

Than H. Aung Madihah Jafar Sidik Ejria Saleh Muhammad Ali S. Hussein

PENERBIT UNIVERSITI MALAYSIA SABAH

Kota Kinabalu • Sabah • Malaysia http://www.ums.edu.my 2013

A Member of the Malaysian Scholarly Publishing Council (MAPIM)

© Universiti Malaysia Sabah, 2013

All rights reserved. No part of this publication may be reproduced, distributed, stored in a database or retrieval system, or transmitted, in any form or by any means, electronics, mechanical, graphic, recording or otherwise, without the prior written permission of Penerbit Universiti Malaysia Sabah, except as permitted by Act 332, Malaysian Copyright Act of 1987. Permission of rights is subjected to royalty or honorarium payment.

Penerbit Universiti Malaysia Sabah makes no representation – express or implied, with regard to the accuracy of information contained in this book. Users of the information in this book need to verify it on their own before utilizing such information. Views expressed in this publication are those of the author(s) and do not necessarily reflect the opinion or policy of Universiti Malaysia Sabah. Penerbit Universiti Malaysia Sabah shall not be responsible or liable for any special, consequential, or exemplary problems or damages resulting in whole or part, from the reader's use of, or reliance upon, the contents of this book.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Atmosphere and ocean : an introduction to marine science / Than H. Aung ... [et al.] Includes index
Bibliography: p. ISBN 978-967-5224-99-7
1. Marine sciences. 2. Oceanography. 3. Atmosphere.
1. Aung, Than H. 551.46

Typeface for text:	Cambria/Myriad Pro
Text type and leading size:	11/13.2 points
Published by:	Penerbit Universiti Malaysia Sabah
	Tingkat Bawah, Perpustakaan
	Universiti Malaysia Sabah
	Jalan UMS
	88400 Kota Kinabalu, Sabah
Printed by:	Percetakan Nasional Malaysia Berhad
	Lot 7 KKIP Timur
	Commercial Zone 2
	Kota Kinabalu Industrial Park (KKIP)
	88450 Kota Kinabalu

Contents

List of Figures	xiii
List of Tables	XX
Preface	xxi

Chapter 1	1 BASIC PHYSICS	
1.1	Introduction	1
1.2	Physical Quantities	1
	1.2.1 Motion	2
	1.2.2 Displacement (S)	3
	1.2.3 Vector	3
	1.2.4 Scalar	3
	1.2.5 Speed	3
	1.2.6 Velocity (V)	3
	1.2.7 Acceleration (a)	4
	1.2.8 Momentum (p)	4
	1.2.9 Force (F)	4
1.3	Newton's Law of Gravitation	5
1.4	Acceleration Due to Gravity (G)	7
1.5	Weight (w)	8
Questi	ions 1.1 – 1.5	9
1.6	Work (W)	9
1.7	Energy (E)	10
1.8	Law of Conservation of Energy	11
1.9	Mechanical Energy	11
1.10	Power (P)	12
1.11	Heat, Temperature and Thermal Expansion	12
1.12	Conclusions	14
Questi	ions 1.6 – 1.8	16
Bibliog	graphy	16

Chapter 2	FUNDAMENTALS OF HYDROSTATICS	
2.1	Introduction	17
2.2	Density (ρ)	17
	2.2.1 Relative Density	18
2.3	Pressure (p)	19
	2.3.1 Pressure of the Atmosphere	20
	2.3.2 Pressure in a Liquid	20
2.4	Pascal's Law	22
Question	is 2.1 – 2.6	22
2.5	Upthrust (Buoyancy)	23

