

Tool Support for Designing CML Based Context Models in
Pervasive Computing

Johnson Fong1, 2, Jadwiga Indulska1, 2 and Ricky Robinson1, 2
1 The University of Queensland

School of Information Technology and Electrical Engineering
2 National ICT Australia (NICTA)

Queensland Research Laboratory, Australia

{jfong, jaga}@itee.uq.edu.au, ricky.robinson@nicta.com.au

ABSTRACT
Development of context-aware applications is very complex as
context information is gathered from a variety of sources that are
error prone and differ in the quality of information they provide.
The current software engineering approach to building context-
aware applications employs appropriate context modelling and
reasoning techniques to facilitate the application development
process. However, the design of context models is highly
challenging, as they need to capture (i) a variety of context
information required by the applications (such as location,
activities and devices, etc.), (ii) the relationships and dependencies
among them, and (iii) their ambiguity, timeliness, and (iv)
required Quality of Information. This paper describes a semi-
automatic, forward engineering context modelling tool that
provides design support for developing context models designed
using the Context Modelling Language (CML). It promotes reuse
of existing context information and automatically generates code
for mapping context models into their runtime representations.
The goal is to enable an error resistant context model design
process and significantly reduce applications development effort
and time.

Keywords
context model, design tool support, context-aware applications,
context management

1. I�TRODUCTIO�
Context-aware applications use contextual information to evaluate
whether there is any change to the situation of the user and/or the
computing environment that requires them to adapt their
behaviour [1]. Much of the early efforts in developing context-
aware applications have been adopting an ad hoc approach to
context gathering and evaluation, without explicit attention to the
use of context models and middleware that manages and
understands the models. There are several problems with this

approach. It makes the building of context-aware applications very
burdensome for developers, since they have to directly deal with (i)
low-level context sources (e.g., sensors), (ii) pre-processing of raw
context data to the level required by the application, (iii)
evaluation of context information and user preferences to make
decisions on how applications should adapt, (iv) differences in
Quality of Information of context information, and (v) providing
fault tolerance of sources of context information. An ad hoc
approach is also not amenable to reuse of context information.
Moreover it leads to development of applications that have limited
evolvability as context evaluation is hardwired into the logic of the
application and any modification to the context or user preference
models requires re-programming of the application [9].

For these reasons most of the current software engineering
approaches to developing context-aware applications use (1) high
level, abstract context models that define types of context
information required by particular applications and (2) context
management systems (CMS) that belong to the middleware level
and are able to gather context information, reason about context
and evaluate user preferences. This approach significantly reduces
the complexity of the applications and the difficulty of their design
and implementation, as the burdens of providing context
provisioning and management services are moved from the
applications to the CMS [1, 2, 3]. In addition, complex issues such
as dealing with Quality of Information, conflict resolution,
recognising situations that require application adaptations, fault-
tolerance, security and user privacy, etc., [1,3,15] are also
externalised into the middleware. Context models that model
context information used by particular applications also support
context reuse (at the time of modelling and also at application run
time). All these features of context model based context-aware
applications make software engineering of such applications easier
and can lead to more evolvable and scalable context-aware
applications. The software engineering of context-aware
applications can be further assisted by the development of context
modelling tools that provide assistance in the design of context
models. Unfortunately, the design of context models is inherently
challenging and error prone, as they need to capture all context
information types required by the applications such as location,
activities, computing resources and connectivity, etc. This context
information may be imprecise, ambiguous, or not available since it
is gathered from a wide variety of context sources (i.e., sensors)
that differ in the Quality of Information they produce and failure
rates. The context models need to capture this imprecision or
ambiguity. Furthermore, the complexity of context models is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UPC2010 Workshop in conjunction with ICPS2010, July 13-15, 2010,
Berlin, Germany.
Copyright 2010 ACM XXX-X-XXXXX-XXX-X 10/07…$5.00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15110545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Person

(name)

Movement (id)

Velocity

(float)

Acceleration

(float)

Relationship Type

(name)
Activity

(name)

has movement

has
acceleration

has
velocity

Vector
(direction)

Room
(name)

has

location

has vector

Home
(name)

contains

engaged in

Occupied by

Street Address

(Address)

S

has address

Coordinates (nr)

Communication

Channel(id)

Device (id)

Communication

Device

Mobility

(fixed/mobile)

Network type

(name)

has coordinates

has mobility

has location

has coordinates

has communication

channel

has relationship type
requires

support
network

located near

Figure 1. An example CML context model for Context-Aware Virtual Community Applications [5]

exacerbated as applications evolve, because consequent changes to
their context models may introduce additional errors, the models
may become more complicated and interconnected with context
models of other context-aware applications.

