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‘“I checked it very thoroughly,” said the computer, “and that quite definitely is the
answer. I think the problem, to be quite honest with you, is that you’ve never actually
known what the question is.” ’

Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1979)
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6.17 MCMC estimation results for the exenatide short-term data using
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Summary

In mathematical modelling for drug discovery, nonparametric methods are an

alternative to the more commonly used parametric methods, and have the advantage

of requiring fewer modelling assumptions. This thesis considers nonparametric

methods for performing input estimation (deconvolution) — inferring the input

to a dynamical system based on measurements of the system’s state. A typical

application is to determine the absorption profile of an orally administered drug.

Commonly used input-estimation methods are restricted to system models that are

linear. This thesis aims to develop and evaluate methods which can be applied to

nonlinear systems, and which are additionally able to provide uncertainty estimates.

An input-estimation method is considered to be a particular choice of 1) prior, 2)

function parameterisation, 3) desired statistical quantity, and 4) estimation algorithm.

Two classes of methods have been selected and implemented: direct optimal-control

methods and Markov chain Monte Carlo (MCMC) methods. These have been

evaluated on two pharmacokinetic and two body-weight modelling applications, using

simulated as well as real data. Evaluation was based on several criteria, including

accuracy, computational speed, and usability. The results show that the methods can

achieve good accuracy, provided that data are relatively densely sampled. Properly

applied, optimal-control methods can achieve very high speed, approximately 0.1

s for typical problems, at the expense of not providing uncertainty estimates. For

MCMC methods, the performance is highly dependent on the method settings as

well as on the problem. In many cases, MCMC running times can be significantly

reduced by a suitable choice of function parameterisation and sampling method. In

all cases, estimation is based on clearly stated, quantifiable assumptions.

xv



Abbreviations

AD Automatic differentiation
BIC Bayesian information criterion
BMI Body-mass index
CLT Central limit theorem
DIO Diet-induced obese
EKF Extended Kalman filter
ER Extended release
ESS Effective sample size
HAT Human African trypanosomiasis
IV Intravenous
ivivc In vitro-in vivo correlation
LTI Linear time-invariant
MALA Metropolis-adjusted Langevin algorithm
MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
ML Maximum likelihood
MMALA Manifold Metropolis-adjusted Langevin al-

gorithm
ODC Ornithine decarboxylase
ODE Ordinary differential equation
PK Pharmacokinetics
PLGA Poly(lactic-co-glycolic acid)
RKHS Reproducing kernel Hilbert space
RMSE Root-mean-square error
RWMH Random walk Metropolis-Hastings
SDE Stochastic differential equation
SLLN Strong law of large numbers
SMC Sequential Monte Carlo

xvi



SMMALA Simplified manifold Metropolis-adjusted
Langevin algorithm

UKF Unscented Kalman filter

xvii



Chapter 1

Introduction

1.1 Overview

Mathematical modelling is used extensively in drug discovery. Modelling aids in
predicting compound properties such as pharmacokinetic (PK) parameters, efficacy
and safety. Results from the analyses are useful for target validation and compound
selection, and can provide relevant information for setting go/no go decision criteria.
The models can be used to simulate hypothetical drug trials, which is useful for study
design, including determining dosing and dosing schedules (Miller et al. 2005; Visser
et al. 2013). Such modelling can hence reduce the need to perform expensive and
time-consuming experimental studies. Additionally, it can make it possible that fewer
animals than would otherwise be necessary are used in experimentation in order to
draw statistically valid conclusions.

In a preclinical setting, relatively small, empirical models are commonly used.
These models are typically expressed by systems of ordinary differential equations
(ODEs), and are often linear compartmental models. The unknown model parameters,
where possible, are estimated from available data (Gabrielsson and Weiner 2007).
More elaborate, mechanistic models are often not feasible because of the relatively
small amount or sparsity of the data available.

The system under study can also have inputs, which are time-varying external
functions that affect, but are not affected by, the system. These can also be interpreted
as time-varying model parameters. Typical examples include the absorption rate of
an orally administered drug, and the energy intake in a body-weight model. In many
cases, these input functions are represented by parametric models. As an example,
drug absorption is often modelled by an absorption compartment, resulting in an
exponential function. Similar models are available for energy intake (Göbel et al.

1



2014).
Parametric models are easy to use and interpret. By constraining the set of

possible input functions to the set of functions that can be represented by a small
number of parameters, overfitting can be avoided. However, the major disadvantage
of these methods is that they rely on strong assumptions about the shape of the input
function. An alternative approach is to use nonparametric methods. These make
fewer assumptions, and allow the estimated function to take on any form, as long as
it is supported by the data. In order to avoid overfitting, it is usually necessary to
add additional criteria to the estimation problem, which serve to ensure that smooth
solutions are preferred over unrealistic oscillatory solutions.

This thesis considers the problem where a known system model, described
by a set of nonlinear ODEs, is driven by an unknown input. Measurements of the
state of this system are obtained at a discrete set of time points. The aim is to
recover the input function, using nonparametric methods, based on the model and
measurements. In the literature, this estimation problem is often referred to as
deconvolution. However, this terminology is only appropriate for linear time-invariant
models, where the measured output of the model can be expressed as a convolution
of the input function and the system’s impulse response. As this thesis considers
nonlinear systems, the more general term input estimation is used here in place of
deconvolution. Note that it is still necessary to have a parametric model for the
system. Constructing and analysing parametric models is outside the scope of this
thesis.

A number of methods have been developed for performing input estimation
(deconvolution) for pharmaceutical applications. These are, to a large extent, built on
linear systems theory, and are therefore not suitable for problems where the system
model is nonlinear (Verotta 1996). However, nonlinear models are widely used in
drug discovery, for example Michaelis-Menten elimination (Johnson and Goody 2011),
nonlinear receptor kinetics (Johansson et al. 2013), and nonlinear body-weight and
body-composition models (Guo and Hall 2011; Hall et al. 2011). For this reason, this
thesis aims to develop and evaluate input-estimation methods which are applicable to
nonlinear systems. Additionally, in this work, much emphasis is placed on methods
which are able to provide a measure of the uncertainty of the estimates. This is
important, as the available data are often sparse. Hence, there may be a wide range
of input functions which are all consistent with the data. A method that is able to
report the full range of possible solutions provides more information than a method
that merely provides a point estimate.

Problems with a similar mathematical structure have been extensively studied
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in various branches of engineering and statistics (Rao 2009; Girolami and Calderhead
2011; Del Moral et al. 2006). A wide range of algorithms has been developed for
this purpose, including optimal control-based methods, Markov chain Monte Carlo,
sequential Monte Carlo, and nonlinear extensions of Kalman filters. However, the
performance of these methods can be highly problem-dependent, making it necessary
to evaluate them on models and data that are typical for the application at hand.
One characteristic of data from drug-discovery experiments, which differs from many
other engineering applications, is the sparsity and irregularity of measurement time
points. The datasets that are analysed in this thesis are typical examples of such
data, and are shown in Figs. 4.2, 5.1, 5.2 and 6.4.

For practical reasons, it may be necessary to discretise the input function
so that it can be represented by a finite set of parameters. Hence, from a compu-
tational perspective, there may not be a clear distinction between parametric and
nonparametric methods. For the purpose of this thesis, a method is considered to
be nonparametric if the input function parameterisation is mainly intended as a
computational convenience, and not intended to restrict what input functions can be
represented.

It is important to recognise that nonparametric methods are not always
appropriate. In many cases, the parameters in parametric models have physiological
interpretations, which are themselves of primary interest. Parametric models can also
be used for extrapolation, such as simulating the results of increasing the administered
dose of a drug. However, when this is not required, nonparametric methods offer
increased flexibility.

1.2 Aims and objectives

The aim of this thesis is to develop and evaluate methods for input estimation in
drug-discovery applications which:

• are applicable to nonlinear systems,

• are able to provide uncertainty estimates, and

• satisfy the criteria outlined below as well as possible:

Accuracy. The method should be able to recover the input function with as small
an error as possible. When real data are analysed, the true input function is
usually not available. For this reason, accuracy is assessed using simulated data.
The choice of error measure will be discussed in the application chapters.
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Computational speed. While accuracy is arguably more important than speed,
modellers in the pharmaceutical industry are working under time constraints.

Usability. The user of the method should not have to set any algorithm parameters,
such as regularisation parameters. Those choices should be built into the
method.

Statistical soundness. All assumptions made when estimating the input should
be explicitly stated and well justified.

Robustness. The estimation method should be able to reliably recover the solu-
tion to the estimation problem, without computational issues. Examples of
robustness failures are when an optimisation method fails to converge to an
optimum, and when a Bayesian estimation method fails to characterise the
posterior distribution.

Usefulness. The method should be applicable to as wide a range of input-estimation
problems as possible.

While the ability to provide uncertainty estimates is desirable, methods which
only provide point estimates are also investigated, as these may be able to achieve
higher performance according to the criteria listed above.

To achieve these objectives, the engineering and statistics literature is reviewed
in order to find suitable candidate methods. A few of these methods, that are deemed
most promising for drug-discovery applications, are selected for further study. A
framework has been established, where each selected method can be interpreted as a
particular choice of:

• prior or regularisation criteria,

• function parameterisation,

• desired statistical quantity,

• estimation algorithm.

All combinations of such choices are tested on simulated as well as real data
across a range of datasets. The methods are evaluated based on the criteria listed
above.
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1.3 Thesis Outline

Chapter 2 gives a formal mathematical definition of the input-estimation problem, as
it is used in this thesis. A review of input-estimation methods that have previously
been proposed for pharmaceutical applications is provided. These methods have
mostly focused on linear systems. A set of general-purpose estimation methods which
is widely used in the engineering and statistical literature is briefly reviewed. Finally,
the framework for input-estimation methods is presented. This framework, which
provides a taxonomy for classifying nonparametric input-estimation methods, is an
original contribution of this thesis.

Chapter 3 provides a detailed, in-depth theory of key techniques. This is
background material, not original in content, and not essential for understanding the
application chapters of the thesis. This organisation was chosen to make the thesis
more accessible for readers who are mainly interested in the applications.

Chapters 4–6 are application chapters and constitute the main original contri-
bution of this thesis. Each chapter presents one application area with example models,
together with both real and simulated data. A broad range of input-estimation meth-
ods is tested on the data. Estimation procedures were designed to be as similar as
possible for all datasets, to allow comparisons between datasets and models.

Chapter 7 summarises the finding of Chapters 4–6. The applicability, strengths
and limitations of the methods are discussed, and recommendations for practitioners
are provided. Finally, suggestions for future development are given.
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Chapter 2

Theory

2.1 Problem definition

This work considers dynamical systems that can be represented by a system of ODEs.
Such systems can be described by:

dx(t)

dt
= f(t,x(t),u(t)) (2.1)

x(ti) = x(0) (2.2)

where t is time, defined in some interval [ti, tf ], x(t) ∈ Rdx is the state vector,
u(t) ∈ Rdu is an vector of external input functions, and x(0) is the initial state. The
number of state variables is denoted dx, and the number of inputs is denoted du.
The dynamics are fully specified by the right-hand side of Eq. (2.1), which is a map
f : R×Rdx ×Rdu → Rdx . Hence, the state trajectory x(t) is the solution to an initial
value problem.

The system is observed at a discrete set of time points, t1 . . . tn. Each
measurement y(t) ∈ Rdy is represented by a measurement equation:

y(t) = g(t,x(t),u(t),v(t)). (2.3)

Here, g is a map g : R × Rdx × Rdu × Rdv → Rdy , v(t) ∈ Rdv is a random
variable that accounts for measurement errors, dy is the number of measured variables,
and dv is the dimension of the measurement noise.

It is assumed that f(·), g(·) and x(0) are known. The function f(·) is also
assumed to satisfy technical requirements such as Lipschitz continuity, so that the
system of ODEs has a unique solution. Furthermore, the distribution of v(t) is
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assumed to be known. No further assumptions on f(·) and g(·) are made, although
in practice, some estimation methods may have additional requirements such as
differentiability. In particular, f(·) and g(·) can be nonlinear. The input-estimation
problem will, for the purposes of this work, be formally defined as: given a model
specification, and a set of measurements y(t1) . . .y(tn), infer the vector of input
functions u(t) in the interval [ti, tf ].

For input estimation to be possible, the system must be structurally identifiable.
Informally, this means that, given continuous-time, error-free measurements y(t),
there is a unique vector u(t) that predicts these measurements. In this situation
it is possible to recover u(t) perfectly. Structural identifiability usually refers to
estimation of static parameters, but the same concept carries over to time-varying
functions.

In practice, u(t) cannot be perfectly recovered because the measurements are:

Sparse. Measurements are in practice commonly available only for a finite set of
time points. In pharmaceutical applications, measurements are often expensive,
and therefore there is a strong incentive to limit the number of samples.

Noisy. Because of the measurement error v(t), in a practical situation the true
system state is never perfectly observed.

The task of determining unknown quantities such as parameters or functions
from data is inherently a statistical problem. The two dominant schools of thought
in statistics are the frequentist and Bayesian approaches (Bayarri and Berger 2004).
In this work, the frequentist as well as the Bayesian view will be presented.

Previous literature on input estimation in pharmacokinetics has focused on
determining the input to a linear time-invariant (LTI) system. As the name suggests,
such a system has the properties:

Linearity. For any input functions u1(t) and u2(t) with corresponding output
functions y1(t) and y2(t), and scalars c1 and c2, the following holds: the input
c1 · u1(t) + c2 · u2(t) will produce the output c1 · y1(t) + c2 · y2(t). In other
words, if the input function is scaled by a constant factor, the output will be
scaled by the same factor. Furthermore, the output from a sum of two inputs
will be the sum of the outputs from each individual input.

Time-invariance. For any input function u(t) with corresponding output y(t), the
input function u(t− T ) will result in the output y(t− T ) for any scalar T . In
other words, if the input function is shifted in time, the output function will be
shifted by an equal amount.
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For LTI systems, the relationship between a scalar input u(t) and a scalar
output y(t) can be described by:

y(t) =

∫ t

0
I(t− τ) · u(τ) dτ = I(t) ∗ u(t). (2.4)

I(t) is the system’s impulse response, that uniquely determines the system’s
response to any input function, and ∗ is the convolution operator. Because of this
relationship, input estimation is often referred to as deconvolution in the literature.
Since this work focuses on nonlinear models, the word deconvolution is avoided here.

For nonlinear systems, the input-output relationship cannot be expressed by
a convolution operation. Instead, the relationship can be represented by its system
of ODEs. These systems can be solved using numerical methods (Butcher 2008),
although such methods are more computationally expensive than the analytical
techniques that can be used for linear systems. However, an advantage of the ODE
representation is that it is straightforward to extend the methods to systems with
multiple inputs and multiple outputs. It is also straightforward to allow nonzero
initial conditions, and in principle, joint estimation of model parameters, initial
conditions and input functions can be done. However, this thesis focuses on the
single-input single-output case with known model parameters. Another issue is that
the system can become saturated in many commonly employed nonlinear models,
such as in receptor kinetics. This will result in the system’s states practically ceasing
to respond to changes in the input. From a structural identifiability perspective, this
is not an issue, as saturation is only achieved in the limit when time tends to infinity.
Hence, for any experiment of finite duration, the input function can be recovered
when measurements are perfectly noise-free, as is assumed in structural identifiability
analysis. However, when data are sparse and noisy, it may no longer be practically
possible to detect changes in the input when the system is in saturation. Therefore,
input estimation is only likely to be successful when the system is not near saturation
for an extended amount of time. Methods which are able to provide estimates of
uncertainty can help here, as they will be able to report that there is a wide range of
possible input functions which can explain the data.

2.2 Basics of statistical inference

Here, the basics of statistical inference are presented. To make the presentation as
general as possible, the parameters to be estimated are denoted by θ. In the special
case of input estimation, these parameters characterise the unknown input function(s)
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u(t).

2.2.1 Frequentist viewpoint

A statistical inference problem can be formulated as follows: given an unknown
parameter vector, θ, and a statistical model describing the distribution of data,
p(y|θ), find an estimate for θ given a set of observations y1 . . .yn. In the frequentist
paradigm, inference is performed by constructing an estimator for θ, which is a
function that takes observed data as input, and gives an estimate θ̂ as output (Ross
2014). The data are treated as random variables, while the true parameters θ
are considered to be fixed, but unknown. Since the estimate θ̂ is a function of
random variables, it is itself a random variable — if the same estimation procedure is
performed multiple times on different datasets, all drawn from the same distribution
p(y|θ), the value of θ̂ will vary. An estimator can be characterised by its bias and
variance (Friedman et al. 2001):

Bias. The bias of an estimator is the difference between the true value of θ and the
expected value of θ̂, i.e. Bias

[
θ̂
]

= θ − E
[
θ̂
]
.

Variance. The variance of an estimator is defined as Var
[
θ̂
]

= E
[(
θ̂ − E

[
θ̂
])2
]
.

A good estimator should have small variance, and zero (or at least small)
bias. A common way to construct estimators is to use maximum likelihood (ML)
estimation (Casella and Berger 2002). Here, the estimator is chosen to select the
parameter values that maximises the probability of the data given the parameters,
i.e.

θ̂ = arg max
θ

p (y|θ) . (2.5)

The probability of the data given the parameters, viewed as a function of
the parameters for fixed data, is termed the likelihood of the parameters, hence the
name maximum likelihood. For practical purposes, it is more common to work with
the log-likelihood. Since the logarithm is a monotonically increasing function, the
maximum of the likelihood coincides with the maximum of the log-likelihood.

When fitting a statistical model, it is important to consider the possibility of
overfitting. When only a small amount of data is available, a sufficiently complicated
model with many parameters may be able to fit the data perfectly, even if it is, in
fact, not an appropriate model. When the model is too complicated, there may be
many, or indeed infinitely many, parameter settings that can fit the data equally
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well. In the case of input estimation, the unknown quantities are not just parameters,
but continuous functions of time. The parameters can be considered to be infinite-
dimensional, since each such function is defined for every point between the endpoints
ti and tf . This can be seen as an extreme case of the overfitting problem. As
illustrated in Fig. 2.1, the ML estimate does not have a unique solution, in that
multiple functions fit the data equally well. All of the displayed functions will have
the same likelihood, suggesting that the likelihood alone is a poor indicator of the
quality of the estimate.

ti tf
−0.5

0.0

0.5

1.0

1.5

ti tf

−0.25

0.00

0.25

0.50

0.75

Figure 2.1: Fitting an input function to measurements from the system ẋ = −x+u(t).
Left: A number of candidate input functions u(t). Right: The corresponding state
trajectories x(t) together with measured data (dots). All candidate input functions
fit the data equally well. However, most functions oscillate more than the data seem
to support. This shows that for these types of problems, a good data fit is not good
enough.

Figure 2.1 suggests that while many functions can give a good data fit, most
of them will be implausible since they exhibit large oscillations, which are not
supported by the data. The ML estimate can be given a unique solution by adding
a regularisation term, which penalises solutions that are overly oscillatory (Verotta
1996). Introducing the notation ED = − log p(y|θ), the modified estimator becomes

θ̂ = arg min
θ

(ED + τ · ER) (2.6)

where ER is the regularisation term. τ is a regularisation parameter, whose value
determines the trade-off between data fit and regularity. As an example, when θ is a
parameterisation of an unknown continuous-time function u(t,θ), the regularisation
can be based on the L2 norm of the jth time derivative of the function. For a scalar
function u(t,θ), this is given by
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ER =
1

2

∫ tf

ti

(
dju(t,θ)

dtj

)2

dt. (2.7)

For vector-valued inputs, each component can be assigned such a prior. Typ-
ically, j is 1 or 2. When j = 1, ER reaches its minimum value of 0 when the function
is constant, while any deviation from a constant function will result in a nonzero
penalty. Similarly, when j = 2, any linear function will have a zero penalty. Another
regularisation term that has been suggested is given by the negative entropy of a
discretised version of the function (Hattersley et al. 2008). Since the smallest penalty
is given to the function with the highest entropy, methods using this regulariser are
often referred to as maximum entropy methods.

Various criteria have been suggested for setting a suitable value for the
regularisation parameter τ . The discrepancy criterion suggests selecting τ so that the
mean squared distance between predictions and measurements is equal to the expected
squared distance under the model (Twomey 1965). In ordinary and generalised cross-
validation, estimation is performed with some measurements left out, and the ability
to predict the values of these left-out measurements is assessed for various values of
τ (Golub et al. 1979). In the L-curve approach, estimation is performed for a large
number of settings of τ . ED and EW are then plotted against each other. For small
τ , the data fit will be almost perfect and the data cost will be almost zero. For large
τ the curve is forced to be very smooth at the expense of the data fit, causing a high
value of ED. Between these extremes the curve often shows a characteristic corner,
whose corresponding τ value is a reasonable trade-off between regularity and data
fit (Hansen and O’Leary 1993).

2.2.2 Bayesian viewpoint

In frequentist statistics, parameters are treated as unknown but non-random. In
contrast, Bayesian statistics formally treats all unknown quantities as stochastic
variables, including latent variables, missing data, and parameters. A good and
comprehensive introduction to the Bayesian interpretation of probability is given
in Jaynes (2003). Unknown functions can be modelled as stochastic processes. A
stochastic process (Jazwinski 2007) is a collection of random variables indexed by a
variable. In the models considered here, the indexing variable is time, meaning that
a single realisation of a stochastic process is a function of time.

The quantity of interest in Bayesian statistics is the posterior distribution,
p(θ|y), given by Bayes’ rule (MacKay 2003) as

11



p(θ|y) =
p(y|θ)p(θ)

p(y)
. (2.8)

The factor p(θ) is the prior distribution, which is a probability distribution
describing the knowledge about θ before any data have been observed. The term in
the denominator can be computed by marginalising out θ from the joint probability
of parameters and data:

p(y) =

∫
p(y,θ) dθ =

∫
p(y|θ)p(θ) dθ. (2.9)

This term is called the marginal likelihood, since it describes the probability dis-
tribution of the data when the parameters have been marginalised out (Barber 2012).
Note that for a given dataset, this is a constant value. The integral in Eq. (2.9) is in
practice often difficult to compute, because it involves integration over a potentially
very high-dimensional space (Friel and Pettitt 2008). For parameter estimation, it is
often not necessary to compute the marginal likelihood. However, when performing
model selection, the marginal likelihood provides valuable information about the
competing models’ ability to predict the data (MacKay 1992).

In contrast to a maximum likelihood estimate, the result from Bayesian
estimation is a distribution over the parameters. For practical reasons, it is desirable
to summarise the estimation as a single number. Common summaries are the posterior
mean (Gelman et al. 2013):

θ̂mean = E [p(θ|y)] , (2.10)

and the maximum a posteriori (MAP) estimate (MacKay 2003):

θ̂MAP = arg max
θ

p(θ|y). (2.11)

The relationship between MAP estimation and regularisation can easily be
seen by writing Bayes’ rule in logarithmic form:

log p(θ|y) = log p(y|θ) + log p(θ)− log p(y). (2.12)

The first term is the log-likelihood. The last term is a constant and can be ignored
for the purposes of maximisation. By identifying log p(θ) = −τER, it can be seen
that frequentist regularised ML estimation can be interpreted as Bayesian MAP
estimation under a certain prior. τ here controls the “tightness” of the prior — a large
τ means that large oscillations are improbable. In the Bayesian framework, τ can be
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incorporated into the parameter vector and estimated like any other parameter. In

this case, an augmented parameter vector θ =
[
θT , τ

]T
is introduced, and a joint

prior over these parameters can be assigned, with a log-posterior given by

p(θ, τ |y) =
p(y|θ, τ)p(θ, τ)

p(y)
=
p(y|θ)p(θ|τ)p(τ)

p(y)
(2.13)

where the second equality relies on the assumption that y is conditionally independent
of τ given θ. This means that for a given realisation of the input function, the
distribution of the measurements is not affected by the regularisation parameter.

Bayesian inference is challenging from a computational point of view. Comput-
ing the expectation of a parameter with respect to the posterior involves integrating
over all parameters. In addition, evaluating the posterior itself requires integrating
over all parameters to obtain the marginal likelihood. For some models, it is possible
to perform these integrations analytically. Traditional numerical integration methods,
such as the trapezoidal rule and Simpson’s rule (Flannery et al. 1992, Ch. 4) generally
scale poorly with the number of dimensions, and are not suitable for high-dimensional
problems (Robert and Casella 2004). Methods for Bayesian integration generally rely
on either functional approximations or Monte Carlo methods that use sampling to
approximate the integrals.

2.3 Review of previous work

2.3.1 Introduction

Several methods have been proposed in the literature on input estimation or decon-
volution in pharmacokinetics and physiological modelling. Unless otherwise stated,
the methods assume that the system dynamics are linear, and that the system has
a single unknown input and a single measured variable. However, many concepts
carry over to nonlinear systems, and systems with multiple inputs and outputs.
Two common methods are the Wagner-Nelson (Wagner and Nelson 1964) and the
Loo-Riegelman (Loo and Riegelman 1968) method. These methods do not make
any assumptions about the form of the input, but they do assume that the system
is represented by a linear one-compartment (Wagner-Nelson) or two-compartment
(Loo-Riegelman) model, and they also assume that time-continuous measurements
are available. They cannot be considered to be statistical methods. Rather, they are
based on directly solving the system equations for the unknown input.

Parametric methods have also been suggested, that constrain the input func-
tion to have a prespecified functional form. Using sums of exponentials has been
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discussed by Verotta (1996). Similar methods have been presented by Veng-Pedersen
and Modi (1992). The latter method additionally assumes that the impulse response
too is a sum of exponentials. Csajka et al. (2005) present a method where the input
function is represented by a sum of inverse Gaussian functions, and use it within
a mixed-effects model. These methods reduce the input-estimation problem to a
parameter-estimation problem, and have more in common with general parameter-
estimation procedures than with the nonparametric methods that are the focus of
this thesis.

2.3.2 Point-estimation methods

Verotta (1996) provides a detailed review of deconvolution, with a focus on non-
parametric methods. The most basic method, quadrature, assumes that the input
function is piecewise constant between measurements. The relation between input
and measurements can be expressed as a system of linear equations. Since the number
of unknowns is equal to the number of equations, the system has a unique solution,
provided that it is invertible. While very straightforward, this method does have
obvious problems. An input function that is constant between measurements may
not be a very realistic model. Additionally, by forcing exact agreement with the
data, the method becomes sensitive to noise. This is especially true for systems with
lowpass characteristics, which attenuate high frequencies. Any high-frequency noise
will become amplified when such a system is inverted. A counterintuitive consequence
of this is that a densely sampled dataset is more sensitive to noise than a more
sparsely sampled dataset, since the dense dataset can represent higher frequencies.
One way to overcome this is to model the input function as being piecewise constant
on a set of intervals that are fewer than the number of measurements. This results in
an overdetermined linear system, for which the least-squares solution can be obtained
in closed form using the Moore-Penrose pseudoinverse (Penrose 1955). This helps
to decrease noise sensitivity, at the expense of constraining the functional form of
the input function even more. A more realistic-looking function can be obtained by
using differentiable basis functions such as B-splines (Boor 1986). Regardless of the
choice of basis functions, a closed-form solution is available.

An alternative to the quadrature method, suggested by Verotta (1996), is
to use penalised least-squares, where the methods above are modified by adding a
regularisation (penalisation) term, as described in Section 2.2.1. This makes it possible
to have a more fine-grained input function parameterisation, and hence this method
can be described as nonparametric. A finite difference approximation of the first or
second derivative of the input function can be constructed, and its sum of squares can

14



be used as a regularisation term. Penalisation can be done either on the basis function
coefficients or on the function itself. For piecewise constant functions, this makes little
difference, but for B-splines, this amounts to making different assumptions. Since the
finite difference approximation is a linear operator, the estimation problem is still a
quadratic optimisation problem, which has a closed-form solution. It is also possible
to add constraints to these problems, that disallow solutions that attain negative
values. In addition to making the solution more physiologically plausible, it can also
have a regularising effect, as it prevents the input function from oscillating between
large positive and negative values. When constraints are added to the problem, it no
longer has a closed-form solution. However, it is a convex optimisation problem, for
which efficient methods with strong guarantees of finding the optimum exist (Boyd
and Vandenberghe 2004).

Verotta (1996) also mentions that penalised least-squares has a Bayesian
interpretation, as explained in Section 2.2.2. In this view, the regularisation term
is interpreted as a quantity that is proportional to the negative log-prior. Adding a
regularisation term, penalising a discrete-time approximation of the jth derivative,
is equivalent to modelling the input function as a cascade of j integrators, driven
by white noise referred to as the process noise. The continuous-time setting is
conceptually similar, although such an input function would have to be modelled
using tools from stochastic calculus (Klebaner 2012; Øksendal 2003) in order to
be mathematically rigorous. Seeking least-squares solutions also means that there
is an implicit assumption that the measurement noise has a Gaussian distribution.
Non-negativity constraints can be interpreted as assigning a prior probability density
of zero for any solution that takes negative values.

Similar ideas have been discussed by Sparacino and Cobelli (1996). The
application under consideration is the task of estimating insulin secretion rate after
a intravenous glucose tolerance test. The input function is modelled as a piecewise
constant function, with a considerably larger number of intervals than the number
of measurements. To make the estimation problem well-defined, a regularisation
term penalising the first derivative is added, equivalent to treating the input function
as a Gaussian random walk. By making a Bayesian interpretation, the optimal
regularisation parameter can be shown to be the ratio of the measurement noise
variance and the process noise variance. In this setting, it is possible to derive optimal
settings for the regularisation parameter based on ideas presented by MacKay (1992),
using the expected weighted residual sum of squares, and the expected weighted sum
of squares of the function estimate. The process and measurement noise variance is
then set so that the observed values are equal to the estimated ones. Sparacino and
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Cobelli (1996) also mention the possibility of using splines, but consider this to be a
parametric method.

De Nicolao et al. (1997) discuss similar nonparametric methods, and also
discuss their similarities to discrete-time Kalman filtering. It is noted that while these
methods have similar statistical justifications, a drawback with Kalman filtering is
that it is not straightforward to add constraints. Furthermore, nonuniform sampling
causes the discretised system to be time-varying.

2.3.3 Bayesian methods

Although the methods presented above often have a Bayesian interpretation, they
are still fundamentally point-estimation methods. Here, methods that can recover
the full posterior distribution are discussed.

Magni et al. (1998) consider three estimation cases: interpolation, where the
system’s impulse response is the identity operator, input estimation with a linear time-
invariant system (deconvolution), and estimation with a linear time-varying system,
where the input-output relationship is represented by a Fredholm integral equation
instead of a convolution. Like Sparacino and Cobelli (1996) and De Nicolao et al.
(1997), piecewise constant functions with quadratic regularisation of the first or second
derivatives are considered. This model is treated in the Bayesian framework, and
considers the regularisation parameter to be just another parameter to be estimated
together with the input function. Estimation is performed using Markov chain Monte
Carlo (MCMC). For the linear systems under consideration, it is possible to generate
samples for the regularisation parameter conditional on the input function, since
the prior distribution of the regularisation parameter is chosen to be a conjugate
prior to the input function coefficients. Additionally, it is also possible to draw
samples for the input function given the regularisation parameter and the data. This
is because the joint distribution of the input function coefficients and the data is
Gaussian for a fixed value of the regularisation parameter. Hence, the distribution
of the input function coefficients conditional on the data is Gaussian too (Särkkä
2013). By alternating between drawing samples for the regularisation parameter and
the input function, samples from the posterior distribution are obtained. This is an
example of Gibbs sampling (Section 3.3.5). Magni et al. (1998) also consider joint
system identification and deconvolution.

Pillonetto et al. (2002) propose similar methods to Magni et al. (1998). Here,
the input function is modelled in the log domain, so the input to the dynamical
system is the exponentiation of the modelled function. This has two major benefits.
First, nonnegativity constraints are automatically satisfied. Second, it will result in a
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model where large changes in the input function are more probable when the function
value is high, something that may seem more plausible than assuming that a large
change is equally probable independent of the function value. This can be especially
helpful when datasets are sparsely sampled in the later stages of an experiment,
where the input function has decayed to a low value. Note that this model results in
a nonlinear estimation problem, even if the system is linear. Similar to Magni et al.
(1998), estimation is performed with MCMC sampling, where noise variances are
updated using Gibbs sampling. Input function values are updated using a random
walk Metropolis-Hastings (RWMH) algorithm (Section 3.3.4), where the proposal
distribution is chosen by setting the regularisation parameter to a reasonable value
based on the discrepancy criterion (Twomey 1965), optimising the log-posterior with
respect to the input function, and computing the Hessian at the optimum. The
proposal density is chosen to be a multivariate Gaussian centred on the current
parameter value, with a covariance matrix equal to the inverse Hessian, scaled by a
factor empirically chosen to achieve good performance.

Bell and Pillonetto (2004) consider estimation for cases where the input-output
mapping is a possibly nonlinear function, which therefore can be used for nonlinear
dynamical systems. Emphasis is placed on estimating unknown parameters for the
prior of the input function as well as for the system model. To accomplish this, a
method is developed where the marginal likelihood of these parameters is maximised,
with the function integrated out. The input function is parameterised by considering
it to be an element in a reproducing kernel Hilbert space (RKHS) (Wahba 1990). For a
given RKHS, a set of basis functions can be obtained by computing the eigenfunctions
to the reproducing kernel of the space. Eigenfunctions are derived for the reproducing
kernels corresponding to quadratic penalisation of first and second derivatives. The
idea behind this parameterisation is that it is often possible to represent probable
function realisations with relatively few basis functions, reducing the dimensionality
of the estimation problem. These ideas are presented in more detail in Section 3.1,
using the formalism of Gaussian processes, where the reproducing kernel is interpreted
as a covariance function (Rasmussen and Williams 2006).

Pillonetto and Bell (2007) use the eigenfunction-based approach of Bell and
Pillonetto (2004) to solve linear deconvolution problems. The problems are treated
in a Bayesian framework, similar to Magni et al. (1998). Two methods are presented:
the first obtains a MAP estimate of parameters, where the input can be marginalised
out because the model is linear and Gaussian. The second performs full Bayesian
inference with MCMC, where the parameters are sampled using RWMH, and the
function basis coefficients are sampled using Gibbs sampling.
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A good overview of these regularisation-based approaches to linear systems
can be found in Sparacino et al. (2011). Emphasis is placed on point estimates, with
a brief note that MCMC methods can be used to estimate uncertainty.

2.3.4 Other methods

Another way of choosing a prior over input functions is to use the principle of maximum
entropy (Skilling 1988). Here, the input function is discretised in time, and its entropy,
a measure of its information content, is computed (see Section 2.4.1). This method
was originally developed for enhancing images in astronomy applications (Skilling
and Bryan 1984). The idea is that for all input functions that agree well enough
with observed data, the best estimate is obtained when the function with the largest
entropy is selected. Large entropy corresponds to a function that is relatively flat.
Agreement with data is usually measured by the χ2 statistic, the weighted sum of
squares of the prediction error. The entropy is maximised subject to the constraint
that the χ2 statistic does not exceed a prespecified value. This can be viewed as
regularisation where the regularisation parameter is determined by the discrepancy
criterion (Twomey 1965). An appealing property of this method is that positivity
is enforced, since entropy is defined only for positive values. This method has been
applied to pharmacokinetic data of paracetamol by Charter and Gull (1987). In
addition, Hattersley et al. (2008) have used similar methods for estimating free
light-chain production in patients with multiple myeloma.

Madden et al. (1996) present and compare six deconvolution techniques on a
number of synthetic benchmark problems:

1. The first method is based on Fourier transforming the impulse response I and
the system output u, and using the fact that convolution in the time-domain
corresponds to pointwise multiplication in the Fourier domain:

F (y) = F (I) ·F (u) (2.14)

where F denotes the Fourier transform. The input function u can be obtained
by:

u = F−1

(
F (y)

F (I)

)
. (2.15)

To ensure that the number of points in u and y match, the observations are
interpolated before Fourier transformation.
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2. Numerical deconvolution using system identification techniques (Vajda et al.
1988). Here, the relationship between the impulse response and the output is
modelled by a higher-order linear differential equation. By interpolating the
impulse response and the measurements using splines, a linear regression model
can be constructed, and solved analytically.

3. CODE (constrained deconvolution) (Hovorka et al. 1998). This is an implement-
ation of regularised least-squares with nonnegativity constraints and quadratic
penalties, similar to the methods presented by Verotta (1996).

4. Spline models, similar to the methods presented by Verotta (1996).

5. Maximum entropy methods. In this case, the input function is assumed to be
linear between the measurements.

6. A custom-made genetic algorithm. Rather than demanding that the likelihood
or sum of squares in total is small, this method demands that observed con-
centration profiles are close to the prediction at every measurement time point.
Initially, the input function is assumed to be a single line segment. At each
iteration, the algorithm generates several perturbations of the current input
function. The perturbation with the best agreement with the data is selected.
This is repeated until agreement with the data no longer improves. At that
point, the input function is split into two segments, and the process is repeated.
The number of line segments continues to be doubled until the data fit reaches
or exceeds a prespecified tolerance.

2.4 A framework for input estimation

Most of the methods presented in the previous section have in common that they
represent the input function as a linear combination of basis functions. To avoid
ill-posedness, they either restrict the input function to be a combination of a small
set of basis functions, or they include a frequentist regularisation term or a Bayesian
prior. The solution being sought is either a point estimate based on the ML or
MAP criteria, or a posterior distribution. In the former case, inference is performed
using optimisation, while in the latter case, sampling-based or Bayesian approximate
inference methods are used.

Based on these considerations, a taxonomy of input-estimation methods can be
developed. We see that the methods largely can be described as being a combination
of a choice of:
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• A prior (in the Bayesian interpretation) or regularisation term (in the frequentist
interpretation).

• A function parameterisation. In the methods above, this is often piecewise
constant functions, but it can also be more elaborate functions such as splines.

• A desired statistical quantity. This represents the type of output given by the
method. This can be either a point estimate, or a full posterior distribution
over functions.

• An inference algorithm. These can be optimisation algorithms for point estim-
ates, or algorithms such as MCMC that return a distribution.

The likelihood — the probability of the observed data given an input function
— is given by the model of the system dynamics together with the measurement
noise model. Note that these are not considered to be part of the input-estimation
method. Rather, they are assumed to be determined by the problem at hand. In
practice, it may be beneficial to combine modelling and input estimation, making
this distinction less applicable. Several methods presented in Section 2.3 do make
assumptions about the likelihood — methods based on least-squares criteria implicitly
or explicitly assume that the measurement noise is Gaussian. The prior over the
input function and any other parameters together with the likelihood constitute a full
probabilistic model. In this work, the term inference algorithm refers to the algorithm
that computes a point estimate or a posterior distribution, given such a probabilistic
model. In contrast, the term input-estimation method refers to the combination of
prior, function parameterisation, desired statistical quantity, and inference algorithm.