2.6 Archimedes' Principle	24
Questions 2.7 – 2.14	25
2.7 Conclusions	26
Bibliography	27

Chapter 3	THE ATMOSPHERE	
3.1	Introduction	
3.2	Atmosphere	30
3.3	Composition of the Atmosphere	30
3.4	Structure of the Atmosphere	31
	3.4.1 Troposphere	32
	3.4.2 Stratosphere	32
	3.4.3 Mesosphere	33
	3.4.4 Thermosphere	33
	3.4.5 Exosphere	33
3.5	Atmospheric Pressure	34
3.6	The Exponential Atmosphere	36
Question	ns 3.1 – 3.4	39
3.7	Atmospheric Heat Budget	40
3.8	The Greenhouse Effect	42
3.9	Sunrise and Sunset	43
3.10	Seasons	44
3.11	Conclusions	46
Bibliogr	aphy	47

Chapter 4	WINDS AND WEATHER	
4.1	Introduction	49
4.2	Air Circulation	50
4.3	Coriolis Force	51
Questior	ns 4.1 – 4.4	52
4.4	Major Wind Systems	53
	4.4.1 Trade Wind	53
	4.4.2 Polar Wind	54
	4.4.3 Cyclones and Anti-Cyclones	55
4.5	Weather and Climate	56
	4.5.1 Weather in the Tropics	56
	4.5.2 Convective Storms	57
	4.5.3 Marine Climate	58
	4.5.4 Humidity	59
	4.5.5 Relative Humidity	59
	4.5.6 Clouds	59
Question	n 4.5	60
	4.5.7 Island Effects (Rain Shadow)	60
4.6	Conclusions	61
Bibliogra	raphy	61

vi

l	Chapter 5	THE HYDROSPHERE	
	5.1	Introduction	63
	5.2	Hydrologic Cycle	63
	5.3	Origin of the Oceans	65
	5.4	Composition of the Ocean	65
	5.5	Major Role of the Ocean	66
	5.6	Distribution of Land and Water	67
	5.7	Pacific Ocean	67
	5.8	Life in the Ocean	68
		5.8.1 Plankton	69
		5.8.2 Nekton	70
		5.8.3 Benthos	70
	5.9	Coral Reefs	71
	5.10	Topography of the Ocean Floor	73
		5.10.1 Continental Shelf	74
		5.10.2 Continental Slope	74
		5.10.3 Abyss	74
		5.10.4 Shoreline	74
		5.10.5 Coast	75
	5.11	Conclusions	75
	🔜 Bibliogr	-aphy	76
		and the second s	

Chapter 6	SEA WATER CHARACTERISTICS	
6.1	Introduction	77
6.2	How Can Water Contribute to Our Environment?	78
6.3	Special Properties of Water	79
6.4	Water (The Universal Solvent)	80
6.5	Sea Water	80
	6.5.1 Temperature of Ocean Water	82
	6.5.2 Salinity	83
6.6	Principle of Constant Proportions	85
6.7	Salt from Sea Water	85
	6.7.1 Chlorinity	86
6.8	Conservation Principles	87
	6.8.1 Conservation of Salt	87
	6.8.2 Conservation of Volume	87
6.9	Is Sea Water Acidic or Basic?	88
6.10	pH Scale (Potential of Hydrogen)	88
6.11	Dissolved Gases in Sea Water	90
6.12	Density of Sea Water	91
	6.12.1 Sigma-tee	91
	6.12.2 Pressure Effect	93
	6.12.3 Temperature Effect	94
	6.12.4 Salinity Effect	94
	6.12.5 Combined Effects of Salinity and Temperature	94

6.13	Pressure of S	Sea Water		95
6.14	Barotropic and Baroclinic Conditions			96
6.15	Other Prope	rties of Sea Water		97
6.16	Colour of Sea	a Water		98
6.17	Ocean Energ	3y		98
6.18	Tapping Oce	an Thermal Energy		99
Questi	ons 6.1 – 6.3		1	00
	6.18.1 Hov	v Do They Operate?	1	01
	6.18.2 Are	They Feasible?	1	02
6.19	Salinity Grad	dient and Electrical Energy	1	02
	6.19.1 Bas	ic Concept	1	03
	6.19.2 Pres	ssure Retarded Osmosis (PRO)	1	03
	6.19.3 Rev	erse Electro-Dialysis (RED)	1	04
	6.19.4 Нуа	lrocratic Ocean Energy	1	05
6.20	Conclusions		1	05
Bibliog	raphy		1	06