There exist a number of high level context modelling approaches,
such as ontology based models [1], object-role based models [6],
spatial models [16] and rule-based models (e.g., using Unified
Modelling Language enriched with Object Constraint Language
[17, 18]). In this paper, we describe a context modelling tool that
provides design support for developing object-role based context
models. The object-role modelling approach that we use to
illustrate the functionality of this tool is CML (Context Modelling
Language) [3]. The tool supports the following tasks and features:
(i) it is capable of constructing, editing, combining and browsing
context facts and whole CML context models, (ii) promotes reuse
of context information by allowing designers to drag and drop
existing context facts from other applications arbitrarily onto their
current working model, (iii) it is capable of performing real-time
internal model validation to ensure context models can be
automatically transformed into their CMS run-time representations
according to the recent ORM2 (Object-role Modelling)

specifications [4], and finally, (iv) it is a light weight, open-source,
completely stand-alone and cross platform application.

The context modelling tool has been inspired by previous work in
automation of pervasive computing applications and information
modelling, specifically tools that facilitate the development of
ORM2 models, as CML is an extension of ORM2. Some of these
tools include Neumont ORM Architect (NORMA) [12],
Microsoft’s Visio for Enterprise Architects[13], Protégé [14] and
Rational Rose [21]. These tools are designed for modelling
information (some with the use of an ontology, UML and OCL),
while the context modelling tool is specifically developed for the
sole purpose of building a CML context model graphically and
automatically generate code for mapping the validated context
model to its runtime representation. The structure of the paper is
as follows. Section 2 briefly introduces the CML context
modelling approach and shows an example context model defined
for a context-aware smart home application. Section 3 explains
how CML models can be created and displayed in the context
modelling tool, how the tool supports model validation and how
the tool automatically generates code to map CML context models
to their runtime representations. Finally, Section 4 concludes the
paper and outlines future work.

2. CO�TEXT MODELLI�G APPROACH
This section describes the CML context modelling approach. The
Context Modelling Language [3], or CML is derived from a
conceptual information modelling formalism called ORM (Object
Role Modelling) which was developed for modelling information
systems and has an intuitive graphical representation. The ORM
modelling concept is based on facts, and the modelling of a
domain involves identifying fact types i.e., relationships between
entities. CML extends the ORM facts to capture additional
information that is important for managing context information.
The CML extensions include [3]:

• context information type

o static () (e.g., family relationship),

o profiled () (e.g., ownership of a device),

o sensed () (e.g., current temperature),

o derived () (derived from existing context
information),

• timeliness () to capture histories of context information
(e.g., user activity over a period of a week),

• ambiguity/alternative () that describes ambiguous
information (e.g., conflicting location reports gathered from
a variety of location sensors), and

• quality (.....) that defines the required QoI of the context
information.

An example CML model for a context-aware virtual community
application is shown in Figure 1. It is a modification of a context
model in [5]. Each soft rectangle in the figure depicts an object
type, while each box denotes a role played by an object type
within the fact types. For example, the "occupied by" fact type
contain two roles, one played a "Person" object type and the other
by the "Home" object type. The fact types models are based on
ORM. The CML extensions to ORM are summarised in the
Legend in Figure 1 and illustrated in the model. For example the
model shows that the fact type that the person is located near
device is a derived fact type.

Since context-aware applications adapt to changes in situations
and not to changes in single sensor values, CML fact types may be
combined to formulate higher level abstractions known as
situations. Situations in this approach are expressed in a modified
first order logic. They can be used by triggers that execute when a
particular situation arises. Preferences are also evaluated when
situations arise to yield one or more execution choices when a
decision needs to be made by the context-aware application [6].

3. CO�TEXT MODELLI�G TOOL
The CML object-role based approach described in section 2
supports development of context-aware applications by allowing
to model context information types required by the applications. A
graphical notation is used in this modelling approach. In this
section we describe our context modelling tool aimed at
supporting software engineering of context-aware applications by
making the design process of application context models easier
and more error resistant.