The purpose of this taxonomy is to make it easy to compare and contrast
existing methods. It makes it explicit what assumptions these methods make, which
can help in picking a method for a particular problem. By separating the methods into
parts, it becomes easier to create new methods by, for example, replacing the inference
algorithm while keeping the assumptions about the prior distribution. However, it
should be noted that not all methods presented above can be mapped cleanly onto
this taxonomy. For example, methods that interpolate the measurements, and treat
the interpolant as if it were the measurements, may not have any obvious statistical
interpretation. In this thesis, we will only consider methods that do have such an
interpretation.

In general, the estimated input function will depend on the function paramet-
erisation as well as the prior. If a function parameterisation that depends on only a
few parameters is used, it is possible to avoid assigning a prior altogether. In this

20



case, the inferred function is determined by the parameterisation together with the
likelihood, and the method can be considered to be a parametric method. On the
other hand, for methods with a sufficiently flexible parameterisation, the inferred
function will be determined by the prior together with the likelihood. Here, a prior
is in general necessary to prevent overfitting. This thesis is mainly concerned with
the latter class of methods, which are considered nonparametric in the sense that
the input function is, in principle, not determined by a parametric model. Note
that there is no universal agreement of what constitutes a nonparametric method.
As an example, non-penalised least-squares based on B-splines is presented as a
nonparametric method in Verotta (1996) on the grounds that splines are flexible
functions that do not correspond to any strong physiological assumptions, while
the same method is considered to be parametric in Sparacino and Cobelli (1996).
From a purely mathematical point of view, sums of exponentials and B-splines are
merely different choices of basis functions. Hence, there is no compelling reason to
classify one of them as parametric and the other as nonparametric. For our purposes,
we will consider a method to be parametric only if the purpose of the function
parameterisation is to constrain the set of possible input functions.

The type of desired statistical quantity determines which inference algorithms
can be used. Optimisation algorithms are used to provide point estimates such as
maximum likelihood or maximum a posteriori, while full posteriors require specialised
algorithms such as Markov chain Monte Carlo or other Bayesian algorithms. We will
now describe each part of the framework in more detail.

2.4.1 Choice of prior

In this section, priors for scalar input functions are discussed. For vector-valued input
functions, priors can be independently assigned to each component, as long as they
are assumed to be a priori independent. Assigning priors jointly over all components
will not be considered further in this work. In the input-estimation literature, the
most common type of prior for a scalar input function u(t) is given by

p(u(t)) ∝ e−
τ
2

∫ tf
ti

(
dju

dtj

)2
dt (2.16)

where τ is the regularisation constant, and j is the order of the derivative, which is
typically 1 or 2. The logarithm of this prior is proportional to the L2 norm of the
input function’s derivative. Seen as a function of u(t) this expression is not a norm,
but a seminorm, since any polynomial of degree j − 1 can be added to the function
without changing the value of the expression. This makes the prior improper, since it
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cannot be integrated to give a finite value. This is not necessarily a problem, as long
as the corresponding posterior is proper. If desired, it is possible to add additional
factors to the prior to make it proper. These priors will assign lower probabilities to
functions that have large higher-order derivatives, making highly oscillatory functions
less probable. Penalising the first derivative corresponds to the intuitive notion that
rapid changes in the function value are a priori improbable. Similarly, penalising the
second derivative corresponds to the notion that rapid changes in the slope of the
function are improbable. Penalising a higher-order derivative will result in a higher
degree of smoothness. This can be seen by noting that differentiation is a high-pass
operation. Informally, this means that the derivative will usually be “noisier” than
the function itself. Hence, by forcing the second derivative to be smooth, the function
itself is forced to be even smoother.

Maximum entropy-based methods define a prior by discretising the input
function in time into NB points, and letting

p(u(t)) ∝ e−τ
∑NB−1

k=0 uk log
uk
mk (2.17)

where uk is the input function value at time tk. The value in the denominator, mk, is
considered to be a “baseline” value, which is the best guess for that value unless the
data suggest otherwise. Hattersley et al. (2008) define mk to be the mean of adjacent
function values, (uk−1 + uk+1)/2. This prior discourages large deviations from the
baseline. For a straight line, where uk = mk for all k, the unnormalised log-prior
evaluates to zero. Any deviation from this line will result in a smaller probability
density (Fig. 2.2).

A large class of potentially useful priors can be constructed by modelling
the input function as a Gaussian process. A Gaussian process is defined as a
stochastic process for which all finite-dimensional distributions are Gaussian. This
means that if n time points are selected, t0, . . . tn−1, the vector of function values[
u(t1) . . . u(tn)

]
is a multivariate Gaussian (Rasmussen and Williams 2006). The

statistics of the process can be uniquely defined by a mean function m(t), which
represents the mean of u(t), and a covariance function K(s, t) which represents
the covariance between u(s) and u(t) This idea is illustrated in Fig. 2.3. Using
the L2 norm of the jth derivative as a log-prior is a special case of modelling the
input function as a Gaussian process. In particular, the choice of j = 1 corresponds
to m(t) = 0 and K(s, t) = 1/τ · min{s, t}, and the choice of j = 2 corresponds
to m(t) = 0 and K(s, t) = 1

τ
min{s,t}2

6 (3 max{s, t} −min{s, t}) (Bell and Pillonetto
2004). Here, the regularisation parameter τ can be interpreted as the process noise
precision, which is the inverse of the process noise variance.
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Figure 2.2: Value of the entropy-based log-prior of Eq. (2.17), where the input
function at one time point, uk, is varied, while the function at all other time points
is kept fixed at 1. The log-prior attains its largest value when uk is equal to its
neighbours. Here τ = 1.

In pharmacokinetic models, it is often desirable to impose nonnegativity
constraints, to ensure that the input function does not attain unphysical negative
values. This requirement can be added to the problem by assigning a zero probability
to functions that at any point drop below 0. An alternative is to model the input
function in the logarithmic domain, such that the prior is placed on log u(t) rather
than on u(t) directly. The latter approach can also make for more plausible models,
since they capture a notion that if a function value is large, large changes in the value
are more probable. As an example of why this may be more realistic, consider a
typical pharmacokinetic experiment, where the input rate is large in the initial stages
of the experiment, and close to zero in the later stages (see Fig. 2.1). When using an
input model where the first derivative of the input function is penalised, a change in
the input function by a certain amount will be penalised equally regardless of where
the change occurs. In contrast, a logarithmic model penalises changes proportionally
to the current function value. Hence, a large change in the region where the input
value is close to zero would be considered less probable than a large change during
the initial stage when the input value is large.
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Figure 2.3: Example: Gaussian process u(t) with mean function m(t) = sin(2πt)

and covariance function K(s, t) = 0.1e−
1
2

(s−t)2
10−3 . This is an example of a squared

exponential covariance function. The thick line shows the mean function, and the
shaded area covers ±1.96 standard deviations of the variance at each point. The thin
lines are example realisations of the stochastic process. The function values at points
t1 = 0.1 and t2 = 0.2 form a bivariate Gaussian distribution, whose mean vector and
covariance matrix can be computed from m(t) and K(s, t) (shown in the inset). The
covariance function assigns larger correlations between points that are close in time.

2.4.2 Function parameterisation

In nonparametric methods, priors are assigned directly on the space of functions,
and function parameterisation has in principle no role. In practice however, the
functions are discretised so that they can be represented by a finite-dimensional
parameter vector. After discretisation, the input-estimation problem can be treated
as a parameter-estimation problem.

The function parameterisation should ideally be flexible enough so that it
can accurately represent any function that has a significant probability under the
posterior. This can be easily accomplished by making a fine-grained parameterisation
with a large number of parameters. On the other hand, such a high-dimensional
parameter estimation problem can result in long computation times.

In basis function models, the input function is represented as a linear combin-
ation of a set of NB fixed basis functions Bj(t):
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u(t) =

NB−1∑
j=0

ajBj(t). (2.18)

Here, the basis function coefficients aj are the parameters to be estimated.
In this model, there is a linear relationship between the parameters and the input
function. It is also possible to allow nonlinear relationships. As an example, each
basis function could be parameterised though a nonlinear mapping.

The number of basis functions can be fixed, or can be inferred from the data,
as is done in the genetic algorithm presented by Madden et al. (1996). In Bayesian
inference, this results in a transdimensional problem, where the number of model
parameters is one of the parameters to be estimated. Inference algorithms that can
handle these problems include Reversible Jump MCMC (Green 1995; Green 2003)
and product-space MCMC (Carlin and Chib 1995).

A common choice of basis functions is piecewise constant functions. The
time-interval [ti, tf ] is divided into several subintervals, and the input function is
assumed to be constant over each interval. In this case, the jth basis function has the
value 1 in the jth time interval and 0 elsewhere, and the jth basis function coefficient
is the function value over that interval. This choice of basis functions makes the
problem sparse in the sense that, at any time point, the dynamics of the system are
governed by a single basis function coefficient, something that can be exploited by
optimal-control methods (Andersson 2013). The disadvantage of these functions is
that to make realistic-looking functions, small discretisation steps are needed. This
results in a high-dimensional problem which can cause computational difficulties.
Alternatively, piecewise linear functions can be used. They carry similar advantages
and disadvantages as piecewise constant functions.

Basis splines (B-splines) (Boor 1986; Schumaker 2007) can be used to obtain
functions that are differentiable to any desired degree. Each basis function is a
polynomial of degree k − 1, where k is called the order of the spline. To represent a
function over the time interval [ti, tf ], a set of time points t0 = ti < t1 < t2 . . . tn−1,
called knots, is defined. The jth B-spline basis function of order k is defined recursively
by:

Bj,1(t) =

1 if tj ≤ t ≤ tj+1

0 otherwise
(2.19)

Bj,k(t) =
t− tj

tj+k−1 − tj
Bj,k−1(t) +

tj+k − t
tj+k − tj+1

Bj+1,k−1(t). (2.20)
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The resulting function is continuously differentiable k − 1 times. It can be
seen that piecewise constant and piecewise linear basis functions are special cases of
B-splines, of order 1 and 2. B-splines of higher order can represent realistic-looking
functions with a relatively small number of knots. They can therefore be preferable to
simpler basis functions if high-dimensional problems are to be avoided. However, when
the number of knots is small, it is difficult to assess whether this parameterisation
can represent any function that has a non-negligible probability under the posterior.

One way to select a set of basis functions is to consider the following: given
that only a finite set of basis functions is used, it is desirable to select these such
that functions that are probable under the prior can be represented with small
discretisation error, at the expense of a higher discretisation error for improbable
functions. The Karhunen-Loève basis functions are derived from these considerations.
These functions have the additional advantage that the prior over the function itself
can be translated to a prior over the basis function coefficients. This way, the function-
estimation problem can be easily converted to a parameter-estimation problem. The
Karhunen-Loève basis functions φj(t), corresponding to a zero-mean Gaussian process
prior with covariance function K(s, t), are defined as the solutions to the eigenvalue
problem (Levy 2008; Wang 2008):∫ tf

ti

K(s, t)φj(s) ds = λjφj(t). (2.21)

The basis function coefficients are independent zero-mean Gaussian random
variables with variance λj . The basis functions have to be derived separately for each
prior. For Gaussian processes with non-zero means, additional basis functions can be
added. A more detailed explanation is given in Section 3.1.

2.4.3 Desired statistical quantity

Considering the methods described in Section 2.3, it can be seen that most methods
find the most probable solution, either the penalised maximum likelihood estimate or
the maximum a posteriori estimate depending on interpretation. Methods using the
Bayesian interpretation can also attempt to recover the posterior distribution over
input functions. The posterior is more informative than a point estimate. Since it is
a probability distribution, it allows the computation of arbitrary statistics such as
means, medians and quantiles. This is important for assessing estimation uncertainty.
Since our applications typically have sparse and noisy data, the uncertainty can
be large, in that there is a broad range of input functions that are all reasonably
probable. A point estimate will not provide any information on this uncertainty.
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However, determining the posterior can be computationally much more expensive. A
user working under time constraints, as is common in industry, might prefer a faster
algorithm.

2.4.4 Choice of inference algorithm

The choice of inference algorithm is a vast topic. A brief overview is given in the
following two sections. Detailed aspects of the most important algorithms are covered
in Chapter 3.

2.5 Inference algorithms for point estimates

Finding point estimates for statistical models is an optimisation problem. In tra-
ditional input estimation, where only linear systems are considered, the resulting
optimisation problem typically either has a closed-form solution, or can be efficiently
solved using standard methods (Verotta 1996). In contrast, nonlinear input estima-
tion involves solving an optimisation problem where the cost function can only be
expressed in terms of a solution to a system of ODEs. This makes the cost function
expensive to compute, and can result in a highly nonlinear problem that is difficult
to solve. Optimisation problems involving ODEs are studied in the field of optimal
control theory (Betts 2010; Biegler 2010; Andersson 2013). Optimal-control methods
can broadly be classified into two categories, indirect and direct methods (Rao 2009).

Indirect methods (Pontryagin 1987; Bryson and Ho 1975; Liberzon 2012)
are a generalisation of calculus of variations. While optimisation concerns finding
a value or a set of values that optimises a given cost function, the calculus of
variations concerns finding a function that optimises a given cost functional. Optimal
control additionally has to make sure that the solution satisfies the constraints
imposed by the system of ODEs. This is done by augmenting the original system
with an additional set of states λ, called costates, that have a role analogous to
that of Lagrange multipliers in constrained optimisation. A necessary condition for
optimality is that the input function at each point in time is chosen so that the
Hamiltonian H = λT · f(t,x,u) + L(t,x,u) is maximised, or minimised, depending
on the sign convention. This is known as Pontryagin’s Maximum (or Minimum)
Principle. Here, L is the running cost, constructed such that the log posterior is
given by

∫ tf
ti
L(t,x,u) dt. In this way, u(t) can be eliminated from the problem.

The resulting system of ODEs generally has some fixed initial as well as terminal
values, making it a boundary-value problem. This makes the optimisation problem a
root-finding problem, where the goal is to find initial values that produce the desired
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terminal values. Once such a solution is found, the input function can be obtained
by substituting it back into the original equations.

In direct methods (Betts 2010; Biegler 2010), the input function is first
discretised using schemes such as the basis function expansions previously mentioned.
The discretisation process yields a problem that can be solved by general-purpose
optimisation algorithms. For an overview of such methods, see Nocedal and Wright
(2006).

Indirect methods are elegant, and they can provide analytical solutions for
simple problems where the system of ODEs can be solved analytically. However,
when the ODEs have to be solved numerically, the resulting root-finding problem
is often highly nonlinear and numerically challenging to solve. Indirect methods
also require the user to derive the costate equations and the Hamiltonian. For these
reasons, direct methods are often preferred (Rao 2009).

Both indirect and direct methods proceed by repeatedly solving a system
of ODEs, varying the free parameters to find a solution. In the indirect case, the
initial conditions are varied to make the solution have the desired terminal state. In
the direct case, the input function basis coefficients are varied to optimise the log
probability. The most straightforward solution for both of these cases is: at each
iteration, assign values to these parameters, and simulate the complete trajectory.
More sophisticated methods, such as multiple shooting and collocation, divide the
trajectory into multiple intervals, and add constraints to the problem to ensure that
the complete trajectory is continuous. This can make the problem less nonlinear and
therefore easier to solve, at the expense of introducing additional parameters. These
methods are described in Section 3.2.

Many optimisation algorithms allow for constrained optimisation, where the
objective is to find an optimum subject to equality or inequality constraints. This
makes it easy to impose constraints such as requiring the input function to be
nonnegative.

2.6 Algorithms for full Bayesian inference

While algorithms for point estimates provide a single value such as the ML or MAP
estimate, algorithms for full Bayesian inference provide the posterior distribution.
Since closed-form solutions are generally not available, such methods are necessarily
based on approximations. Broadly, they can be divided into (MacKay 2003, Part IV):

Sampling-based methods, or Monte Carlo methods, which generate a set of
samples drawn from the posterior distribution. Any statistical quantities
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of interest can be approximated by the empirical quantities given by the set
of samples. These methods are designed to converge to the true values as the
number of samples increases. For nontrivial models, generating these samples is
in itself a difficult problem. Methods for this can be computationally expensive,
but have the advantage that the approximation error can be made arbitrarily
small by drawing many samples.

Analytical approximations, which approximate the true distribution by simpler
distributions for which exact solutions exist. These methods are often faster
than sampling-based methods, but it can be difficult to assess whether the
approximations are good.

Another way to classify algorithms is:

Batch methods, which treat the model as a black box, where the log posterior for
a complete set of parameters and measurements is computed in a single step.
The underlying model may or may not be a dynamical system. These methods
are general-purpose and place little restriction on the models and the statistical
quantities that can be computed.

Sequential methods, which exploit the fact that the model describes a system
evolving over time. By sequentially processing the measurements one at a time,
they may be able to solve the inference problem at a lower computational cost
than batch methods. These methods are especially helpful for long time series.
However, jointly estimating the full time-evolving input function together with
fixed parameters can be less straightforward than for batch methods.

2.6.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a sampling-based batch algorithm that is
widely used in Bayesian statistics. This algorithm generates samples using a Markov
chain, where each sample drawn from the posterior is generated by perturbing the
previously drawn sample. This results in the set of samples forming a Markov chain,
which gives the algorithm its name. The resulting samples are not independent, but
are marginally distributed correctly (Brooks et al. 2011; Gilks et al. 1996). The
greatest advantage of MCMC is its generality. It is relatively easy to construct a
correct Markov chain for arbitrarily complicated models. However, constructing
chains that are computationally efficient is considerably more difficult. Because of
the dependence between samples, it can also be difficult to assess whether a finite
set of samples is representative of the true distribution. Most MCMC algorithms
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in use are variants of the Metropolis-Hastings algorithm (Metropolis et al. 1953;
Hastings 1970), where new samples are generated by sampling from a user-defined
proposal distribution, followed by an accept-reject step. The computational efficiency
of the algorithm depends crucially on the choice of proposal distribution. Designing
a distribution that is suitable for the problem at hand is non-trivial. For this
reason, many methods to construct these proposal distributions have been developed,
including random walk Metropolis-Hastings, Gibbs sampling (Geman and Geman
1984), the Metropolis-adjusted Langevin algorithm (Roberts and Stramer 2002), and
Hamiltonian Monte Carlo (Duane et al. 1987; Neal 2011). More recently, algorithms
based on Riemannian manifolds have been proposed (Calderhead 2011; Girolami and
Calderhead 2011). The manifold methods provide a more principled way to construct
proposals that provide good efficiency even for complicated posteriors. Because of its
generality, MCMC is the Bayesian inference algorithm of choice in this thesis, and it
is described in more detail in Section 3.3.

2.6.2 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods (Del Moral et al. 2006; Doucet et al. 2006)
are a broad class of algorithms. For the purposes here, focus will be on the variants
of this algorithm that can be interpreted as tempering algorithms. The idea behind
the methods is to construct a sequence of distributions π0 . . . πn, where the initial
distribution is a simple distribution from which it is easy to sample, and the final
distribution πn is the posterior. The intermediate distributions are chosen to inter-
polate between these two, such that πi+1 is similar to πi. For Bayesian models, one
choice of sequence of distributions is the power posterior, πi = p(θ)p(y|θ)βi , with
β0 = 0 ≤ β1 . . . ≤ βn = 1.

Given samples from one distribution πi, it is possible to generate samples
from another distribution πi+1 using the method of importance sampling followed
by resampling (Del Moral et al. 2006). Starting with a set of samples from π0,
importance sampling is used to obtain a set of samples from π1. In the next step,
these samples are used to obtain a set of samples from π2. This procedure is repeated
until a set of samples from πn has been generated. While importance sampling is
usually inefficient in high dimensions, it works in SMC because the distributions are
designed to be similar to each other.

Assessing the quality of the generated samples is easier in SMC methods than
in MCMC. SMC methods may also be able to handle multimodal distributions better
than MCMC, as the MCMC mechanism of generating new samples based on previous
ones can cause the algorithm to become trapped in local maxima. However, SMC can
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be computationally expensive, as a large number of samples has to be generated for
every intermediate distribution between π0 and πn. Since the importance sampling
step requires adjacent distributions to be similar, a large number of intermediate
distributions may be required. Even the relatively simple example problems in Del
Moral et al. (2006) use hundreds of intermediate distributions.

2.6.3 Particle filters

A particle filter is a sequential sampling method for state estimation in dynamical
models. These can be adapted to input estimation by modelling the input function
as a set of states. While not all statistical models of input functions can be cast
this way, important models such as penalisation of first or second derivatives can.
In the most basic form of a particle filter, the bootstrap filter, a set of trajectories is
simulated forwards in time according to the dynamical model. When a time point
for which a measurement exists is encountered, that measurement is incorporated by
importance sampling followed by resampling (Gordon et al. 1993). Only marginal
filtering distributions are computed, meaning that the distribution of the states
and inputs for that time point is given, conditioned on previous but not future
measurements. Extensions to this algorithm exist that use simulation backwards in
time to provide the joint distribution of the complete state trajectory, conditioned
on all measurements (Godsill et al. 2004; Lindsten and Schön 2013).

Basic particle filters do not allow for estimation of static parameters, as they
require the estimated quantities to vary in time. To allow joint estimation of state
trajectories and static parameters, particle filtering can be combined with MCMC
sampling, resulting in algorithms such as the particle marginal Metropolis-Hastings
and particle Gibbs methods (Andrieu et al. 2010; Lindsten 2013).

The bootstrap filter can be inefficient for vague priors and sparsely sampled
data, as few or no particles may end up close to the measurements. This can be partly
remedied by using more sophisticated updating mechanisms, such as auxiliary particle
filtering (Pitt and Shephard 1999), or specialised methods for sparse sampling (Del
Moral and Murray 2015).

For reviews of particle filtering, see Arulampalam et al. (2002), Chen (2003),
Cappé et al. (2007) and Doucet and Johansen (2009). Finally, it can be noted that
in the literature, the term sequential Monte Carlo is often used synonymously with
particle filtering. A particle filter is indeed a special case of SMC, where πi is the
distribution of state trajectories up to time step i. SMC is a more general notion,
where the intermediate distributions do not necessarily have any relationship with
the time evolution of the modelled system.
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2.6.4 Variational Bayes and expectation propagation

Variational Bayesian methods (Jordan et al. 1999; Beal 2003; Daunizeau et al. 2009;
Bishop 2006; Wainwright and Jordan 2008) are batch methods that approximate the
true posterior p(θ) by a simpler distribution q(θ) for which analytical calculations
can be performed. A measure of similarity between those distributions is given by
the Kullback-Leibler divergence, DKL(p ‖ q) defined by

DKL(q ‖ p) =

∫
q(θ) log

p(θ)

q(θ)
dθ. (2.22)

The distribution q(θ) is chosen to minimise DKL(q ‖ p). While DKL(q ‖ p)
cannot be computed directly, it is possible to compute another quantity, the variational
free energy, for which it is known that minimising DKL is equivalent to maximising
(or minimising, depending on sign convention) the variational free energy.

Typically, the posterior is approximated by dividing the parameter vector into

n blocks, θ =
[
θT0 , . . . , θTn−1

]T
, and assuming that the blocks are independent of

each other in the posterior, so that the approximating distribution can be factored as
q(θ) =

∏n−1
i=0 qi(θi). As an example, an input-estimation method may assign the basis

function coefficients to one block, and the regularisation parameter to another. The
parameters in each factor are iteratively updated to minimise DKL(q ‖ p). For some
models, this factorisation is sufficient to make the distribution analytically tractable.
If necessary, additional approximations can be introduced, such as assuming that
each factor has a certain functional form. For some models, the computations can
be made more efficient by exploiting the dependency structure between parameters,
using message-passing techniques (Winn 2004). These methods blur the difference
between batch and sequential methods.

A related algorithm is expectation propagation (Minka 2001a; Minka 2001b).
This is a message-passing algorithm that aims to minimise the Kullback-Leibler
divergence DKL(p ‖ q). Note that this is different from DKL(q ‖ p). In the former
case, q(θ) will assign a high density to any point for which p(θ) is high, even if it
means having to assign a high density for points where p(θ) is low. In the latter case,
q(θ) will assign a low density to any point for which p(θ) is low, even if it means
having to assign a low density for points where p(θ) is high. For problems where p(θ)

is a multimodal distribution, variational Bayes tends to select a single mode from
p(θ), while expectation propagation will select a wide distribution that covers all
modes of p(θ) (Bishop 2006).
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2.6.5 Extended and unscented Kalman filters

The Kalman filter (Kalman 1960) is a sequential state estimation algorithm. While
the original derivation of the Kalman filter is non-probabilistic, it can be interpreted
as an exact algorithm for computing marginal filtering densities in dynamical Bayesian
estimation problems, assuming that the dynamical and measurement models are linear,
and all noise is Gaussian and enters linearly into the equations. As a consequence, the
distribution of the state at each time point is also Gaussian. Extensions to nonlinear
models include the extended Kalman filter (EKF) and the unscented Kalman filter
(UKF). In the EKF (Jazwinski 2007), the system is linearised around the current
mean estimate at each time step. In the UKF (Julier and Uhlmann 2004; Merwe
2004), the system state is propagated between time steps by selecting a set of points,
called sigma points, from the current state distribution, transforming these according
to the dynamical equations, and using the transformed points to compute the mean
vector and covariance matrix of the new state. This transformation has similarities
to Monte Carlo methods, the main difference being that the sigma points are selected
deterministically.

The considerations involved with Kalman filters are in many respects similar
to those with particle filters. Since the filters are fundamentally state-estimation
algorithms, the input has to be modelled as a state. The basic versions of the filter
provide only marginal filtering distributions. To obtain distributions conditioned
on all measurements, the Kalman filter, which works forwards in time, can be
complemented with an additional pass working backwards in time. This results in
the Rauch-Tung-Striebel smoother (Rauch et al. 1965). Similar solutions exist for
the EKF and UKF (Särkkä 2008).

Since these filters assume that all distributions are Gaussian, they do not
impose any nonnegativity constraints, although some work to introduce such con-
straints exists (Simon 2010; Kol̊as et al. 2009). Although it is possible to model the
input function in the log domain, doing so creates a highly nonlinear problem, for
which Gaussian approximations may not be appropriate.

For a good and comprehensive introduction to variants of Kalman filtering,
see Särkkä (2013). This book also includes an introduction to particle filtering.

2.7 Choice of inference algorithms and software

As shown in the previous sections, there is a great variety of inference algorithms that
could be used. However, it is not feasible to investigate all of them within the scope
of this thesis. Instead, the algorithms that appear to be the most promising place to

33



start have been investigated. Both point-estimation and fully Bayesian algorithms are
considered. The reason for this is that theses kinds of estimates have complementary
strengths. Bayesian algorithms are able to provide uncertainty estimates, which
can be important, especially when the data are sparse and noisy. However, these
algorithms can be computationally expensive. They can also be difficult to use,
difficult to diagnose, and require the user to have a certain amount of expertise in
the internal mechanisms of the algorithms. These points will be explored in detail
in the case studies. In light of this, point-estimation algorithms are an interesting
alternative to Bayesian methods, particularly for modellers based in industry, where
the time for them to become experts in the inference algorithms may not be available.

For point estimates, direct optimal control algorithms were investigated. These
algorithms are conceptually simple, and fit well into the framework presented above,
allowing arbitrary priors and basis function models. In contrast, indirect algorithms
are more involved to apply.

For Bayesian estimation, there is a choice between sampling-based and ap-
proximate inference algorithms. An advantage of sampling-based algorithms is that
they are asymptotically exact. This means that if the accuracy of the approximation
is in doubt, it is always possible to improve it by running the sampling process for a
longer time. In contrast, approximate inference methods rely on making assumptions
whose validity can be difficult to assess. One possible solution is to first develop
sampling-based algorithms. Once these have proved to be reliable, approximate
inference algorithms can then be developed, and validated using their sampling-based
counterparts. For this reason, sampling-based algorithms have been chosen for this
project. Approximate algorithms would be an interesting follow-up project.

There is a choice to be made between batch and sequential algorithms. While
sequential algorithms may seem like a natural fit for input-estimation problems, they
have limitations. First, they limit what kind of input models can be used, as they
have to fit into the state-space model framework. Second, many of these algorithms
do not, in their basic form, provide estimates of the complete joint posterior, but only
of certain marginal distributions. While this limitation can often be overcome by
using an extension of the basic algorithm, or by modifying the problem formulation,
it still decreases flexibility. This is counter to the objective that the input-estimation
methods should be as automated and general-purpose as possible. An additional issue
with sequential algorithms is that they can struggle with sparse data, as discussed in
Section 2.6.3. Additionally, the advantages of sequential over batch algorithms are
most significant for long time series. For these reasons, sequential algorithms may be
less advantageous for typical pharmacokinetic and pharmacodynamic data.
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Based on these considerations, MCMC is the algorithm that was used for
Bayesian inference in this work. Four algorithms for constructing proposal distri-
butions were evaluated. Two of these are variants of the random walk Metropolis-
Hastings algorithm: a single-component variant, where each basis function coefficient
is updated separately, and a block variant, where all basis function coefficients are
updated jointly. The random walk Metropolis-Hastings algorithm is well established
and has previously been used in physiological applications (Pillonetto et al. 2002;
Pillonetto and Bell 2007). This makes the algorithm a suitable baseline for making
comparisons with more modern algorithms. The third algorithm is the Metropolis-
adjusted Langevin algorithm, which uses the gradient of the log-posterior to construct
more efficient proposals. Finally, the fourth algorithm is a Riemannian manifold
version of the Metropolis-adjusted Langevin algorithm. More details are presented in
Section 3.3.

2.7.1 Software for optimal control

To implement optimal-control techniques, it is necessary to have access to a numerical
ODE solver. An example of a high-quality solver is CVODES, part of the SUNDIALS
suite of numerical software (Serban and Hindmarsh 2005; Hindmarsh et al. 2005).
Another necessary piece of software is an implementation of an optimisation algorithm.
Optimal-control algorithms can have hundreds or even thousands of variables, and a
similar number of constraints. Typically, each constraint only involves a few of the
variables, making for a sparse optimisation problem. The reasons why optimal-control
problems have these characteristics are explained further in Section 3.2. Because of the
large number of variables, it is important to have an optimisation implementation that
can exploit this sparsity. One example of such a implementation is IpOpt (Wächter
2002; Wächter and Biegler 2006), which can use any of a number of sparse linear
solvers.

It is also necessary to be able to compute the gradient and Hessian of the cost
function, as well as the Jacobian of the constraint functions. While it is sometimes
possible to compute these analytically, it will be error-prone, and a major objective
of this work is to provide methods that are easy to use. Another possibility is to use
finite differences. However, this method can be inaccurate, and is also very slow for
high-dimensional problems. For a n-dimensional problem, evaluating the gradient
requires n+ 1 function evaluations, which can be prohibitively expensive. A better
alternative is to use automatic differentiation (AD) (Rall and Corliss 1996; Griewank
2003; Griewank and Walther 2008). This method works by applying the chain rule
of calculus to each line of the original program, which can be done automatically
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without user input. AD comes in two versions: forward mode, where the derivatives
are propagated from the input variables to the output, and reverse mode, where the
derivatives are propagated from the output to the input. For forward-mode AD,
the running time scales linearly in the number of inputs, while in reverse-mode AD,
the running time scales linearly in the number of outputs. For optimisation, which
can have a large number of inputs, but only a single output (the cost function),
reverse-mode AD is thus a major improvement over finite differences. When the
cost function involves solving a system of ODEs, it is also necessary to compute
the gradient of the ODE solution with respect the decision variables. This can be
achieved by using either forward sensitivity analysis : (Maly and Petzold 1996), where
the original system of ODEs is augmented by a new set of ODEs that propagate the
derivatives forward in time, or using adjoint sensitivity analysis (Cao et al. 2003;
Jørgensen 2007), where a new set of adjoint states is introduced and integrated
backwards in time. The latter method is closely connected to indirect optimal-control
algorithms, with the states that are integrated backward in time being the costates.
For a derivation of both methods, see Bartlett (2008). Both methods are implemented
in CVODES.

The software chosen to accomplish these tasks is CasADi (Andersson 2013).
This software allows the user to construct a computational graph, which can be
automatically differentiated. CasADi provides integration with CVODES, so that
the user-defined expressions can include calls to an ODE solver, which too can
be differentiated using the sensitivity analysis capabilities of CVODES. It is also
integrated with IpOpt, and can automatically generate the required Hessian and
Jacobian matrices. While CasADi is written in C++, it has bindings for Python
and MATLAB. The Python interface is the recommended way to use CasADi, and is
well-documented (Andersson et al. 2016). For this reason, this project exclusively
uses Python as its implementation language.

It can be noted that there are other software packages that provide similar
capabilities. Two of the most well-known ones are Theano (Theano Development
Team 2016), and TensorFlow (Abadi et al. 2016), which also allow the user to
construct computational graphs, which can be automatically differentiated. However,
these packages are primarily intended for deep learning applications, and do not
provide integration with ODE solvers. This makes CasADi more convenient for the
purposes here.

36



2.7.2 Software for Markov chain Monte Carlo

There is a wide selection of MCMC software available. The most widely known one
is the BUGS family, including WinBUGS and OpenBUGS (Spiegelhalter et al. 1999;
Lunn et al. 2009), whose sampling algorithms include Gibbs sampling, slice sampling
and random walk Metropolis-Hastings. JAGS (Plummer 2003) is an alternative
BUGS implementation, using a similar modelling language and similar sampling
algorithms. A more recent alternative is Stan (Carpenter et al. 2017), which uses
Hamiltonian Monte Carlo (Duane et al. 1987; Neal 2011), and its more automated
variant NUTS (Hoffman and Gelman 2014). In all these implementations, models
are specified in a custom modelling language.

In addition to this, PyMC version 2 (Patil et al. 2010) and version 3 (Salvatier
et al. 2016) provide the ability to write models in Python. While PyMC 2 primarily
uses random walk Metropolis-Hastings and slice sampling, PyMC 3 adds Hamiltonian
Monte Carlo and NUTS.

Despite the availability of MCMC software, none of the packages mentioned
here were deemed suitable for this thesis. A major reason for this is that using them
would make it impossible to make a fair comparison between sampling algorithms.
Since different packages implement different MCMC algorithms, a comparison between
algorithms would in practice be a comparison between implementations. A second
major reason is that none of these software packages have support for Riemannian
manifold sampling algorithms. While some packages, such as PyMC, make it relatively
straightforward to implement custom sampling schemes, these schemes often require
higher-order derivatives that cannot easily be provided by the package.

In the light of these considerations, the MCMC algorithms investigated here
were all implemented in Python. While Python is not a fast language, the running
time is in practice dominated by the time to run the ODE solvers, which are written
in C. CasADi was used to generate the gradients and Hessians required by the
Riemannian manifold algorithms.

Example code for optimal-control as well as MCMC algorithm can
be obtained at http://www2.warwick.ac.uk/fac/sci/eng/research/biomedical/
impact/project_results/project_5/.

2.8 Summary of the investigated methods

Figure 2.4 shows a summary of all the investigated priors, function parameterisations
and inference algorithms that were evaluated in the case studies. All investigated
priors and parameterisations have previously been used in pharmacological or physiolo-
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Figure 2.4: A summary of the investigated priors, function parameterisations and
inference algorithms.

gical modelling (Verotta 1996; Pillonetto et al. 2002; Hattersley et al. 2008; Bell and
Pillonetto 2004). Among the point-estimation inference algorithms, single shooting
can be considered to be an obvious, naive algorithm. The more advanced algorithms
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are well-known in the optimal-control community (Rao 2009), but have not previously
been evaluated for the applications considered here. Among the MCMC methods,
random-walk methods have previously been used (Pillonetto et al. 2002; Pillonetto
and Bell 2007), while the Langevin and Riemannian manifold methods are novel in
this context.

Implementing multiple shooting and collocation is non-trivial, especially if
the derivatives have to be worked out by hand. This might be one reason why these
algorithms are not commonly used for pharmacological applications. They are also
not widely known in the pharmaceutical modelling community. This may partly
be explained by noting that single-shooting methods perform well enough in many
typical parameter-estimation problems. Nonlinear input-estimation problems can
be more computationally difficult, since even seemingly simple problems become
high-dimensional when the input function is discretised. New software, like CasADi,
makes it easier to implement these kinds of algorithms, and therefore to provide
easy-to-use tools that modellers can use.

For MCMC algorithms, the situation is relatively similar. Few modellers
are familiar with recent sampling algorithms, such as those based on Riemannian
manifolds. Additionally, no commonly used MCMC software implements these
algorithms. Again, this suggests that the development of more use-friendly tools
could help in making these algorithms become more widely used.

2.9 Choice of case studies

The case studies were chosen based on the following criteria:

• A model for the system must be available. This was deemed necessary, as the
research project was not intended to be focused on model building.

• Data must be available, preferably data which have either been previously
published, or can realistically be published as part of the project.

• The case study must be interesting and relevant from a drug-discovery per-
spective.

Additionally, it was deemed important that the case studies were significantly
different from each other, in order to test the performance of the input-estimation
methods across various conditions. Chapter 4 discusses a typical PK example, where
the absorption rate of orally administered eflornithine is estimated from plasma-
concentration measurements. Chapter 5 explores estimation of energy intake from
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body-weight data of mice as well as humans, where the model, time scales and data
have characteristics which differ significantly from typical PK examples. In Chapter 6,
another PK example is considered, where the absorption rate after subcutaneous
administration of an extended-release formulation of exenatide is estimated from
plasma-concentration data. This differs significantly from the case study in Chapter 4,
as the formulation results in a complicated release profile, extending over several
weeks. Together, these case studies explore a wide range of models and data.
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Chapter 3

In-depth theory

This chapter provides more detailed descriptions of the estimation methods that were
chosen for this project, as outlined in Section 2.7. While the contents of Chapter 2
should be sufficient to understand the following chapters, the contents here provide a
deeper understanding.

3.1 The Karhunen-Loève expansion

In this thesis, the input functions are parameterised either using B-splines or the
Karhunen-Loève expansion for MCMC-based estimation. B-splines were briefly
explained in Section 2.4.2. While they are conceptually simple, and are useful for
representing realistic-looking functions with a small set of basis functions, there are
some issues to address.

Firstly, it is conceptually simpler to assign priors to the coefficients of the basis
functions rather than to the function itself. This transforms the input-estimation
problem into a parameter-estimation problem. However, it is not straightforward
to translate a prior over functions, such as penalisation of the jth derivative, into a
prior over the B-spline coefficients.

Additionally, when using a low-dimensional function representation, it may
be difficult to know whether all plausible input functions can be represented by the
chosen basis. If input functions that have significant probability cannot be well
approximated by the basis, the basis itself will influence the estimation results, which
is to be avoided in non-parametric estimation.