Chapter 7	ATMOSPHERE-OCEAN INTERACTION (Part One)	
7.1	Introduction	107
7.2	Moisture Content	108
7.3	Thermal Inertia of the Ocean	109
	7.3.1 Specific Heat of Water	109
	7.3.2 Light Penetration	110
	7.3.3 Mixing of Water	111
	7.3.4 Phase Change of Water	111
7.4	Transfer of Heat (Ocean-Atmosphere)	112
	7.4.1 Conduction	112
	7.4.2 Radiation	113
	7.4.3 Phase Change	113
	7.4.4 Precipitation on Land	114
7.5	Ocean Influence on Weather	114
7.6	Climate Patterns in the Oceans	115
7.7	Heat Budget of the World Ocean	116
7.8	El Niño (The Christ Child)	118
	7.8.1 Circulation Features of the Pacific Ocean	119
	7.8.2 The Walker Circulation	120
	7.8.3 The Southern Oscillation	121
	7.8.4 ENSO (El Niño Southern Oscillation)	123
	7.8.5 El Niño	123
	7.8.6 La Niña	123
	7.8.7 Climate Clues to El Niño	124
7.9	Conclusions	124
Bibliogr	raphy	125

Chapter 8	ATMOSPHERE-OCEAN INTERACTION (Part Two)	
8.1	Introduction	127
8.2	Action of Wind on Surface Waters	128
8.3	Wind Stress (τ)	128
8.4	Eddy Viscosity	128
8.5	Ekman Motion	129
	8.5.1 Interpretation of the Solutions	130
	8.5.2 General Discussion	132
Questior	ns 8.1 – 8.4	133
8.6	Winds and Some Major Currents	135
8.7	Winds and Pressure Gradient	136
8.8	Wind Stress and the Vertical Water Movement	138
	8.8.1 Upwelling	138
	8.8.2 Downwelling	140
	8.8.3 Ekman Pumping	140
8.9	Equatorial Upwelling	141
Questior	ns 8.5 – 8.8	142
8.10	Thermohaline Circulation	143
8.11	Conclusions	144
Bibliography 14		

Chapter 9	FUNDAMENTALS OF WAVES	
9.1	Introduction	147
9.2	Water Waves	148
9.3	Characteristics of Waves	149
Question	ns 9.1 – 9.6	151
9.4	Motion of Waves	152
9.5	Deep-Water and Shallow-Water Waves	154
Question	ns 9.7 – 9.8	155
9.6	Small Amplitude Waves	156
9.7	Surface Wave Theory and Assumptions	156
	9.7.1 Dispersion Relation	158
Question	ns 9.9 – 9.12	158
9.8	Wave Energy	159
Question	ns 9.13 – 9.14	160
9.9	Superposition of Waves	160
9.10	Standing Waves	161
Question	ns 9.15 – 9.16	164
9.11	Reflection, Diffraction and Refraction of Water Waves	164
9.12	Tsunamis	165
	9.12.1 Basic Theory of Tsunami	167
	9.12.2 When a Tsunami Approaches Coastal Areas	168
Question	ns 9.17 – 9.19	168
	9.12.3 When Tsunamis Strike	170
	9.12.4 Tsunami Warning	170

ix

Questions 9.20 – 9.21		171	
	9.12.5	The DART System	172
	9.12.6	Tsunami Preparedness	173
9.13	3 Storm	Surge	174
Questions 9.22 – 9.25		175	
9.14	4 Interna	al Waves	177
9.1	5 Conclu	isions	178
Bibliography		179	