3.1 Functionality
The tool provides means to define graphical representations of
context facts as defined in the CML object-role based context
modelling approach. It also allows annotating the model with
types of context information, Quality of Information, timeliness,
ambiguity, and dependencies as defined in the CML model. The
tool has the following features:

• Supports context reuse - the designers can create facts or
incorporate existing context facts or context models that
are already in the repository of context models. The tool
supports browsing of the repository and a selection of
the models of interest.

• Has an intuitive and user friendly interface for the
designers of context models.

• Supports basic validation of CML context models in a
semi-automatic fashion.

• Provides forward engineering support for mapping of
CML context models to their relational runtime
representations used by the context management system.

More detailed descriptions of the user interface, context model
validation, mapping to runtime representation, and also the tool
implementation are provided in the following subsections.

3.2 User Interface
Figure 2 shows a screen shot of a CML model created using the
context modelling tool. The shapes of the object types (as soft
rectangles) and connectors in the CML model adopt the latest
ORM2 notation specified by Halpin et al [4]. The CML model can
be created graphically by selecting the relevant shape from the
designer palette located on the left side of the screen, placing it
onto the canvas, double-clicking the shape to enter relevant data,
and connecting the shape using appropriate connector.

Figure 2. CML model display in context modelling tool

For advanced users, it is also possible to enter object types by
using connectors only without the need for continuously selecting
between various shapes and connectors (for further explanations
and details see [8]).

There are various options on the top right of the screen, which
include:

• Automatic mapping to relational schema and SQL scripts
(runtime representation of the context model).

• Browsing existing context facts and models using CML
explorer as shown in Figure 2. It allows designers to browse
through directories for existing context facts, and drag-n-
drop facts on to the current working model. The aim is to
reuse context facts (or combination of context facts) from
other context-aware applications. Designers can choose to
hide the side bar to allow more space on the canvas.

• View-port for a bird's eye view of the entire context model
when the model becomes too large.

• Titled background for designer to eliminate the background
grids that appear on the canvas.

3.3 Model Validation
In order to ensure the integrity and consistency of the context
information that is gathered by CMS according to the context
models of context-aware applications, the context models have to
be correct and valid. The context modelling tool is capable of
performing basic correctness checking of the model at design time,
to ensure that all the entities and relationships in the context model
can be correctly transformed into run-time representations, and
eventually be instantiated by the CMS. As illustrated in Figure 3,
erroneous shapes are highlighted and when one of the shapes is
double clicked, the errors are listed in a new window under the
Error Listing section.

Figure 3. Erroneous shapes and error messages are

highlighted

The tool is capable of checking typical errors including omitting
constraints (e.g., each object type requires a representation, and
each representation requires a data type), and including
contradictory constraint combinations (e.g., a subtype cannot be
the direct or indirect supertype of its supertype) as shown in
Figure 4.

Figure 4. Live error handling

3.4 Code Generation
A context management system is responsible for gathering,
evaluating, and provisioning context information according to the
context model developed for the context-aware application [10].
Thus, CML context models of particular applications need to be
mapped into the relational schemas required for the relational
database-style repository of the context management system.
Manual transformation of graphical representations of context fact
types involves heavy database programming and sound knowledge
in context information modelling from designers. It is not
uncommon for designers to introduce errors during the
transformation process, such as misnaming fact type relations,
omitting integrity constraint and other fact specifications that
could go undetected until the application encounters errors when
manipulating context information. To reduce the database coding
and administration effort of the designers in mapping abstract
context fact types into their run-time representations, and make the
mapping process less error prone, we provide this mapping as one
of the functionalities of our tool. The tool is capable of automating
the transformation process of graphical CML context models to
relational schemas and/or SQL scripts for a specific underlying
context management system.

Create Table Person

(

 PersonName varchar(20) not null,

 CoordinatesNr smallint not null,

 HomeName varchar(20) not null,

 RoomName varchar(20) not null,

 ChannelId smallint not null,

 Primary Key (PersonName),

 Foreign Key (ChannelId) reference

 ChannelRequiresDevice (ChannelId)

);

Create Table Device

(

 DeviceId smallint not null,

 CoordinateNr smallint not null,

 Mobility char(1) not null

 check (Mobility in ('f','m')),

 Primary Key (DeviceId)

);

Create View PersonLocatedNearDevice

 (PersonName, DeviceId) as

 select A.PersonName, B.DeviceId

 from Person as A join Device as B

 on A.CoordinatesNr = B.CoordinatesNr;

Figure 5. Portions of context model to SQL mapping.