The Karhunen-Loève expansion (Wang 2008) provides a method for construct-
ing a basis that addresses both of these problems. To understand the underlying
principles, it is helpful to first consider expansions of deterministic functions, such
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as the Fourier series. In this expansion, a function can be represented by a linear
combination of basis functions, where the coefficients are numbers. Analogously, a
stochastic process can be represented by a linear combination of fixed basis functions,
where the coefficients are stochastic variables. Here, we will restrict the presentation
to Gaussian processes, where the coefficients will be Gaussian variables. To make the
notation simpler, only zero-mean Gaussian processes will be considered.

The goal of the Karhunen-Loève expansion is to construct a set of basis
functions, such that any real-valued stochastic process u(t) defined in the interval
[ti, tf ], with mean function m(t) and covariance function K(s, t), can be represented
by

u(t) =

∞∑
j=0

ajφj(t) (3.1)

with coefficients aj given by

aj =

∫ tf

ti

u(t)φj(t) dt (3.2)

where the basis functions φj(t) and the coefficients aj satisfy the following properties:

• The basis functions are orthonormal in the L2 sense:

∫ tf

ti

φj(t)φk(t) dt = δjk (3.3)

where δjk is the Kronecker delta

δjk =

1 if j = k

0 otherwise.
(3.4)

• The basis function coefficients aj are zero-mean, independent Gaussian stochastic
variables.

This exposition will be informal. In particular, infinite sums will be used
without considering convergence. For a more rigorous treatment, see Wang (2008)
or Levy (2008, Ch. 7).

The basis functions φj(t) are the eigenfunctions of the integral equation∫ tf

ti

K(s, t)φj(s) ds = λjφj(t) (3.5)
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where the eigenvalues λj are the variances of the coefficients aj . For each j, the
solution is unique up to a multiplicative constant. This constant will be chosen so
that all of the φj(t) have unit norm.

To prove that the functions φj(t) are pairwise orthogonal, note that

λj

∫ tf

ti

φj(t)φk(t) dt =

∫ tf

ti

(∫ tf

ti

K(s, t)φj(s) ds

)
φk(t) dt

=

∫ tf

ti

(∫ tf

ti

K(t, s)φk(t) dt

)
φj(s) ds

= λk

∫ tf

ti

φj(t)φk(t) dt

(3.6)

implying that

(λj − λk)
∫ tf

ti

φj(t)φk(t) dt = 0. (3.7)

This shows that the inner product of φj(t) and φk(t), j 6= k, is zero as long
as the eigenvalues are distinct. The proof for the case of degenerate eigenvalues is
omitted here, as no stochastic processes in this work have degenerate eigenvalues. By
Mercer’s theorem (Mercer 1909), the covariance function can be decomposed as:

K(s, t) =
∞∑
j=0

λjφj(s)φj(t). (3.8)

Next, it will be shown that a stochastic process generated by Eq. (3.1), with
the coefficients aj drawn independently from zero-mean Gaussian distributions with
variance λj , will have the desired mean and covariance functions. Let mKL(t) be the
mean function induced by this construction, whose value is given by

mKL(t) = E [u(t)] =
∞∑
j=0

E [aj ]φj(t) = 0 (3.9)

which shows that the mean function, as desired, is 0. Similarly, the covariance
function is given by

KKL(s, t) = E [u(s)u(t)] =
∞∑
j=0

∞∑
k=0

E [ajak]φj(s)φk(t) =

∞∑
j=0

λjφj(s)φj(t) (3.10)

where the last equality follows from E [ajak] = λjδjk. This is equal to the decompos-
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ition in Eq. (3.8). Hence the obtained covariance function is equal to the desired
one.

Up to this point, the Karhunen-Loève expansion is not an approximation.
Approximations are introduced by ordering the basis functions so that λj > λj+1 for
all j, and truncating the infinite series to a finite sum of NB terms. Equation (3.10)
shows that each basis function contributes to the covariance function by a factor
proportional to λj . Assuming that the λj values drop off sufficiently rapidly, the
covariance function will be dominated by the first few basis functions. It can be
shown that the resulting approximation is optimal in a mean-square sense (Le Mâıtre
and Knio 2010, Ch. 2).

In this work, the basis functions Bj(t) are selected as:

Bj(t) =
√
λjφj(t) (3.11)

so that the prior over each basis function coefficient is a Gaussian distribution with
unit variance.

3.1.1 Karhunen-Loève expansion for penalisation of the first deriv-
ative

A statistical model penalising the first derivative has a discrete-time interpretation
as a random-walk model. The continuous-time equivalent of a random walk is the
Wiener process W (t), also known as Brownian motion, which is a Gaussian process
defined by (Klebaner 2012, Ch. 3):

1. The increments W (t) −W (s), for t > s, are independent of the value of the
process before time s, that is p(W (t)−W (s)|W (r)) = p(W (t)−W (s)), where
0 ≤ r ≤ s.

2. The increment W (t)−W (s) is Gaussian distributed with mean 0 and variance
t− s.

3. The paths W (t) are continuous with probability 1.

To fully characterise the input function model, the process noise precision
τ has to be considered. To account for τ , the input function can be defined as
u(t) = W (t)/

√
τ , so u(t) has increments with variance (t− s)/τ .

First, the covariance function has to be determined. Assuming that s < t, it
becomes
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K(s, t) = E [u(s)u(t)] = E [u(s) · ((u(t)− u(s)) + u(s))]

= E [u(s) · (u(t)− u(s))] + E
[
u(s)2

]
= E [u(s)]E [u(t)− u(s)] + E

[
u(s)2

]
= E

[
u(s)2

]
=
s

τ
,

(3.12)

since u(s) and u(t)− u(s) are independent, and u(s) as well as u(t)− u(s) have zero
mean. Similarly, when s ≥ t, the covariance function is t/τ . In summary, the scaled
Wiener process has zero mean and covariance function

K(s, t) =
min{s, t}

τ
. (3.13)

The Karhunen-Loève basis functions are obtained by solving the eigenvalue
problem ∫ tf

ti

min{s, t}
τ

φ(s) ds = λφ(t). (3.14)

For simplicity, let us assume that ti = 0. If this it not the case, the functions
can be time-shifted. To eliminate the minimum operator, the expression can be
rewritten as ∫ t

0

s

τ
φ(s) ds+

t

τ

∫ tf

t
φ(s) ds = λφ(t). (3.15)

This problem can be solved by differentiating both sides to convert the integral
equation to a differential equation. Differentiation with respect to t once yields

1

τ

∫ tf

t
φ(s) ds = λ

dφ(t)

dt
. (3.16)

Differentiating a second time yields

− 1

τ
φ(t) = λ

d2φ(t)

dt2
. (3.17)

This is a second-order differential equation, whose solution is given by

φ(t) = A sin

(
t√
λτ

)
+B cos

(
t√
λτ

)
(3.18)

where A and B are constants. Since the process starts at 0 when t = 0, it follows
that B = 0. A second boundary condition is given by evaluating Eq. (3.16) at t = tf .
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The left-hand side is clearly 0, which gives

dφ(t)

dt

∣∣∣∣
t=tf

=
A√
λτ

cos

(
tf√
λτ

)
= 0, (3.19)

which is satisfied when

tf√
λτ

=
π

2
+ π · j, j ∈ Z. (3.20)

Hence, we can define the set of eigenvalues by λj = 1
τ

(
tf

π( 1
2

+j)

)2
. The constant

A is selected to normalise the corresponding eigenfunctions φj(t), which gives

φj(t) =

√
2

tf
sin

(
t

1√
λjτ

)
=

√
2

tf
sin

(
t

tf
π

(
1

2
+ j

))
. (3.21)

Note that although the eigenvalues depend on the process noise precision
τ , the eigenfunctions do not. This makes it possible to use a linear basis function
representation for the input even if τ is allowed to be an unknown parameter.

3.1.2 Karhunen-Loève expansion for penalisation of the second de-
rivative

Penalising the second derivative can be interpreted as modelling the input as the
time integral of the scaled Wiener process:

u(t) =

∫ t

ti

1

τ
W (r) dr (3.22)

where the initial value and its derivative are 0. From here on, it will be assumed
that ti = 0 to simplify the expressions. The stochastic process has zero mean, and
covariance function

K(s, t) = E [u(s)u(t)] =

∫ s

0

∫ t

0

1

τ
E [W (v)W (w)] dv dw =

∫ s

0

∫ t

0

1

τ
min{v, w} dv dw.

(3.23)
In the inner integral, for the case that s < t, we have w < t and the integral

evaluates to∫ t

0

1

τ
min{v, w} dv =

1

τ

∫ w

0
v dv +

1

τ

∫ t

w
w dv =

1

τ

v2

2

∣∣∣∣w
0

+
1

τ
wv

∣∣∣∣t
w

=
1

τ

w2

2
+

1

τ
w(t− w) =

1

τ

(
wt− w2

2

)
.

(3.24)
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Evaluating the outer integral yields

1

τ

(∫ s

0

(
wt− w2

2

)
dw)

)
=

1

τ

(
tw2

2

∣∣∣∣s
0

− w3

6

∣∣∣∣s
0

)
=
s2

6τ
(3t− s). (3.25)

By symmetry, when s ≥ t, the result is t2

6τ (3s− t). In summary, the covariance
function is

K(s, t) =
min{s, t}2

6τ
(3 max{s, t} −min{s, t}). (3.26)

To obtain the Karhunen-Loève basis functions, the eigenvalue problem∫ tf

0

min{s, t}2

6τ
(3 max{s, t} −min{s, t})φ(s) ds = λφ(t) (3.27)

can be rewritten as∫ t

0

s2

6
(3t− s)φ(s) ds+

∫ tf

t

t2

6
(3s− t)φ(s) ds = λ · τ · φ(t). (3.28)

This can be converted to a differential equation by differentiating four times
with respect to time, which yields

∫ t

0

s2

2
φ(s) ds+

∫ tf

t
t

(
s− t

2

)
φ(s) ds = τ · λdφ(t)

dt
(3.29)∫ tf

t
(s− t)φ(s) ds = τ · λd2φ(t)

dt2
(3.30)

−
∫ tf

t
φ(s) ds = τ · λd3φ(t)

dt3
(3.31)

φ(t) = τ · λd4φ(t)

dt4
. (3.32)

This is a fourth-order differential equation, which has the solution

φ(t) = c1 cos

(
α

tf
t

)
+ c2 sin

(
α

tf
t

)
+ c3e

− α
tf

(tf−t)
+ c4e

− α
tf
t

(3.33)

where α = tf
1

4√
τ ·λ . c1, . . . c4 are integration constants that are determined by the

boundary conditions, and the requirement that the eigenfunctions are normalised.

According to the definition of the integrated Wiener process, φ(0) = 0 and dφ(t)
dt

∣∣∣∣
t=0

=

0. It follows from Eqs. (3.30) and (3.31) that d2φ(t)
dt2

∣∣∣∣
t=tf

= d3φ(t)
dt3

∣∣∣∣
t=tf

= 0. The
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resulting system of equations has a non-trivial solution only when α satisfies

1

cosh(α)
− cos(α) = 0. (3.34)

The set of eigenvalues λj can be obtained by solving this equation numerically,
and arranging the solutions in decreasing order. The coefficients c1, . . . , c3 can be
expressed as functions of c4, obtained from the boundary conditions. The value of c4

can then be selected to make the eigenfunction have unit norm, and its value can be
substituted in the expressions for c1, . . . , c3. This gives

c4 =

(∫ tf

0

[(
−1 +

cos(α) + e−α

sin(α)

)
cos(αt/tf ) +

(
1 +

cos(α) + e−α

sin(α)

)
sin(αt/tf )

(3.35)

+
2

1+e−2α − 1

sin(α)
e−α(tf−t)/tf + e−αt/tf

]2

dt

−1/2

(3.36)

c3 =c4

2
1+e−2α − 1

sin(α)
(3.37)

c2 =c4 − c3e
−α (3.38)

c1 =− c4 − c3e
−α. (3.39)

Similar to penalisation of the first derivative, these functions are independent
of the regularisation parameter τ , so this can be used as a fixed basis function model
even when τ is a variable parameter.

3.2 Direct methods of optimal control

In optimal control-based methods, the input-estimation problem is treated as an
optimisation problem. There are several ways to formulate such optimisation prob-
lems, and the most straightforward ways are not necessarily the most efficient ones.
Counterintuitively, increasing the number of decision variables and constraints can
often make the problem easier to solve. Here, three methods are presented. They are
applicable to indirect as well as direct methods, although they are presented here in
the context of direct methods. It will be assumed that there are no fixed parameters,
such as unknown initial conditions or regularisation parameters. For an overview of
these methods, see Rao (2009). More detail is provided by Betts (2010) and Biegler
(2010).
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All direct methods start by discretising the input function, so that it can

be represented by its basis function coefficients, a =
[
a0, . . . , aNB−1

]T
, where

NB is the number of basis functions. Optimal-control methods can accommodate
high-dimensional input parameterisations, so simple basis functions, such as piecewise
constant functions, can be used. The resulting optimisation problem is to find the
maximum of the log-posterior, log p(a|y). Since the marginal likelihood is difficult
to compute, in practice the unnormalised log-posterior is used, log p(a) + log p(y|a).
The state trajectory x(t) must be known in order to evaluate the log-likelihood.
To make this dependence on x(t) explicit, and to convert the maximisation to a
minimisation problem, we introduce the notation for the cost function J(a,x(t)) =

− log p(x)− log p(y|a). Here, the dependence on the measurements y is suppressed,
as these are constant for a given problem. Since x(t) is completely determined by the
input signal, it is possible to treat the cost function as a function only of a. However,
retaining x(t) as part of the optimisation problem can have advantages, as discussed
in Sections 3.2.2 and 3.2.3.

As an aside, the input signal is usually denoted by u in the optimal-control
literature. In the discrete-time version, optimisation is performed with respect to
the basis function coefficients ai rather than with respect to the actual function u(t).
Therefore, to avoid confusion, optimisation is performed with respect to a here. In a
slight abuse of notation, the dynamical equation will be written f(t,x(t),a), which
should be interpreted as f(t,x(t),u(t)), where u(t) is the input function generated
by the coefficients a.

Thus, a solution to the optimisation problem requires selecting values for
a as well as a state trajectory x(t) such that the cost function is minimised, with
the constraint that the dynamical equation f(·) must be satisfied for all times. The
optimisation problem can also include additional equality or inequality constraints in
both the input and the states. For the work here, these constraints will usually be
nonnegativity constraints of the input function. The dynamical models will usually
ensure that states are nonnegative as long as the inputs and initial conditions are. In
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summary, the problem can be posed as

minimise
a,x(t)

J(a,x(t)) (3.40a)

s.t.
dx(t)

dt
= f(t,x(t),a), ∀t ∈ [ti, tf ] (3.40b)

x(ti) = x(0) (3.40c)

c(a,x(t)) = 0 (3.40d)

h(a,x(t)) ≤ 0 (3.40e)

where c(·) and h(·) are the, possibly vector-valued, equality and inequality constraints.

3.2.1 Single shooting

An obvious way to eliminate the dynamical constraints in Eq. (3.40b) is to use the
fact that the state trajectory is completely determined by the input signal. This can
be formalised by introducing the transition function

Φ(t0, t1,xt0 ,a) = x(t0) +

∫ t1

t0

f(t,x(t),a) dt, (3.41)

which is the function that gives the state at time t1, given the input function
coefficients, a, and the state at t0, xt0 . The transition function can be computed by
using a numerical ODE solver, such as CVODE (Hindmarsh et al. 2005). The resulting
optimisation problem has only a as its decision variables, and can be formulated as

minimise
a

J(a,x(t)) (3.42a)

s.t. x(ti) = x(0) (3.42b)

c(a,x(t)) = 0 (3.42c)

h(a,x(t)) ≤ 0 (3.42d)

where x(t) = Φ(ti, t,x
(0),a).

This method is called single shooting, as the state trajectory is determined by a
single run of the ODE solver from ti to tf . Single shooting is the most straightforward
method for solving optimal-control problems, with the optimisation algorithm treating
the dynamical model as a black box. However, more efficient methods can be obtained
by allowing closer interaction between the optimisation algorithm and the dynamical
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model. This will be explored in the next section.

3.2.2 Multiple shooting

One disadvantage of single shooting is that the relationship between the decision
variables and the cost function can be highly nonlinear. Many optimisation methods
for these kinds of problems are based on making second-order approximations of the
cost function (Nocedal and Wright 2006), and therefore work most efficiently when
the cost function is close to quadratic. As an example, suppose that the system is
linear and that the measurements are linear functions of the state variables, with
Gaussian measurement noise. In this case, a linear relationship between decision
variables and states would result in a quadratic cost function.

As the cost function can depend on the state trajectory up to the final time
tf , it is useful to consider the behaviour of the transition function Φ(ti, tf ,x

(0),a).
Any nonlinearities in the dynamics will accumulate as the system evolves in time,
making Φ(·), and therefore the cost function, potentially highly nonlinear for large tf .

Multiple shooting is a method for making the optimisation problem less
nonlinear by only integrating the system over short time intervals. For sufficiently
short intervals, the function Φ(·) is approximately linear, which can be seen by making
a Taylor series expansion of Φ(·) and choosing a time interval short enough to make
the linear term dominate over higher-order terms. In multiple shooting, the time
interval [ti, tf ] is divided into n intervals, with endpoints ti = t0 < t1 < . . . < tn = tf ,
and each interval is integrated separately. The initial states of each interval are
used as decision variables together with the input function coefficients a. Letting xk

denote the state vector at the start of the kth time interval, the problem definition is
as follows:

minimise
a,x0,...,xn

J(a,x(t)) (3.43a)

s.t. x0 = x(0) (3.43b)

xk+1 = Φ(tk, tk+1,xk,a), for k = {0, . . . , n− 1} (3.43c)

c(a,x(t)) = 0 (3.43d)

h(a,x(t)) ≤ 0 (3.43e)

where x(t) = Φ(tk, t,xk,a), k = max{k | tk < t}.

The continuity constraints in Eq. (3.43c), capture the requirement that the
state trajectories must be continuous, so the states at the end of interval k must be
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equal to the states at the beginning of interval k + 1. Compared to single shooting,
this formulation requires n · dx decision variables in addition to a, resulting in an
optimisation problem with a larger number of variables, and also a larger number of
constraints. On the other hand, it results in a less nonlinear problem. Furthermore,
the optimisation problem is relatively sparse in the sense that only a few decision
variables are present in each continuity constraint. Modern optimisation software
such as IpOpt (Wächter 2002; Wächter and Biegler 2006) can efficiently solve sparse
problems. Another advantage is that the state trajectory can be initialised with an
appropriate initial guess, if one is available. The multiple shooting approach is a
special case of a general technique known as lifting, where intermediate variables are
exposed to the optimiser, for the purpose of transforming a small nonlinear problem
to a larger less nonlinear one (Albersmeyer and Diehl 2010).

3.2.3 Collocation

Collocation methods can be seen as a way to allow even further interaction between
the optimisation algorithm and the dynamical system model. Instead of using an ODE
solver, the dynamical model is introduced as constraints in the optimisation problem.
First, the interval [ti, tf ] is divided into n intervals, ti = t0 < t1 < . . . < tn = tf .
Within each interval, the state trajectory is approximated by a polynomial of order d,
where d is typically a small number, in the range 1 to 3. The d+ 1 coefficients of each
of the dx states in each of the n intervals are included as decision variables, together
with the input coefficients a. As the state coefficients are uniquely determined by a,
the problem must include (d+ 1) · dx · n extra equality constraints.

To see how these constraints can be introduced, consider the time interval
[tk, tk+1]. To make the notation simpler, we introduce a new time variable, s =

(t− tk)/hk, where hk is the interval length tk+1 − tk. This way, s runs from 0 to 1.
Next, d+ 1 points, s0, . . . , sd, called collocation points, are selected in the interval
[0, 1]. The locations of these points are chosen to minimise numerical errors. Common
choices are the Legendre and Radau points (Biegler 2010). It is convenient to represent
the state trajectories using Lagrange polynomials, defined by

Lr(s) =

d∏
v=0,v 6=r

s− sv
sr − sv

. (3.44)

The state trajectory in this interval is given by

x(s) =

d∑
r=0

xk,rLr(s) (3.45)
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where xk,r is the state vector at the rth collocation point in the kth interval. The
Lagrange polynomials are interpolants: since Lr(sm) = δrm, the expression in
Eq. (3.45) will evaluate to the coefficient xk,r at time sr. In this way, the decision
variables are themselves the state values at the collocation points.

One set of constraints is given by noting that the state trajectories need to
be continuous, so that the value at the end of interval k is equal to the value at the
start of interval k + 1. This can be formulated as

d∑
r=0

xk,rLr(1) =
d∑
r=0

xk+1,rLr(0). (3.46)

This still leaves d constraints per state and interval. These are chosen by
requiring that the dynamical equations f(·) are satisfied at d collocation points per
interval. Since the state trajectories are polynomials, their derivatives with respect
to time can be computed analytically as

dx(t)

dt
=

d∑
r=0

xk,r
dLr(s)

ds
· ds

dt
=

1

hk

d∑
r=0

xk,r ·
dLr(s)

ds
. (3.47)

The collocation equations can now be written as

f(tk,m,xk,m,a) =
1

hk

d∑
r=0

Cr,m · xk,r (3.48)

for all k,m, where Cr,m is the time derivative of Lr(s) evaluated at time sm. In
summary, the collocation formulation of the optimal control problem can be written
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as

minimise
a,x0,0,...,xn−1,d

J(a,x(t)) (3.49a)

s.t. x0,0 = x(0) (3.49b)
d∑
r=0

xk,rLr(1)−
d∑
r=0

xk+1,rLr(0) = 0, (3.49c)

for k = {0, . . . , n− 1}

f(tk,m,x(tk,m),a)− 1

hk

d∑
r=0

Cr,m · xk,r = 0 (3.49d)

for k = {0, . . . , n− 1}, m = {1, . . . , d}.

c(a,xn−1,d) = 0 (3.49e)

h(a,xn−1,d) ≤ 0 (3.49f)

The decision variables in this formulation are the coefficients of the input
function a together with the value of the trajectory of each state at every collocation
point. Compared to single shooting, this increases the number of decision variables
and constraints by n · (d+ 1) ·dx. The advantages of collocation over other methods is
that while the resulting optimisation problem has a large number of decision variables,
it tends to result in problems that are even less nonlinear than in multiple shooting.
The large number of decision variables is not necessarily a problem, since the resulting
problem tends to be sparse: each constraint function contains only a small subset
of the variables. When the cost function has a likelihood term that depends on the
states at the measurement times, this term will only depend on a and the state
variables for the collocation intervals for which measurements exist. When the input
function is parameterised using piecewise constant basis functions aligned with the
collocation intervals, additional sparsity is achieved, which can be exploited by the
optimisation algorithm (Andersson 2013).

3.3 Fundamentals of Markov chain Monte Carlo

As mentioned in Section 2.2.2, solving Bayesian models is a computationally difficult
problem, due to the difficulty of computing high-dimensional integrals. Evaluating the
posterior distribution involves integrating over all parameters to obtain the marginal
likelihood. Additionally, computing expectations such as means and variances involves
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computing integrals. Monte Carlo methods are based on the idea that, if it is possible
to draw samples from a distribution p(θ), one can approximate the expectation of
any function h(θ) of interest, namely:

Ep [h(θ)] =

∫
Θ
h(θ)p(θ) dθ (3.50)

by a sample average h̄N of N samples drawn from p(θ):

h̄N =
1

N

N−1∑
i=0

h(θ(i)), θ(i) ∼ p(θ). (3.51)

By choosing an appropriate function h(θ), any quantities of interest such as
means, standard deviations and quantiles can be computed. The validity of the Monte
Carlo method is guaranteed by the strong law of large numbers (SLLN) (Rosenthal
2006), stating that for a sequence of independent random variables h(θ) with expect-
ation Ep [h(θ)], the following holds:

h̄N → Ep [h(θ)] as N →∞, (3.52)

where convergence is with probability 1. This result shows that as the number of
samples tends to infinity, the sample average will converge to the true expectation. In
practice, it is important to assess the accuracy of a finite number of samples. This can
be assessed with the central limit theorem (CLT) (Robert and Casella 2004), which
states that for a sequence of independent identically distributed random variables
h(θ) with expectation Ep [h(θ)] and variance σ2, the following holds:

√
N

(
h̄N − Ep [h (θ)]

)
σ

→ N (0, 1) as N →∞, (3.53)

where convergence is in distribution. In other words, the difference between the true
expectation and the sample average tends to a Gaussian distribution with standard
deviation σ/

√
N . This scaling by

√
N means that, to increase the accuracy by one

decimal place, the required number of samples increases 100-fold. This makes Monte
Carlo methods unsuitable for problems where high accuracy is desired. On the
other hand, the CLT is independent of the dimensionality of the parameter space, in
contrast to deterministic numerical techniques.

Monte Carlo methods presuppose that a method exists for drawing random
numbers from the distribution of interest. For drawing samples from the uniform
distribution in the interval [0, 1], efficient pseudo-number generators exist, such as
the Mersenne Twister (Matsumoto and Nishimura 1998), which is the default random
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number generator in several computing environments including MATLAB (MATLAB
2016), R (R Core Team 2016) and NumPy (Van Der Walt et al. 2011). From
uniform random numbers, it is possible to obtain samples from many standard
distributions using techniques such as the generalised inverse transformation, and
rejection sampling (Robert and Casella 2004).

When the distribution is the posterior of a complicated Bayesian model, no
standard method for drawing independent samples exists. The idea behind MCMC
methods is to construct a stochastic process that generates samples that are not
necessarily independent, but which are still drawn from the distribution of interest,
called the target distribution. They can therefore be used in Eq. (3.51) to estimate
expectations. One intuitive explanation for why MCMC makes sampling easier is
that the generation of new samples can be guided by previous samples. If previous
samples come from an area of high density, other points in the same area are likely
to have a high density too. Additionally, it turns out to be relatively straightforward
to construct such processes.

A Markov chain is a sequence of random variables θ(i) with the property that
future values of the chain depend only on the most recent value:

p
(
θ(i)|θ(i−1),θ(i−2), . . . ,θ(0)

)
= p

(
θ(i)|θ(i−1)

)
. (3.54)

This means that a Markov chain can be completely specified by an initial
distribution and a transition distribution κ, called a transition kernel, so that the
distribution of a sequence is given by

p
(
θ(0),θ(1), . . . ,θ(N−1)

)
= p(θ(0))

N−1∏
i=1

κ
(
θ(i)|θ(i−1)

)
. (3.55)

A realisation of this chain can be generated by drawing a sample from the
initial distribution, and then repeatedly generating the next sample by drawing from
the conditional distributions given by κ. Note that κ could in principle depend on
the time index i, but here only time-independent, or homogeneous, transition kernels
will be considered. Assume that there exists a distribution π satisfying

π(θ(i) = y) =

∫
Θ
κ(θ(i) = y|θ(i−1) = x)π(θ(i−1) = x) dx. (3.56)

This is called the stationary or invariant distribution. If the marginal dis-
tribution at any time index is π, then any subsequent draws will also come from π.
It appears plausible that a sequence of samples generated this way can be used in
Eq. (3.51) to estimate expectations with respect to π. For this to work, the following
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conditions have to be met:

1. The stationary distribution π must exist.

2. The chain has to converge to the stationary distribution, from an arbitrary
starting point. This is necessary since, in general, it is not possible to initialise
the chain from the stationary distribution — if that were possible, there would
be no need to use MCMC in the first place.

3. The sample averages have to converge to the true expectation, so that some
version of the SLLN and CLT holds. This can fail if the chain exhibits certain
pathologies. For example, a transition kernel that does not move would trivially
satisfy Eq. (3.56) for any π, but the resulting sequence would not be useful for
estimation.

4. It has to be possible to construct a transition kernel such that π is equal to the
desired target distribution.

In Section 3.3.1, points 2–3 will be explored. In Section 3.3.2, a method
for constructing a kernel that gives the desired stationary distribution is presented.
The resulting chain will have a stationary distribution by construction, so point 1 is
automatically satisfied.

3.3.1 Properties of Markov chains

While all estimation problems in this thesis consider continuous parameter spaces,
the concepts of Markov chain theory are simpler for discrete spaces. For this reason,
definitions are given first for discrete spaces, followed by their continuous counterparts.
For continuous parameter spaces, the probability of visiting any single value is 0.
To be able to treat these chains similarly to discrete Markov chains, probabilities of
single values have to be replaced by probabilities of measurable sets. For the purposes
of this thesis, it suffices to note that a measurable set is a set that can be assigned
a probability. For readers who desire a measure-theoretic treatment of probability,
Rosenthal (2006) is recommended. A more thorough treatment of discrete spaces
can be found in Roberts (1996). For comprehensive treatments of general spaces,
see Robert and Casella (2004), Tierney (1994), Tierney (1996), Roberts and Rosenthal
(2004) and Meyn and Tweedie (2009). In the definitions below, the parameter space
is denoted by Θ, while the set of all measurable subsets of Θ is denoted B(Θ).

A chain that is useful for MCMC should satisfy the following properties:
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Irreducibility For discrete chains, let τy be the time index of the first time state y
is visited. A Markov chain is said to be irreducible if

P (τy <∞|θ(0) = x) > 0, ∀x, y ∈ Θ. (3.57)

This means that it is possible to move from any parameter value to any other
in a finite number of steps. If this property does not hold, only parts of the
parameter space would be visited, with the initial value determining which parts.
Such a chain cannot have a unique stationary distribution that is independent
of the starting value.

A Markov chain on continuous spaces is said to be ϕ-irreducible for a probability
distribution ϕ if

P (τA <∞|θ(0) = x) > 0, ∀x ∈ Θ, A ∈ B(Θ) (3.58)

for any measurable set A such that ϕ(A) > 0, where τA is the first time that a
state in A is visited. As in the discrete case, this means that the probability
of moving from x to a point in A in a finite number of steps is greater than
zero. This definition is less strict than irreducibility, as it allows sets of zero
probability to be unreachable. For the purposes of MCMC, we require that
ϕ = π, so that all sets that are assigned positive probability by the stationary
distribution can be reached from any starting state.

Aperiodicity A discrete Markov chain is said to aperiodic if the following holds:

greatest common divisor
{
i > 0 : κi(θ(i) = x|θ(0) = x) > 0

}
= 1, ∀x ∈ Θ

(3.59)
where κi is the i-step transition kernel, κ applied i times. If this condition does
not hold, the chain will be split into subsets that are visited in a cyclic fashion,
and the chain cannot have a stationary distribution.

In the continuous case, a Markov chain is periodic if it can be divided into
disjoint sets such that each set is visited in a cyclic fashion. This definition
can be made more rigorous by introducing the concept of small sets, something
that is beyond the scope of this thesis. For more information, see Robert and
Casella (2004).

Recurrence Let ηx be the number of times the Markov chain visits the state
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x, and let τxx be the number of steps for the chain to return to state x,
τxx = min

{
i : θ(i) = x|θ(0) = x

}
. A Markov chain is said to be recurrent if

E [ηx] =∞, ∀x ∈ Θ. (3.60)

The chain is positive recurrent if additionally

E [τxx] <∞, ∀x ∈ Θ. (3.61)

A chain that is not recurrent is called transient. If the chain is transient, there
are states that are only visited finitely many times, so their proportion will be
zero as the number of samples tends to infinity.

For continuous spaces, define ηA as the number of times the chain visits the set
A. A chain is recurrent if it is ϕ-irreducible for some ϕ, and

E [ηA] =∞, ∀A ∈ B(Θ) : ϕ(A) > 0. (3.62)

Often, a stronger form of recurrence is required, known as Harris recurrence. A
chain is Harris recurrent if it is recurrent, and additionally

P (ηA =∞) = 1, ∀A ∈ B(Θ) : ϕ(A) > 0. (3.63)

Harris recurrence guarantees that any realisation will visit each set infinitely
often, with probability 1. Positive recurrence on the other hand only implies that
each set will on average be visited infinitely often. For a particular realisation of
the chain however, this may not hold, if the chain was started at an unfortunate
parameter value.

A ϕ-irreducible, aperiodic chain with π as its stationary distribution is positive
recurrent (Roberts and Rosenthal 2006). It can be shown that for a chain with π as
its stationary distribution, if it is π-irreducible, aperiodic and Harris recurrent, then
the following holds:

‖κi(·|θ(0) = x)− π‖ → 0, ∀x ∈ Θ (3.64)

where ‖ · ‖ denotes total variation distance (Tierney 1994). This means that the chain
converges to π independent of the starting state. While a proof will not be presented
here, the following intuitive argument can be made for discrete chains: suppose we
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start a chain C1 from any state x. Start another chain C2, initialised by drawing
from the stationary distribution. Since C2 is Harris recurrent, it will reach state x
in a finite number of steps. Next, remove all samples from C2 before the first time
x is visited. Since the removed part has finite length, the statistics of the resulting
chain will not be affected in the limit. But this modified chain starts in the same
state as C1, and these chains necessarily have the same statistics due to the Markov
property. A more detailed discussion can be found in Meyn and Tweedie (2009). For
continuous chains, more care has to be taken, but the basic idea remains the same.
Such a chain also obeys the SLLN.

Assuming that some mild technical conditions hold (Tierney 1996), which
here will always be assumed to be the case, there is a variant of the CLT that holds
for π-irreducible, aperiodic, Harris-recurrent chains:

√
N
h̄N − Eπ [h (θ)]

σ
→ N (0, 1) as N →∞ (3.65)

where now σ2 is given by:

σ2 = Var
[
h
(
θ(i)
)]

+ 2

∞∑
k=1

Cov
[
h
(
θ(i)
)
, h
(
θ(i+k)

)]
. (3.66)

This result shows that strong correlations between samples will result in high
variance. As expected, this expression reduces to the CLT (3.53) when the samples
are uncorrelated. When constructing Markov chains, it is therefore important to
strive to minimise correlations between samples.

In practice, Markov chains for MCMC are often constructed to satisfy the
detailed balance condition (Geyer 2011), namely:

π (y)κ (x|y) = π (x)κ (y|x) , ∀x, y ∈ Θ. (3.67)

This states that the probability of being in state x and moving to y is the
same as the probability of being in state y and moving to x. A chain satisfying this
condition is called reversible. Detailed balance is a special case of the stationarity
condition, which can be seen by integrating both sides with respect to x:

π(y)

∫
Θ
κ(x|y) dx =

∫
Θ
π(x)κ(y|x) dx⇐⇒ π(y) =

∫
Θ
π(x)κ(y|x) dx, (3.68)

since κ(x|y) is a probability distribution and therefore integrates to 1 over Θ. While
detailed balance is just a sufficient and not a necessary condition for a chain to have
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π as its stationary distribution, it is often used in practice.
For more information on the general aspects of MCMC, see Gilks et al. (1996),

Brooks et al. (2011), Chib and Greenberg (1995), Geyer (1992) and Kass et al. (1998).

3.3.2 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970) is a general
method for constructing Markov chains with any user-defined stationary distribution
π(θ). To simplify the presentation, here it is assumed that all distributions can
be represented by a probability density. However, the methodology is applicable
to general distributions. To use the Metropolis-Hastings algorithm, a proposal
distribution q(θ′|θ) has to be defined. This distribution generates new parameter
values θ′, and is allowed to depend on the current parameters θ. The proposal
distribution does not need to be related to the target distribution. At each time step
i of the algorithm, a new sample is generated by:

1. Propose a new sample θ′ using the proposal distribution q
(
θ′|θ(i−1)

)
.

2. Calculate the Metropolis-Hastings ratio A:

A(θ′,θ(i−1)) = min

{
1,

π(θ′)q(θ(i−1)|θ′)
π(θ(i−1))q(θ′|θ(i−1))

}
. (3.69)

3. With probability A, set θ(i) = θ′. Otherwise, set θ(i) = θ(i−1). The former
case is referred to as the proposed sample θ′ being accepted, while the latter
case is referred to as θ′ being rejected.

This will produce a Markov chain, whose transition distribution κ
(
θ(i)|θ(i−1)

)
is the combined action of the proposal distribution and the accept-reject step. This
transition will have π(θ) as its stationary distribution, which can be shown as follows:

First, consider the case where θ(i) = θ(i−1). Here, the detailed balance
equation is trivially satisfied.

Second, consider the case where θ(i) 6= θ(i−1). The probability density of
making that transition is given by

κ(θ(i)|θ(i−1)) = q(θ(i)|θ(i−1)) ·A(θ(i),θ(i−1)), θ(i) 6= θ(i−1). (3.70)

For detailed balance to hold, the following condition must be met:
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π(θ(i−1))·q(θ(i)|θ(i−1))·A(θ(i),θ(i−1)) = π(θ(i))·q(θ(i−1)|θ(i))·A(θ(i−1),θ(i)), (3.71)

or equivalently:

A(θ(i),θ(i−1))

A(θ(i−1),θ(i))
=

π(θ(i)) · q(θ(i−1)|θ(i))

π(θ(i−1)) · q(θ(i)|θ(i−1))
. (3.72)

This equality holds when A is defined as in Eq. (3.69). There are two
cases to consider here. The first case is when π

(
θ(i)
)
· q
(
θ(i−1)|θ(i)

)
≥ π

(
θ(i−1)

)
·

q
(
θ(i)|θ(i−1)

)
, which leads to

A(θ(i),θ(i−1)) = 1 (3.73)

A(θ(i−1),θ(i)) =
π(θ(i−1)) · q(θ(i)|θ(i−1))

π(θ(i)) · q(θ(i−1)|θ(i))
. (3.74)

The second case is when π
(
θ(i)
)
· q
(
θ(i−1)|θ(i)

)
< π

(
θ(i−1)

)
· q
(
θ(i)|θ(i−1)

)
,

which leads to

A(θ(i),θ(i−1)) =
π(θ(i)) · q(θ(i−1)|θ(i))

π(θ(i−1)) · q(θ(i)|θ(i−1))
(3.75)

A(θ(i−1),θ(i)) = 1. (3.76)

In both cases, Eq. (3.72) is satisfied, confirming that the Markov chain has π
as its stationary distribution.

The Metropolis-Hastings ratio is well-defined as long as the denominator in
Eq. (3.69) is not zero. To ensure that it is positive, it is enough to start the chain
at a point with positive density. The other factor in the denominator, q(θ′|θ), will
always be positive, since a point of zero density would not be proposed. Any proposal
to move to a point of zero density will be rejected by the accept-reject step.

In the special case when q(θ′|θ) = q(θ|θ′), the Metropolis-Hastings ratio
simplifies to A = min{1, π(θ′)/π(θ(i−1))}. Here, a proposal is always accepted if
the proposed value has a higher density that the current value. This is the original
algorithm presented by Metropolis et al. (1953), and is referred to as the Metropolis
algorithm.