Chapter 10	FUNDAMENTALS OF TIDES AND SEA LEVEL	
10.1	Introduction	181
10.2	Tides	182
10.3	Earth-Moon System	182
10.4	Tide Generating Forces	185
10.5	Equilibrium Theory of Tide	189
10.6	Spring and Neap Tides	191
10.7	The Rotating Earth	192
10.8	Semi-Diurnal Tides	193
10.9	Diurnal Tides	195
Question	is 10.1 – 10.5	196
10.10	Summary of Tidal Terminology	197
10.11	Measurements of Tides and Sea Level	199
	10.11.1 Tide Pole	199
	10.11.2 Measurement of Tides and Sea Level	199
	10.11.3 Stilling Well	200
10.12	SEAlevel Fine Resolution Acoustic Measuring Equipment (SEAFRAME)	201
10.13	Predictions of Tides	202
10.14	Classification of Tides	203
10.15	Tidal Currents	203
10.16	Conclusions	205
Bibliogra	aphy	205

Chapter 11	CHANGING LEVEL OF THE SEA	
11.1	Introduction	207
11.2	Sea Surface and Sea Level	208
11.3	Changes in Sea Level	209
11.4	Sea Level and Enhanced Greenhouse Effect	210
11.5 l	Local and Short-Term Sea Level Changes	211
11.6	Fides, Sea Level and Residual	212
11.7 (General Meteorological Effects on Sea Level	212
	11.7.1 Effect of Atmospheric Pressure	213
	11.7.2 Effect of Wind	213
	11.7.3 Effect of Storm Surges	214
	11.7.4 Effect of Local Thermal Expansion	214
	11.7.5 Seasonal Changes in Mean Sea Level	215

11.8	Rotation of the Earth and Sea Level	216
11.9	Sea Level and Other Effects	217
11.10	Different Time Scales in Sea Level Changes	217
11.11	Conclusions	219
Bibliography		220

Chapter 12 COASTAL PROCESSES	
12.1 Introduction	221
12.2 Some Basic Definitions	222
12.2.1 Beach	222
12.2.2 Shore	222
12.2.3 Coast	222
12.3 Coastal Zone	223
12.4 Erosion	224
12.5 Beach Erosion	225
12.6 Accretion	226
12.7 Nearshore Currents	227
12.7.1 Longshore Currents	227
12.7.2 Rip Currents	228
12.8 Summary of Waves Action on Be	aches 229
12.9 Rate of Bedload Transport	230
Question 12.1	231
12.10 Longshore Sediment Transport	232
Questions 12.2 – 12.3	233
12.11 Coastal Erosion and Sea Level	234
12.12 Bruun's Rule	234
Questions 12.4 – 12.6	236
12.13 Land Loss due to Sea Level Rise	237
12.14 Effects on Coastal Process	239
12.15 Standard Type of Protection	240
12.16 Pollution in the Coastal Zone	244
12.17 Impacts on Coastal Area Develop	oment 245
12.18 Integrated Coastal Zone Manager	nent (ICZM) 245
12.19 Early Use of the Sea	247
12.20 Conclusions	249
Bibliography	249
Glossary	251
Index	275

List of Figures

Figure		Page
1.1	Illustration of two separate objects m_1 and m_2 and the centre-to-centre distance is r	e
1.2	An object, <i>m</i> is attracted by the mass of the Earth, M_e .	7
1.3	A force acting on a block to move along the floor.	1(
1.4	Demonstration of centripetal and centrifugal forces in real life example.	15
2.1	Weight of a cylinder pressing on a horizontal surface.	19
2.2	Illustration of pressure acting on all directions.	21
2.3	Illustrations of how equal pressure transmitted in all directions.	22
2.4	Illustration of Archimedes' Principle and loss of weight in liquid.	24
3.1	Layers of atmosphere according to heights and corresponding pressure.	32
3.2	Air pressure supporting the weight of a mercury column.	34
3.3	A thin layer of atmosphere and forces acting on it.	37
3.4	A simple illustration of atmospheric pressure changes with altitude.	39
3.5	A schematic diagram of the Earth's energy budget.	41
3.6	Simplification of greenhouse effect with a greenhouse (a glass house) in a garden and the atmosphere.	42
3.7	Simple illustration of sunrise and sunset.	44
3.8	Illustration of the tilt of the Earth and how winter and summer seasons occur annually.	45
3.9	Different climate zones of the Earth together with latitudes and approximate temperatures.	40