Movement(Id, Velocity, Acceleration, Vector)

HasMovement(MovementId, PersonName, StartTime,

EndTime)

Figure 6. Portions of context model to relational schema mapping.

Figure 5 and 6 illustrate a partial mapping of the CML model
(shown in Figure 1) to SQL scripts and a relational scheme,
respectively. The translation employs the recent ORM2's relational
mapping procedure, Rmap [4], where fact types are lassoed into
groups to form a relation, and foreign keys are being introduced to
attributes. The main benefits for employing the ORM2 Rmap
procedure are (1) to guarantee a redundancy-free relational design,
restricting the number of relation to allow effective and efficient
database operation, as it is based on the "Optimal Normal Form"
(ONF) algorithm, and (2) to maintain referential integrity. The
translation build on top of the Rmap procedure by incorporating
additional mappings for the context modelling constructs
introduced by CML as described in [11].

The graphical CML context models created using the tool are
serialized as XML, and stored with the .CML file extension by the
context management system. However the automatic code
generation is done based on the graphical model. The code
generation feature is handled by the class

GenerateSqlScriptActionListener, which can be

found in [7]. Code is generated based on the model that is
currently on the canvas at the time the action is being invoked. It
is not necessary for designers to have any database programming
knowledge to generate the code.

3.5 Tool Implementation
During the early stage of the tool development, a number of
implementation technologies have been considered, such as the
Eclipse GMF (Graphical Modelling Framework) that is based on
the SWT toolkit, and C# plug-in to Microsoft Visual Studio. NET,
etc. Eventually, the Java Swing GUI toolkit has been employed for
software implementation, aiming to achieve the following
characteristics:

• Stand-alone (i.e., not necessary for designers to purchase
MS Visual Studio or download Eclipse merely to execute
the program).

• Portable/cross-platform (i.e., designers must use MS
Windows to run the tool if it was implemented as a plug-in
to MS Visual Studio. NET)

• Lightweight (i.e., the tool offers essential functionalities
with minimal memory footprint and file size, which can be
easily distributed over the web, or even as a web-based Java
Applet with all the benefits of Java technology, including
robust memory management and security)

• Usable and Efficient (i.e., the tool is designed to have high
usability to support efficient and easy production of context
models)

• Open-source (i.e., the distribution is made available under
the BSD license, and downloadable at sourceforge.net via
[7])

4. CO�CLUSIO� A�D FUTURE WORK
This paper provided an overview of a context modelling tool that
support designers in the development of CML context models for
context-aware applications. The tool provides engineering design
support for modelling context information, reusing existing
context facts and automating the application design process. It is
capable of constructing, editing, combining and browsing of
context models, supports forward engineering of automatic
mapping of context models into their runtime relational
representation, and therefore, significantly reduces the database
coding and administration effort, and makes the mapping process
less error prone.

Efficiency and accuracy of the code generation process can be
improved by utilising techniques that provide formal
representation for describing a CML model and transforming the
model to CMS specific code. We will investigate the use of
XCML meta model proposed by Robinson et al [19] and Rails
migrations that describe transformations using Ruby [20]. A
formal technique will also be investigated for internal validation
of the models before generating code. A Domain Specific
Language (DSL) can be considered for defining syntax and rules
to enforce integrity constraints and maintain consistency of the
model.

Long term plans include support for verbalisation of the context
model for non-technical users to interpret and understand the
model, similar to the external model validation feature found in
NORMA [12]. The model's fact types, constraints, and derivation
rules are to be verbalized in language that is easily understood by
ordinary users, so as to enable users to modify the models,
introduce new facts and situations, and ultimately personalise the
behaviour of applications according to their individual needs and
preferences. The aim is to improve intelligibility and control of
context-aware applications.

5. ACK�OWLEDGME�TS
NICTA is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT
Centre of Excellence program; and the Queensland Government.