In Bayesian statistics, the invariant distribution of interest is the posterior,
p(θ|y). As described in Section 2.2.2, the posterior is given by Eq. (2.8), where
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the numerator is generally easy to evaluate, while the denominator, the marginal
likelihood, is often intractable. However, the marginal likelihood does not depend
on the parameters, and will therefore be cancelled in the Metropolis-Hastings ratio.
Therefore, it is sufficient to be able to evaluate the prior and the likelihood in order
to use the algorithm.

For the Markov chain to be useful, it is also necessary to check that the
chosen proposal distribution results in a chain that is irreducible, aperiodic and
Harris recurrent.

All MCMC methods presented later in this section are special cases of the
Metropolis-Hastings algorithm, differing only in the choice of proposal distributions.
It can also be useful to create mixtures and cycles of proposal mechanisms. In a
mixture, at each step of the algorithm, one out of several proposal distributions is
chosen at random. In a cycle, each proposal is applied in turn. It can be shown that
a mixture is irreducible and aperiodic if at least one of its component distributions
is irreducible and aperiodic. For cycles, if each transition preserves the invariant
distribution, so does the cycle (Geyer 2011). One way to introduce cycles is to divide
the parameter vector into blocks of parameters, and update each block separately,
possibly with different proposal mechanisms. In these kinds of cycles, the individual
transition distributions do preserve the invariant distribution, but they are not
irreducible. The user of the method has to ensure that the combination of all updates
results in an irreducible chain.

3.3.3 Practical considerations

So far, it has been shown that, under certain technical conditions, the estimates
from the Markov chain will converge to the true values in the limit, as the number
of samples tend to infinity. In practical applications, the chain can only have a
finite length, and it is important to assess whether the generated samples are a good
approximation of the true distribution. There are two things to consider:

1. The chain might be initialised far from the target distribution. For this reason,
there is a possibility that the initial part of the chain is unrepresentative of the
distribution, even though it is known that the chain will converge to the target
distribution in the limit (Fig. 3.1). Discarding this initial part of the chain can
increase the accuracy of the estimates, a practice known as burn-in. In order
to determine the number of samples to discard, it is necessary to know when
the chain has converged.

2. Even when all samples can be assumed to be drawn from the correct distribution,
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it is still necessary to assess the number of samples needed to estimate the
expectations of interest with a desired level of accuracy. Since the samples in
general are correlated, it is necessary to generate more samples than would be
needed if the samples were independent.

0 200 400 600 800 1000

Sample number

−5
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15

20
Markov chain targeting N (0, 1)

Figure 3.1: A Markov chain targeting the distribution N (0, 1) using the Metropolis-
Hastings algorithm with proposal distribution q(θ′|θ(i−1)) = N (θ(i−1), 0.42). Since
the chain is initialised at θ(0) = 20, the initial part of the chain, before the dashed
line, is far from the desired distribution, and accuracy can be increased by removing
it.

For general statistical models, no theoretical results exist that can guarantee
that a finite set of samples from a Markov chain will result in accurate estimates (Geyer
2011). Instead, the samples generated by the chain can be analysed by heuristic
methods, that rely on statistical properties of the samples, in order to detect possible
problems. One straightforward method to assess convergence is to plot the samples
and visually determine the number of samples to remove. In Fig. 3.1, it can be seen
that excluding the initial 200–250 samples is probably enough.

One method that can be used to determine the amount of burn-in required,
as well as the number of samples required, is the Raftery-Lewis diagnostic (Raftery
and Lewis 1992; Raftery and Lewis 1995). Here, it is assumed that the user wants
to estimate a quantile of a parameter, or a function of a parameter, with a given
accuracy. The user provides the method with a set of samples from the Markov chain,
together with four parameters: the quantile q, the desired margin of error r, the
probability of attaining the desired margin of error s, and the convergence tolerance
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ε. The interpretation of this is that a value H is sought such that P (h(θ) < H) = q,
with the requirement that the estimated H falls in the interval (q − r, q + r) with
probability s. The role of ε is to give the threshold for where the initial state can be
considered to have an insignificant influence on the chain.

The key idea of the Raftery-Lewis method is that, in order to determine
a quantile, it is only necessary to consider whether a sample falls above or below
that quantile. Therefore, it is sufficient to analyse a two-state stochastic process,
where the states are either 0 or 1, indicating whether the sample is above or below
q. While analysing a general Markov chain can be difficult, efficient methods exist
for analysing two-state Markov chains. As a first step, the Raftery-Lewis method
generates a new two-state stochastic process by computing Z(i) = I(h(θ(i)) < He),
where I is the indicator function and He is an estimate of H from the samples. While
this process is not Markovian, it is possible to create an approximately Markovian
process by thinning, keeping only every kth sample. A suitable value of k is obtained
by model-comparison techniques based on the Bayesian information criterion (BIC).
There are two useful analytical results for a two-state Markov chain with transition
probabilities κ(1|0) = α and κ(0|1) = β, where the first can be used to determine the
amount of burn-in, and the second can be used to determine the number of samples
required after the burn-in phase:

• The contribution of the initial state on the probabilities of the chain is less
than ε after m steps, where

m =
log
(

ε(α+β)
max(α,β)

)
log(1− α− β)

. (3.77)

Since the analysis is done on a thinned chain, this result shows that m · k
samples should be discarded as burn-in.

• When the quantile is estimated by q̂ = 1/n
∑n−1

i=0 Z
(i), the estimate can be

shown to have mean q and variance 1
n
αβ(2−α−β)

(α+β)3
. By setting P (q−r ≤ Z̄(k)

t ) = s,
the number of thinned samples n needed is

n =

αβ(2−α−β)
(α+β)3(
r

Φ−1( 1
2

(1+s))

)2 (3.78)

where Φ(·) is the standard normal cumulative distribution function. The number
of samples required after burn-in is given by n · k.
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Another method to determine the number of samples required is to use the
effective sample size (ESS), a measure of the quality of the samples generated by
the chain. Recall that to obtain a given accuracy, more samples are needed from a
Markov chain than would be required from a collection of independent samples, due
to correlations in the chain. ESS is defined by

ESS =
N

1 + 2
∑∞

k=1 γk
[
h
(
θ(i),θ(i+k)

)] (3.79)

where the γk are the k-lag correlation coefficients. These coefficients can be estimated
from the samples produced by the chain using methods such as the initial monotone
sequence estimator (Geyer 1992). From Eq. (3.79), it can be seen that the variance
of an estimate of h(·) based on N samples from the Markov chain is equal to the
variance of an estimate based on ESS independently generated samples.

It is important to note that these methods are not able to detect all problems.
While a failed convergence test is a sign of problems, a successful test does not
necessarily imply a lack of problems. An example of this is pseudo-convergence, which
can occur if the target distribution has several modes, separated by areas of low
probability density. In this situation, the chain may only find one of the modes, and
the generated samples could well pass the diagnostics presented above.

An alternative to burn-in is to initialise the chain at a point of high probability
density, so that it can be assumed to be close to stationarity from the beginning. This
can be achieved by finding a local maximum of the density using an optimisation
method, such as any of the optimal-control methods presented in Section 3.2.

In all case studies, the quality of the generated samples was assessed using the
Raftery-Lewis diagnostic and the ESS. Burn-in was generally avoided by initialising
the Markov chain using optimal control-based estimation.

In summary, a great strength of MCMC methods is that they can, in principle,
be applied to any kind of statistical model. The parameters can have arbitrary
prior distributions, and can depend on each other in arbitrary, possibly nonlinear,
ways. Any statistic of interest can be computed to arbitrary precision given enough
computing time. However, there are challenges with these methods as well. As
discussed above, it can be difficult to assess whether the samples produced by the
chain are representative of the target distribution. Additionally, these methods can be
computationally intensive. To obtain a sufficiently large effective number of samples
in a reasonable amount of computation time, it is necessary to find good proposal
distributions. This is a non-trivial task, as the performance of algorithms using
these distributions is highly problem-dependent. Below, a number of methods for
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generating proposals is presented.

3.3.4 Random walk Metropolis-Hastings

A common method for generating proposals is to use a standard distribution such
as a Gaussian, centred on the current parameter value. For continuous parameters,
updated simultaneously by a multivariate Gaussian, the resulting chain is irreducible
and aperiodic. This can be seen by noting that for any parameter value, it is possible
to reach any other parameter value in a single step. Alternatively, the parameters can
be updated one at a time using a univariate proposal. More generally, the parameters
can be divided into blocks that are updated separately.

The covariance matrix of the proposal distribution has a large impact on the
correlation between samples and therefore the effective sample size. There are two
sources of correlation between samples. Firstly, samples can be correlated because
the proposal distribution proposes parameter values that are close to the previous
values. Secondly, they can be correlated because the proposal is rejected, resulting
in the new value being identical to the previous one. Figure 3.2 shows this for a
one-dimensional distribution. If the variance is chosen to be small, most proposals
will be accepted, and the chain will exhibit a slow random walk that explores the
target only very slowly. If the variance on the other hand is large, proposals will be
in regions of low target density, resulting in most proposals being rejected. In the
first case, correlation is high because the proposal distribution generates new sample
values close to the previous values. In the second case, correlation is high because
most proposals are rejected, resulting in runs of identical values. It has been shown
that for multivariate Gaussian proposals, optimal performance is achieved when the
proposal variance is set to obtain an acceptance rate of 0.234 (Roberts and Rosenthal
2001).

One method to find a good proposal distribution is to monitor the acceptance
rate, and adjust the proposal variance accordingly to keep it close to the optimal value.
This is done during the burn-in phase, after which the proposal distribution is fixed.
Adjusting the proposal distributions while samples are being recorded is in general
not valid, since the resulting chain is not a Markov chain and does not necessarily
satisfy detailed balance. However, there do exist adaptive methods that have the
correct distribution even though the resulting chain is not Markovian (Haario et al.
2001).

In multiple dimensions, finding a suitable proposal distribution can be difficult
even with adaptive methods, since different parameters may need different proposal
variances. Additionally, any correlation between parameters would require the
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Figure 3.2: Samples drawn from a zero-mean Gaussian with standard deviation 10,
using random walk Metropolis-Hastings with different proposal standard deviations.
To the right of the plots, histograms of the samples as well as the true density are
shown. Top: Using a standard deviation of 0.5 results in a chain with high correlation,
since each proposed new value is close to the previous value. Middle: A standard
deviation of 20 results in a chain with low correlation between samples. After 5000
samples, the empirical distribution is close to the target. Bottom: Using a standard
deviation of 2000 results in a chain with high correlation, since most proposals are
rejected. When an unsuitable proposal distribution is used, the empirical distribution
differs significantly from the target even after 5000 samples.

proposal to have a similar level of correlation for good performance. For good
efficiency, it may also be necessary to use different proposals in different parts of the
parameter space. These issues are illustrated in Fig. 3.3.

3.3.5 Gibbs sampling

In Gibbs sampling (Geman and Geman 1984), the parameter vector is split into
blocks that are updated one at a time. Each block is updated by drawing samples
from its distribution, conditioned on all other parameters. Such a block could contain
a single parameter or multiple parameters. For this approach to work, it must be
possible to draw samples from the conditional distribution. This is possible if these
have a standard form, such as a Gaussian or Gamma distribution. One way to ensure
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that this is the case is to use conjugate priors. A conjugate prior is a prior such that
its corresponding posterior has the same form as the prior (MacKay 2003, Ch. 42). If
the prior has a standard form, the posterior will also have a standard form and thus
be amenable to sampling. An important example for our purposes is a collection
of n independent zero-mean Gaussian variables, θ0, . . . θn−1, which have a common
but unknown precision τ . If τ is assigned a Gamma prior, p(τ) = Gam(α, β), its
posterior can be computed by

p(τ |θ0, . . . , θn−1) ∝ p(τ)p(θ0, . . . , θn−1|τ) =
β

Γ(α)
τα−1e−β

ατ ·
n−1∏
i=0

√
τ

2π
e−

τθ2i
2

=
βα

Γ(α)
· τ

α+n/2−1

(2π)n/2
e−τ(β+

∑n−1
i=0

θ2i
2

).

(3.80)

where Γ(α) is the Gamma function, not to be confused with the Gamma distribution.
The normalised posterior has to integrate to 1, which can be achieved by

recognising the result as an unnormalised Gamma distribution, and assigning the
normalisation constant accordingly. In summary the posterior is a Gam(α+ n/2, β +∑n−1

i=0 θ
2
i /2) distribution.
An intuitive explanation for why Gibbs sampling preserves the stationary

distribution is as follows: let θj denote the jth block of parameters, while θ−j
denotes all other parameters. For the jth block, suppose that the parameters θ−j
are drawn from the target distribution p(θ−j). If θj is drawn from the target
distribution conditioned on all other parameters, p(θj |θ−j), obviously the joint
distribution p(θj ,θ−j) will have the desired distribution. It is also easy to see that
Gibbs sampling is a special case of the Metropolis-Hastings algorithm, where the
proposal distribution is q

(
θ′j |θ(i−1)

)
= p

(
θ′j |θ

(i−1)
−j

)
. The Metropolis ratio can be

computed by using

p
(
θ′j ,θ

(i−1)
−j

)
p
(
θ

(i−1)
j |θ(i−1)

−j
)

p
(
θ

(i−1)
j ,θ

(i−1)
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)
p
(
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(
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(i−1)
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)
p
(
θ

(i−1)
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)
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(
θ

(i−1)
j |θ(i−1)
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)
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(
θ

(i−1)
j |θ(i−1)

−j
)
p
(
θ

(i−1)
−j

)
p
(
θ′j |θ

(i−1)
−j

) = 1.

(3.81)
This shows that by using the conditional distribution as a proposal distribution,

the proposal will always be accepted.
When using Gibbs sampling, it is important to analyse whether the resulting

chain is ergodic. It is easy to construct examples where this scheme can result in a
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reducible chain, given an unfortunate choice of parameterisation.

3.3.6 Metropolis-adjusted Langevin algorithm

Seeing that it can be difficult to find good proposal distributions for RWMH by hand,
it is of great interest to find algorithms that can find good proposals automatically.
One way to do this is to exploit additional local information, such as the gradient of
the log-target distribution. First, we replace the discrete-time Markov chain θ(i) by
the continuous-time Langevin diffusion θ(t), which is defined as the solution to the
stochastic differential equation (SDE)

dθ(t) =
1

2

d log π(θ(t))

dθ
dt+ dW(t) (3.82)

where W(t) is a Wiener process with the same dimensionality as θ. This is a special
case of an Itô diffusion (Klebaner 2012). It can be shown that the Langevin diffusion
process has π(θ) as its stationary distribution, and also that the process will converge
to π(θ) for any starting value (Roberts and Tweedie 1996; Roberts and Stramer 2002).
Thus, samples from π(θ) can be obtained by simulating this system, and recording
its state at selected intervals.

Equation (3.82) does not in general have a closed-form solution. To solve it,
numerical methods can be used. A simple discrete-time approximation is given by
the Euler-Maruyama method (Kloeden and Platen 1999), where each time step is
given by

θ(i) = θ(i−1) +
ε2

2

d log π(θ)

dθ

∣∣∣∣
θ=θ(i−1)

+ εz(i−1) (3.83)

where ε is a step size, and z is a vector of independent standard Gaussian variables.
This method is similar to Euler’s method for ODEs, with an added random term. The
time-discretised chain does not necessarily have the correct stationary distribution.
To correct this, a Metropolis-Hastings accept-reject step can be added. This results in
the Metropolis-adjusted Langevin algorithm (MALA), which is a Metropolis-Hastings
algorithm using Eq. (3.83) as its proposal distribution.

Similarly to RWMH, MALA generates proposals by adding a random perturb-
ation to the current parameter value, but it additionally adds a term that moves
the parameter along the gradient of the log-target distribution. This will make the
proposal prefer regions that are more likely to have a high density. For MALA, the
optimal acceptance rate is 0.574 (Roberts and Rosenthal 2001), a figure that can be
achieved by adapting the step size ε. Since MALA uses additional information in the
form of the gradient when generating proposals, these are more likely to have a high
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target density. In contrast, RWMH proposals are unrelated to the target, and the
only information about the target is obtained from the accept-reject step.

While MALA can help to generate better proposals, it still suffers from the
same kind of issues as RWMH. When parameters have different scales, or are strongly
correlated, the isotropic random perturbation in Eq. (3.83) will not explore the
parameter space efficiently. Additionally, computing the gradient can be expensive.
While MALA can increase the quality of the proposals, it will produce a smaller
number of samples per unit of computing time. Thus, it is not obvious which method
will perform better for a given problem.

One way to improve the performance of MALA is to perform a linear trans-
formation of the parameters such that the transformed parameters are approximately
uncorrelated and have similar length scales. Equivalently, the proposal distribution
can be modified to take the correlation structure into account. This will result in the
proposal

θ(i) = θ(i−1) +
ε2

2
M

d log π(θ)

dθ

∣∣∣∣
θ=θ(i−1)

+ εM1/2z(i−1) (3.84)

where M is a preconditioning matrix performing the parameter transformation (Giro-
lami and Calderhead 2011). This obviously causes another issue: how to choose a
suitable M.

3.3.7 Riemannian manifold sampling-based methods

The problem with using isotropic proposals like in MALA is that a small change in
one parameter might result in a large change in the statistical model, while a change
in another parameter might only have a small effect on the model. This is illustrated
in Fig. 3.3. It is clear in the upper figure that when moving along the diagonal, the
parameter values can change by a large amount without significantly changing the
probability density. In contrast, even relatively small movements in other directions
will result in a low probability density. In this case, it is desirable to find proposals
that prefer to make large steps along the diagonal, while avoiding large steps in other
directions. In general, movements should be larger in directions for which the model
has low sensitivity. One solution to this is to redefine the notion of distance between
points, so that points that result in similar probability densities are considered to be
close even if their parameter values are not. This can be accomplished by treating
the parameter space as a Riemannian manifold. Riemannian manifolds are used in
the field of differential geometry to represent curved spaces. While the treatment of
this subject is necessarily informal here, a rigorous treatment is given in Boothby
(2003) and Carmo (1992). Perhaps the most familiar example of a curved space is
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the surface of the Earth. Positions on the Earth are often parameterised by latitude
and longitude. The distance required to travel in order to change longitude by 1◦

depends on the distance to the equator. Hence, naively using the Euclidean metric to
compute distances would be incorrect. Differential geometry provides the necessary
tools for correctly defining distances between points, independent of the choice of
parameterisation. In statistical models, the same mathematics can be used to define
a notion of distance between points that has desirable properties. The length of a
curve θ(t) =

[
θ1(t), θ2(t), . . . , θd−1(t)

]
, parameterised by t ∈ [0, 1] is given by

computing the line integral

L =

∫ 1

0

∣∣∣∣dθdt
∣∣∣∣dt (3.85)

where
∣∣dθ

dt

∣∣ is the magnitude of the tangent vector of the curve at point t. For a

Euclidean space, the magnitude is given by
√

dθ
dt

T · dθ
dt , which is the square root of

the inner product between the tangent vector with itself. On a general Riemannian
manifold, the inner product is defined by a metric tensor. This can be conveniently
represented by a matrix G(θ(t)), such that the magnitude of the tangent vector is

given by
√

dθ
dt

T
G(θ(t))dθ

dt . The length of a curve is now given by

L =

∫ 1

0

√
dθ

dt

T

G(θ(t))
dθ

dt
dt. (3.86)

The distance between two points can be defined as the length of the geodesic,
the shortest path between them. In this way, the metric tensor induces a metric, a
notion of distance between points. For the example of the Earth, the metric tensor is
chosen so that the distances defined in this way correspond to real-world physical
distances.

A parameter space in a statistical model can also be equipped with a metric
tensor. The idea of treating a statistical model as a Riemannian manifold is the
subject of the field of information geometry (Amari and Nagaoka 2000). Figure 3.4
shows two examples: the surface of the earth, and a statistical model where each
point in the space represents a Gaussian distribution. For small standard deviations,
a change of the mean results in a larger change of the statistical model than is the
case for larger standard deviations. This can be represented by choosing a suitable
metric tensor. Note that, in general, the shortest path between points is not the path
that appears straight in the chosen coordinate system.

A Langevin equation defined on a Riemannian manifold is the solution to the
stochastic differential equation (SDE)
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dθ(t) =
1

2
G−1(θ(t))

d log π(θ(t))

dθ
dt+ dW̃(t) (3.87)

where each component of W̃ (t), W̃k(t), is given by:

dW̃k(t) = |G(θ(t))|−
1
2

d−1∑
j=0

∂

∂θj

(
G−1(θ(t))kj |G(θ(t))|

1
2

)
dt+

(√
G−1(θ(t)) dW(t)

)
k
.

(3.88)
For a discussion on this expression, see Calderhead 2011, Ch. 3. It can

be shown (Calderhead 2011; Girolami and Calderhead 2011) that a discrete-time
approximation of this SDE is given by

θ
(i)
k = θ

(i−1)
k +

ε2

2

(
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dθ
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k
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(
ε
√

G−1(θ(i−1))z(i−1)

)
k

(3.89)

where ε is the step size and the z(i) are independent standard Gaussian variables. As
for MALA, the discrete-time equations do not in general have the correct stationary
distribution. Instead, each step is used as a Metropolis-Hastings proposal. The
resulting algorithm is called the manifold Metropolis-adjusted Langevin algorithm
(MMALA).

A simpler proposal mechanism can be obtained by ignoring the terms that
include derivatives of the metric tensor. This results in the simplified manifold
Metropolis-adjusted Langevin algorithm (SMMALA), with a proposal defined by

θ(i) = θ(i−1) +
1

2
ε2G−1(θ(n−1))

d log π(θ)

dθ

∣∣∣∣
θ=θ(i−1)

+ ε
√

G−1(θ(i−1)))z(i−1). (3.90)

Since the SMMALA is just an approximation of the full MMALA, it can be
expected to make poorer proposals. On the other hand, computing derivatives of the
metric tensor can be difficult or computationally expensive.
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Equation (3.90) can be interpreted as a preconditioned MALA proposal, using
G−1(θ(i−1)) as a preconditioning matrix. In contrast to Eq. (3.84), the preconditioning
matrix is here allowed to be position-dependent. SMMALA can therefore be seen as
one way to choose the M matrix.

There is no single correct metric tensor for a given model — any valid metric
tensor defines a valid Riemannian manifold. For Bayesian models, it has been
suggested (Calderhead 2011; Girolami and Calderhead 2011) to use the Hessian of
the negative log prior plus the expected Fisher information matrix, I(θ), defined by

Iij = Cov

(
d log p(y|θ)

dθi
,
d log p(y|θ)

dθj

)
. (3.91)

For models described by ODEs, with independent Gaussian observation noise,
this becomes (Girolami and Calderhead 2011)

Iij =

Nobs−1∑
k=0

∂YT
k

∂θi
Σ−1
k

∂Yk

∂θj
(3.92)

where Yk is the vector of predicted measured variables at measurement time point k,
Σk is the measurement noise covariance matrix at time k, and Nobs is the number
of observations. The systems considered in this thesis will have a single observed
output, such as plasma concentration, therefore, Yk will be a scalar. The derivatives
with respect to the parameters θi can be obtained via the sensitivity equations (see
Section 2.7.1).

SMMALA can be seen as being analogous to second-order optimisation meth-
ods, in which the objective function at each step is approximated by a second-order
Taylor series expansion. Here, the log-posterior is approximated by a quadratic
function, resulting in the posterior being approximated by a Gaussian distribution.
Proposals are generated by drawing a sample from this Gaussian distribution.

3.3.8 Other methods

There is a great variety of MCMC methods in addition to the ones already mentioned,
including:

Slice sampling (Neal 2003) is a method for drawing samples from univariate dis-
tributions, although extensions to the multivariate case also exist. This method
treats the area under the curve as a two-dimensional uniform distribution
and performs Gibbs-like sampling from it. Since it is intended for one- or
lower-dimensional distributions, it has to be combined with other updates.
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Hamiltonian Monte Carlo (Duane et al. 1987; Neal 2011) is a method based on
the observation that for a system of particles in physics, the log-probability
density of the system’s state is proportional to its negative potential energy.
Sampling can therefore be performed by treating the parameter vector as the
position of a hypothetical particle subject to a suitably defined potential, and
simulating its time evolution. One variant of Hamiltonian Monte Carlo, NUTS
(No U-Turn Sampler) can reduce the need for manual tuning (Hoffman and
Gelman 2014).

The Affine Invariant Ensemble Sampler (Goodman andWeare 2010; Foreman-
Mackey et al. 2013) simultaneously simulates multiple copies of the parameter
space. Updates are performed by exchanging information between these copies.

In this thesis, Gibbs sampling (Section 3.3.5) is used to update the regu-
larisation parameter, while the basis function coefficients are updated using either
RWMH (Section 3.3.4), MALA (Section 3.3.6), or SMMALA (Section 3.3.7). The
other methods are mentioned mainly for completeness.
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Isotropic proposals are poor
for highly correlated variables

Good proposals are aligned
with the correlation structure

Different parts of the parameter space
may need different proposals

Figure 3.3: Proposal distributions for correlated parameters. Top: For correlated
parameters, the proposal distribution should be aligned with the target distribution.
Isotropic proposals will not be efficient. Bottom: Proposals can be more efficient if
they are adapted to the local correlation structure.
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Figure 3.4: Analogy between the shortest path between points on the Earth and points
in a statistical model. Top: Distances between points on the Earth. When points are
parameterised using latitude and longitude, it may appear that the distance is the
same between the upper and the lower two points. In reality, the distance is shorter
between the upper points. Also, the shortest path between points is not the path that
appears straight in the chart. This can be treated mathematically by modelling the
surface of the Earth as a Riemannian manifold, where each point is equipped with
a metric tensor. Bottom: A space of Gaussian distributions, parameterised using
mean and standard deviation. This can also be treated as a Riemannian manifold.
In this example, the Fisher information matrix with 10 observed data points is used
to define a metric.
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Chapter 4

Case study — eflornithine
absorption

In this chapter, input-estimation methods are tested and benchmarked on a plasma-
concentration dataset of the drug eflornithine, following oral administration in rats.
Eflornithine is used to treat human African trypanosomiasis (HAT) (Jacobs et al.
2011). Optimal control-based and MCMC methods are applied on synthetic and
real data, and evaluated based on computational speed, estimation accuracy, and
robustness.

4.1 Background

HAT, also known as sleeping sickness, is a disease endemic to sub-Saharan Africa.
It is caused by the parasite Trypanosoma brucei, which is transmitted by the tsetse
fly (Glossina). The vast majority (>97%) of HAT infection cases are caused by the
subspecies Trypanosoma brucei gambiense (Kennedy 2013), which is the variant of
the disease that is considered here. In the first stage of the disease, the parasite
invades the lymph and blood. Symptoms at this stage include headaches, weight
loss, fatigue, and fever. In the second stage, the parasite invades the central nervous
system, resulting in symptoms including sleep disturbances and psychiatric disorders.
Typical duration of the disease is three years, equally divided between the first and
second stage (Brun et al. 2010). HAT is almost always fatal if left untreated, although
rare cases of recovery have been reported (Kennedy 2013). As of 2011, there are
an estimated 20,000 cases of HAT per year, although historically, this has been
significantly higher (World Health Organization 2015). The drugs that are available
for treating second-stage HAT are melarsoprol and eflornithine (Eperon et al. 2014).
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Eflornithine is preferred over melarsoprol, as it has been shown to result in a lower
mortality rate, and to cause significantly less adverse effects (Chappuis et al. 2005;
Balasegaram et al. 2006).

Eflornithine (DL-α-difluoromethylornithine, DFMO) is an irreversible inhib-
itor of ornithine decarboxylase (ODC). ODC is an enzyme required in the biosynthesis
of polyamines (Ning et al. 2003), which are essential for cell growth and multiplic-
ation (Eperon et al. 2014). Trypanosoma brucei gambiense is more vulnerable to
inhibition of ODC than human cells, possibly because ODC in humans has a faster
turnaround time, causing inhibited ODC to be replaced faster (Heby et al. 2003).
Standard eflornithine treatment involves infusions every six hours over fourteen days.
The frequent infusions are necessary due to the short half-life of the drug (Brun
et al. 2010). No oral form of the drug is available (Fairlamb 2003). Intravenous (IV)
administration of eflornithine is costly and inconvenient, especially in rural hospit-
als (Na-Bangchang et al. 2004). Eflornithine is administered as a racemic mixture,
with the L-enantiomer having a higher potency than the D-enantiomer (Johansson
et al. 2013).

To make eflornithine treatment more widely available, it would be of interest to
develop an oral mode of administration. A rat study has been performed (Johansson
et al. 2013) with the purpose of determining the oral bioavailability and the absorption
profile of the drug. Data from IV administration was used to build a nonlinear three-
compartment model of the PK. Eflornithine was administered as a racemic mixture,
with L- and D-enantiomers measured separately. While the same model structure
was used for both enantiomers, the model parameters were estimated separately.

In this chapter, the model and data from this study are used as a benchmark
problem, in order to investigate the performance of input-estimation methods.

4.2 Model

The system model developed by Johansson et al. (2013) is a three-compartment model
with a nonlinear binding compartment, shown in Fig. 4.1. The model equations are
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Figure 4.1: The nonlinear three-compartment eflornithine model from Johansson
et al. (2013). The aim of input estimation is to estimate the function u(t) from
measurements of Cp.

defined as

dCp
dt

=
u

Vc
−
(
CL

Vc
+
Q

Vc

)
Cp +

Q

Vc
Ct

− kon · Cp ·
(
Rmax
Vc
− Cb

)
+ koff · Cb (4.1a)

dCt
dt

=
Q

Vt
Cp −

Q

Vt
Ct (4.1b)

dCb
dt

=kon · Cp ·
(
Rmax
Vc
− Cb

)
− koff · Cb (4.1c)

where Cp, Ct and Cb are the drug concentrations in the central, peripheral and
binding compartments, Vc is the volume in the central compartment, Vt is the volume
in the peripheral compartment, CL is the clearance, Q is the intercompartmental
clearance between the central and the peripheral compartment, kon is the binding
rate constant, koff is the dissociation rate constant, and Rmax is the total binding
capacity. This model structure is used for both the L- and the D-enantiomer, although
the parameter values are slightly different. In this work, the mean parameters for the
L-enantiomer were used, since only datasets of measurements of this enantiomer were
considered. The parameters are summarised in Table 4.1. Note that the equations
presented here are slightly modified from the equations in Johansson et al. (2013), in
order to properly make the conversion from amounts to concentrations.
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Parameter Definition Value Unit

Vc Central compartment volume 74.7 mL
Vt Peripheral compartment volume 31.6 mL
CL Clearance 3.36 mL · min−1

Q Intercompartmental clearance 0.217 mL · min−1

kon Binding rate constant 0.00275 mL · min−1 · µmol−1

koff Dissociation rate constant 0.000468 min−1

Rmax Total binding capacity 73.3 µmol

Table 4.1: Pharmacokinetic parameters of the eflornithine model.

4.3 Data

4.3.1 Real data

In the study reported by Johansson et al. (2013), oral administration of eflornithine
hydrochloride monohydrate was given in doses of 40, 150, 400, 1, 200, and 3, 000

mg/kg body mass, with five or six animals per dose group. Since racemic mixtures
were administered, the dose per enantiomer is half of the reported dose. The molecular
weight of the administered substance is 236.65 g/mol (Johansson et al. 2013), resulting
in doses per enantiomer of 85, 320, 850, 2, 500, and 6, 300 µmol/kg body mass. Plasma
concentration time series were reported per individual. Two of these time series were
selected for evaluating the input-estimation methods: one for the lowest and one for
the highest dose. The data are shown in Fig. 4.2, and are presented in tabular form
in Table A.1.
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Figure 4.2: Plasma concentration measurements for the eflornithine low-dose data
(left) and high-dose data (right). Note that the concentration and time scales are
different for the two plots.
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Parameter Interpretation Value Unit

a Initial amount 8.63 µmol
ktr Transition rate constant 0.025 min−1

n Number of compartments 2 -

Table 4.2: Parameters for the synthetic input function to the eflornithine model.

4.3.2 Test data

In order to compare the results to a known input, the system was simulated using a
synthetic input function. When selecting a form for the input function, the following
criteria were considered:

• The function should result in data that are qualitatively and quantitatively
similar to real data.

• The function should have a simple functional form.

• The function should ideally be interpretable as the output to a compartmental
model. The reason for this is that absorption is often modelled by a compart-
mental model, suggesting that this is a good model that can capture typical
absorption processes. This also makes it possible to give the function a model
structure interpretation.

The input model was chosen to have the following form:

u(t) = a
kntr · tn−1 · e−ktrt

(n− 1)!
(4.2)

where a and ktr are real-valued parameters, and n is an integer-valued parameter.
By varying these parameters, various absorption profiles can be captured. This is an
Erlang distribution (Forbes et al. 2010). It can be interpreted as the output from a
linear compartmental model consisting of a chain of n compartments, connected with
the rate constant ktr, and where the first compartment receives the initial amount a
of the drug, and all other compartments have zero initial conditions. This is known
as the “Linear Chain Trick” (Jacquez 1985, Ch. 8). The resulting compartmental
model is shown in Fig. 4.3.

The input function parameters were chosen to generate data similar to the
low-dose real data. No synthetic data were created for the high dose, in order to
keep the size of the test dataset manageable. It was found that a good fit to the real
data for the lower dose was obtained by the values given in Table 4.2. Simulated
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Figure 4.3: Compartmental model corresponding to the synthetic Erlang input
function. A double circle is a compartment with non-zero initial conditions.

continuous-time plasma concentration profiles were obtained by using this function
as input to the PK model. From this profile, four datasets were created:

Densely sampled, no noise. Samples were obtained at 100 equispaced time points
between 0 and 7.53 hours, which was the last sampled time for the real data.

Densely sampled, with noise. This dataset has the same sampling schedule as
above, but the measurements were perturbed with zero-mean, Gaussian noise,
with a proportional standard deviation of 10% of the true value.

Sparsely sampled, no noise. In this dataset, samples were obtained at the same
time points as the real data.

Sparsely sampled, with noise. This dataset had samples obtained at the same
time points as the real data, with 10% proportional Gaussian noise.

The 10% noise standard deviation level was chosen based on the residual error
reported by Johansson et al. (2013), which was found to be 17.7% with a relative
standard error of 8.82%. As the main purpose of this work is to benchmark the
input-estimation methods, it was deemed sufficiently accurate to use a standard
deviation of the same order of magnitude as previously reported values. The test
data are shown in Fig. 4.4.

4.4 Materials and methods

The test data and the real data were analysed using the same methods. For the noise-
free test data, it could be argued that is it desirable to require the predicted plasma
concentration to coincide exactly with all measurements. For optimal control-based
methods, this could be achieved by replacing the discrepancy criterion constraint by
one additional equality constraint for each measurement time point in the optimisation
problem. For the purposes here, this approach has the disadvantage that it results
in algorithms that are substantially different from the algorithms that are used
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Figure 4.4: The synthetic test dataset generated for the eflornithine model.

to analyse the real data, where zero measurement noise is never assumed. As a
pragmatic compromise, the noise-free test data were assumed to have a very small
proportional error with a standard deviation of 0.1%, which is a factor 100 smaller
than the standard deviation of the noisy data. This figure was also used for the
MCMC analysis of the noise-free test data. The noisy test data as well as the real
data were assumed to have a 10% proportional standard deviation.

When selecting methods for evaluation, those which can be used without any
manual intervention or tuning were mainly considered. There are two major reasons
for this:

1. A very large number of estimation procedures have to be performed to evaluate
various combinations of priors, function parameterisations, and optimisation or
sampling methods. Any requirements for manual intervention would make the
analysis impractical.

2. One of the major evaluation criteria for these methods is ease of use for non-
experts. A method that requires manual steps to be performed would be less
appealing to a non-expert, and make the method impractical in an industry
setting.

One exception to this approach was made, where the L-curve method was
applied to determine the regularisation parameter for the optimal-control methods
as well as for the MCMC methods.

84



4.4.1 Optimal-control methods

Optimal control-based methods were applied to the four synthetic datasets as well
as to the two real datasets. The following priors were used: penalisation of the
first derivative, penalisation of the second derivative, and penalisation based on the
maximum entropy prior. Penalisation of the derivatives was also applied to the
logarithm of the input function. The maximum entropy prior was not applied to the
logarithm of the function, as this prior inherently enforces non-negativity. Applying
a maximum entropy prior in the log domain would therefore constrain the input
function to be greater than 1 at all time points, which is clearly undesirable. For the
cases where the derivative of the input function was penalised directly, non-negativity
constraints were added to the optimisation problem in order to avoid non-physical
solutions.

For the choice of function parameterisation, only piecewise constant basis
functions were used. The rationale behind this decision is that, as long as the
parameterisation is sufficiently fine-grained, it is for all practical purposes able to
represent any function of interest. For this dataset, the input function was discretised
in 100 intervals, uniformly distributed from time 0 to the time of the final measurement.
Optimal-control methods can in many cases handle such fine parameterisation, as
will be shown in the results section. Furthermore, this parameterisation makes the
multiple shooting and collocation schemes maximally sparse, since each function
coefficient only participates in the continuity and collocation constraints of a single
interval.

As the piecewise constant functions are not differentiable at the jump points,
the derivative-based priors were computed using finite differences, and integration
was approximated by summing over all intervals. Denoting the input function value
in the kth interval by uk, the approximation of the first-derivative regularisation term
is given by

ER =

∫ tf

ti

(
du(t)

dt

)2

dt ≈
NB−2∑
k=0

(uk+1 − uk)2

∆t
. (4.3)

where ∆t is the length of each discretisation interval. Similarly, the second derivative
regularisation term is given by

ER =

∫ tf

ti

(
d2u(t)

dt2

)2

dt ≈
NB−2∑
k=1

(uk+1 − 2uk + uk−1)2

(∆t)3
. (4.4)

The maximum entropy prior is defined on a discrete-time version of the input
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function and does not require any further discretisation.
All three direct optimal-controls methods presented in Section 3.2 were used:

single shooting, multiple shooting, and collocation. For simplicity, the shooting and
collocation intervals were chosen to coincide with the intervals chosen for the input
parameterisation. The collocation method used Lagrange polynomials of degree 3

with Radau collocation points, which are given by the roots to the polynomial

dd−1

dtd−1
(t(d−1)(t− 1)d) (4.5)

where d is the order of the polynomial (Hairer and Wanner 1999). For d = 3, the roots
are located at the positions

[
2
5 −

√
6

10 ,
2
5 +

√
6

10 , 1
]
. Although other collocation

schemes could have been investigated, these settings were assumed to be sensible
defaults.