Figure		Page
4.1	Air at the Equator rises and at the pole sinks to form large convection cell in each hemisphere.	50
4.2	Path of projectile (dotted line) viewed from ground surface deflected from intended path due to rotation of the Earth.	51
4.3	A simple illustration of trade winds and ITCZ.	53
4.4	A schematic illustration of wind system.	54
4.5	Cross-sectional view of wind circulation.	55
4.6	Sea and land breezes.	58
4.7	Island effects, also known as rain shadow.	61
5.1	Water is continuously carried from ocean to land to ocean again.	64
5.2	A simple water distribution on Earth.	64
5.3	The ocean is centred in Antarctica showing three separate ocean basins.	67
5.4	A map of the Pacific ocean region.	68
5.5	Animals derive most of their food energy from lower form of life.	69
5.6	All depths of the ocean are populated with a variety of life.	70
5.7	Global distribution of coral reefs.	73
5.8	Topography of the ocean floor.	73
5.9	The shore zone is alternately covered and exposed as sea level changes with tides.	75
6.1	The temperatures of freezing and melting points and the maximum density of liquid water as functions of dissolved salt content.	81
6.2	A typical temperature profile in the ocean.	82
6.3	A typical salinity profile in the ocean.	83
6.4	Basic salts from sea water.	86
6.5	A pH scale for common solutions in our daily life.	90

xiv

Figure		Page
6.6	Relationship of temperature, salinity and density as σ_t [freezing points and temperature of maximum density (thicker red line) are also shown with straight lines].	92
6.7	Sigma-tee (σ_t) values of the major oceans of the world.	93
6.8	Density profile in the ocean indicating pycnocline.	95
6.9	Schematic illustrations of barotropic and baroclinic conditions.	97
6.10	Salinity gradient power plant using Pressure Retarded Osmosis (PRO).	104
6.11	Schematic representation of the RED process to produce electricity.	105
7.1	A typical cycle of moisture or water vapour in the atmosphere.	109
7.2	Light penetration in the ocean waters.	110
7.3	Climate pattern of the open oceans.	116
7.4	A schematic diagram of heat exchange between ocean and atmosphere.	117
7.5	Approximate percentage of heat flow between ocean and atmosphere.	118
7.6	General current patterns near South American coast (origin of El Niño).	119
7.7	Neutral conditions of ocean and atmosphere in the Pacific region.	120
7.8	Conditions of ocean and atmosphere during El Niño.	121
7.9	SOI values of few years in the recent past to identify the El Niño condition.	122
7.10	Special locations in the Pacific Ocean to analyse El Niño development starting from El Niño 1 region near the South American coast.	123
8.1	Coordinate system generally used in 3-D Ocean (<i>z</i> -axis indicating the depth).	129

XV

Figure		Page
8.2	Ekman spiral formed by a wind-driven current in deep water in the Northern Hemisphere (current speeds decrease with increasing depth and water movements in each layer move more to the right as one goes deeper).	131
8.3	Schematic representation of wind, surface current and net water transport (also called Ekman transport) in the Northern Hemisphere (thickness of transport layer is called Ekman layer or Ekman depth).	133
8.4	Major surface currents of the world oceans.	136
8.5	Pressure gradient between simple high- and-low pressure and geostrophic flow.	137
8.6	Generation of coastal upwelling due to longshore wind and offshore wind in the Northern Hemisphere.	138
8.7	Upwelling Process for Northern Hemisphere	139
8.8	Generation of downwelling in the Northern Hemisphere.	140
8.9	Divergence and convergence in the ocean due to cyclonic and anticyclonic winds.	141
8.10	Schematic illustration of equatorial upwelling.	141
8.11	Generation of geostrophic current flow in a gyre driven by anti-cyclonic winds in the Northern Hemisphere.	142
8.12	Schematic diagram of thermohaline circulation in the world oceans which is also known as the great ocean conveyor belt.	143
9.1	Schematic diagrams of transverse and longitudinal waves.	148
9.2	A simplified water wave in the ocean.	149
9.3	Some useful wave characteristics.	149
9.4	A simple illustration of wave motion in the ocean.	152
9.5	Motion of water particles in deep water wave and shallow water wave.	154

