	5.7 (13)	0.19
(Years)					
	>5	1	171	2.9 (5)	
Climate	Cool temperate rainy	1	100	5.0 (5)	0.77
	Cool desert	2	100	6.0 (6)	
	Warm steppe	3	100	4.0 (4)	
	Warm temperate rainy	4	100	3.0 (3)	
Season	Spring	1	100	3.0 (3)	0.01
	Summer	2	100	3.0 (3)	
	Autumn	3	100	0.0 (0)	
	Winter	4	100	12.0 (12)	

495

491

496

Table 2c

Univariate association between potential risk factors and *Giardia* Assemblage E 498 infection positivity by ELISA and PCR-RFLP tests among 400 equines during 499 the period September 2014 to August 2015 in Jordan 500

Category	C 1'			
Calegory	Coding	Total No.	+ve %	Р
	-		(n = 8)	
Horses	0	326	1.2 (4)	0.02
Donkeys	1	074	5.5 (4)	
Female	0	218	1.4 (3)	0.32
Male	1	182	2.7 (5)	
Up to 5	0	229	1.7 (4)	0.67
-				
>5	1	171	2.3 (4)	
Cool temperate rainy	1	100	1.0(1)	0.38
Cool desert	2	100	2.0 (2)	
Warm steppe	3	100	4.0 (4)	
Warm temperate rainy	4	100	1.0(1)	
Spring	1	100	5.0 (5)	0.03
Summer	2	100	3.0 (3)	
Autumn	3	100	0.0 (0)	
Winter	4	100	0.0 (0)	
	Donkeys Female Male Up to 5 >5 Cool temperate rainy Cool desert Warm steppe Warm temperate rainy Spring Summer Autumn	Donkeys1Female0Male1Up to 50>51Cool temperate rainy1Cool desert2Warm steppe3Warm temperate rainy4Spring1Summer2Autumn3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Horses0 326 $1.2 (4)$ Donkeys1 074 $5.5 (4)$ Female0 218 $1.4 (3)$ Male1 182 $2.7 (5)$ Up to 50 229 $1.7 (4)$ >51 171 $2.3 (4)$ Cool temperate rainy1 100 $1.0 (1)$ Cool desert2 100 $2.0 (2)$ Warm steppe3 100 $4.0 (4)$ Warm temperate rainy4 100 $1.0 (1)$ Spring1 100 $5.0 (5)$ Summer2 100 $3.0 (3)$ Autumn3 100 $0.0 (0)$

501

Table 3

Multivariable logistic regression models of factors associated with *Giardia* 503 Assemblages A, B and E infection detected by ELISA and PCR-RFLP tests 504 among 400 equines (horses and donkeys) during the period September 2014 to 505 August 2015 in Jordan 506

Giardia	Variable/ Category	Odds Ratio	95% CI	Р
Assemblage			QY	
A, B or E	Season /Autumn ^a	0.09	0.01-0.70	0.01
A	Season / Winter ^b	6.8	2.5-18.6	0.01
E	Season / Spring ^c	4.5	1.2-19.6	0.04

^aLikelihood ratio of chi-squared (LR X^2): 106.6 on one degree of freedom (d.f.), 507 ^bLR X^2 : 131.6 on one df, ^cLR X^2 : 69.9 on one d.f. 508

509

Table 4a

Previous work on Giardia infection regardless of assemblages' type among 511 512

horses worldwide and donkeys from Jordan only

Country	No. Examined	Infection	Test used	Reference		
		%				
Middle East						
Iraq	107	19.63	Microscopy	[33]		
Jordan	326	326 5.8		Current results		
			PCR			
	74 donkeys	14.8				
Europe			Co.			
Czech Republic	360	% 19.63 Microscopy [33] 5.8 ELISA & Current results PCR aeys 14.8 5 Microscopy [34] dis 5.4 Microscopy [34] 0 Microscopy [35] 0 0 Microscopy [36] 0 0.66 (2) IFA [38] 4.6 IFA [39] 13 DIFA [11] 1.29 Microscopy [40] 20 IFA [41] 0 Microscopy [42]				
Germany	37 foals	5.4	Microscopy	[35]		
North America						
USA, California	91	0-3.2	Microscopy	[36]		
USA, California and	58	0	Microscopy	[37]		
Nevada						
USA, Colorado	300	0.66 (2)	IFA	[38]		
USA, Nevada	305	4.6	IFA	[39]		
USA, Ohio and	222	13	DIFA	[11]		
Kentucky						
USA, Florida	223	1.29	Microscopy	[40]		
Canada	35	20	IFA	[41]		
South America)					
Brazil	64	0	Microscopy	[42]		
Brazil	396	0.5	Microscopy	[43]		
				513		
				51		

514

Table 4b

515

517

Previous work on *Giardia* assemblages' infections among horses worldwide and 516

donkeys (from Jordan only)

Country	No. Examined	Infec tion %	Test	Gene	As A	semblage % B	Е	Ref.
Middle East		,,,						
Jordan	326	5.8	ELISA PCR- RFLP	β giardin <i>tpi</i>	68	11	21	Current results
	74 donkeys	15	ELISA PCR- RFLP	β giardin <i>tpi</i>	46	18	36	
Europe								
Italy	150 (120 foals & 30 adults)	13.3	DIFA, PCR	SSU- rRNA	0	0	100	[10]
Italy	431	8.6	PCR	SSU- rRNA, β giardin	43.2	29.7	27	[9]
Belgium,	134 foals	14.2	DIFA,	β giardin	45	45	10	
Netherland	44 foals	11.4	PCR	tpi	Mixed			[7]
Germany	30 foals	10.0		·r·	A & B			[7]
Greece	190 foals	11.6			(8)			
Poland	10	10	DIFA PCR	β giardin	0	0	100	[8]
N. America	8	NA	PCR	SSU-				
				rRNA, β				[28]
Australia	2	NA		giardin,				[20]
				tpi				
S. America								
Colombia	195	17.4	PCR	SSU- rRNA, β giardin,	5.9	94.1	0	[12]
China	262	1.5	PCR	gdh tpi SSU-	50	50	0	[6]
		1.J	ruk	rRNA	50	50	U	[0]
	181donkeys	15.5	PCR	<i>tpi</i> , gdh, β giardin	0	100 (4, 1 & 3 subtypes)	0	[13]

High lights:

- This is the first prevalence and genotyping study to document *Giardia* infecting equine in Jordan.
- Prevalence of Giardia was more in donkeys when compared with horses
- The most prevalent assemblage in horse was A when compared with assemblage B and E
- Findings of this study suggest seasonal association with prevalent assemblages of *Giardia* affecting horses and donkeys