For the most part, the discrepancy criterion was used to determine the
regularisation parameter τ , despite the fact that this has been shown to overestimate
τ to some extent (Twomey 1965). The reason for this choice is that this criterion
makes it possible to determine τ as well as the optimal solution using a single
optimisation procedure. The discrepancy criterion suggests that χ2, the sum of
squared prediction residuals, scaled by the measurement standard deviation, should
not exceed the number of measurements:

χ2 =
n−1∑
j=0

(
y

(pred)
j − yj

σj

)2

≤ n, (4.6)

where n is the number of measurements, y(pred)
j is the predicted measurement at time

j, yj is the measurement at time j, and σj is the assumed measurement standard
deviation at time j. This makes it possible to pose the optimal-control problem, for
the case of single shooting, as:

minimise
a

ER(a) (4.7a)

such that χ2 ≤ n (4.7b)

x(ti) = x(0) (4.7c)

and h(a,x(t)) ≤ 0 (4.7d)

where x(t) = Φ(ti, t,x
(0),a).
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The term ER(a) is the regularisation term. The inequality constraints h(·) are
in this case the nonnegativity constraints for the input function. For multiple shooting
and collocation, the problem is modified analogously: the objective is changed from
the penalised log-likelihood to the regulariser, and the χ2 value is introduced as an
extra inequality constraint. When negative entropy is used as the regulariser ER,
and the system is linear, this algorithm becomes identical to the maximum entropy
algorithm presented by Charter and Gull (1987) and Hattersley et al. (2008).

In addition to the discrepancy criterion, the L-curve approach was applied
to the real datasets, using penalisation of the second derivative. Estimation was
performed for 80 values of τ , logarithmically spaced between 103 and 1011. This
range was considered to cover any reasonable setting of τ . Collocation was used as
the optimisation method, in order to keep the total running time low. The resulting
L-curves were plotted, and suitable values of τ were manually selected. To assess the
sensitivity of the estimate to τ , three values were selected for each dataset: one at
the “knee” of the curve, and one on either side of the knee.

For the single shooting method, there are NB = 100 decision variables, each
representing the input function for each discretisation interval. This method has one
inequality constraint representing the discrepancy criterion, and an additional NB

inequality constraints enforcing nonnegativity of the input function, for the cases
where such constraints are desired. The multiple shooting method adds an additional
NB ·dx decision variables, representing the states at the beginning of each discretisation
interval, and an additional NB ·dx equality constraints enforcing the initial conditions
and the continuity constraints. The collocation methods require, in addition to the
variables and constraints of single shooting, an additional NB · (d+ 1) · dx decision
variables, as the trajectory of each state in each interval is represented by a polynomial
of degree d. They also add an additionalNB ·(d+1)·dx equality constraints, accounting
for the initial conditions, continuity constraints, and collocation constraints. Table 4.3
reports the number of variables and constraints per method.

In summary each of the four test datasets and the two real datasets were ana-
lysed using 15 combinations of priors and optimisation methods. This is summarised
in Table 4.4.

4.4.2 MCMC methods

MCMC estimation was applied to the four synthetic and the two real datasets. Four
priors were used: penalisation of the first derivative, penalisation of the second
derivative, applied to the input function as well as to the logarithm of the input
function. For the derivative-based priors, the regularisation parameter τ can be
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Method Decision variables Equality constraints Inequality constraints

Single shooting 100 0 1/101
Multiple shooting 400 300 1/101
Collocation 1300 1200 1/101

Table 4.3: Number of decision variables and constraints for the optimal-control
problem formulations of the eflornithine model. For single shooting, only the input
function values are used as decision variables. For the other methods, the states at
the discretisation interval boundaries (multiple shooting and collocation) and the
states at the collocation points (collocation) are added to the problem. The number
of inequality constraints is either 1 or 101, depending on whether nonnegativity of
the input function is enforced.

Datasets Methods Priors

Test data, dense noise-free Single shooting 1st derivative
Test data, dense 10% noise Multiple shooting 1st derivative, log
Test data, sparse noise-free Collocation 2nd derivative
Test data, sparse 10% noise 2nd derivative, log
Real data, low dose Entropy
Real data, high dose

Table 4.4: A summary of datasets, methods and priors used to evaluate the optimal-
control methods on eflornithine. All combinations of dataset, method, and prior were
tested. In total, this amounted to 6× 3× 5 = 90 combinations.

interpreted as the process noise variance of the input function (see Section 2.4.1).
This makes it straightforward to assign a joint probability distribution over τ and
the input function, which is necessary in order to incorporate τ as a variable in the
probabilistic model. For maximum entropy priors, similar interpretations are more
difficult to make. For this reason, the maximum entropy criterion was not used.

Two choices of function parameterisation were investigated: B-splines and
Karhunen-Loève (KL) basis functions. Because of the high computational cost of
MCMC methods, it was deemed important to ensure that the number of parameters
was kept relatively small. For this reason, piecewise constant functions were not
investigated, as these require a large number of parameters in order to not result in
unrealistic staircase-like functions. For the B-spline parameterisation, cubic splines
were used. For simplicity, the knots of the spline were placed at time 0, and at
each measurement time point. The first and last knots have to be treated specially.
This is because cubic splines represent the function in each interval by a polynomial
of degree 3, requiring 4 parameters. Therefore, each interval must be covered by
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4 basis functions. As each basis function extends over 4 intervals, this condition
is automatically satisfied for intervals sufficiently far away from the first and last
knot. However, if a single knot was placed at time 0, the first interval would only be
covered by a single basis function. A simple remedy is to introduce 4 knots at time 0.
Similarly, 4 knots can be introduced at the last measurement time. To compute the
prior for a particular realisation of the input, the function was evaluated at the spline
knots. For penalisation of the first derivative, the continuous-time prior is given by

log p(u) = −1

2
τ

∫ tf

ti

(
du(t)

dt

)2

dt+ C(τ), (4.8)

where C(τ) is a normalisation term that is included to ensure that the distribution
integrates to 1. Discretising the first term into n time intervals, where the interval
between knot j and j + 1 has length ∆tj , yields

− 1

2
τ

∫ tf

ti

(
du(t)

dt

)2

dt ≈ −1

2
τ

n−1∑
j=0

(
u(tj+1)− u(tj)

∆tj

)2

·∆tj , (4.9)

where the derivative has been replaced by finite differences. In this discrete version,
the increments of the input function, u(tj+1) − u(tj), are independent Gaussian
random variables with mean 0 and variance ∆tj/τ . This result is in agreement with
the discussion in Section 3.1.1, where a prior corresponding to penalisation of the
first derivative was identified with a Wiener process. The discrete-time version of
the normalisation term C(τ) can be identified as the normalisation constant of this
Gaussian distribution, yielding a discrete-time log-probability density of:

log p(u) ≈ −1

2
τ
n−1∑
j=0

(u(tj+1)− u(tj))
2

∆tj
+

1

2

n−1∑
j=0

log

(
τ

2π∆tj

)
. (4.10)

If τ is kept fixed, the normalisation terms are constant and can be omitted from
the computation. When τ is treated as an unknown parameter to be estimated, these
terms have to be kept. For penalisation of the second derivative, the above procedure
can be performed on the derivative of the input function. This differentiation can be
performed analytically, as each basis function is a polynomial.

When estimating τ , it is important that the spline is only evaluated at the
knots, and not at any intermediate points. The cubic spline interpolant is smoother
than the original continuous-time model. Hence, any estimate of τ relying on arbitrary
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intermediate points would severely overestimate τ in order to account for the apparent
smoothness. This is illustrated in Fig. 4.5.
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Figure 4.5: Sample realisation of a scaled Wiener process with τ = 5, corresponding
to penalisation of the first derivative. This function is sampled at 15 time points.
A maximum likelihood estimate of τ based on these points yields a value of 4.5,
reasonably close to the true value. Interpolating these points with a cubic spline, and
performing maximum likelihood estimation using 5000 equispaced values from the
interpolant yields an estimate of τ of 685. The reason for this discrepancy is that the
interpolating spline is smoother than the original function.

For the Karhunen-Loève basis functions for penalisation of the first derivative,
an additional constant basis function was added, to allow the input function to start
with a nonzero value. Similarly, for penalisation of the second derivative, one constant
and one linear basis function were added to allow for a nonzero initial value and slope.
The only other choice that needs to be made is the total number of basis functions. In
all analyses, the number of basis functions was set to 20. One way to assess whether
the number of basis functions is adequate is to consider what fraction of the expected
energy is contained in the included basis functions. The energy content of a function
u(t) over the interval [ti, tf ] is given by

∫ tf

ti

(u(t))2 dt =

∫ tf

ti

∞∑
j=0

(ajφj(t))
2 dt =

∞∑
j=0

a2
j , (4.11)

where the last equality follows from the fact that the functions φj(t) are an orthonor-
mal set. As shown in Section 3.1, the coefficients aj are independent zero-mean
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Gaussian random variables with variance λj . The expected energy under this prior is
therefore given by E

[∑∞
j=0 a

2
j

]
=
∑∞

j=0 E
[
a2
j

]
=
∑∞

j=0 λj . For penalisation of the
first derivative, the expected energy is

∞∑
j=0

1

τ

(
tf − ti
π
(

1
2 + j

))2

=
(tf − ti)2

2τ
. (4.12)

As the first basis function is a constant offset function, in practice there are
19 Karhunen-Loève basis functions, accounting for 98.9% of the expected energy
(Fig. 4.6). Penalisation of the second derivative can be analysed similarly. As the
eigenvalues are computed numerically, no closed-form expression for the total energy
is available. By numerical computation, it can be determined that truncation to 18

basis functions accounts for more than 99.99% of the total energy. Penalisation of the
second derivative results in smoother functions, where very little energy is contained
in the higher eigenvalues, that represent higher frequencies.
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Figure 4.6: Energy content of the first few Karhunen-Loève basis functions for
penalisation of the first derivative, as a fraction of total signal energy. Most of the
energy (∼ 99%) is contained in the first 20 basis functions.

If the MCMC sampling procedure is initialised with parameter values far from
its stationary distribution, it is necessary to discard an initial part of the chain, a
practice known as burn-in (see Section 3.3.3). For a poor initial state, the number
of samples that have to be discarded may be impractically large. A reasonable
initialisation strategy is to start at the MAP estimate, which can be found using
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the optimal-control methods investigated here. The MCMC sampler chose an initial
state from the results of the optimal-control methods based on the following strategy:

1. All optimal-control results for the dataset in question were searched for entries
matching the following criteria: 1) the prior must match, and 2) the optimiser
must have reported that optimisation was successful.

2. If no such matches were found, the requirement that the prior must match was
dropped.

3. Once a match was found, the piecewise-constant parameterisation was converted
to the B-spline or Karhunen-Loève parameterisation by least-squares fitting.

The optimal control methods do not provide a value for τ . However, initial-
isation of τ was not necessary, as it was updated using Gibbs sampling, where the
updated value does not depend on the previous value.

In contrast to the optimal-control methods, imposing nonnegativity constraints
for the MCMC methods is non-trivial. Inequality constraints on parameters can be
handled by transforming the parameters (Carpenter et al. 2017). Another option is to
use proposal distributions that assign zero probability density to the infeasible regions.
These methods would be of limited value in this case, as inequality constraints on
the basis function coefficients do not necessarily result in similar constraints for
the functions. As an example, a Karhunen-Loève basis for penalisation of the first
derivative is a set of trigonometric functions, which can attain negative values even
when all of the coefficients are nonnegative. Another possibility could be to assign a
probability density of 0 to any function that drops below 0 at any point. However, this
could potentially be very inefficient, with a large number of rejected proposals. For
the purposes of this work, no nonnegativity constraints have been included. Instead,
any priors that result in a large number of negative solutions are considered to be
unsuitable.

Four sampling methods were tested on the datasets:

• Single-component RWMH. In this method, the coefficients are updated one at
a time, using univariate Gaussian proposals, centred on the current value.

• Block RWMH, where the coefficients are updated jointly using a multivariate
Gaussian proposal, centred on the current value.

• MALA with preconditioning, with joint updating of all coefficients.

• SMMALA, with joint updating of all coefficients.
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For SMMALA sampling, the Hessian of the negative log prior plus the expected
Fisher information was used as the metric tensor. For all sampling methods with
joint updates, the covariance of the proposal distribution was initially set to the
inverse metric tensor at the optimal parameter setting as computed by the optimal-
control methods. For the single-component RWMH method, the diagonal entries of
the inverse metric tensor were used as proposal variances. This method may not
necessarily result in an optimal proposal. In particular, the individual variances for
single-component RWMH are the marginal variances, which can be significantly larger
than the conditional variances if the coefficients are strongly correlated. Therefore,
an initial tuning phase was added to the sampling process, where the proposal
distributions were scaled according to the following procedure:

• The proposals were assigned a target acceptance ratio range, which was 20–50%

for RWMH, 40–80% for MALA, and 40–100% for SMMALA.

• Every 50 samples, the acceptance ratio was estimated. If the ratio fell below
the target range, the proposal covariance matrix was multiplied by a factor of
(0.9)2. If the ratio rose above the target range, the proposal covariance matrix
was multiplied by a factor of (1.1)2.

• Once all parameters had achieved acceptance ratios within the target range, or
a timeout of 1000 samples had been exceeded, the tuning phase was considered
to be complete, and updating of proposals was stopped.

Samples were only recorded after the tuning phase, in order to avoid the risk
that the tuning might modify the stationary distribution of the Markov chain. The
timeout was found to be necessary to ensure that no estimation procedure could
become stuck indefinitely in the tuning phase.

In all cases, τ was assigned a Gamma distribution prior with parameters
αprior = βprior = 10−3, and was updated using Gibbs sampling. These parameter
value are commonly used (Gelman 2006), but care must be taken to ensure that they
are appropriate, a point that will be discussed in the results section. For B-splines,
the increments of the function value between knot j and j + 1 have a precision of
τ/∆tj . For Karhunen-Loève basis functions, the function coefficients have a precision
of τ . τ was updated by drawing from a Gamma distribution with parameters
α = αprior + n/2 and β = βprior +

∑n−1
j=0 θ

2
j/2 (Section 3.3.5). For B-splines, j ranges

over all increments between knots, and θj is the quantity (uj+1 − uj)/
√

∆tj , where
uj is the input function value at knot j (for penalisation of the first derivative), or the
derivative of the input function at knot j (for penalisation of the second derivative).
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For Karhunen-Loève basis functions, j ranges over all basis functions, excluding the
constant and linear term, and θj is the coefficient for function j.

Sampling was performed by alternating between updating τ with Gibbs
sampling, and updating the function coefficients with one of the methods presented
above.

In total, 32 estimation procedures were performed for each dataset, for each
combination of function parameterisation, prior, and sampling method. Each proced-
ure was allowed to run for 5 minutes of processing time, only counting time when
the process was executing. Table 4.5 shows a summary of the tested combinations.

Datasets Methods Parameterisations Priors

Test data, dense noise-free Single RWMH B-spline 1st der
Test data, dense 10% noise Block RWMH Karhunen-Loève 1st der, log
Test data, sparse noise-free MALA 2nd der
Test data, sparse 10% noise SMMALA 2nd der, log
Real data, low dose
Real data, high dose

Table 4.5: A summary of datasets, methods and priors used to evaluate the MCMC
methods on eflornithine. All combinations were tested, amounting to 6×4×2×4 = 192
combinations.

Additionally, estimation of τ using the L-curve approach was performed on
the real datasets for the case of B-splines with single-component RWMH sampling,
penalising the second derivative. As this method requires a substantial amount of
manual intervention, it was not deemed feasible to perform this on a greater number
of examples. The L-curves were generated by finding the MAP estimate of the spline
input model, treating it as a single-shooting problem. As in the optimal-control
case, the investigated values of τ were logarithmically spaced between 103 and 1011.
Adaptation of the proposal variances was performed using the same method as
previously described, where the variances are adjusted during an initial tuning period
to achieve a predetermined acceptance ratio.

4.5 Results and discussion

4.5.1 Optimal-control methods

To assess the performance of the optimal control-based methods, the following
questions were addressed:

• How accurately did the methods recover the true input function?
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• What was the typical running time of the methods?

• Are the methods robust? Did they always find the optimal solution?

The accuracy of the recovered input function can only be evaluated on the test
dataset, as the true input functions of the real data are not known. The similarity
between the true input and the estimate were measured using the root-mean-square
error (RMSE) (Lindsten and Schön 2013). The RMSE between two vectors x and y

is defined as

RMSE(x,y) =

√√√√ 1

n

n−1∑
j=0

(xj − yj)2 (4.13)

where n is the number of entries in the vectors. Here, the entries of the vectors
are the input functions evaluated in each discretisation interval. Additionally, the
estimated total amount of drug absorbed was compared to the true amount. This
quantity has a special interest in many PK applications, as it makes it possible to
compute the bioavailability. The total amount is determined by computing the time
integral of the input function. Since the input function is defined as a piecewise
constant function, this is trivially achieved by summing the function values, scaled
by the discretisation interval. The true total amount for the input dataset is a from
Table 4.2, which follows from the fact that the Erlang distribution has to have an
integral of 1. The RMSE values and the estimated amount, expressed as a fraction
of the true amount, are shown in Table 4.6.

The estimate, and therefore the RMSE and total amount values, depend
only on the prior. The optimisation methods are merely reformulations of the same
problem, and the choice of method does not influence the solution, as long as the
optimisation procedure is successful.

Examples of estimation results for all four test datasets are shown in Fig. 4.7.
Figure 4.8 shows results for all priors on the noisy test data, which represent the
most realistic situation. When the data are dense and noise-free, the estimated
function is very close to the true function. The choice of prior has practically no
effect. For this kind of data, the function is practically completely determined by the
data. The estimated absorbed amount is also correct within two significant digits.
This result confirms that, when presented with ideal data, the methods will achieve
a correct result. When the data are noisy, the peak at time 0.7 hours tends to be
underpredicted, especially for the penalisation of the first derivative. The likelihood
is determined by the sum of the squared scaled residuals, regardless of whether these
values are distributed evenly across time or are clustered within a small interval. By
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Dataset Prior RMSE Normalised
(µmol/h) total amount

Dense, 0% noise 1der 0.10 1.00
1der, log 0.10 1.00
2der 0.10 1.00
2der, log 0.10 1.00
entropy 0.10 1.00

Dense, 10% noise 1der 0.29 0.94
1der, log 0.21 0.97
2der 0.26 0.97
2der, log 0.19 0.99
entropy 0.21 0.98

Sparse, 0% noise 1der 0.25 1.02
1der, log 0.24 1.02
2der 0.14 1.01
2der, log 0.17 1.01
entropy 0.22 1.02

Sparse, 10% noise 1der 0.44 0.96
1der, log 0.36 1.00
2der 0.55 1.00
2der, log 0.50 1.02
entropy 0.46 1.00

Table 4.6: Accuracy measures of the optimal-control methods, evaluated on the test
data. The normalised total amount is the ratio between the estimated amount and
the true amount, which is 8.63 µmol. The designations ‘1der’ and ‘2der’ refer to
penalisation of the first and second derivative, while ‘log’ signifies that the function
was modelled in the log domain.

choosing an input function that agrees with the data everywhere except at this peak,
the method can find an input function with a higher prior that would be the case if
the residual values were evenly distributed. For this reason, the total amount is also
underpredicted. This effect is far less pronounced when penalisation is performed
in the log domain. In the log domain, the initial peak is less pronounced, making
the penalty for capturing the peak much lower. For noise-free data, the plasma
concentration is forced to agree almost perfectly with the data, resulting in the peak
being closely followed.

In general, a sparse sampling scheme with noise-free data results in a higher
RMSE value than a dense sampling scheme with noisy data. In particular, sparse
sampling causes the input function before the first measurement to deviate substan-
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Figure 4.7: Optimal-control input-estimation results for the four test datasets, using
penalisation of the first derivative. The estimate from dense, noise-free data is essen-
tially identical to the true input function. For noisy data, the peak is underpredicted,
as it can be partly explained by the noise. For sparse noise-free data, the estimate
agrees well with the data except for the time up to the first measurement. Sparse
noisy data exhibit both of these phenomena.

tially from the true function. While the true function is 0 at time 0, this fact is not
supported by the data. Any input function that results in a plasma concentration
similar to the first measurement is possible, and the sharp initial slope of the true
function is penalised by all priors. If there is reason to believe that the function should
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Figure 4.8: Optimal-control estimation results for sparse test data with 10% noise.

start at 0, it is possible to convey this to the method by an extra constraint. As with
all other assumptions, this is a good idea only if the assumption is actually justified.
In the case presented here, it is not obvious that the absorption process does not start
immediately when the drug is administered. Note that in a traditional model using
an absorption compartment, the absorption rate would be largest at t = 0. Another
way of capturing the peak more accurately would be to use separate priors for the
initial and later parts of the time series. However, this would require additional
assumptions and modelling choices, such as determining how to partition the time
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series. This could negate one of the major advantages of input estimation over
parametric models — the reduced need to make strong assumptions. In Chapter 6, a
case study is presented where such a partition was used, due to the vast differences
in time scale between the initial and later parts of the time series.

In general, the estimated total absorbed amount is accurate to within a few
percent of the true value. This result holds even when the estimated input function is
significantly different from the true function. It can be seen that, in many cases, the
estimate overpredicts the input initially, while the peak is underpredicted. Since the
total amount is computed from the time integral, it is relatively insensitive to these
variations, and the mispredictions partly cancel out. Any solution that would result
in a substantially different amount would need to be consistently above or below the
true function, in which case the measurements would not be predicted well. This is a
valuable observation for the cases where the bioavailability is the main quantity of
interest from the input-estimation procedure.

The computational performance of the methods was evaluated based on two
criteria: the running time, and whether the method was able to find the optimum.
Additionally, the number of iterations was reported. While this number is not of
primary interest, it can be helpful in determining whether any difficulties are caused
by the cost function and its derivatives being expensive to evaluate, or by the cost
function having a form that requires many iterations. These criteria can obviously be
applied to test data as well as real data, and a summary of the results are presented
in Tables 4.7 and 4.8. A method was considered to be successful if the status code
that was returned from IpOpt was one of:

Solve Succeeded. The method was able to find a local optimum within the desired
tolerances. By default, IpOpt uses a relative tolerance of 10−8, but this value
can be changed by the user (Kawajir et al. 2016).

Solved To Acceptable Level. The method was able to find a local optimum within
the acceptable, but not the desired, tolerances.

There are several reasons why the method may not find a solution. Examples
of status codes for unsuccessful procedures include:

Infeasible Problem Detected. The method has converged to a local minimum of
the constraint violation, but the point is infeasible.

Restoration Failed. When the optimiser fails to find an update step, it enters a
restoration phase, where it attempts to reduce the constraint violation without
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considering the cost value (Wächter 2009). If the restoration phase fails, the
optimiser exists with this error message.

A full description of IpOpt status codes can be found in Kawajir et al. (2016).

Median time (s) Median iterations Successful runs

Single shooting 9.5 29 29/30
Multiple shooting 6.1 31 30/30
Collocation 0.2 30 27/30

Table 4.7: Median running times, number of iterations, and the proportion of
successful estimation procedures, organised by optimisation method.

Median time (s) Median iterations Successful runs

1der 5.1 28 18/18
1der, log 7.9 39 16/18
2der 5.7 30 17/18
2der, log 4.7 31 17/18
entropy 6.0 28 18/18

Table 4.8: Median running times, number of iterations, and the proportion of
successful estimation procedures, organised by choice of prior.

Error messages do not necessarily imply that the problem is infeasible — it
merely means that the optimiser was not able to find a solution, as shown by the
fact that in some cases, one method declared the problem infeasible while others did
not. It is also important to note that a reported success merely means that a local
optimum was found, which may or may not be the global optimum.

The performance depends on the optimisation method as well as on the dataset
and the chosen prior. While more extensive data would be required in order to make
definite conclusions, some trends can be observed. The most obvious result is that the
collocation methods are consistently between one and two orders of magnitude faster
than the other methods. The number of iterations is comparable across all methods,
suggesting that the performance difference can be attributed to the time required to
compute the cost function, the Jacobians, and the Hessians. Hence, this does not
necessarily mean that the collocation formulation is inherently easier to solve. This
could mean that decreased nonlinearity of the problem, which is one of the main
reasons for using multiple shooting and collocation, does not influence the result. In
the single shooting and multiple shooting case, the cost function and the constraints
are computed by a sophisticated ODE solver, which includes adaptation of step sizes
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and model orders, and which needs to solve a set of nonlinear equations at each
time step (Serban and Hindmarsh 2005). In contrast, evaluating the cost function
and constraints for the collocation methods largely involves evaluating low-order
polynomials. While the adaptive ODE solvers ensure that the solution is accurate
up to user-specified tolerance, the collocation methods require the user to select the
discretisation step size and the order of the polynomial. If poor choices are made, the
discretisation error could be large. Alternatively, too fine a discretisation may result
in an unnecessarily expensive method. The shooting methods may therefore be a
safer option. In this case, the chosen collocation scheme was sufficiently accurate,
as the solutions were practically identical to the solutions for single and multiple
shooting. The computation time was low enough to make fine-tuning unnecessary.

However, the collocation methods may suffer from a lack of robustness, as
they failed in three cases for the test data. In all cases, this happened for densely
sampled data, when modelling the input function in the log domain. The single
shooting method also failed in a single case, when using real data. However, even
though the method indicated an error, the input function estimate turned out to be
extremely close to the estimates provided by the other optimisation methods. This
could suggest that the problem in this case was numerical, where the method was
not able to detect that it had converged to a solution that was practically correct.

In many cases, the optimisation algorithm attempted to evaluate the cost
function or its derivatives for input functions that caused the ODE integrator to fail.
This is especially likely to happen for penalisation of the second derivative in the log
domain, where even a relatively minor change in a coefficient can result in large input
function values. Failure of the ODE solver indicates that the proposed input function
is not realistic, and should be assigned a negligible probability. It is important that
the optimisation software is able to handle these kinds of failures gracefully, such as
by treating the proposed coefficients as a high-cost or an infeasible solution. IpOpt
does appear to handle these issues well. If other implementations are used, these
aspects have to be considered.

Examples of estimated inputs and predicted plasma concentrations for the
real data are shown in Fig. 4.9.

The L-curves for the optimal-control examples are shown in Fig. 4.10. The
arrows show the values of τ that were chosen. Adjacent values of τ differ by
approximately one order of magnitude. Estimation plots for these values are shown
in Fig. 4.11. Clearly, τ has a large impact on the resulting functions. The result
shows clear signs of oversmoothing.

The estimated bioavailabilities for the real data are shown in Table 4.9.
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Figure 4.9: Example results from performing optimal-control input estimation on
real data, using penalisation of the first derivative in the log domain.
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Figure 4.10: L-curves for the two real datasets, with a prior penalising the second
derivative. The values of the regularisation parameter τ that were selected for the
subsequent analysis are annotated.

The bioavailability estimate appears to be remarkably consistent across priors and
estimation methods. The main exception to this is the estimate of the bioavailability
of the high dose using the L-curve approach, whose underprediction is consistent
with the behaviour shown in Fig. 4.11. The estimated values here are similar to the
results obtained by Johansson et al. (2013). It can be noted that even though the
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Figure 4.11: Estimation results for the two real datasets, with the regularisation
parameter chosen from the L-curve criterion.

Dose 1der 1der, 2der 2der, entropy L-curve, L-curve, L-curve,
log log low τ medium τ high τ

Low 0.32 0.33 0.32 0.33 0.32 0.32 0.32 0.32
High 0.39 0.40 0.38 0.41 0.40 0.40 0.36 0.32

Table 4.9: Estimated bioavailability from the real data, using optimal-control tech-
niques. The first five columns were computed using the discrepancy criterion, while
the last three columns were computed using the L-curve criterion, using three different
values for the regularisation parameter.

discrepancy criterion is known to result in oversmoothing, the L-curve approach does
not appear to work better in this regard in this particular case. These results are
not conclusive, as there is a degree of subjectivity in the L-curve approach in that
values are chosen manually. Considering the amount of manual work as well as the
computational requirements of performing estimation for a large number of values of
τ , the L-curve approach does not appear to be competitive.

In terms of statistical soundness, it can be noted that the choice of prior
substantially influences the estimates (Fig. 4.8). This makes it important to consider
which choices of prior are justified. Penalisation of the second derivative appears to
make the function unrealistically smooth. If a large initial peak in the input function
is expected, penalisation of the first derivative may therefore be a good option. For
the same reason, penalisation in the log-domain may be preferred, as discussed in
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Section 2.4.1.

4.5.2 MCMC methods

The performance of the MCMC methods was evaluated on the same criteria as
the optimal-control methods. Assessing robustness is considerably more difficult
for MCMC methods. Optimal-control methods aim to find a local maximum of
the posterior, and the optimisation methods are generally able to detect failures
to converge to a maximum. MCMC methods aim to generate a representative set
of samples from the posterior. As discussed in Section 3.3.3, it is important to
run diagnostics in order to determine the quality of the generated samples, and to
estimate the number of samples required to obtain an accurate estimate. However,
no diagnostics are able to conclusively confirm that this has been successful. Here,
we will assume that methods that pass the Raftery-Lewis diagnostics (Section 3.3.3)
were successful.

To assess performance, the following measures were evaluated:

ESS. For each estimation procedure, the ESS was calculated for each parameter,
including τ and the basis function coefficients. The performance of the method
is limited by the minimum of these values.

Raftery-Lewis. These diagnostics report the number of samples required to achieve
the desired accuracy for five quantiles for every parameter. The performance of
the method is limited by the maximum of these values.

Required time. This is an estimate of the computing time required, and is given
by the maximum number of samples reported by the Raftery-Lewis diagnostics
multiplied by the average computing time per sample.

Robustness was assessed by the number of successful runs. A run was con-
sidered to be unsuccessful if any of the following two conditions were met:

1. The sampling procedure failed because of numerical errors. In certain cases,
MCMC sampling failed when a metric tensor that is not positive definite was
encountered. This can happen for block RWMH and MALA, which use the
metric tensor at the initial point to construct the proposal, and for SMMALA,
where the metric tensor is recomputed at each iteration.

2. The required number of samples was impractically large. Here, a run was
considered unsuccessful if the maximum number of samples reported by the
Raftery-Lewis diagnostics exceeded the actual number of retained samples.
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A large Raftery-Lewis value signifies that the Markov chain was not able to
explore the parameter space efficiently. Figure 4.12 shows a comparison between
a successful and an unsuccessful result. The unsuccessful example shows strong
autocorrelations in the Markov chain, and the shown sample paths appear unrealistic.

All tested combinations of sampling method, function parameterisation, and
prior were unsuccessful according to these criteria when applied to assumed noise-free
data, regardless of measurement sampling frequency. The tight likelihood function
concentrates all probability in a narrow region that is difficult for the methods to
navigate. For this reason, many proposals end up in very low probability regions.
This is true even for the differential geometric methods, which were invented to cope
with difficult distributions. For the remainder of the analysis, only results for the
noisy datasets are considered.

Robustness and performance results for the noisy datasets are shown in
Table 4.10, reported by sampling method and function parameterisation. The median
of each group is shown, as it was considered to be more robust to outliers than the
mean. The medians could only be computed for the runs for which it was possible to
compute the ESS and Raftery-Lewis values. This excludes all methods that failed
because of an invalid metric tensor. Additionally, it was found that both the ESS
and the Raftery-Lewis diagnostics could encounter numerical problems when the
Markov chain was very strongly autocorrelated, resulting in nonsensical values. This
means that the most problematic runs had to be excluded, which could bias the
results in favour of methods that have many unsuccessful runs. In practice, however,
the reported performance of the methods with many unsuccessful runs compared
unfavourably even when the most problematic runs were excluded. For this reason,
it is unlikely that the main conclusions will be affected by these exclusions.

Median Median Median Successful
min ESS max RL required time runs

Single RWMH KL 4 235669 4052 0/16
spline 6 416390 4484 0/16

Block RWMH KL 706 55268 80 13/16
spline 62 417096 466 7/16

MALA KL 450 8397 103 14/16
spline 5 410579 4783 3/16

SMMALA KL 1104 4326 59 16/16
spline 15 218832 3816 5/16

Table 4.10: Performance and robustness results for MCMC methods on the noisy
eflornithine datasets.
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Figure 4.12: Comparison of results for successful and unsuccessful sampling. This is
the sparse, noisy test data sampled using SMMALA, penalising the second derivative
in the log domain. The left column shows the result when using Karhunen-Loève
basis functions, while the right column shows the result for B-splines. The top
plots show 50 consecutively sampled input functions, the mid plots show the 50
corresponding sampled output functions, and the bottom plots show the Markov
chains for one of the parameters — the 3rd basis function coefficient. It can be seen
that the B-spline result is stuck in an implausibly oscillatory function, and its Markov
chain exhibits clear signs of strong autocorrelation. Note that the two Markov chains
are not expected to have the same mean value, as the function parameterisations
differ.

Table 4.11 shows measures of the accuracy of the estimates of the absorption
profile and the total absorbed amount for the test data. As the MCMC methods return
a large number of samples, the RMSE value shown in the table is the mean RMSE
value, averaged over all samples. For the absorbed amount, the mean prediction,
and the RMSE computed over all samples are reported. The latter value is an
estimate of the standard deviation of the posterior distribution over the absorbed
amount. In both cases, they are normalised by the true amount. Unsurprisingly,
the densely sampled data allowed for a substantially more accurate estimate than
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Dataset Method Basis Prior RMSE Total amount Total amount
(µmol/h) normalised normalised

mean RMSE

Dense, Block RWMH KL 1der 0.17 0.98 0.021
10% noise Block RWMH KL 1der, log 0.25 0.99 0.016

Block RWMH KL 2der 0.15 0.99 0.020
Block RWMH KL 2der, log 0.21 0.99 0.016
Block RWMH spline 1der 0.21 0.99 0.019
Block RWMH spline 1der, log 0.26 0.99 0.016
Block RWMH spline 2der, log 0.27 1.00 0.016
MALA KL 1der 0.17 0.98 0.021
MALA KL 1der, log 0.25 0.99 0.016
MALA KL 2der 0.15 0.99 0.020
MALA KL 2der, log 0.21 1.00 0.016
MALA spline 1der 0.20 0.99 0.019
SMMALA KL 1der 0.17 0.98 0.021
SMMALA KL 1der, log 0.25 0.99 0.017
SMMALA KL 2der 0.15 0.99 0.019
SMMALA KL 2der, log 0.21 1.00 0.016
SMMALA spline 1der 0.20 0.99 0.019
SMMALA spline 2der 0.24 0.99 0.017

Sparse Block RWMH KL 1der 0.77 1.06 0.165
10% noise Block RWMH KL 1der, log 0.66 1.03 0.056

Block RWMH KL 2der 0.77 1.06 0.110
Block RWMH KL 2der, log 0.67 1.04 0.054
Block RWMH spline 1der 1.52 0.98 0.656
MALA KL 1der 0.77 1.05 0.164
MALA KL 1der, log 0.68 1.03 0.059
MALA KL 2der 0.77 1.06 0.105
MALA KL 2der, log 0.65 1.04 0.053
MALA spline 1der 1.54 0.97 0.661
SMMALA KL 1der 0.76 1.05 0.159
SMMALA KL 1der, log 0.65 1.03 0.054
SMMALA KL 2der 0.77 1.06 0.111
SMMALA KL 2der, log 0.68 1.04 0.054
SMMALA spline 1der 1.58 0.98 0.689

Table 4.11: Accuracy measures of the MCMC methods on the noisy eflornithine test
datasets.

the sparsely sampled data. For the sparse data, the log-domain priors appear to
provide more accurate results. It is clear that spline models are less likely to result
in a successful estimation procedure, especially for sparse data. Also note that the
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spline models have larger RMSE values. This is an important point, since in the
ideal case, the estimate should be determined by the prior and likelihood and not on
the parameterisation. The results suggest that in practice the parameterisation can
affect the estimate substantially. Additionally, it could be seen that the results are
similar across sampling methods for any given combination of data, parameterisation
and prior. This increases the confidence that the sampling methods were able to
produce a representative set of samples.
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Figure 4.13: An illustration of the effects of letting the prior over τ overpower the data.
These estimates were obtained from the low-dose real dataset, using Karhunen-Loève
basis functions and penalising the first derivative. The top plots show the results
when estimation is performed using minutes as time units, making the sum of squared
coefficients smaller than the β parameter of the prior. The lower plots show the result
when using time units in hours. Note that in both cases, the result is presented in
hours to allow comparisons. The shaded regions show 95% credible intervals. While
the mean predictions are similar, the top plots show much higher uncertainty.

Another important point is that the prior over τ needs to be checked to ensure
that it does not influence the result in unintended ways. This can happen if the choice
of physical units and the parameters of the prior are not well matched. It is evident
from the form of the Gamma distribution (Eq. (3.80)) that α is unitless, while the units
of β depend on the choice of units for the basis function coefficients. This can also
be seen by studying the expressions for the parameters of the posterior distribution
over τ . Recall that the β parameter in the posterior distribution is determined by
the β parameter in the prior and the sum of squared function coefficients. If the
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prior β is set to 10−3, and the sum of squares is significantly smaller than this,
then the posterior β will largely be determined by the prior. The parameter α, on
the other hand, depends only on the prior α and the number of coefficients, and is
therefore independent of the choice of units. Since the expected value of a Gamma
distribution is α/β, a β value that is artificially inflated by the prior will drive τ
down and decrease the amount of regularisation. This will increase the uncertainty
in the estimate. Figure 4.13 shows that the eflornithine model would be vulnerable
to this phenomenon if the time units were changed from hours to minutes. Although
the mean predictions are similar, the credible intervals are much larger when using
minutes. It was confirmed that using a vaguer prior with α = β = 10−6 resulted
in estimates very similar to the estimates in hours. It is possible to rescale the
basis function coefficients in order to make them unitless. However, the posterior
distribution is still partly determined by the model and the data, and hence the
choice of units will still influence the posterior.

Data Prior Median Median Successful runs
min ESS max RL

Low dose 2der 11 296808 0/3
2der, log 477 8688 3/3

High dose 2der 21 135531 0/3
2der, log 325 14048 2/3

Table 4.12: Performance results for the procedures using the L-curve approach to
estimate the regularisation parameter τ . Each prior and dataset was analysed using
three values for τ : one at the “knee” of the L-curve, and one on either side of the
“knee”.

Table 4.12 shows the performance of the input-estimation procedures when
using the L-curve method for determining τ . When log-domain priors are used, this
method performs satisfactorily. This can be contrasted to the procedures where τ
is estimated, where single-component RWMH performed very poorly on B-splines,
only barely succeeding on the densely sampled test dataset, and not succeeding at
all on more realistic datasets. Given the small number of tests, it is not possible to
determine whether this is a general result. However, it is possible that including τ
as a parameter in the estimation problem makes it more difficult for the sampling
methods to perform well. Computing time was not reported for the L-curve examples,
as these were made using an older version of the estimation software that lacked
significant performance enhancements introduced in later versions. Therefore, no
meaningful comparison of running time can be made. However, it is reasonable to
assume that there is little difference in running time between the L-curve procedures
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and the procedures which estimate τ , as the time required to update τ is insignificant
compared to the time required to update the input-function coefficients.