xvi

Figure		Page
10.11	A schematic explanation of semi-diurnal tides for a particular island on the Earth (plan-view from the top of the Earth).	193
10.12	One day tidal records showing semi- diurnal tides.	194
10.13	Lunar Declination angle and its important in tides.	195
10.14	One day tidal records showing diurnal tides.	195
10.15	Semi-diurnal tide, mixed tide and diurnal tide and the orientation of the Moon.	196
10.16	Summary of tidal characteristics all around the coastline of the world.	198
10.17	A simple tide pole to measure the water level with time.	199
10.18	Diagram of simple mechanical tide gauge.	200
10.19	Schematic illustration of modern SeaFRAME Tide Gauge	201
10.20	Tidal currents in the open ocean.	204
10.21	Tidal currents going in and coming out from a channel connected to the open sea.	204
11.1	Global sea level change in mm starting for 1880.	218
11.2	Long-term tidal fiuctuations due to the orientation and movement of Earth-Moon-Sun system.	218
12.1	A typical beach and shoreline.	222
12.2	Schematic diagram of coastal zone.	223
12.3	Schematic diagram showing coastal erosion due to waves and currents.	224
12.4	Coastal erosion vs Beach loss	226
12.5	A typical beach and shoreline with usual terminology.	227
12.6	Formation of longshore currents and zigzag movement of sand.	228
12.7	Convergence of longshore currents and formation of rip currents.	229
12.8	Summary of causes of coastal erosion.	230

xvii

Figure		Page
12.9	Shoreline and oblique wave crest.	232
12.10	Schematic explanation for Bruun Rule.	235
12.11	Basis for Bruun's rule of coastal erosion, relating coastal erosion to sea level change.	235
12.12	Cross-sectional view showing land loss due to sea level rise of 1 cm.	237
12.13	Photograph of a beach or coast that is facing such threats.	239
12.14	Section of a road which is being threatened by ongoing coastal erosion.	240
12.15	An old style of vertical seawall and condition of beach.	241
12.16	Schematic structure of groins.	242
12.17	Structure of groins on a typical beach for protection.	242
12.18	Breakwater and a jetty.	243
12.19	The beach we do not want to walk and enjoy.	244
12.20	Polynesian and Melanesian migration.	247
12.21	Micronesian stick chart.	248

List of Tables

Table		Page
1.1	Thermal expansion of sea water for different salinities and temperature.	14
1.2	Some basic formulae and relationship in motion	15
2.1	Densities of some liquids at certain temperatures	18
3.1	Major gases in the atmosphere	31
3.2	Variation of atmospheric pressure with altitude	35
6.1	Density of pure water at different temperatures	79
6.2	Comparison of some properties of pure water and sea water	80
6.3	Major constituents in sea water	84
6.4	Major gases in the atmosphere and ocean	91
6.5	Comparison of the five basic forms of ocean energy	99
8.1	Maximum velocity and rate of volume transport of some major currents	135
9.1	Wave characteristics	150
9.2	Waves classified by period	153
10.1	Forces acting on the Earth	186
10.2	Lunar and Solar Tidal Periods for semi- diurnal tides	194
10.3	Tidal terminologies	197
10.4	Some major tidal constituents	202
10.5	Classification of tides	203
11.1	Causes of sea level change	210
11.2	Sea level trends	219
12.1	Prediction of land loss due to sea level rise with different beach angles	238

Preface

Aving established the Marine Science Programme more than a decade ago in the Universiti Malaysia Sabah, the following four undergraduate courses have been introduced for the Physical Oceanography component in Marine Science Pragramme under the School of Science and Technology.