6. REFERE�CES
[1] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas,

A. Ranganathan and D. Riboni, "A Survey of Context
Modelling and Reasoning Techniques", Pervasive and Mobile

Computing, Volume 6, 2010

 [2] P. Hu, J. Indulska and R. Robinson, "An Autonomic Context
Management System for Pervasive Computing", Proc. of the

IEEE International Conference on Pervasive Computing and

Communications (PerCom'08), Hong Kong, March 2008.

[3] K. Henricksen and J. Indulska, "Developing Context-Aware
Pervasive Computing Applications: Models and Approach",
Pervasive and Mobile Computing, Volume 2, 2005.

[4] T. Halpin and T. Morgan, Information Modelling and

Relational Databases, Morgan Kaufmann, Second Edition, 17
March, 2008

[5] J. Indulska, K. Henricksen, T.Mcfadden and P. Mascaro,
“Towards a Common Context Model for Virtual Community
Applications”, Proceedings of 2nd International Conference

on Smart Homes and Health Telematics (ICOST), Volume 14
of Assistive Technology Research Series. IOS Press, pp. 154-
161, 2004

[6] J. Indulska and R. Robinson, "Modelling Weiser’s “Sal”
Scenario with CML", the Sixth Workshop on Context

Modelling and Reasoning (CoMoRea'09) affiliated with the
IEEE PerCom’09 conference, Galveston, US, March 2009,
IEEE Press.

[7] "Context Modelling Tool", Sourceforge.net,
http://sourceforge.net/projects/contextmodel/, last accessed 25
Feb. 2010

[8] "CMT Demo", Screencast.com,
http://www.screencast.com/t/MTYyYzJh, last accessed 14
Mar. 2010

[9] A. Dey, G. Abowd and D. Salber, “A Conceptual Framework
and a Toolkit for Supporting the Rapid Prototyping of
Context-Aware Applications”, Human-Computer Interaction,
Vol 16: 2, pp. 97-166, 2001.

[10] T. McFadden, K. Henricksen and J. Indulska, "Automating
context-aware application development", UbiComp Workshop

on Advanced Context Modelling, Reasoning and Management,
pp. 90-95, 2004

[11] K. Henricksen, J. Indulska and A. Rakotonirainy, "Generating
context management infrastructure from context models", in
4th International Conference on Mobile Data Management

(MDM) - Industrial Track, Melbourne, 2003

[12] M. Curland and T. Halpin, " Model Driven Development with
NORMA", in Proceedings of the 40th Annual Hawaii

International Conference on System Sciences (HICSS 07),

IEEE, 2007

[13] T. Halpin, K. Evans, P. Hallock and B. Maclean, Database

Modeling with Microsoft’s Visio for Enterprise Architects,

first edition. Morgan Kaufmann, August 28, 2003

[14] "Protégé", Stanford Center for Biomedical Informatics
Research, http://protege.stanford.edu/, last access 17 Aug
2009

[15] R. Wishart, K. Henricksen and J. Indulska, "Context privacy
and obfuscation supported by dynamic context source
discovery and processing in a context management system".
Proc. of the 4th International Conference on Ubiquitous

Intelligence and Computing, Lecture Notes in Computer
Science, Vol. 4611, Springer, pp. 929-940, Hong Kong, July
2007.

[16] C. Becker and D. Nicklas, "Where do spatial context-models
end and where do ontologies start? A proposal of a combined
approach", Proceedings of the First International Workshop

on Advanced Context Modelling, Reasoning and Management,
University of Southampton, Nottingham, England, 2004.

[17] L. Daniele, P. Dockhorn Costa and L. Ferreira Pires,
"Towards a Rule-Based Approach for Context-Aware
Applications", Proceedings of the 13th EU7ICE Open

European Summer School 2007 (EU7ICE 2007), LNCS 4606,
July 2007.

[18] J. Gaber. "Spontaneous emergence model for pervasive
environments". IEEE Globecom workshops, Washington DC,
USA, 2007.

[19] R. Robinson, K. Henricksen and J. Indulska, “XCML: A
Runtime representation for the Context Modelling Language”,
in Proceedings of the 4th International Workshop on Context

Modelling and Reasoning (CoMoRea 2007), White Plains,
NY. March 2007.

[20] K. Marshall, C. Pytel and J. Yurek, Pro Active Record:

Databases with Ruby and Rails,1st Edition, Apress, 2007.

[21] "Rational Software", IBM.com, http://www-
306.ibm.com/software/rational/, last accessed 14 Mar. 2010