The estimated mean bioavailabilities for the real data are shown in Table 4.13,
reported by choice of prior and choice of method for estimating τ . Only results which
passed the Raftery-Lewis diagnostics are shown. Hence, for the procedures where τ
was treated as a parameter, all reported results used Karhunen-Loève basis functions.
For the same reason, only log-domain priors are reported for the L-curve procedures.
As the bioavailability is a single number, its distribution can be visualised using a
one-dimensional histogram or a kernel-density estimate (Scott 2015). This provides
more information than the mean values reported in the table. Figure 4.14 shows
kernel-density estimates for the procedures where τ was estimated, corresponding
to the first four columns of Table 4.13. In all cases, the estimates were obtained by
using the samples from the sampling method that reported the lowest number of
required samples according to the Raftery-Lewis diagnostics.

Dose 1der 1der, 2der 2der, L-curve, L-curve, L-curve,
log log low τ medium τ high τ

Low 0.34 0.34 0.32 0.33 0.33 0.33 0.33
High 0.42 0.43 0.41 0.42 0.42 0.41 0.38

Table 4.13: Mean estimated bioavailability for the real eflornithine datasets using
MCMC. For the L-curve examples, only the log-domain results are shown, as the
other L-curve procedures were not successful. All of the other shown results were
obtained using Karhunen-Loève basis functions and the most successful sampling
method, which was defined to be the method that required the lowest number of
samples according to the Raftery-Lewis diagnostics.

Figure 4.15 shows estimation results for all choices of priors on the sparse noisy
test dataset, using SMMALA and Karhunen-Loève basis functions. It can be noted
that for the priors that do not enforce nonnegativity constraints, the uncertainty
regions are large and can take on negative values in the later part of the curves.
The reason for this is that when negative values are allowed, the estimation method
is able to find a large range of trajectories that are consistent with the data, as
sampling is very sparse in this region. Log-domain priors, which exclude negative
solutions, help in making the uncertainty region smaller, while at the same time
providing more plausible-looking results. When evaluating the methods in terms
of statistical soundness, log-domain priors are therefore easier to justify. As in the
case of optimal-control methods, penalisation of the second derivative appears to
cause oversmoothing. Since a large initial peak can often be expected in PK models,
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Figure 4.14: Kernel-density estimates of the bioavailability of the real eflornithine
datasets, obtained from the MCMC analyses. In the displayed plots, estimation was
performed using Karhunen-Loève basis functions, using the sampling method that
provided the best performance. The solid lines denote means, and the dashed lines
show the 2.5th and 97.5th percentiles.

this provides a reason for preferring the more conservative penalisation of the first
derivative.

Because of the issues with priors that allow negative solutions, only log-
domain results will be considered from here on. For sparsely sampled data with
log-domain priors, estimation was consistently successful when block RWMH, MALA
or SMMALA was used as the sampling method, and Karhunen-Loève functions were
used as a basis. The computational speed is similar for all three methods.

Figure 4.16 shows example plots of successful estimation procedures for the
noisy test data and the real data, using penalisation of the second derivative in the
log domain and Karhunen-Loève basis functions. The test data plots also show the
true functions. The dense noisy data have caused the estimate to show a double-peak
that is not present in the true functions. Otherwise, the true input is recovered
relatively accurately, and the initial input rate increase is followed closely. For sparse
data, the initial rise is not captured at all. The concentration plot shows that the
data can easily be explained without the initial rise. The prior, which discourages
unnecessary oscillation, makes the procedure prefer the smoother estimate. As in
the optimal-control case, it would be possible to constrain the estimated input to
start at 0. For the Karhunen-Loève basis, this could be achieved by setting the offset
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Figure 4.15: Examples of estimation results for the sparse noisy test data for various
priors using Karhunen-Loève basis functions. All shown results were obtained by
SMMALA sampling.

coefficient to 0, rather than treating it as an unknown parameter.

4.6 Summary

This chapter evaluated optimal-control and MCMC methods on the eflornithine
dataset. For the optimal-control methods, underprediction of the initial peak is
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Figure 4.16: Estimates for the noisy test and real datasets, using penalisation of the
second derivative in the log domain. Note that the last dataset has a different scale,
since rates and concentrations are considerably higher for this dose, and measurements
were taken over a longer time. These estimates were performed using MALA. The
results for block RWMH and SMMALA are practically identical.

a common problem. However, this is difficult to avoid without making stronger
modelling assumptions. In this and other PK examples, it may be reasonable to
assume that the input function is 0 at time 0, which may help in capturing the peak.
If it is important to accurately estimate the initial dynamics without additional
assumptions, it appears necessary to have a higher initial sampling rate. However,
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when the bioavailability is the main quantity of interest, the nonzero initial value
and the lower peak partly offset each other, making the estimated bioavailability
insensitive to these assumptions.

It is important to have an optimisation algorithm that handles evaluation
errors gracefully. Such errors can occur when the optimiser attempts to evaluate the
cost function for values that cause the ODE solver to fail. The optimiser used here,
IpOpt, does perform well in this regard.

Collocation methods are one order of magnitude faster than the other methods,
but they can have robustness issues in some situations, resulting in convergence
failures. However, these failures can be automatically detected. Thus, one possible
strategy is to first attempt to use collocation methods, and to use shooting methods
as a fallback in case the collocation methods fail. For sparse data, which is the usual
real-world case, multiple shooting is generally faster than single shooting.

While the shooting methods use an ODE solver that automatically selects
suitable integration options, taking stiffness issues into account, the collocation
methods as used here require the user to choose interpolating polynomials and
discretisation step size. For future work, it would be useful to investigate how these
choices affect the robustness. Better settings may potentially make the collocation
methods more widely applicable.

The choice of prior greatly influences the result, although it is far from obvious
which one should be preferred. The accuracy in terms of RMSE values is similar.
Figure 4.8 suggests that penalisation of the first derivative in the log domain may be
more likely to produce a peak similar to the one present in the true input function.
However, these kinds of considerations are subjective.

The example of using the L-curve method to choose a value of τ shows that
this method offers no clear advantage to the discrepancy criterion. Since this method
requires the user to do a lot of work, it cannot be recommended in the form presented
here.

All MCMC methods struggle with data that have almost zero measurement
noise. When the data are noisy, as they usually are in real data, the block RWMH,
MALA and SMMALA methods combined with Karhunen-Loève basis functions are
generally able to sample from the posterior reasonably efficiently. This conclusion
is strengthened by the observation that both sampling methods provide virtually
identical results for the same prior and data. While the SMMALA compares favourably
to MALA, in terms of median running time, the large variability of the results makes
it difficult to make any definite conclusions. Since the proposal covariance matrix in
block RWMH and the metric tensor in MALA are fixed from the start, it is possible
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that they could be more sensitive to their initial conditions than SMMALA. For this
reason, using SMMALA may be advisable in order to have enhanced robustness. The
required running time per sample is similar for MALA and SMMALA. This may seem
surprising, as SMMALA recomputes the metric tensor in each iteration. However,
the most expensive step in the metric tensor computation is to compute the gradients
of the plasma concentration predictions at the measurement time points. This step is
also required in MALA in order to compute the gradient of the log-posterior. Total
running time depends on the time per sample as well as the total number of samples
required, which depends on the sampling method’s ability to generate approximately
uncorrelated samples.

For a given amount of time, the block RWMH method generated approximately
one order of magnitude more samples than MALA or SMMALA. The main reason
for this is that RWMH does not require gradient computations, which can be a
computational bottleneck. Despite this, the ESS is similar for all three methods. This
shows that the gradient-based methods do produce higher-quality samples, with lower
autocorrelations in the Markov chains, at the expense of requiring more computation
per sample.

In many cases, lack of nonnegativity constraints results in implausible results,
and can also unnecessarily increase uncertainty. This is particularly pronounced in
the sparsely sampled later parts of the time series, where concentrations are close to
zero. With no constraints in place, there is a large number of candidate functions that
could explain the data. When nonnegativity constraints are added, only functions
that stay close to 0 can explain the data. For this reason, modelling the input function
in the log domain should be preferred.

While the parameterisation should ideally not affect the results, in this case it
did. Few sampling procedures involving B-splines were successful. However, for the
ones that were successful, estimation errors were higher than for the corresponding
procedures using Karhunen-Loève functions.

When starting with a new model and dataset, it is important to investigate
typical values of the sum of squared residuals, so that the prior over τ does not
influence the estimate in ways that were not intended. A poor choice can cause
τ to be underestimated, allowing sample paths to make large excursions between
measurements and causing the estimation uncertainty to increase.

Computing the likelihood, and especially the gradient of the likelihood, is
expensive as it includes running an ODE solver. For this reason, methods that update
all parameters influencing the likelihood simultaneously have an advantage in terms
of speed. The single-component RWMH methods are much slower than block RWMH
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for this reason — to update 20 coefficients, the ODE solver needs to run 20 times.
In contrast, updating τ independently using Gibbs sampling is practically free, as
updating τ does not require updating the likelihood.

Finally, it is important to stress that this should be considered to be an
exploratory study. Many combinations of optimisation or sampling methods, priors,
and function parameterisations are applied to a relatively small dataset. This allows
for a multitude of possible comparisons, resulting in multiple hypothesis testing issues.
For this reason, only major results are reported here. More extensive tests would
be required to conclusively tell whether multiple shooting is generally faster than
single shooting, or whether MALA is faster than SMMALA. Testing the methods on
other problems, as done in the later chapters, helps increasing the confidence in the
conclusions.
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Chapter 5

Case study — body-weight
modelling

5.1 Background

Obesity is a major problem worldwide. As of 2014, there were more than 600 million
obese adults (BMI > 30), amounting to 13% of the total adult population (World
Health Organization 2016). Obesity is linked to serious diseases such as diabetes,
hypertension, cardiovascular disease, and premature death (Kumanyika et al. 2002;
James 2008). Lifestyle changes, including reduced energy intake and increased exercise,
are the main treatments. Additionally, drug therapy can be used. The drugs that
are or have been available on the market usually act either by suppressing appetite,
or by inhibiting uptake of fat in the intestine. Several of these drugs can have serious
side effects, including cardiovascular diseases and psychiatric disorders (Kang and
Park 2012). Hence, there is a market for developing safer drugs.

During trials of anti-obesity drugs, it is of interest to determine changes
in energy intake and body weight. Measuring energy intake is possible, but can
be expensive, especially for long-running studies (Göbel et al. 2014). In contrast,
measuring body weight is cheap. One potential solution is to use models of body weight
and body composition to infer the energy intake from body-weight measurements,
rather than measuring the energy intake directly. Inferring the energy intake can be
treated as an input-estimation problem. This assumes that the drug directly affects
only the energy intake, and that any changes in energy expenditure are indirect
effects that are accounted for in the body-weight models. Depending on the drug’s
mechanism of action, this may or may not be a plausible assumption.

In this chapter, input-estimation methods are evaluated on two body-weight
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models: a simple two-state mouse model, and a more advanced five-state human
model. The mouse body-weight model (Guo and Hall 2009; Guo and Hall 2011) was
applied on a dataset where diet-induced obese (DIO) mice were administered two
versions of a monoclonal antibody (R1c mAb opt1 and R1c mAb opt2) that targets
the fibroblast growth factor receptor (FGFR) 1c. These are modifications of a parent
antibody R1c mAb, which has previously been shown to cause body-weight loss in
DIO mice (Lelliott et al. 2014), solely due to a decrease in energy intake. Other
mAbs targeting FGFR1 or FGFR1c have also been shown to induce body-weight
loss, either due to an effect only on energy intake, or due to a combined effect on
energy intake and energy expenditure (Sun et al. 2007; Wu et al. 2011). Data for
body weight as well as energy intake are available from the experiment. The aim of
the analysis presented here is to investigate whether the input-estimation methods
can recover the energy intake from body-weight measurements alone.

For the human body-weight model (Hall et al. 2011), 14 time series from 11

studies were used, with each time series describing the mean body-weight of a patient
group. Descriptions of the drugs used in these studies can be found in Padwal and
Majumdar (2007) and Kang and Park (2012). No energy-intake data are available.
The original reason for compiling data from these studies was for use in Gennemark
et al. (2017), which discusses strategies on using body-weight models together with
biomarker data to aid study design and dose prediction of anti-obesity drugs in drug
discovery.

5.2 Models

The two-state mouse model, describing the relationship between energy intake and
body weight, is a semi-mechanistic model described in Guo and Hall (2009) and Guo
and Hall (2011). The version of the model which is used in this work is reported
by Gennemark et al. (2013). The model divides the total body mass into fat mass
(FM) and fat-free mass (FFM). Mass balance requires the dynamics to satisfy

ρFM ·
dFM

dt
+ ρFFM ·

dFFM

dt
= EI − EE (5.1)

where ρFM and ρFFM is the energy density of fat mass and fat-free mass, EI is the
energy intake and EE is the energy expenditure. Furthermore, FM and FFM are
assumed to be related by the Forbes curve

α =
dFFM

dFM
= q1 + q2 · eq3·FM (5.2)
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where q1, q2, and q3 are empirically determined constants. The energy expenditure
EE is modelled as

EE =K + β∆EI + (γFFM + λ) · FFM + (γFM + λ) · FM+ (5.3)

ηFFM ·
dFFM

dt
+ ηFM ·

dFM

dt

where K is a constant thermogenesis parameter, ∆EI is the change in energy intake
from the baseline value EIstand, β is a proportionality constant, λ is a physical
activity parameter, γFFM and γFM are constants relating metabolic rate to body
weight, and ηFFM and ηFM are the synthesis efficiencies of fat-free and fat mass.
Table 5.1 shows the model parameter values, which are identical to the values used
by Gennemark et al. (2013). The physical activity parameter λ, which is not to be
confused with the eigenvalues of the covariance integral operator, was modelled as a
time-varying quantity described by

λ =

λ0 + λ3 + λ1 · λ2 · t · e−λ2(t−ttreat) if (t− ttreat) ≥ 0

λ0 otherwise,
(5.4)

where λj , j ∈ {0, 1, 2, 3} are empirical values estimated from the data, and ttreat is the
time at the start of the treatment. Since the analysis is based on the assumption that
the drug effect is acting only on the energy intake, these parameters should ideally be
dose-independent. However, an inspection of the available energy-intake and body-
weight data clearly showed that it was necessary to account for a drug-dependent
effect on the physical activity that was not included in the model structure. Rather
than explicitly modelling this dependence, values of λj were estimated separately
for each dose group. First, a cubic smoothing spline was fitted to the energy-intake
data. The λj parameters were then fitted to the body-weight data when using the
fitted spline as input, keeping all other model parameters constant. Obviously, this
requires the use of the very same energy intake data that are to be estimated, and
which would not be available in the typical use-case. These methods would be more
useful in situations where the drugs can be assumed to only affect energy intake.
However, since the main purpose of this work is to evaluate input-estimation methods
on known dynamic models, this procedure was deemed acceptable. The accuracy of
the procedure is mainly evaluated on synthetic data, where the input function is not
related to the change in physical activity. The fitted physical activity parameters are
shown in Table 5.2.

The model equations can be rearranged to standard ODE form:
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Parameter Definition Value Unit

ρFFM Energy density, fat-free mass 1.8 kcal · g−1

ρFM Energy density, fat mass 9.4 kcal · g−1

γFFM Metabolic rate, fat-free mass 0.15 kcal · g−1 · day−1

γFM Metabolic rate, fat mass 0.03 kcal · g−1 · day−1

ηFFM Synthesis efficiency, fat-free mass 0.23 kcal · g−1

ηFM Synthesis efficiency, fat mass 0.18 kcal · g−1

K Thermogenesis rate 2.1 kcal · day−1

β Scaling factor, diet-induced thermogenesis 0.4 -
EIstand Standard energy intake 12 kcal · day−1

q1 Forbes curve coefficient 1 0.13 -
q2 Forbes curve coefficient 2 0.02 -
q3 Forbes curve coefficient 3 0.09 g−1

Table 5.1: Model parameters for the mouse body-weight model.

dFFM

dt
=

α

α · ρFFM + ρFM
(EI − EE) (5.5a)

dFM

dt
=

1

α · ρFFM + ρFM
(EI − EE) , (5.5b)

where the energy intake is given by

EE = (K + β∆EI + (γFFM + λ) · FFM + (γFM + λ) · FM

+ηFFM · α · g · EI + ηFM · g · EI)/

(1 + ηFM · g + ηFFM · α · g) (5.6)

where g = 1/(α · ρFFM + ρFM ). The body-weight measurement error was assumed to
be 0.5% proportional Gaussian noise. This was considered to be reasonable, as weight
can be measured with good precision, and the reported body weights are averages.

The initial state of the ODE system could in principle have been included
in the estimation problem as extra parameters. However, for simplicity, these were
kept fixed. The total body mass was assumed to be equal to the first measurement.
The initial fat mass in TMinit was assumed to be a linear function of the total mass
TMinit:

FMinit = 0.81 · TMinit − 12.2, (5.7)
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Group Parameter Value Unit
Vehicle λ0 0.16 kcal · day−1

λ1 0.18 kcal · day−1

λ2 0.57 day−1

λ3 -0.068 kcal · day−1

R1c mAb opt1 (0.3 mg/kg) λ0 0.15 kcal · day−1

λ1 0.25 kcal · day−1

λ2 0.95 day−1

λ3 -0.051 kcal · day−1

R1c mAb opt1 (3 mg/kg) λ0 0.15 kcal · day−1

λ1 0.54 kcal · day−1

λ2 0.59 day−1

λ3 -0.066 kcal · day−1

R1c mAb opt1 (10 mg/kg) λ0 0.14 kcal · day−1

λ1 0.52 kcal · day−1

λ2 0.27 day−1

λ3 -0.063 kcal · day−1

R1c mAb opt2 (0.3 mg/kg) λ0 0.13 kcal · day−1

λ1 0.21 kcal · day−1

λ2 0.94 day−1

λ3 -0.029 kcal · day−1

R1c mAb opt2 (3 mg/kg) λ0 0.14 kcal · day−1

λ1 0.33 kcal · day−1

λ2 0.69 day−1

λ3 -0.044 kcal · day−1

R1c mAb opt2 (10 mg/kg) λ0 0.16 kcal · day−1

λ1 0.59 kcal · day−1

λ2 0.44 day−1

λ3 -0.071 kcal · day−1

Table 5.2: Physical activity parameters for all of the mouse body-weight time series.

where units are in grams. This relationship was established empirically by Gennemark
et al. (2013, Fig. 4).

The human body-weight model from Hall et al. (2011) is considerably more
elaborate than the mouse model. The model has five state variables: glycogen mass G,
extracellular fluid volume ECF , fat mass F , lean mass L, and adaptive thermogenesis
AT .
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The system dynamics are given by

dG

dt
=

1

ρG
(CI − kG ·G2) (5.8a)

dECF

dt
=

1

[Na]

(
∆Nadiet − ξNa(ECF − ECFinit)− ξCI

(
1− CI

CIinit

))
(5.8b)

dF

dt
=

1

ρF
(1− p) · (EI − EE − ρG

dG

dt
) (5.8c)

dL

dt
=

1

ρL
p · (EI − EE − ρG

dG

dt
) (5.8d)

dAT

dt
=

1

τAT
(βAT (EI − EIinit)−AT ). (5.8e)

Equation (5.8a) describes the dynamics of the glycogen mass, where ρG is the
energy density of glycogen and kG is a parameter selected to ensure a given steady-
state baseline value of glycogen mass. CI is the carbohydrate intake which is assumed
to be a constant fraction of total energy intake with proportionality constant fCI .
In the extracellular fluid dynamics, [Na] is the extracellular sodium concentration,
ECFinit is the baseline extracellular fluid volume, ∆Nadiet is the change from baseline
of the dietary sodium intake, and ξNa and ξCI describe the effect of the carbohydrate
intake on renal sodium excretion. CIinit is the baseline carbohydrate intake. The
variables ρF and ρL are the energy density of fat and lean tissue, and EE is the energy
expenditure. The parameter p denotes the partition between fat and lean tissue,
and is given by p = C/(T + F ), where C = kC · ρL/ρF and kC is a proportionality
constant. The state AT describes energy intake-dependent adaptive thermogenesis,
where τAT is the time scale of adaptation, βAT is a proportionality constant, and
EIinit is the baseline energy intake.

The total body weight, BW , which is the quantity that is measured, is given
by

ρECF · ECF + F + L+ (1 + 2.7) ·G, (5.9)

where ρECF is the density of the extracellular fluid, assumed to be equal to the
density of water. The factor (1 + 2.7) is included as each gram of glycogen stores 2.7

g of water. The energy expenditure EE is given by

EE = K + γFF + γLL+ δ ·BW + TEF +AT + ηL
dL

dt
+ ηF

dF

dt
(5.10)
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where K is a constant which is determined on a per-dataset basis to ensure that the
system is initially in steady state, γF and γL are regression coefficients relating energy
expenditure with fat and lean mass, and ηL and ηF are proportionality constants
relating energy expenditure with fat and protein synthesis. TEF is the thermic effect
of feeding, TEF = βTEF (EI −EIinit). The variable δ is a constant physical activity
parameter, given by

δ = ((1− βTEF ) · PAL− 1)
RMRinit
BWinit

(5.11)

where PAL is the physical activity level and RMRinit is the initial resting metabolic
rate.

Parameter Definition Value Unit

ρG Glycogen energy density 17.6 MJ · kg−1

ρF Fat tissue energy density 39.5 MJ · kg−1

ρL Lean tissue energy density 7.6 MJ · kg−1

[Na] Extracellular sodium concentration 3.22 g · L−1

ξNa Carbohydrate intake effect 3 g · L−1 · day−1

on renal Na secretion
ξCI Carbohydrate intake effect 4 g · day−1

on renal Na secretion
γF Energy expenditure vs fat mass 0.031 MJ · kg−1 · day−1

regression coefficient
γL Energy expenditure vs lean mass 0.092 MJ · kg−1 · day−1

regression coefficient
ηF Efficiency of fat synthesis 0.75 MJ · kg−1

ηL Efficiency of protein synthesis 0.96 MJ · kg−1

βTEF Thermic effect of feeding 0.1 -
βAT Adaptive thermogenesis 0.14 -

scaling coefficient
tAT Adaptive thermogenesis time constant 14 day
kC Partition function coefficient 10.4 kg

∆Nadiet Change of dietary sodium intake 0 g · day−1

PAL Physical activity level 1.5 -
fCI Fraction of carbohydrate intake 0.5 -

Table 5.3: Model parameters for the human body-weight model. The upper part
of the table contains parameters obtained from Hall et al. (2011). The choice of
values for the parameters in the lower part is discussed in Section 5.2. Parameters
not shown here were determined on a per-dataset basis.

The model parameters are shown in Table 5.3. The majority of the parameters
were obtained from Hall et al. (2011). As ∆Nadiet was unknown, it was assumed to
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have a negligible effect and was set to zero. The physical activity level PAL was set
to 1.5, which corresponds to a sedentary lifestyle (Hall et al. 2011), and fCI was set
to 0.5, which is a typical average value for obese individuals (Austin et al. 2011). The
initial states were determined per dataset, as the patient populations had different
baseline body weights and body-mass indices (BMI). The initial glycogen mass Ginit
was set to a baseline value of 0.5 kg (Hall et al. 2011). The initial ECF was obtained
using the regression equations of Silva et al. (2007):

ECFinit =

0.025 · age+ 9.57 ·H + 0.191 ·BWinit − 12.4 for males

5.98 ·H + 0.167 ·BWinit − 4 for females
(5.12)

where age is in years, and the height H is in metres. All studies used reported the
mean baseline body weight BWinit and BMI, from which H could be obtained. The
Jackson regression equations (Jackson et al. 2002) were used to determine the initial
fat mass:

Finit =

BW
100

(
0.14 · age+ 37.31 · log(BWinit/H

2)− 103.94
)

for males
BW
100

(
0.14 · age+ 39.96 · log(BWinit/H

2)− 102.01
)

for females.
(5.13)

The Mifflin-St Jeor regression equations (Mifflin et al. 1990) provided the
initial resting metabolic rate RMRinit in kcal/day for males and females:

RMRinit =

9.99 ·BWinit + 625 ·H − 4.92 · age+ 5 for males

9.99 ·BWinit + 625 ·H − 4.92 · age− 161 for females.
(5.14)

While the patient populations were of mixed sex and ages, the regression
equations for female 40-year-olds were used for simplicity. The initial lean mass Linit
was given by BWinit− (1 + 2.7) ·Ginit− ρECF ·ECFinit−Finit, and the initial value
of AT was set to 0, as this state accounts for changes from baseline. For each dataset,
values for the parameters kG and K were chosen to ensure that the baseline is in
steady state.
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5.3 Data

5.3.1 Real data

The data from the mouse study have previously been published in Träg̊ardh et al.
(2016). The study consisted of seven groups of four DIO mice each: one vehicle
group and three dose groups each for opt1 and opt2, with doses of 0.3, 3 and 10

mg/kg. The drug was administered as a single subcutaneous injection at t = 0.
The body weight and energy intake were measured during a period of 30 days after
treatment. Additionally, body-weight measurements were performed 9 days and 1

day prior to the treatment. All data analysis was performed on the group means of
the measurements. The energy-intake and body-weight data are shown in Fig. 5.1.
The body-weight data are also shown in Table A.2.
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Figure 5.1: Group means of measured energy intake (left column) and body weight
(right column) for the mouse dataset. The treatment was started at t = 0.

The human body-weight datasets collected from the literature were selected
using the following criteria: less than 30% diabetic patients, the patients not being on
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a very-low calorie diet, the first measurement before week 10, the second measurement
before week 26, the last measurement after week 51, and a total number of meas-
urements of at least 4. These criteria reflect the original purpose for collecting the
data: guiding study design and dose prediction of anti-obesity drug trials. In total,
14 datasets from 11 studies were selected from Van Gaal et al. (2008), Torgerson
et al. (2004), Pi-Sunyer et al. (2006), Smith and Goulder (2001), Hauner et al. (2004),
Aronne et al. (2010), Wilding et al. (2004), Van Gaal et al. (2005), Després et al.
(2005), Smith et al. (2010) and Allison et al. (2012). The data are shown in Fig. 5.2
and Tables A.4–A.6. The baseline body weights and BMI are shown in Table 5.4. In
these studies, the drug was administered at regular intervals for the whole duration
of the trial, in contrast to the mouse studies, where a single dose was administered.

Dataset Body weight BMI
(kg) (kg/m2)

Rimonabant, 20 mg, Van Gaal et al. 2008 101.1 36.3
Orlistat, 120 mg bds, Torgerson et al. 2004 110.4 37.3
Rimonabant, 20 mg, Pi-Sunyer et al. 2006 103.0 37.2
Sibutramine, 15 mg, Smith et al. 2001 87.0 32.7
Sibutramine, 15 mg, Hauner et al. 2004 99.5 35.1
Taranabant, 4 mg, Aronne et al. 2010 99.2 35.2
Topiramate, 96 mg, Wilding et al. 2004 105.3 37.3
Topiramate, 192 mg, Wilding et al. 2004 103.3 37.0
Topiramate, 256 mg, Wilding et al. 2004 106.3 37.9
Rimonabant, 20 mg, Van Gaal et al. 2005 101.7 36.2
Rimonabant, 20 mg, Despres et al. 2005 93.3 33.9
Lorcaserin, 10 mg bid, Smith et al. 2010 100.4 36.2
Phenterm.+Topiram., 3.75+23 mg, Allison et al. 2012 118.5 42.6
Phenterm.+Topiram., 15+92 mg, Allison et al. 2012 115.2 41.9

Table 5.4: Baseline body weight and BMI for the human body-weight datasets.

5.3.2 Test data

Although energy-intake data exist for the mouse data, these are only available at a
small number of time points. These measurements could also potentially be noisy,
as their accuracy is not known. Additionally, the physical activity parameters were
estimated from the measured energy intake. Since the main purpose of performing
estimation on synthetic data was to assess the ability of the methods to recover the
true input function, it was not deemed suitable to use the same data that were used
to fit the model, as this was likely to produce overly optimistic results. Therefore,
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Figure 5.2: Group means of measured body weight for the human body-weight
datasets.
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synthetic input functions, which had no relationship to the assumed drug effect on
the energy expenditure, were constructed for the mouse as well as for the human
models.

The choice of synthetic input function was based on the observation that the
human body-weight data are relatively smooth, and it is possible to fit the data using
an input function of the form

EI =

EIinit if t < 0

EIinit −∆EIinit + (∆EIinit −∆EIfinal)
tγEI

tγEI+t
γEI
h

if t ≥ 0.
(5.15)

In this input model, the drug is assumed to have an effect on EI that is
initially large, and gradually decreases to a long-term non-zero steady-state value. To
simplify the notation, we assume that the start of treatment is at t = 0. This is the
case for all datasets analysed here. If this were not the case, occurrences of t would
have to be replaced by t− ttreat. The meaning of these parameters is illustrated in
Fig. 5.3. The actual time for the drug to take effect in real experiments cannot be
estimated from the available datasets, which typically contain one sample per week,
starting at the time of intervention. Since the time series span over several weeks or
years, modelling the drop in energy intake as being instantaneous was considered to
be sufficiently accurate.
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Figure 5.3: The synthetic input function for the human body-weight dataset. The
meanings of the function parameters are annotated in the figure.
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For the mouse datasets, an additional exponential function was introduced to
make the input function smoother and avoid the instantaneous step at t = 0. The
form of the modified function is

EI =

EIinit if t < 0

EIinit −∆EIinit + (∆EIinit −∆EIfinal)
tγEI

tγEI+t
γEI
h

+AEIe
− t
τEI if t ≥ 0

(5.16)
where AEI and τEI are the amplitude and time constant for the additional exponential
function. The parameter values that were used are shown in Table 5.5. Synthetic
data were generated by using this function as input to the mouse body-weight model
with the physical activity parameters for the R1c mAbs opt1 10 mg/kg dose group.
Simulations were performed from t = −9 up to t = 30 days.

Parameter Interpretation Value Unit

EIinit Baseline energy intake 11.2 kcal · day−1

∆EIinit Initial energy intake change 10.3 kcal · day−1

∆EIfinal Final energy intake change −5.5 kcal · day−1

th Time to reach halfway to steady-state 18 day
γEI Hill coefficient 3 -
AEI Exponential component amplitude 11.6 kcal · day−1

τEI Exponential component time constant 0.8 day−1

Table 5.5: Parameters for the synthetic input function for the mouse body-weight
model.

For the human body-weight model, Eq. (5.15) was used without any additional
terms. The exponential term was not considered necessary, as the real data can be
captured without such a term, and simulation does not start until the start of the
treatment at t = 0. The parameters that were used are shown in Table 5.6. Synthetic
data were produced by using this function as the input to the human body-weight
model, using the baseline values from the Torgerson et al. (2004) time series, which
set the initial body weight to 110.4 kg, and the initial BMI to 37.3 kg/m2, making
for a baseline energy intake of 11.4 MJ/day. The system was simulated from t = 0

up to t = 812 days.
It can be noted that for the mouse, ∆EIfinal was negative, meaning that the

final EI was higher than the EI prior to treatment. In contrast, the human model
had a lower EI at the end of the study. This reflects the fact that while the mice
were administered a single dose, whose effect may have disappeared by the end of
the study, the humans were dosed repeatedly throughout the experiment.
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Parameter Interpretation Value Unit

EIinit Baseline energy intake 11.4 MJ · day−1

∆EIinit Initial energy intake change 3.5 MJ · day−1

∆EIfinal Final energy intake change 0.3 MJ · day−1

th Time to reach halfway to steady-state 156 day
γEI Hill coefficient 3 -

Table 5.6: Parameters for the synthetic input function for the human body-weight
model.

Four datasets were created for each of the mouse and human models:

Densely sampled, no noise. Samples were obtained at 100 equispaced time points
between the start and end time points.

Densely sampled, with noise. This dataset used the same sampling schedule as
above, but zero-mean Gaussian noise was added to each measurement, with a
proportional standard deviation of 0.5% of the true value.

Sparsely sampled, no noise. This dataset uses the same sampling schedule as the
real data. For mice, the sampling schedule of the opt1 10 mg/kg dose was used.
For humans, the sampling schedule of the Torgerson et al. (2004) study was
used.

Sparsely sampled, with noise. This dataset used the same sampling schedules
as above, with 0.5% proportional Gaussian noise. This noise level was chosen
to agree with the assumed noise level for the real data.

5.4 Materials and methods

5.4.1 Optimal-control methods

The priors and optimisation methods were chosen to be the same as in Chapter 4,
in order to facilitate comparisons. Hence, for every time series, optimal control-
based input estimation was performed using the priors for penalisation of the first
derivative, penalisation of the second derivative, and the maximum entropy-based
prior. For derivative-based priors, estimation was also performed by penalising the
logarithm of the input function. Nonnegativity inequality constraints were introduced
where necessary to avoid unphysical solutions. Three direct optimal-control methods
were evaluated: single shooting, multiple shooting, and collocation, as described
in Section 3.2. The regularisation parameter was estimated using the discrepancy
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Model Method Decision Equality Inequality
variables constraints constraints

Mouse Single shooting 100 0 1/101
Multiple shooting 300 200 1/101
Collocation 900 800 1/101

Human Single shooting 100 0 1/101
Multiple shooting 600 500 1/101
Collocation 2100 2000 1/101

Table 5.7: Number of decision variables and constraints for the optimal-control
problem formulations of the body-weight models. The number of inequality constraints
is 101 if nonnegativity constraints are present, and 1 otherwise.

criterion. In all cases, the input function was represented by a piecewise constant
function, discretised into NB = 100 equispaced intervals. For the collocation methods,
the state in each interval was represented by a Lagrange polynomial of degree d = 3,
using Radau collocation points. In all cases, the state discretisation intervals were
chosen to coincide with the input discretisation intervals. As the piecewise constant
functions are not differentiable at the discretisation points, the derivative-based priors
were based on a finite difference approximation, using Eqs. (4.3) and (4.4). The
rationale for these choices was identical to that of Section 4.4.1. As the estimation
methods do not allow zero measurement noise, estimation for the noise-free test data
was performed assuming that the noise standard deviation was 0.005%, a factor 100

times lower than the noise standard deviation of the noisy data.
Table 5.7 shows the total number of decision variables in the resulting optim-

isation problems. There are NB decision variables representing the input that are
present in all problem formulations. Multiple shooting methods add an additional
NB · dx variables for the states at the beginning of each shooting interval, while
collocation methods add NB · (d+ 1)dx variables for the states at the beginning of
each collocation interval and at the collocation points.

In total, 15 combinations of priors and optimisation methods were tested
on each time series. The number of time series amounts to 4 synthetic and 7 real
time series for the mouse model, and 4 synthetic and 14 real time series for the
human model. This makes the number of optimal-control estimation procedures
15× (4 + 7 + 4 + 14) = 435.
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5.4.2 MCMC methods

To evaluate the MCMC methods, the same settings were used as in Chapter 4. Four
priors were used: penalisation of the first and the second derivative, applied to the
function and to the logarithm of the function. The regularisation parameter was
in all cases treated as a Bayesian parameter, and assigned a Gamma prior with
hyperparameters α = β = 10−3. Cubic B-splines and Karhunen-Loève functions were
used as basis functions. The knots of the B-splines were placed at the measurement
time points. Additional knots were placed at the first and last time points to ensure
that all intervals were covered by four basis functions. For densely sampled test data,
the knots were placed at the points of the measurements of the corresponding sparsely
sampled test data. This was done in order to avoid an overly high-dimensional
parameterisation. 20 basis functions were used for the Karhunen-Loève parameterisa-
tion. For noise-free data, 0.005% measurement noise was assumed, similar to the
optimal-control methods. The basis function coefficients were updated either one at a
time using RWMH, or jointly using either RWMH, MALA or SMMALA. In all cases,
the regularisation parameter was updated using Gibbs sampling, where updates were
computed as described in Section 4.4.2.

The initial parameter values were obtained from the results of the optimal
control-based methods. The Hessian reported at the optimum was used to initialise
the proposal densities and the metric tensor. During the initial part of the MCMC
runs, the proposal densities were tuned to achieve a target acceptance ratio. After
this was achieved, the estimation procedure was executed for 5 minutes of processing
time. This procedure was identical to the procedure used for the eflornithine dataset,
and is described in more detail in Section 4.4.2.

Each time series was analysed using all combinations of the two function
parameterisations, four priors, and four sampling methods. As there were 4 + 7 +

4 + 14 = 29 synthetic and real time series combined, in total 2× 4× 4× 29 = 928

MCMC runs were performed.

5.5 Results and discussion

5.5.1 Optimal-control methods

The accuracy of the optimal-control methods was assessed by computing the RMSE,
as defined in Eq. (4.13), between the estimated and the true input functions for the
test data. Although energy-intake data were available for the real mouse data, they
were not used to evaluate accuracy, as the same data were used for fitting some of
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the model parameters. The results are shown in Table 5.8 for mouse data and in
Table 5.9 for human data. The RMSE depends only on the prior, and not on the
choice of optimisation method, as long as the optimisation procedure was successful.
For Tables 5.8 and 5.9, collocation was used, as this method was successful for all
test data time series.

Dataset Prior RMSE Dataset Prior RMSE
(kcal/day) (kcal/day)

Dense, 1der 0.25 Dense, 1der 0.75
0% noise 1der, log 0.23 0.5% noise 1der, log 0.76

2der 0.25 2der 0.79
2der, log 0.24 2der, log 0.74
entropy 0.24 entropy 0.75

Sparse, 1der 0.30 Sparse, 1der 1.11
0% noise 1der, log 0.27 0.5% noise 1der, log 1.49

2der 1.09 2der 1.70
2der, log 0.63 2der, log 1.81
entropy 0.66 entropy 1.49

Table 5.8: RMSE values for the synthetic mouse dataset.

Dataset Prior RMSE Dataset Prior RMSE
(MJ/day) (MJ/day)

Dense, 1der 0.03 Dense, 1der 0.10
0% noise 1der, log 0.03 0.5% noise 1der, log 0.11

2der 0.03 2der 0.12
2der, log 0.03 2der, log 0.15
entropy 0.03 entropy 0.11

Sparse, 1der 0.03 Sparse, 1der 0.25
0% noise 1der, log 0.03 0.5% noise 1der, log 0.26

2der 0.05 2der 0.18
2der, log 0.05 2der, log 0.16
entropy 0.03 entropy 0.25

Table 5.9: RMSE values for the synthetic human dataset.