- Introduction to Physical Oceanography (SL 10103)
- Fisheries Meteorology (SL 20403)
- Coastal Processes (SL 30503)
- Coastal Modelling (SL 31003)

Semesters after semesters, these courses have been taught by the different academics from BMRI (Borneo Marine Research Institute). Until 2011 several different foreign textbooks have been used to run the courses. Some are very much descriptive and few are quite mathematical. Nothing is in between for the undergraduate students and the gap between the levels of these textbooks is wide. In order to enhance the availability of information and educational materials especially for the Malaysian students at the right level, the academics involved in these courses have been considering producing an appropriate monograph. This book is our attempt to bridge the gap as a reader-friendly version of in-house holistic textbook with local examples based upon the specific topics covered in the courses, including Integrated Coastal Zone Management (ICZM), SL 30603.

The significance of ocean, atmosphere and their influence on daily life are increasingly apparent. To be in line with the Atmosphere and Ocean aspects of the courses offered, our attempt and contribution to the curriculum development will mainly focus on physical science. As we are aware, teaching and training in atmospheric and marine sciences throughout the world is mainly offered at the university level. In many, if not most countries, however, there is little or no general recognition of the influence of the ocean and atmosphere on all people, wherever they might live.

Despite some difficulties in writing a very flexible curriculum, an earnest effort has been made to provide a more direct theme of the subject than just to distribute the relevant general references. One might think that an appropriate curriculum on a particular subject could be easily drawn from several relevant reference materials. Theoretically, the concept is not entirely wrong, but in reality, it is much more difficult to gather main points from several topics and place them in an

appropriate sequence to strike the real goal. Obviously, more and more fine-tunning on the curriculum is always necessary and it may only be achieved through the real teaching. Difficulties encountered by the lecturers while teaching and questions asked by the students while learning, may become a great help to improve the course gradually.

In order to minimise the improvement period on the curriculum for the Malaysian students, this monograph is structured in a lecture notes style based upon the personal taste of the teaching team at BMRI. It seeks to introduce students to the ocean and atmosphere and how they work. Another objective is to introduce students to Marine Science especially Physical Oceanography, as a body of knowledge and as a process of continual inquiry and testing of ideas. Although a high school background in Physics and Mathematics are assumed, simple explanation and fundamental definitions are provided wherever necessary. This monograph is designed to make it simple and easy for the Malaysian students to familiarise themselves with the ocean and atmosphere in particular even though it does not cover every topic from the above four courses.

Although, as always in such cases, one is inclined to sacrifice elegance in presentation, nevertheless that main aim has been to service the students into the subject whose background may be restricted. Consequently, these notes have no claim for such elegance, nor are they intended to have presentations for higher merit. Finally our great obligation is to the scientists who have built the subjects, they are identified throughout the monograph. In addition, many figures are handily downloaded from different websites for this educational purpose. Being grateful to those who deserve is a special kind of merit in our Asian tradition and belief, accordingly we offer our thanks to the Director of BMRI namely Prof. Dr Saleem Mustafa, Head of Publication Unit of UMS namely Lt. Kol. (K) Prof. Dr Syed Azizi Wafa Syed Khalid Wafa and last but not least the staff of Publication Unit namely Lindsy Lorraine Majawat, Azlan Yakob and Nataniel Ebin for their continuous guidance, support and indirectly overseeing this challenging task from the contents to language correction and formatting. Thanks are also due to our post-graduate students Weliyadi Anwar and Dayang Siti Maryam for their assistance in this endeavour.

Than H. Aung Madihah Jafar Sidik Ejria Saleh

Muhammad Ali S. Hussein

Teaching Team: Physical Oceanography Component Borneo Marine Research Institute (BMRI) Universiti Malaysia Sabah Kota Kinabalu, Sabah, Malaysia 2013