For the densely sampled data, the effect of the prior on the RMSE value
is very small. This holds for the mouse as well as the human model. It can also
be seen that for the human data, accuracy remains good even in the presence of
sparse sampling. On the other hand, the mouse data show a clear dependence on the
sampling schedule. Even for sparse and noisy data, the prior has a relatively small
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effect on the RMSE value.
Estimation results for sparse noisy test data for all priors are shown in Figs. 5.4

and 5.5. These time series were chosen as they are the test time series that are most
similar to the real data. The figures show clear differences between the datasets.
While the mouse time series were very densely sampled from t = −1 to t = 30, there
is an initial period of 8 days where no measurements are available. Furthermore, the
input function stays constant during this interval, after which a rapid decrease is
initiated. This makes for a very challenging estimation problem, as there is a large
range of energy-intake profiles that could explain the measurements. In particular,
an energy-intake profile that starts at a high value at t = −9 and gradually decreases
until t = −1 is able to explain the data very well, due to the lack of measurements
in this interval. All of the tested priors reward smoothness, and thus favour such
solutions over the true input. In particular, the priors based on penalisation of the
second derivative make strong smoothness assumptions, causing them to completely
miss the discontinuity. As Fig. 5.4 shows, an additional challenge is that energy-intake
profiles that are substantially different can still result in similar body-weight profiles.
This can be attributed to the low-pass characteristics of the system: rapid changes in
energy intake do not cause equally rapid changes in body weight.

It can be argued that the statistical soundness of all the evaluated priors is
limited in situations when the characteristics of the input function can be expected to
change rapidly at the time of intervention. As in Chapter 4, penalisation of the first
derivative appears to be a more conservative choice than penalisation of the second
derivative. One possibility to make the estimate more realistic is to assume that the
body weight and energy intake remain constant prior to intervention. However, this
would also introduce additional assumptions which would need to be justified.

In contrast, the human body-weight data in Fig. 5.5 have no long intervals
without measurements, even though the number of samples is less than for the mouse
data. They also lack the rapid change in energy intake that is exhibited by the mouse
data. This makes the estimates less sensitive to the prior. However, the methods still
tend to underestimate the initial drop in energy intake. Similar to the mouse data
example, the body-weight predictions are very similar for all priors, despite minor
differences in the energy-intake profiles. The relative insensitivity to the choice of
prior makes the estimation methods easier to justify in terms of statistical soundness,
as the input profile appears to be determined mainly by the data.

Next, the performance and robustness of the methods were assessed. Tables 5.10
and 5.12 show running times and the number of successful optimisations organised by
optimisation method, while Tables 5.11 and 5.13 show the same information organised
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Figure 5.4: Optimal-control estimation results for the mouse body-weight model.
Sparse test data with 0.5% noise.

by prior. Here, optimisation was considered to be successful if the return status from
the optimisation software was either Solve Succeeded or Solved To Acceptable

Level. In terms of robustness, there does not seem to be any major difference between
the optimisation methods or priors. It can be seen that the collocation methods are
much faster than the shooting methods. A major difference between the mouse and
human models is that the running time for the shooting methods is one order of
magnitude larger for the human model, although the number of iterations is similar.
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Figure 5.5: Optimal-control estimation results for the human body-weight model.
Sparse test data with 0.5% noise.

This may be partly explained by the larger number of states in the human model.
It is also possible that the human model has issues of stiffness. In particular, the
dynamics of the ECF state are very fast compared to the overall time scale of the
problem.

Figures 5.6 and 5.7 show examples of the estimation results for the real data
for all mouse and human time series. In all examples shown, penalisation of the first
derivative was used as a prior. For the mouse data, the measured energy intake is
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Median time (s) Median iterations Successful runs

Single shooting 8.1 24 50/55
Multiple shooting 3.2 24 50/55
Collocation 0.2 20 55/55

Table 5.10: Median running times, number of iterations, and the proportion of
successful estimation procedures on the mouse body-weight dataset, organised by
optimisation method.

Median time (s) Median iterations Successful runs

1der 4.2 19 31/33
1der, log 3.5 26 30/33
2der 3.2 18 32/33
2der, log 3.3 26 32/33
entropy 2.5 19 30/33

Table 5.11: Median running times, number of iterations, and the proportion of
successful estimation procedures on the mouse body-weight dataset, organised by
choice of prior.

Median time (s) Median iterations Successful runs

Single shooting 69.9 24 90/90
Multiple shooting 29.4 28 85/90
Collocation 0.5 27 88/90

Table 5.12: Median running times, number of iterations, and the proportion of
successful estimation procedures on the human body-weight dataset, organised by
optimisation method.

Median time (s) Median iterations Successful runs

1der 23.9 21 54/54
1der, log 39.7 32 51/54
2der 19.5 19 53/54
2der, log 48.4 35 51/54
entropy 24.2 23 54/54

Table 5.13: Median running times, number of iterations, and the proportion of
successful estimation procedures on the human body-weight dataset, organised by
choice of prior.

also shown for comparison. Is is evident from the figure that the method is not able
to capture the energy intake measurement at t = 0. This is similar to the results for
simulated data, as discussed on Page 134.
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Figure 5.6: Examples of the estimated energy-intake profiles for the real mouse data,
obtained using optimal-control methods with penalisation of the first derivative as
the prior.
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Figure 5.7: Examples of the estimated energy-intake profiles for the real human data,
obtained using optimal-control methods with penalisation of the first derivative as
the prior.
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5.5.2 MCMC methods

As a first step in evaluating the MCMC methods, the estimation accuracy was
assessed for the test datasets, using the mean RMSE defined in Eq. (4.13), averaged
over all MCMC samples. For the human dataset, the samples at time t = 0 were
excluded when computing the RMSE. This was done as the true input starts at the
baseline energy intake EIinit, and instantaneously drops by ∆EIinit (see Fig. 5.3).
Since this initial high energy intake is not visible in the simulated data, no estimation
algorithm would be able to detect it, and its inclusion would cause the RMSE value
to be dominated by the contribution from that single time point.

All generated sets of samples were diagnosed using the Raftery-Lewis dia-
gnostics as well as the effective sample size (Section 3.3.3). An estimation procedure
was considered to be successful if

1. The estimation procedure exited normally. A number of procedures exited due
to errors such as obtaining a non-positive definite metric tensor.

2. The required number of samples, as reported by the Raftery-Lewis criterion,
was at least as large as the actual number of generated samples.

The RMSE values are shown in Table 5.14 for the mouse, and in Table 5.15 for the
human dataset. Unsuccessful estimation procedures were excluded from these tables,
as the generated MCMC samples from these are not an accurate representation of the
true posterior. The estimation procedures were unsuccessful in all cases where data
were noise-free. This is likely attributable to the fact that a highly peaked likelihood
function causes the posterior to be concentrated in a small area which is difficult for
the MCMC methods to explore. In the sequel, only noisy data are considered, and
all reported values refer only to such data.

Recall that the RMSE measure should depend only on the prior and para-
meterisation, and not on the sampling method. While small discrepancies are to be
expected due to the statistical nature of Monte Carlo methods, larger differences
between the sampling methods are a sign that at least one of the methods failed
to obtain representative samples of the posterior distribution. In Table 5.14, it can
be seen that for the mouse model, the RMSE values are similar across all sampling
methods for any given prior and parameterisation. However, Table 5.15 shows that
for the human model, larger than expected differences between the sampling meth-
ods were obtained for first derivative penalisation when using B-splines. A visual
inspection confirms that the block RWMH and MALA methods failed to explore
the posterior well (Fig. 5.8), despite the ESS and Raftery-Lewis diagnostics showing
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satisfactory values. This is a reminder that, although such diagnostics can help to
find problems in the sampling method, successful tests are not a guarantee that the
method performs well, as discussed in Section 3.3.3.
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Figure 5.8: Sample trajectories for the sparse noisy human test data using B-splines
and penalisation of the first derivative. Top: MALA sampling. Except for the initial
and final portion of the curve, all samples are closely clustered around the initial
trajectory. Bottom: SMMALA sampling. Here, the sampling algorithm generates
a wider range of trajectories. This suggests that MALA fails to explore the whole
posterior.

In general, the choice of prior and parameterisation does not appear to have
a major effect on the accuracy. This may be attributable to the relatively dense
sampling compared to typical PK datasets. However, a general trend is that, for
any given dataset and parameterisation, the log-domain RMSE values are slightly
higher than their linear-domain counterparts. Figures 5.9 and 5.10 show examples
of the estimation results for the sparse noisy test data using various priors. For the
mouse, it can be clearly seen how a log-domain prior can increase the uncertainty
region. In order to fit the data in the region where the energy intake drops close
to zero, the estimated regularisation parameter has to be set to a relatively small
value, causing large uncertainties for time points where the estimated energy intake is
high. It can be argued that in body-weight applications, a log-domain prior is a less
natural choice than in PK applications. Daily energy intake values are unlikely to
vary by orders of magnitude over the course of the experiment, in contrast to plasma
concentrations of drugs.
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One disadvantage of the linear-domain priors is that nonnegativity constraints
cannot be enforced. However, in most of the investigated cases, such constraints
were not necessary. For the mouse dataset, the estimated input did occasionally drop
slightly below zero. However, this is not likely to significantly influence the prediction,
in contrast to the example in Chapter 4, where the lack of nonnegativity constraints
caused dramatic increases in the uncertainty regions. If such constraints are desired,
a pragmatic solution would be to assign a zero probability to any input function
which drops below zero. Hence, any such proposed function would be rejected by the
Metropolis-Hastings accept-reject step. This may be sufficiently efficient, provided
that only a small part of the unconstrained posterior contains function values below
zero. Otherwise, the rejection rate may become excessive.

Penalisation of the second derivative results in smoother estimates and smaller
uncertainty regions than penalisation of the first derivative. However, this can also
result in overconfident predictions when the actual function is not smooth. This can
be seen in Fig. 5.9, where the sharp decrease in energy intake at the start of the
treatment is challenging for all tested priors. When penalisation of the first derivative
is employed, the uncertainty region is relatively large, and the 95% credible interval
covers the true input. In contrast, penalisation of the second derivative results in a
narrow credible interval that completely misses the initial part of the input function.

To summarise the findings with respect to statistical soundness, the consider-
ations for the MCMC algorithms are similar to the considerations for the optimal-
control algorithms. Any prior which does not explicitly account for the change in
characteristics at the start of intervention is likely to miss important features if data
are sparsely sampled. If it cannot be assumed that the energy intake and body weight
are constant before intervention, it may be necessary to collect more data.

In terms of speed and robustness of the MCMC methods, the main results
are presented in Tables 5.16 and 5.17. These tables show the results for sparse noisy
time series, including simulated as well as real data. Speed and robustness tend to
be related, as a common reason for failure is that a set of samples of sufficiently
high quality could not be generated in the allocated time. In terms of the sampling
methods, the results differ substantially for the two models. For the mouse, by far
the most successful option was block RWMH with Karhunen-Loève basis functions.
Although the required number of samples was higher for RWMH than for the gradient-
based methods, block RWMH was able to generate the samples at a higher rate, since
no gradient computations are required. In contrast, SMMALA with Karhunen-Loève
basis functions is the superior choice for the human model. However, even in this case
there was a relatively high number of failures. For both models, single-component
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Dataset Method Basis Prior RMSE
kcal/day

Dense, Block RWMH KL 1der 0.98
0.5% noise Block RWMH KL 1der, log 1.12

Block RWMH KL 2der 0.93
Block RWMH KL 2der, log 1.00
Block RWMH spline 1der 1.09
Block RWMH spline 1der, log 1.20

Sparse Block RWMH KL 1der 1.53
0.5% noise Block RWMH KL 1der, log 2.10

Block RWMH KL 2der 1.64
Block RWMH spline 1der 2.25
Block RWMH spline 1der, log 2.59
MALA KL 1der 1.55
MALA KL 2der 1.65
MALA spline 1der 2.23
SMMALA KL 1der 1.53

Table 5.14: Accuracy measures for the MCMC methods on the sparse noisy mouse
body-weight test datasets.

RWMH was found to be completely unsuitable.
One possible reason why SMMALA is more successful than the other methods

for the human data is that this method is more tolerant to a poor initial state for the
Markov chain. As Fig. 5.8 shows, the initial trajectory obtained from the optimal-
control analysis differs considerably from the true input function. All methods except
SMMALA use the Hessian at the initial point to construct the proposal distributions
for all steps of the chain. Therefore, if the initial point is poorly chosen, the sampling
performance is likely to suffer at every iteration. In contrast, the proposal distribution
in SMMALA depends only on the current state of the chain. For this reason, the
chain will eventually “forget” a poor initial state. Figure 5.8 shows that the MALA
estimates in most cases do not deviate much from the initial trajectory, which suggests
that the chosen proposal is ill-suited for trajectories far away from the starting point.

In general, estimation using Karhunen-Loève basis functions achieved consid-
erably higher performance in terms of speed and robustness than estimation using
B-splines. As the estimation accuracy does not depend strongly on the choice of basis
functions, the performance considerations alone may provide sufficient justification
to prefer Karhunen-Loève functions. Additionally, a parameterisation that is known
to result in good sampling performance increases the confidence in the estimation
results.
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Dataset Method Basis Prior RMSE
MJ/day

Dense, Block RWMH KL 1der, log 0.33
0.5% noise Block RWMH KL 2der, log 0.51

Block RWMH spline 1der 0.13
Block RWMH spline 1der, log 0.26
Block RWMH spline 2der, log 0.28
MALA KL 1der, log 0.33
MALA KL 2der, log 0.51
MALA spline 1der 0.13
MALA spline 1der, log 0.25
MALA spline 2der, log 0.28
SMMALA KL 1der 0.24
SMMALA KL 1der, log 0.33
SMMALA KL 2der 0.15
SMMALA spline 1der 0.21
SMMALA spline 1der, log 0.25
SMMALA spline 2der 0.24
SMMALA spline 2der, log 0.29

Sparse Block RWMH spline 1der 0.25
0.5% noise MALA spline 1der 0.25

MALA spline 2der 0.34
SMMALA KL 1der 0.41
SMMALA KL 1der, log 0.72
SMMALA KL 2der 0.22
SMMALA spline 1der 0.48

Table 5.15: Accuracy measures for the MCMC methods on the sparse noisy human
body-weight test datasets.

For the mouse model, the sparse test data resulted in moderately higher
RMSE values than the dense test data, while sparsity of measurements appeared to
have no effect for the human model. This is expected, as even the sparse data are
considerably denser than is the case for the PK applications in Chapters 4 and 6,
with the exception of the days prior to treatment in the mouse model. For the human
model, it is also clear that sparsity of data causes many sampling methods to perform
poorly. No comparisons between noise-free and noisy data can be performed for
either model, as no sampling methods were able to produce results for the noise-free
data.

Figures 5.11 and 5.12 show examples of estimation results for the real data,
obtained using the settings that were deemed most appropriate. In both cases,
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Figure 5.9: Examples of MCMC estimation results for the sparse noisy test data for
the mouse model for various priors using Karhunen-Loève basis functions. Penalisation
of the second derivative in the log domain is not shown, as no successful results are
available. All shown results were obtained by block RWMH sampling.

Median Median Median Successful
min ESS max RL required time runs

Single RWMH KL 3 512546 6512 0/36
spline 3 247472 5141 0/36

Block RWMH KL 438 90805 87 30/36
spline 15 658478 1424 12/36

MALA KL 74 44809 412 18/36
spline 4 316894 4387 5/36

SMMALA KL 40 70557 669 15/36
spline 14 209684 3428 5/36

Table 5.16: Performance and robustness results for MCMC methods on the noisy
mouse body-weight datasets.
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Figure 5.10: Examples of MCMC estimation results for the sparse noisy test data for
the human model for various priors using Karhunen-Loève basis functions. Penalisa-
tion of the second derivative in the log domain is not shown, as no successful results
are available. All shown results were obtained by SMMALA sampling.

Median Median Median Successful
min ESS max RL required time runs

Single RWMH KL 3 538748 8185 0/64
spline 9 111755 2362 0/64

Block RWMH KL 3 5585945 6108 4/64
spline 18 597056 770 19/64

MALA KL 7 183413 2479 11/64
spline 17 162456 2359 22/64

SMMALA KL 1103 4820 61 38/64
spline 52 25725 571 19/64

Table 5.17: Performance and robustness results for MCMC methods on the noisy
human body-weight datasets.

146



penalisation of the first derivative and Karhunen-Loève basis functions were used.
The sampling method is block RWMH for the mouse and SMMALA for the human
data.

5.6 Summary

The datasets that have been analysed in this chapter differ from the PK examples
in Chapters 4 and 6 in several respects. First, the available data are much more
densely sampled. Second, the assumed noise level is considerably lower. It can be
noted that the sparse measurements were one of the main arguments for favouring
batch methods over sequential methods such as particle filters, and this argument
is less valid here. On the other hand, the low noise variance in the model may still
cause problems for such methods. Evaluating sequential estimation methods could
be interesting for future work.

In terms of RMSE, the choice of prior and function parameterisation does
not appear to make a large difference. This may partly be explained by the fact
that the measurements are relatively densely sampled. There is some indication that
log-domain priors are less suitable here, which may be explained by the fact that the
energy intake is not expected to vary by orders of magnitude. For MCMC estimation,
this results in an inability to enforce nonnegativity constraints, but this does not
appear to be an issue for the evaluated datasets.

Although the RMSE measures are similar across priors, the estimated functions
are qualitatively different for different priors. Therefore, there may exist subjective
reasons for preferring one prior over the others. If the energy intake is expected to be
very smooth, a second-derivative prior may be appropriate. However, if this condition
does not hold, such a prior can fail to track the input function. One possibility is to
run estimation for several priors, in order to assess whether the results are sensitive
to this choice.

All of the optimal-control methods performed well in terms of robustness.
The collocation methods were considerably faster than the shooting-based methods,
and should therefore be preferred. For the MCMC methods, Karhunen-Loève basis
functions generally outperformed B-splines in terms of sampling performance. For
the mouse model, block RWMH achieved the highest performance, while SMMALA
performed best for the human model.

This chapter also shows examples of cases where the MCMC diagnostics,
including ESS and the Raftery-Lewis diagnostics, failed to detect problems with
the sampling method, highlighting the fact that seemingly satisfactory diagnostics
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Figure 5.11: MCMC estimation results for the real mouse data using Karhunen-Loève
basis functions and a prior based on the first derivative. In all cases, block RWMH
was used as the sampling method.

results are no guarantee that sampling has been successful. Visual inspection of
sample trajectories can help to detect obviously unsuccessful procedures. It can also
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help if more than one sampling method is used, and the results compared. It would
also be possible to use more than one kind of MCMC update in a single estimation
procedure.
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Figure 5.12: MCMC estimation results for the real human data using Karhunen-Loève
basis functions and a prior based on the first derivative. In all cases, SMMALA was
used as the sampling method.
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Chapter 6

Case study — exenatide absorption

6.1 Background

Extended release (ER) formulations are commonly used to enhance the PK properties
of drugs. They can increase half-life, allow less frequent drug administration, and
increase compliance and quality of life for the patient. They can also increase safety
by lowering the maximum required plasma concentration, and allow the use of
compounds whose PK properties would otherwise be unsuitable. The formulation
is designed to achieve a specified release and absorption rate to optimise the PK.
Typically, ER medications are administered orally using either tablets or capsules, or
injected as intramuscular or subcutaneous depot formulations.

Oral ER formulations are usually polymeric (Yang and Pierstorff 2012; Arafat
2015) and can be classified into matrix, reservoir (or membrane controlled) and
osmotic systems (Khalane et al. 2016; Ratnaparkhi and Gupta Jyoti 2013). The drug-
release mechanisms involve drug diffusion, system swelling, erosion and dissolution,
or osmotic pressure-induced release (Siepmann and Göpferich 2001; Arifin et al.
2006). For long-term release, over the time scale of several days, intramuscular or
subcutaneous administration can be used and include formulation types such as
oil-based solutions, drug suspensions, polymer-based microspheres and polymer-based
or lipid liquid crystal in-situ formings (Rhee et al. 2010; Schwendeman et al. 2014;
Gulati and Gupta 2011). Biodegradable microsphere systems, such as those made
of poly(lactic-co-glycolic acid) (PLGA) copolymer, have proved to be a successful
approach to deliver macromolecular drugs (Mitragotri et al. 2014).

In any ER formulation development process, it is fundamental to determine
the in vivo drug release/absorption profile of each candidate formulation. This is done
routinely in drug discovery and development. Measuring the release profile in vivo is
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generally difficult and expensive. Typically, the data that are available are plasma
concentration profiles following extravascular administration. If a model of the PK is
available, it is possible to infer the release profile from such plasma concentration
data. The total amount of drug absorbed, and therefore the bioavailability, can be
computed by integrating the release profile.

When predicted in vivo input profiles are available, it may be possible to
validate or invalidate the translatability of the in vitro system. Given data for several
candidate formulations, an in vitro-in vivo correlation (ivivc) can be established,
relating the in vitro drug dissolution or release to the in vivo drug absorption or
release (Lu et al. 2011; Cardot and Davit 2012). Ideally, one can then predict the in
vivo performance based on the in vitro release profile and optimise the formulation
by in vitro testing at low cost. In addition, knowledge of the release profile in an
animal model can help in predicting, and hence optimising, the human PK profile.
To achieve this, a human intravenous PK model is required, either from real data
or predicted from cellular or animal data. The release profile obtained from animal
data is fed to the human model, resulting in human PK trajectories. These types of
human predictions are always desired in drug discovery to assess feasibility. Naturally,
prediction reliability increases with the amount and quality of data.

One way to estimate the release profile is to build a parametric model of the
drug release and absorption process. For the drug release process, various models
have been proposed, ranging from simple empirical models to detailed mechanistic
models that account for various processes such as degradation and erosion (Siepmann
and Peppas 2001; Versypt et al. 2013). However, if the release profile is complicated,
it may be difficult to create a model that is able to capture the observed plasma
concentration (Shen and Burgess 2015). One example is long acting biodegradable
particles for subcutaneous injection. The model may also need to be tailored to the
particular type of drug and formulation used. For sparse data, such models may also
have practical identifiability issues. An alternative is to use nonparametric methods
such as the input-estimation methods evaluated in this thesis. This way, the release
profile is allowed to take any functional form as long as it matches the data and does
not exhibit any unrealistic behaviour, such as taking negative values.

When the time scale of the release and absorption process is significantly
larger than the time scale of the PK, is it possible to assume that the system is in
steady state, such that the plasma concentration at any time point is only a function
of the release rate at that time point, independent of previous history. Replacing a
dynamic model with a computationally cheap algebraic model can lead to substantial
savings in computational time, especially for non-linear systems which otherwise
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would require the use of numerical ODE solvers.
In this chapter, the input-estimation methods are benchmarked on a dataset

of plasma concentrations following administration of Bydureon (Buse et al. 2010;
Buse et al. 2013), an extended-release microsphere formulation of the GLP-1 receptor
agonist exenatide (Buse et al. 2004; DeFronzo et al. 2005). The Bydureon formulation
consists of exenatide encapsulated within PLGA microspheres that are designed to
release exenatide over an extended period of time, which allows once-weekly patient-
administered subcutaneous injections (European Medicines Agency 2011). Typical
in vitro release curves for Bydureon are given in Fig. 3 in DeYoung et al. 2011. Such
curves can be used, together with predicted input profiles from in vivo data, to
establish an ivivc. In humans, Bydureon exhibits a multiphasic concentration-time
profile over approximately 10 weeks consistent with the known mechanism of release
from PLGA microspheres. This is characterised by a limited initial rapid release of
loosely bound surface exenatide (<1% released in the first few hours) followed by two
additional phases corresponding to diffusion and erosion release with peak plasma
concentrations at around week 2 and week 7 following intervention (DeYoung et al.
2011). The reason for choosing Bydureon as an example is that it is a drug that is
already on the market, and data (Fineman et al. 2011; Li et al. 2015) as well as PK
models (Gao and Jusko 2012) are available in the literature. The complicated profile
of Bydureon (Fig. 6.1) cannot be easily captured by a simple parametric model. A
compartmental model of the release and absorption process has been proposed (Li
et al. 2015), where the extended release process is modelled by a cascade of transition
compartments, where the initial amount of several compartments is nonzero. However,
this model was designed to fit data from multiple-dosing experiments, where the
multiple peaks are not as noticeable.

6.2 Model

The model used was developed by Gao and Jusko (2012). Similar models have been
developed by Chen et al. (2013) and Li et al. (2015). The main difference between
these model structures is in the release and absorption processes. Gao and Jusko
(2012) consider an immediate-release formulation with an absorption compartment,
while Chen et al. (2013) model the absorption with a Michaelis-Menten function. Li
et al. (2015) model the release and absorption of an ER formulation using a linear
compartmental model. However, it is not clear whether this model would be able to
capture the multiple peaks, as it was only applied to data from experiments with
repeated dosing. In this work, the absorption compartments were removed from the
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Figure 6.1: Example of a plasma concentration profile after a 10 mg dose of Bydureon.
This is a mean prediction of the data in Fineman et al. (2011). The profile shows
multiple peaks, making it non-trivial to model using conventional compartmental
models.

model, as the purpose of the analysis is to estimate the release and absorption using
non-parametric methods. The remaining PK model is a three-compartment model
featuring target-mediated drug disposition, where target binding affects the PK. The
model is given by:

dC

dt
=
u

Vc
− (kel + kpt) · C + ktp ·

AT
Vc

− kon · (Rtot −RC) · C + koff ·RC (6.1a)
dAT
dt

=kpt · C · Vc − ktp ·AT (6.1b)

dRC

dt
=kon · (Rtot −RC) · C − (koff + kint) ·RC (6.1c)

where C is the drug molar concentration in the central compartment, AT is the drug
amount in the peripheral compartment, and RC is the molar concentration of the
drug-receptor complex. The model parameters are from Gao and Jusko (2012) and
are shown in Table 6.1. The model structure is shown in Fig. 6.2.

It can be noted that over sufficiently long time scales, this model can be
approximated by a steady-state model, where the plasma concentration is a function
only of the current release rate. This is possible as the ER formulation considered
here has a release rate over time scales of weeks, while the PK model has considerably
faster time constants. This is illustrated in Fig. 6.3. The steady-state approximation
can be obtained by setting all time derivatives to zero, and solving for the plasma
concentration in the central compartment as a function of the release rate. The
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Figure 6.2: The nonlinear three-compartment exenatide model from Gao and Jusko
(2012).

Parameter Definition Value Unit

kel Elimination rate constant 0.013 min−1

kpt Intercompartmental rate constant 0.0685 min−1

ktp Intercompartmental rate constant 0.0846 min−1

Vc Central volume of distribution 111 mL · kg−1

kon Second-order binding constant 0.000411 pM−1 · min−1

koff First-order dissociation constant 0.566 min−1

kint Internalization rate constant 0.00342 min−1

Rtot Total receptor concentration 1240 pM

Table 6.1: Pharmacokinetic parameters of the exenatide model.

resulting equation is given by:
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1
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While this expression may appear complicated, it is a purely algebraic ex-
pression that does not require expensive numerical ODE solvers to compute. The
steady-state approximation was not used in this analysis, in the interest of being able
to compare the performance of the input-estimation methods on the other datasets.
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Still, it is worth noting that it may be possible to speed up these computations
considerably.
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Figure 6.3: Comparison of the dynamical model and the steady-state approximation
for short (top row) and long (bottom row) time scales. On short time scales, the
model predictions are substantially different, while the predictions are essentially
identical for long time scales. This suggests that for long time scales, computation
time could be reduced by replacing the expensive ODE-based dynamical model by
the computationally cheaper algebraic steady-state model.

6.3 Data

6.3.1 Real data

The data for this analysis are from a study by Fineman et al. (2011). In the study,
54 subjects were administered a single dose of exenatide, in doses of 2.5, 5, 7, 10

mg, or placebo. Plasma concentrations were measured over 12 weeks. The plasma
concentration was sampled relatively densely during the initial 48 hours, followed by
sampling once a week for the remainder of the study. The group means, which were
used for this analysis, are shown in Fig. 6.4 and Tables A.7 and A.8. Note that data
for the placebo group were not reported during the initial 48 hours.
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Figure 6.4: Plasma concentration measurements for the exenatide dataset.

6.3.2 Test data

In order to assess the accuracy of the input-estimation methods on a known input, a
synthetic input function was generated and used to produce simulated data. The
input function was designed to produce data that have similar characteristics to the
real data. On longer time scales, the real data have two major peaks, one around 2

and one around 7 weeks. Additionally, there is a fast peak during the first few hours
after administration (Fig. 6.4). The long-term characteristics could be captured by
the sum of two Erlang distributions, each described by the function

ui(t) = ai
knitri · tni−1 · e−ktri·t

(ni − 1)!
, i = {1, 2} (6.3)

where ktri is a rate constant that controls the rise and fall times of the peaks, ni
controls the time delay, and ai is a multiplicative scaling factor. The fast initial
peak was modelled by adding a third component u3(t), described by a biexponential
function:

u3(t) = r1e
−k1t + r2e

−k2t. (6.4)

The final input function was given by

u(t) = u1(t) + u2(t) + u3(t) (6.5)

The synthetic input function can be interpreted as the output from a com-
partmental model, shown in Fig. 6.5. Each Erlang distribution represents a series
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of ni compartments, connected with the rate constant ktri, where the first compart-
ment in the series is initialised with the amount ai, while the other compartments
have zero initial values (Jacquez 1985, Ch. 8). The biexponential part u3(t) can be
interpreted as an absorption compartment combined with a peripheral compartment.
The parameters k12, k21 and ka in Fig. 6.5 are related to r1, r2, k1 and k2 by

q =
√

(k12 + k21 + ka)2 − 4k21ka (6.6)

r1 =
kaa

2q
(q + k12 − k21 + ka) (6.7)

r2 =
kaa

2q
(q − k12 + k21 − ka) (6.8)

k1 =
1

2
(q + k12 + k21 + ka) (6.9)

k2 =
1

2
(−q + k12 + k21 + ka) (6.10)

where a is the initial amount in compartment 1, and q has been introduced to
simplify the expressions. This relationship can be determined by solving the system
of differential equations describing the dynamics for compartments 1 and 2, and
matching the coefficients.

ktr1

k21

ktr2 ktr2

ka

ktr2

ktr1

k12

ktr1ktr1

ktr2

11
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12

1514 1613

1

3

2

54

Figure 6.5: Compartmental model interpretation of the test input function. The
upper two rows represent the functions u1(t) and u2(t), and compartments 1 and
2 represent the function u3(t). Double circles denote compartments with non-zero
initial values. The compartment C is the central compartment of Fig. 6.2.

The input function parameters were chosen to result in simulated plasma
concentrations that were similar to the real plasma concentrations following a 10 mg

158



dose, and are shown in Table 6.2. Separate time series were generated for a short
time scale of 48 hours and for a longer time scale of 12 weeks. For each time scale,
four synthetic time series were generated:

Densely sampled, no noise The simulated plasma concentration was sampled at
100 time points equispaced between t = 0 and t = 48 h (short time scale) or
t = 12 weeks (long time scale).

Densely sampled, with noise The simulated plasma concentration was sampled
as above, and Student’s t-distributed noise was added to the samples.

Sparsely sampled, no noise The simulated plasma concentration was sampled at
the same time points as the real data.

Sparsely sampled, with noise The simulated plasma concentration was sampled
as above, and Student’s t-distributed noise was added to the samples.

The Student’s t-distributed noise had 4 degrees of freedom, and a scale
parameter equal to 10% of the true plasma concentration value. This type of noise
was used because the MCMC analysis methods use a Student’s t likelihood with these
parameters. The rationale for this choice of likelihood is described in Section 6.4.2.
The test datasets are shown in Figs. 6.6 and 6.7.

Parameter Interpretation Value Unit

n1 Number of compartments, first chain 10 -
a1 Initial amount, first chain 2700 pmol
ktr1 Rate constant, first chain 1.5 · 10−4 min−1

n2 Number of compartments, second chain 4 -
a2 Initial amount, second chain 800 pmol
ktr2 Rate constant, second chain 1.8 · 10−4 min−1

r1 Amplitude, first exponential 0.12 pmol · min−1

k1 Rate constant, first exponential 7.64 · 10−3 min−1

r2 Amplitude, second exponential 0.02 pmol · min−1

k2 Rate constant, second exponential 4.76 · 10−3 min−1

Table 6.2: Synthetic input model parameters for the exenatide model.

6.4 Materials and methods

All analysis was performed separately for the time series over short time scales (48
h) and long time scales (12 weeks). This was deemed necessary, as the different
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Figure 6.6: The short time scale synthetic test dataset generated for the exenatide
model.
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Figure 6.7: The long time scale synthetic test dataset generated for the exenatide
model.

time scales involved may have caused computational issues otherwise. For example,
when Karhunen-Loève basis functions are used, a large number of functions would be
required to accurately capture peaks at time scales that are short compared to the
overall time scale. Estimating the initial and later parts of the time series separately
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also results in separate priors and regularisation coefficients being assigned to these
parts. This can be an advantage when the characteristics of the input function are
expected to change during the course of the experiment, as discussed in Section 4.5.1.
When performing input estimation on noise-free test data, a proportional noise scaling
factor of 0.1% was assumed, as the estimation methods do not permit setting the
assumed measurement noise to zero.

6.4.1 Optimal-control methods

Optimal control-based input estimation was performed on all 8 synthetic and 9 real
time series. In all cases, a basis of 100 equispaced piecewise constant functions
was used. Five priors were used: penalisation of the first and the second derivative
of the function as well as of the logarithm of the function, and the maximum
entropy-based prior. When penalisation of a derivative of the function was employed,
nonnegativity constraints were added. Penalisation was performed on on a finite-
difference approximation of the derivatives, which is

ER =

∫ tf

ti

(
du(t)

dt

)2

dt ≈
NB−2∑
k=0

(uk+1 − uk)2

∆t
(6.11)

for the first derivative, and

ER =

∫ tf

ti

(
d2u(t)

dt2

)2

dt ≈
NB−2∑
k=1

(uk+1 − 2uk + uk−1)2

(∆t)3
(6.12)

for the second derivative. Here, ∆t is the length of each discretisation interval. Three
optimal-control methods were used: single shooting, multiple shooting and collocation.
The shooting and collocation intervals were chosen to coincide with the basis function
intervals. For collocation, polynomials of degree 3 with Radau collocation points
were used. The amount of regularisation was determined by using the discrepancy
criterion and treating the optimal-control problem as a constrained optimisation
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Method Decision variables Equality constraints Inequality constraints

Single shooting 100 0 1/101
Multiple shooting 400 300 1/101
Collocation 1300 1200 1/101

Table 6.3: Number of decision variables and constraints for the optimal-control
problem formulations of the exenatide model. The number of inequality constraints
are either 1 or 101, depending on whether nonnegativity of the input function is
enforced.

problem of the same type as as Chapter 4:

minimise
a

ER(a) (6.13a)

such that χ2 ≤ n (6.13b)

x(ti) = x(0) (6.13c)

and h(a,x(t)) ≤ 0 (6.13d)

where x(t) = Φ(ti, t,x
(0),a).

In all cases, the initial value of all compartments was assumed to be zero.
Table 6.3 shows the number of variables and constraints for the optimisation

methods. For single shooting, the number of variables is equal to the number of
basis functions. For multiple shooting, variables and constraints representing the
state variables at the beginning of each time interval are added to the optimisation
problem. When collocation is used, additional variables and constraints are added
for the state variables at the collocation points.

In summary, 8 + 9 time series were analysed using 3 optimisation methods
and 5 priors, making for a total of (8 + 9)× 3× 5 = 255 analyses.

6.4.2 MCMC methods

For the MCMC evaluation, four priors were used: penalisation of the first and second
derivative of the function as well as of its logarithm. Two function parameterisations
were tested: Karhunen-Loève functions with 20 basis functions, and cubic B-splines.
One B-spline knot was placed at each data point. Additional knots were added at
the start and end points to ensure that each interval was covered by 4 basis functions.
For densely sampled test data, knots were placed at the measurement points of
the real data, as the dimensionality of the problem would be excessive otherwise.
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The regularisation parameter τ was assigned a Gamma prior with hyperparameters
α = 10−3, β = 10−3, for consistency with the other chapters. Four MCMC sampling
methods were tested to update the basis function coefficients: single-component
RWMH, block RWMH, MALA and SMMALA. The regularisation parameter was
updated using Gibbs sampling. For each combination of prior, parameterisation,
sampling method, and data, the estimation procedure was allowed to run for 5

minutes of processing time.
Initialisation of the Markov chain was performed using the results from the

optimal-control methods, using the same methodology as in Section 4.4.2. For the
sparse noise-free test data, no successful results from the optimal-control methods were
available. In these cases, initial values were provided by optimal-control procedures
which assumed a measurement noise standard deviation of 10%.
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Figure 6.8: The effect of regularisation when converting piecewise constant basis
functions to B-spline coefficients. Left: The function coefficients for the regularised
solution attain absolute values which are no larger than 5, while the function coeffi-
cients for the unregularised solution have two values that are orders of magnitude
larger. Right: The resulting input functions are almost identical.

The piecewise-constant parameterisations of the optimal-control methods
were transformed to the parameterisations of the MCMC methods by least squares-
fitting, similar to the procedures of Chapters 4 and 5. For B-splines, it was found
that this reparameterisation was ill-conditioned in certain cases. This resulted in
parameters attaining values that are several orders of magnitude larger than is
necessary for accurately reproducing the original function. This behaviour was
considered undesirable, as the differences in magnitude may cause problems for the
sampling methods. It was found that this could be remedied by adding a quadratic
regularisation term to the least-squares cost, with a small regularisation parameter
on the order of 10−10. This is illustrated in Fig. 6.8. Note that this regularisation

163



term has a different purpose than the regularisation term in the input estimation. In
the former case, it is used to combat numerical issues, while it in the latter case is
used to avoid unrealistic oscillatory solutions.
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Figure 6.9: Comparison of a Gaussian and a Student’s t-distribution with 4 degrees
of freedom. While the distributions are visually similar, the Student’s t-distribution
has heavier tails, and will assign a higher probability density to outliers than the
Gaussian distribution.

Originally, the likelihood was assumed to be Gaussian. However, it was found
that this choice rendered the estimation methods sensitive to outliers in the data. The
light tails of the Gaussian distribution make measurements far from the prediction
very improbable under the model. Therefore, the estimated input function needs to
result in predictions which are close to the measurements at every measurement time
point in order to have a non-negligible probability density. When an outlier is present,
the input function may need to be highly oscillatory in order to make the predictions
fit the data, which will lead to the basis function coefficients having a distribution
with a large standard deviation. Since the regularisation parameter is estimated
from the distribution of the basis function coefficients, this will cause the estimated
regularisation parameter to be set to a very low value. This low regularisation
parameter will make the model assign non-negligible probability densities to a wide
range of oscillatory functions. As a result, a single outlier can cause the uncertainty
regions to become unrealistically large over the whole time series. For this reason,
it was decided to use a Student’s t likelihood with a small number of degrees of
freedom, which has heavier tails (Fig. 6.9) and thus allows larger deviations from the
prediction (Gelman et al. 2013). This is illustrated in Fig. 6.10. The likelihood for
the jth measurement yj is given by:
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Figure 6.10: Comparison of MCMC-based input estimation using a Gaussian likeli-
hood (top row) and a Student’s t likelihood with 4 degrees of freedom (middle row).
For the Gaussian likelihood, the measurement at time t = 0.3 weeks = 50 hours
drives down the value of the regularisation parameter, and causes large uncertainties
in the prediction. When a Student’s t likelihood is used, the prediction uncertainty
is decreased, at the expense of the measurement at t = 0.3 being ignored. The
kernel density estimates show how different likelihoods result in different estimates of
the regularisation parameter. The example shows data for the 7 mg dose, analysed
by SMMALA, using Karhunen-Loève basis functions and penalisation of the first
derivative of the logarithm of the input.
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(6.14)

where ν is the number of degrees of freedom, y(pred)
j is the predicted plasma concen-

tration and σj is a scaling factor for the standard deviation that was set to 10% of
the predicted plasma concentration in order to make the model comparable to the
eflornithine model. A number of estimation procedures was performed using ν = 4

and ν = 6 in order to assess the sensitivity of the model to the number of degrees of
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freedom. As the estimation results showed only minor differences, ν = 4 was chosen
for all reported results.

In summary, 8 synthetic and 9 time series were analysed using 4 choices of
priors, 2 choices of basis functions, and 4 choices of sampling methods, making for
(8 + 9)× 4× 2× 4 = 544 estimation procedures.

6.5 Results and discussion

6.5.1 Optimal-control methods

The accuracies of the optimal-control based methods were assessed on the test data by
computing RMSE values of the estimates in relation to the true input. Additionally,
the estimated total absorbed amount was compared to the true amount, as this
number is often of primary interest in practical applications, where an estimate of
the bioavailability is desired. The true total amount was obtained by integrating
Eq. (6.5) from t = 0 up to the time of the last measurement. The accuracy measures
are shown in Tables 6.4 and 6.5.

For the long-term data, the initial peak occurs on such short time scales that
it is not visible in the data. Evidently, no estimation method was able to capture
this peak. As a result, the contribution from this peak dominated the RMSE values,
making any meaningful comparisons between methods impossible. For this reason,
the results for the first day were removed before the RMSE was computed. Although
this makes for a fairer comparison, it is important to point out that in the presence
of such peaks, no method is likely to perform well.

For both short- and long-term data, the choice of prior had little or no effect
on the result when sampling was dense, regardless of the noise level. For sparse data,
the choices of prior did influence the results, although more data would be required
in order to draw definite conclusions. In the case of short-term data, log-domain
modelling may result in higher accuracy, although the difference in accuracy may not
be large enough to allow any strong conclusions. It can be noted that the short-term
test data were generated by a sum of exponential functions, which translate to straight
lines in the log domain. As a consequence, the true solution was assigned a low cost
under the log priors. Since little can be assumed about the release process of the
drug, it is difficult to assess which priors are justified from a statistical soundness
perspective. However, the estimates for different priors are relatively similar. Hence,
any prior might be able to produce sufficiently reliable results.

Robustness and performance summaries are shown in Tables 6.6–6.9. In
terms of robustness, the optimisation methods performed similarly on the short-term

166



Dataset Prior RMSE Normalised
(pmol/h) total amount

Dense, 0% noise 1der 0.11 1.00
1der, log 0.11 1.00
2der 0.11 1.00
2der, log 0.11 1.00
entropy 0.11 1.00

Dense, 10% noise 1der 0.21 0.95
1der, log 0.22 0.96
2der 0.22 0.96
2der, log 0.25 0.96
entropy 0.23 0.96

Sparse, 0% noise 1der - -
1der, log - -
2der - -
2der, log - -
entropy - -

Sparse, 10% noise 1der 0.29 1.00
1der, log 0.15 1.00
2der 0.30 1.01
2der, log 0.18 0.99
entropy 0.33 1.02

Table 6.4: Accuracy measures of the optimal-control methods for the short-term
exenatide test data series. Missing entries mean that no estimation procedures were
successful for the given time series and prior.

data, with a success rate of 80–85%. For the long-term data, both shooting methods
performed poorly, failing in half of the cases, while collocation was relatively successful.
In all cases, collocation was significantly faster than the shooting methods.

Figures 6.11 and 6.12 show estimation results for the sparse noisy test data,
which was deemed to be the most realistic test case. The short-term plots show how
the log-domain priors are able to capture the peak relatively accurately, while the
other priors tend to have too low initial release rates. For the long-term data, it can
be seen that when penalising the first derivative, the optimal solution is essentially a
piecewise linear function, whose knots are placed at the measurement times. This can
be explained by the steady-state nature of the model. The plasma concentration at a
time point is solely determined by the release rate at that time point, making the
likelihood a function of only the input at the measurement time points. The cheapest
way under this prior of connecting any two points is by a straight line (Kimeldorf
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Dataset Prior RMSE Normalised
(pmol/week) total amount

Dense, 0% noise 1der 1.40 0.99
1der, log 1.85 0.99
2der 1.37 0.99
2der, log 1.37 0.99
entropy 1.36 0.99

Dense, 10% noise 1der 22.85 0.95
1der, log 22.20 0.97
2der 20.45 0.96
2der, log 22.29 0.97
entropy 21.35 0.97

Sparse, 0% noise 1der 14.43 0.98
1der, log 15.62 0.97
2der 9.26 0.99
2der, log 9.90 0.99
entropy 8.62 0.99

Sparse, 10% noise 1der 55.73 0.88
1der, log 40.55 0.91
2der 40.64 0.92
2der, log 37.54 0.94
entropy 37.74 0.93

Table 6.5: Accuracy measures of the optimal-control methods for the long-term
exenatide test data series.

and Wahba 1970).

Median time (s) Median iterations Successful runs

Single shooting 29.1 24 34/40
Multiple shooting 12.2 23 33/40
Collocation 0.1 20 33/40

Table 6.6: Median running times, number of iterations, and the proportion of
successful estimation procedures for the short-term exenatide time series, organised
by optimisation method.

Figures 6.13 and 6.14 show examples of optimal-control-based input estimation
for the entropic prior. It can be seen that the amount of smoothing is relatively small,
with the predictions adhering closely to the measurements, except for intervals of
dense sampling. As a consequence, some of the predictions exhibit large oscillations,
which is most clearly seen for the short-term 7 mg time series.
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Figure 6.11: Comparison of optimal-control results for various priors using the sparse,
noisy short-term test time series.
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Figure 6.12: Comparison of optimal-control results for various priors using the sparse,
noisy long-term test time series.
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Median time (s) Median iterations Successful runs

1der 12.6 21 21/24
1der, log 8.0 21 19/24
2der 15.9 22 21/24
2der, log 17.9 30 18/24
entropy 10.3 21 21/24

Table 6.7: Median running times, number of iterations, and the proportion of
successful estimation procedures for the short-term exenatide time series, organised
by choice of prior.

Median time (s) Median iterations Successful runs

Single shooting 85.0 35 20/45
Multiple shooting 57.9 47 23/45
Collocation 0.2 23 41/45

Table 6.8: Median running times, number of iterations, and the proportion of
successful estimation procedures for the long-term exenatide time series, organised
by optimisation method.

Median time (s) Median iterations Successful runs

1der 70.2 37 10/27
1der, log 60.0 43 17/27
2der 72.8 44 9/27
2der, log 38.4 35 21/27
entropy 30.2 25 27/27

Table 6.9: Median running times, number of iterations, and the proportion of
successful estimation procedures for the long-term exenatide time series, organised
by choice of prior.
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Figure 6.13: Example results from performing input estimation on the real short-term
data, using an entropic prior.
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Figure 6.14: Example results from performing input estimation on the real long-term
data, using an entropic prior.
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6.5.2 MCMC methods

Summaries of the accuracy measures of the MCMC estimation procedures for the
test datasets are shown in Table 6.10 for the short-term data and in Table 6.11 for
the long-term data. The summaries show the mean RMSE values of the trajectories,
as well as mean and RMSE values for the estimates of the total amount. As in the
case of evaluating the optimal-control results, the initial time points for the long-term
data were omitted from the RMSE computations in order to ensure that differences
between the priors were visible.

Dataset Method Basis Prior RMSE Total amount Total amount
pmol/h normalised normalised

mean RMSE

Dense, Block RWMH KL 1der 0.30 1.00 0.017
10% noise Block RWMH KL 1der, log 0.17 1.01 0.020

Block RWMH KL 2der 0.25 1.00 0.017
Block RWMH KL 2der, log 0.11 1.02 0.021
Block RWMH spline 1der 0.55 0.95 0.059
MALA KL 1der 0.30 1.00 0.017
MALA KL 1der, log 0.17 1.01 0.021
MALA spline 1der 0.55 0.95 0.058
SMMALA KL 1der 0.31 1.00 0.017
SMMALA KL 1der, log 0.17 1.01 0.020
SMMALA KL 2der 0.25 1.00 0.017
SMMALA KL 2der, log 0.12 1.02 0.022
SMMALA spline 1der 0.55 0.95 0.058
SMMALA spline 2der 0.31 1.02 0.031

Sparse Single RWMH KL 1der, log 0.28 1.03 0.057
10% noise Block RWMH KL 1der 0.85 1.04 0.184

Block RWMH KL 1der, log 0.28 1.03 0.057
Block RWMH spline 1der 0.85 0.99 0.220
MALA KL 1der 0.85 1.04 0.176
MALA KL 1der, log 0.27 1.03 0.056
MALA spline 1der 0.86 1.00 0.227
SMMALA KL 1der 0.86 1.03 0.181
SMMALA KL 1der, log 0.28 1.03 0.054
SMMALA KL 2der 0.49 1.04 0.128
SMMALA KL 2der, log 0.18 1.02 0.046
SMMALA spline 1der 0.85 1.00 0.222

Table 6.10: Accuracy measures of the MCMC methods on the short-term exenatide
test datasets.

Similar to Chapters 4 and 5, no estimation procedures were successful for the
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Dataset Method Basis Prior RMSE Total amount Total amount
pmol/week normalised normalised

mean RMSE

Dense, Block RWMH KL 1der, log 25.11 0.98 0.028
10% noise Block RWMH KL 2der, log 21.94 0.97 0.032

MALA KL 1der, log 25.20 0.98 0.028
MALA KL 2der, log 21.79 0.97 0.031
SMMALA KL 1der 22.46 0.98 0.028
SMMALA KL 1der, log 25.07 0.98 0.028
SMMALA KL 2der 20.42 0.97 0.033
SMMALA KL 2der, log 21.83 0.97 0.031
SMMALA spline 2der 20.56 0.98 0.025

Sparse Block RWMH KL 1der, log 69.88 0.95 0.064
10% noise Block RWMH KL 2der, log 48.80 0.93 0.083

MALA KL 1der, log 70.49 0.95 0.066
MALA KL 2der, log 47.32 0.93 0.077
SMMALA KL 1der 49.96 0.94 0.076
SMMALA KL 1der, log 69.46 0.96 0.063
SMMALA KL 2der 46.21 0.92 0.090
SMMALA KL 2der, log 49.16 0.93 0.083

Table 6.11: Accuracy measures of the MCMC methods on the long-term exenatide
test datasets.

assumed noise-free test data. All of the following discussion refers to noisy data.
For the short time scale data, it is evident that log-domain priors consistently

performed somewhat better than their linear-domain counterparts in terms of RMSE,
regardless of the function parameterisation. The mean estimated total amount
appears to be relatively insensitive to the choice of prior. However, the RMSE of the
total amount estimate was considerably smaller for log priors than linear priors when
the data were sparse. The differences between penalisation of the first and second
derivative were relatively minor. There do not appear to be any major differences
between the Karhunen-Loève and B-spline parameterisations. However, the number of
comparisons that can be made is not very large, as few B-spline estimation procedures
were successful. In particular, no log-domain prior B-spline results are available.

For the long time scale data, the effect of the prior on the estimation accuracy
is inconclusive. For dense data, all priors achieved similar results. For sparse data,
differences did exist, but were relatively minor. It can also be noted that the prior
that achieved the lowest RMSE did not always achieve the best estimate of the total
amount. In all cases, the total amount was underpredicted to some extent.
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Example plots showing estimation results for sparse noisy short-term test
data are shown in Fig. 6.15. From these plots, it is clear that when the prior allows
negative values of the input function, the uncertainty regions can become relatively
large. These considerations are similar to those presented in Chapter 4. In contrast,
log-domain priors appear to work well. In particular, penalisation of the second
derivative in the log domain produces a credible interval which covers the true input
function, despite being very narrow. It is clear that log-domain priors should be
recommended for analysis of the short-term data.

Similar plots are shown for the long-term test data in Fig. 6.16. For these
data, nonnegativity constraints are generally not necessary — the data do not support
negative input values in any case. This may be an explanation for why log-domain
priors provided better accuracy for the short-term, but not for the long-term, data.
All of the priors cover the true input function by their credible intervals, excluding
the initial release peak, which is not visible in the data. The mean predictions appear
to be relatively insensitive to the choice of prior. However, the estimated uncertainty
is significantly larger for certain priors. This is particularly visible in the credible
interval resulting from penalising the first derivative in the log-domain, which appears
to be overly cautious. It can be noted that this prior had a considerably higher
mean RMSE value than the other priors, which can be seen as an indication that
mean RMSE is an appropriate measure of estimation accuracy. When a conservative
estimate is desired, one option is to perform estimation using several priors, and
report the largest obtained uncertainty. This may be the most satisfactory option
from a statistical soundness perspective.

For the cases where multiple sampling methods provided results for the same
data, prior, and parameterisations, the accuracy measures agree very well, increasing
confidence that the sampling was able to explore the posterior. However, in some
cases no comparisons are available, such as linear-domain long-term test data.

Note that the mean predictions from the MCMC estimation methods can be
noticeably different from the predictions of the optimal-control methods. This can be
clearly seen when comparing the results for penalisation of the first derivative for the
long-term data. While the optimal-control estimates were piecewise linear functions,
the mean predictions from the MCMC methods are much smoother. One reason for
this discrepancy is that the optimal-control methods provide MAP estimates, which
can be expected to be different from the pointwise mean predictions of the MCMC
methods. Additionally, neither the Karhunen-Loève nor the B-spline basis functions
are able to represent functions whose derivatives are discontinuous.

Measures of speed and robustness are shown in Table 6.12 for the short-term
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Median Median Median Successful
min ESS max RL required time runs

Single RWMH KL 4 238721 5304 3/24
spline 6 255575 3502 0/24

Block RWMH KL 229 141600 196 12/24
spline 11 1284669 2151 5/22

MALA KL 66 40268 674 9/24
spline 4 296641 3960 5/24

SMMALA KL 701 5904 82 21/24
spline 17 158546 2744 7/24

Table 6.12: Performance and robustness results for MCMC methods on the noisy
exenatide short-term datasets.

Median Median Median Successful
min ESS max RL required time runs

Single RWMH KL 7 156353 3633 1/28
spline 4 282334 5323 0/28

Block RWMH KL 17 627699 1041 11/28
spline 6 1394684 2226 3/28

MALA KL 34 48739 763 11/28
spline 5 328016 5224 1/28

SMMALA KL 659 4895 92 25/28
spline 12 127647 3401 4/28

Table 6.13: Performance and robustness results for MCMC methods on the noisy
exenatide long-term datasets.

and Table 6.13 for the long-term data. The quality of the generated samples was
assessed using the Raftery-Lewis diagnostics and the effective sample size. In both
tables, results are reported for sparse, noisy data, including test as well as real data. It
is evident that B-spline parameterisations do not result in a satisfactory performance.
For Karhunen-Loève basis functions, it is clear that SMMALA sampling outperforms
all of the other sampling methods. It is interesting to note that these results are
similar for short- and long-term data. This holds despite the fact that the time
scales and the input functions are very different. As the Karhunen-Loève functions
also appear to provide more accurate estimates than B-splines, this combination of
parameterisation and sampling method should be preferred.

Comparing the densely and sparsely sampled test data, it can be seen that
sparse data result in lower estimation accuracy, but not to a very large extent. RMSE
values typically differ by a factor of 2–3. It appears that sparsity does not affect the
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sampling performance — the number of successful estimation procedures are similar
for dense and sparse sampling. This result holds for both the short- and long-term
data.
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Figure 6.15: Examples of MCMC estimation results for the sparse noisy short-term
test data for various priors using Karhunen-Loève basis functions. All results shown
were obtained by SMMALA sampling.

Finally, examples of estimation results for the real data are shown in Figs. 6.17
and 6.18. Kernel density estimates of the posterior distribution of the bioavailability
are presented in Fig. 6.19. It can be noted that the estimated bioavailabilities,
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Figure 6.16: Examples of MCMC estimation results for the sparse noisy long-term
test data for various priors using Karhunen-Loève basis functions. All results shown
were obtained by SMMALA sampling.

ranging between 0.1 and 0.15, are significantly lower than previously reported val-
ues of 0.22–0.25 (European Medicines Agency 2011). There are several possible
explanations for this. The previously reported figures refer to bioavailability relative
to a subcutaneous administration of an immediate-release formulation, rather than
absolute bioavailability. Additionally, there may be large uncertainties in the model
parameter values. The models of Gao and Jusko (2012), Chen et al. (2013), and
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Li et al. (2015) are structurally similar, while the estimated parameter values are
substantially different. These parameters can clearly affect estimated bioavailability,
as a drug with a higher clearance requires higher release rates in order to maintain
the same plasma concentration.

0

5

R
a
te

(p
m

o
l/

h
)

Release rate, 2.5 mg

Estimated rate

0

25

C
o
n
c.

(p
M

) Plasma conc., 2.5 mg

Estimated conc.

Measurements

0

5

R
a
te

(p
m

o
l/

h
)

Release rate, 5 mg

0

25

C
o
n
c.

(p
M

) Plasma conc., 5 mg

0 6 12 18 24 30 36 42 48

Time (h)

0

5

R
a
te

(p
m

o
l/

h
)

Release rate, 10 mg

0 6 12 18 24 30 36 42 48

Time (h)

0

25

C
o
n
c.

(p
M

) Plasma conc., 10 mg

Figure 6.17: MCMC estimation results for the exenatide short-term data using
Karhunen-Loève basis functions and a prior based on the second derivative in the log
domain. In all cases, SMMALA was used as the sampling method. The 7 mg dose is
not shown, as no sampling method was successful for this dose with the given prior
and parameterisation.
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Figure 6.18: MCMC estimation results for the exenatide long-term data using
Karhunen-Loève basis functions and a prior based on the second derivative in the log
domain. In all cases, SMMALA was used as the sampling method. The 7 mg dose is
not shown, as no sampling method was successful for this dose with the given prior
and parameterisation.
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Figure 6.19: Kernel-density estimates for the bioavailability of the long-term release
profiles. The calculations assume a body weight of 90 kg, according to the data in
Fineman et al. (2011). In the displayed plots, estimation was performed using the
same settings as in Fig. 6.18. The solid lines denote means, and the dashed lines
show the 2.5th and 97.5th percentiles.
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6.6 Summary

In this case study, a nonlinear three-compartment PK model, which is similar to
the model in Chapter 4, has been studied. A major difference between these case
studies is that here, the input function is more complicated, exhibiting multiple
peaks. Additionally, here the study is conducted on various time scales, with the PK
model being essentially in steady state on longer time scales. It can be noted that it
would be possible to use an algebraic, steady-state approximation in order to make
estimation more computationally efficient, although this was not tested in this work.

For the MCMC analysis, the usual Gaussian likelihood function was replaced
by a Student’s t-distribution with 4 degrees of freedom. This was done to make the
method less sensitive to outliers in the data. Such outliers could otherwise drive the
regularisation parameter to a very low value and cause problems for the estimation
method, as shown in Fig. 6.10. However, it is important to note that such likelihood
functions can also cause the method to ignore variations in the data that should not
be ignored. Hence, the choice of likelihood function is a modelling decision that has
to be made on a case-by-case basis.

When converting between piecewise constant and B-spline basis functions, it
was found necessary to add a small regularisation term in order to combat numerical
issues. From a mathematical perspective, this is similar to the regularisation that is
used in the optimal-control methods, although the purpose is different.

For the optimal-control methods, the choice of prior did not appear to have
any major effect on the estimation accuracy, as the RMSE values usually differed
by at most a factor of two. The collocation methods were found to be faster
than the shooting methods by two orders of magnitude. Additionally, the shooting
methods were found to have major robustness issues on the long-term datasets, with
many estimation procedures failing to converge. Since no optimisation method was
successful in every case, one recommendation is to attempt to use collocation first,
and then attempt to use shooting methods if this fails.

For the MCMC methods, the log-domain priors achieved considerably better
accuracy than linear-domain priors for the short-term data. This may be because
only the log-domain priors provide the nonnegativity constraints that are necessary in
order to avoid unphysical solutions. For the long-term data, the choice of prior proved
to have less impact on accuracy, possibly because the estimates were mostly positive
even in the absence of nonnegativity constraints. For both the short-term and long-
term data, Karhunen-Loève basis functions together with SMMALA sampling were
superior in terms of computation time and robustness to any other combination of
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parameterisation and sampling method. Since the Karhunen-Loève parameterisation
also provided better estimation accuracy than the B-splines, a clear recommendation
can be made to use this combination for problems of the type considered in this
chapter.
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Chapter 7

Conclusions and future work

7.1 Summary of the performed work

In this thesis, methods for input estimation (deconvolution) for drug-discovery
applications have been investigated. The aim of input estimation is to infer the input
function driving a dynamical system, based on measurements of the system. In the
applications considered in this thesis, data are often sparse and irregularly sampled
in comparison to other fields of engineering. Input estimation is a nonparametric
technique which does not constrain the input function to have any particular form. A
framework has been presented in which several previously suggested methods can be
interpreted as a particular choice of prior, function parameterisation, and estimation
algorithm, for point estimates as well as for full Bayesian inference. This framework
provides a principled way to reason about and develop new input-estimation methods,
and is one of the major contributions of this work.

Based on this framework, two major classes of inference algorithms have been
selected: optimal control-based algorithms for point estimates and MCMC algorithms
for full inference. These algorithms have been implemented using CasADi, a software
for automatic differentiation and optimisation in dynamical systems. While these
algorithms are well-known in fields such as optimal control and computational statist-
ics, they have previously not been extensively applied to input-estimation problems
in drug-discovery. Introducing these algorithms to drug-discovery applications has
therefore been a major aim of this work. All of the selected combinations of prior,
parameterisation, and estimation algorithm have been applied to four dynamical
models from three case studies, using simulated as well as real data. In total, this
amounts to 780 optimal-control and 1, 676 MCMC estimation procedures. To the
best of my knowledge, this makes this thesis the most comprehensive evaluation of
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input-estimation methods for drug discovery conducted so far. The methods have
been evaluated using several criteria, as outlined in Chapter 1. The results from
these evaluations provide valuable information about the strengths and weaknesses
of the various methods, which will aid future development of new input-estimation
methods. The results from the individual case studies are summarised at the end of
each chapter. In this chapter, general conclusions, based on all the case studies, are
discussed.

7.2 Parametric and nonparametric methods

In drug discovery, data analysis is usually performed using parametric models.
Whether parametric or nonparametric techniques are appropriate depends on the
aim of the analysis, as well as on the available system knowledge and data. The
main strength of nonparametric methods is that they require fewer assumptions
about the system than parametric methods. When the objective of the analysis is to
model the available data, such as determining the bioavailability based on PK data,
nonparametric methods are an interesting alternative to the empirical compartmental
models that are otherwise typically used. However, another reason for building models
is to obtain a better understanding of the system studied. In this case, detailed
mechanistic models may be the more appropriate option, where the model structure
and the model parameters can help in drawing conclusions about the system. Input
estimation can still be useful as a first step in building such a model: being able to
predict the time course of a part of the system that cannot be measured directly can
help in formulating a hypothesis for the underlying mechanisms.

It should be noted that although nonparametric methods have the strength
of requiring fewer assumptions than parametric methods, they still do require some
assumptions to be made. These are reflected in the choice of prior. Although the
assumptions may be weaker than those in parametric models, they may also be
more difficult to justify. It is not evident whether penalisation of the first or the
second derivative is more appropriate. As an example, the estimation results for the
mouse body-weight model (Fig. 5.4) are strongly dependent on the choice of prior.
In a practical setting, it may be prudent to perform estimation using various priors,
in order to determine whether the estimation results are sensitive to the choice of
prior. This is more likely to be the case when data are sparse. Using nonparametric
methods on very sparse data essentially amounts to trying to draw conclusions based
on neither good data nor strong assumptions. This is not likely to be successful.

In summary, input estimation is useful in situations where the focus is on
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analysing the data at hand, rather than on obtaining a detailed understanding of the
system under study, and when it is not possible or desirable to construct a parametric
model. Nonparametric methods aim to let the data speak for themselves, which is
only possible when the data are sufficiently densely sampled.

7.3 Comparison of input-estimation methods

Once a decision has been made to use input estimation, the next question that needs
to be addressed is what estimation method to use. Below, the investigated methods
are compared to each other, based on the evaluation criteria outlined in Chapter 1.
The two major classes of algorithms are intended for different types of problems.
While optimal-control algorithms are generally able to produce point estimates in
a short amount of time, MCMC algorithms provide full Bayesian posteriors, at
considerable computational cost.

Accuracy can only be measured on data for which the true input is known,
and hence this assessment can only be performed on simulated data. Evaluation has
mainly been performed using sparse and noisy simulated data, as these represent
the most realistic case. The accuracy depends on the choice of prior in the case of
optimal control-based methods, and on the choice of prior as well as on the function
parameterisation in the case of MCMC methods. The choice of optimisation or
sampling method does not affect the accuracy, as these choices do not affect the
underlying probabilistic assumptions. Accuracy was measured using RMSE for the
optimal control-methods and mean RMSE for the MCMC methods. The choice of
prior clearly affected the resulting estimated functions qualitatively. In terms of
RMSE, the maximum differences between priors were in most cases approximately a
factor of 1.5–2. In the evaluation of MCMC methods on eflornithine and short-term
exenatide data, log-domain priors systematically performed better than linear-domain
priors. This may be partly explained by noting that linear-domain priors do not
impose nonnegativity constraints, which is an important issue in regions where
measurement values are close to 0 and sampling is sparse. Considering the choice of
input function parameterisation, Karhunen-Loève basis functions generally achieved
a higher accuracy than B-splines. The comparison of parameterisations is relatively
incomplete, as in many cases the B-spline estimation methods failed and did not
produce any results.

For the cases where only point estimates were desired, very good computational
performance could be achieved. Across all case studies, collocation methods had
running times of 0.1–0.5 s on a typical desktop computer, while shooting methods
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typically required of the order of seconds or tens of seconds. Achieving high speed
when computing full posteriors posed a considerably greater challenge. For each
model, the highest-performing MCMC method achieved a median required running
time of 60–90 s. However, no method was consistently successful across all case
studies. While SMMALA with Karhunen-Loève basis functions achieved the highest
performance for the eflornithine, human body weight, and exenatide datasets, this
method required one order of magnitude more computing time for the mouse body
weight dataset, where instead block RWMH with Karhunen-Loève functions proved
to be superior. The fact that the sampling performance is problem-dependent to
such a large extent has considerable practical implications. If it cannot be known
beforehand which method will perform well, the modeller may be forced to test
several methods, each of which could potentially be time-consuming. Block RWMH
generally requires a large number of samples to be generated, but the required amount
of computation per sample is low. In contrast, the MALA and SMMALA approaches
generate higher-quality samples, at the expense of a longer computation time per
sample. Single-component RWMH combines the worst qualities of the other methods.

These results support the conclusion that point-estimation algorithms have
value, even though algorithms that can estimate the uncertainty provide more
information. A modeller needs to have a certain amount of expertise in selecting,
using, and diagnosing MCMC algorithms in order to apply them effectively. In
contrast, optimal-control algorithms are easier to use for a casual user. If the
estimation procedure fails, optimal-control algorithms can detect this automatically,
and either attempt to use a different algorithm, or notify the user.

In terms of usability, most of the evaluated methods were chosen in order
to require as little manual setting of algorithmic parameters as possible. This was
largely done for practical reasons, in order to make it possible to run a large number
of estimation procedures. The main exception to this principle is the L-curve method
which was briefly described in Chapter 4. All methods require the number of basis
functions to be manually specified. The collocation methods additionally require a
choice of type and order of the interpolating polynomials.

All methods are based on similar statistical principles. The statistical sound-
ness of the methods depends on to what extent the chosen prior and likelihood are
appropriate to the problem at hand. Assessing the suitability of a prior is a difficult
problem, as discussed in Section 7.2. Discussions on the justification of priors can
be found in the case study chapters. In all cases, the underlying assumptions of the
methods are clearly and explicitly stated.

For the eflornithine and the body-weight case studies, the optimal-control
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methods achieved success rates of around 95%, irrespective of the choice of optimisa-
tion method. In the exenatide case study, robustness issues were found. In particular,
for long-term data, only collocation methods performed relatively robustly, with
shooting methods having failure rates of around 50%. In general, no method was
universally successful. The robustness performance of the MCMC methods closely
followed the computational speed performance, as a major cause of failed estimation
procedures was failure to generate a sufficiently large number of samples in the
allocated time. Hence, block RWMH with Karhunen-Loève basis functions achieved
the highest success rate for the mouse body-weight model, while SMMALA with
Karhunen-Loève basis functions achieved the highest success rate for all other models.
For the eflornithine and exenatide datasets, the most successful method achieved
success rates of 90–100%. For the body-weight case study, the highest performing
methods achieved approximately 80% for the mouse and 60% for the human model.

In terms of usefulness, it is evident from the case studies that the performance
of the methods can be highly problem-dependent. This demands a certain amount of
experimentation on the part of the modeller when a new dataset is being analysed.

In summary, when point estimates are required, collocation methods were
considerably faster than the alternatives, and in certain cases have also been shown to
be more robust. When full posteriors are required, no single MCMC sampling method
performed adequately in every investigated case. However, SMMALA achieved higher
computational speed and robustness than the other methods in the majority of cases.
Karhunen-Loève basis functions have been shown to perform consistently better than
B-splines, both in terms of estimation accuracy, computational speed, and robustness.
The choice of prior did not, in general, have a major impact on the measured accuracy.
However, log-domain priors are preferable in cases where it is important to enforce
nonnegativity constraints.

7.4 Summary of results

In the previous section, the investigated methods were compared to each other. Here,
the highest-performing methods will be discussed in relation to the criteria that were
presented in Chapter 1.

Ability to handle nonlinear models. In this work, only methods which are able
to handle nonlinear models have been investigated.

Ability to provide uncertainty estimates. The MCMCmethods do provide such
estimates. However, a decision was made to also investigate optimal-control
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methods, which lack this capability, as these methods could be shown to have
better performance in other regards, such as computational speed and ease of
use.

Good performance. This is discussed in further detail below.

The performance criteria for the input-estimation methods were satisfied to
the following extent:

Accuracy. The accuracy of the methods is highly dependent on the sparsity of
the measurements, as well as on the characteristics of the input function. For
smooth functions which are consistent with the chosen prior, such as the short-
term exenatide dataset in Fig. 6.15, a very high accuracy can be achieved.
On the other hand, input functions that make sharp transitions immediately
following a period of sparse data, as shown in Fig. 5.9, cannot be expected to
be accurately recovered.

Computational speed. The achieved computational speed for the optimal-control
methods is clearly good enough for practical use. For the MCMC methods,
whether this is the case depends on the intended use. The speed is clearly
adequate if estimation only needs to be performed once, but is lower than ideal
for exploratory data analysis, where the modeller is working with the data
interactively. For interactive use, it would be preferable to see the results in
near-real time. From a user’s perspective, having to wait a full minute in order
to fit a single function may seem excessive.

Usability. Apart from the L-curve methods, all of the investigated methods require
a relatively small amount of manual settings. However, all methods require the
user to select the number of basis functions. It has not been investigated to
what extent the methods are sensitive to this number.

Statistical soundness. In all of the investigated methods, the assumptions about
the input function are encoded in the choice of prior and likelihood. Hence,
the assumptions are clearly stated. The main difficulty in terms of statistical
soundness is in justifying the choice of prior, as discussed in Section 7.2.

Robustness. The success rate of the best-performing methods reached approx-
imately 90–95% in several cases. However, robustness was not universally
satisfactory. The most successful MCMC method for the human body-weight
dataset (SMMALA with Karhunen-Loève basis functions) achieved a success
rate of approximately 60%.
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Usefulness. The optimal-control methods appear to be well suited for all of the in-
vestigated datasets. For the MCMC methods, it proved to be challenging to find
methods which are universally applicable. The most successful method overall,
SMMALA with Karhunen-Loève basis functions, performed satisfactorily on 3
out of 4 datasets.

7.5 Suggestions for future work

Future work could address some of the shortcomings of the methods presented here.
In order to improve accuracy and statistical soundness, it could be worthwhile to
investigate whether other priors would be more suitable for these applications. In
particular, the theory of Gaussian processes provides a rich selection of priors which
could be evaluated. It may also be possible to incorporate several priors into the
model, and let the estimation algorithm automatically select between them. As an
example, the prior could involve one term penalising the first derivative and one term
penalising the second derivative, each with its own regularisation parameter. If the
data force the input function to attain a form which is improbable under one prior,
its regularisation parameter will be forced to be small, as discussed in Section 6.4.2.
Hence, the regularisation term which fits the data better would in practice dominate.
Another possible method is to let the choice of regularisation term be a parameter
which is sampled together with the other parameters in the Markov chain. This
would be a form of Bayesian model averaging.

Improving computational speed for fully Bayesian methods would be useful.
Since MCMC methods are not known to be fast, it could be of interest to investigate
techniques based on analytical approximations, such as variational methods. When
only a point estimate is desired, the collocation methods investigated here are probably
already fast enough for any practical purposes.

Usability could be improved by finding methods to automatically set algorithm
parameters such as the collocation method settings and the number of basis functions.
In the latter case, it may be possible to allow the number of basis functions to be
estimated as part of the input-estimation procedure. This could be achieved by
treating this number as a parameter in the probabilistic model, similar to how the
regularisation parameter is treated. At each stage of the Markov chain, the number
of basis functions would be sampled. Since the number of parameters to be estimated
is variable, it would be necessary to use transdimensional sampling methods, such as
the methods that were briefly mentioned in Section 2.4.2.

In order to improve robustness, it is necessary to understand why methods fail.
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Convergence problems in optimal-control methods may be the result of numerical
issues. Finding automated ways to reparameterise the models could help here.
For the MCMC methods, ensuring robustness would involve developing sampling
methods which can consistently generate sets of samples that characterise the true
posterior well in typical drug-discovery applications. Finding such methods would
also improve usability, in that the user would not be required to manually select
sampling methods. Another way to increase robustness is to develop methods for
structural identifiability in input-estimation problems, which could help ensure that
the problem has a well-defined solution.

It is also desirable to develop more user-friendly software for input estimation.
Currently, general-purpose software for MCMC sampling does not include support
for manifold sampling algorithms, which where shown in this work to have major
advantages over more traditional sampling algorithms. This lack of support makes
these methods inaccessible to non-experts. Productivity could also be increased by
developing software which allows the user to specify the input-estimation problem at
a high level of abstraction, reducing the need to manually specify details about how
estimation is performed.

This thesis presented an exploratory study, which involved multiple compar-
isons between models, datasets, and estimation methods. In order to ensure that
the results here hold in general, it would be necessary to design studies which aim
to answer more specific questions about method performance, and apply formal
statistical testing to the results.
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Stephan Rössner. ‘Effects of the cannabinoid-1 receptor blocker rimonabant
on weight reduction and cardiovascular risk factors in overweight patients:
1-year experience from the RIO-Europe study’. In: The Lancet 365.9468 (2005),
pp. 1389–1397.

[209] Luc Van Gaal, Xavier Pi-Sunyer, Jean-Pierre Després, Christine McCarthy
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Appendix A

Data

A.1 Eflornithine data

Dose 20 mg/kg Dose 1500 mg/kg

Time (h) Plasma conc. (µmol/mL) Time (h) Plasma conc. (µmol/mL)

0.52 0.0124 1.45 0.252
0.87 0.0176 2.73 0.314
1.13 0.0192 4.15 0.508
1.67 0.0157 5.57 0.774
2.18 0.00871 6.95 0.646
2.70 0.00614 8.52 0.348
3.15 0.00506 9.95 0.106
3.83 0.00374 11.85 0.0643
4.78 0.00150 14.08 0.0285
7.53 0.00182 20.8 0.0225

24.02 0.0290

Table A.1: Eflornithine plasma-concentration data (Johansson et al. 2013).
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A.2 Mouse body-weight data

Time Vehicle R1c mAb opt1 R1c mAb opt1 R1c mAb opt1
(days) (0.3 mg/kg) (3 mg/kg) (10 mg/kg)

-9 37.1 37.0 36.9 37.0
-1 37.7 38.1 37.4 38.0
0 38.3 38.6 37.8 38.4
1 38.3 37.9 36.9 37.5
2 37.9 37.2 35.9 36.2
3 37.7 36.6 35.0 35.3
4 37.5 36.4 34.2 34.2
5 37.7 35.9 33.4 33.6
6 37.8 35.9 32.5 32.5
7 37.7 36.3 32.0 31.9
8 37.9 36.3 31.5 31.1
9 37.9 36.8 31.5 30.6
10 37.9 36.6 31.4 30.1
12 38.0 36.8 32.3 29.2
14 38.2 36.4 32.8 28.5
16 39.0 37.5 33.3 28.5
19 39.6 37.9 34.7 29.5
21 39.6 38.6 35.2 30.5
23 40.5 39.2 36.5 31.7
26 41.1 39.9 36.8 33.1
28 41.5 39.9 37.3 33.7
30 42.5 40.9 39.0 35.6

Table A.2: Body weight in g for the mice treated with R1c mAb opt1 (Träg̊ardh
et al. 2016).
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Time R1c mAb opt2 R1c mAb opt2 R1c mAb opt2
(days) (0.3 mg/kg) (3 mg/kg) (10 mg/kg)

-9 36.8 36.9 37.0
-1 37.4 36.8 36.8
0 37.6 36.9 37.7
1 37.5 36.3 36.9
2 36.9 35.8 35.8
3 36.7 35.1 34.8
4 36.8 34.7 34.0
5 36.6 34.4 33.4
6 36.4 34.4 32.4
7 36.5 34.5 31.9
8 36.7 34.5 31.2
9 37.3 34.9 30.8
10 37.3 34.9 30.5
12 37.6 35.4 30.3
14 38.0 36.0 30.5
16 38.8 36.7 31.3
19 38.7 37.5 32.3
21 39.2 37.9 32.7
23 39.8 38.8 34.1
26 39.9 38.8 35.3
28 39.8 38.9 35.5
30 40.6 40.2 37.2

Table A.3: Body weight in g for the mice treated with R1c mAb opt2 (Träg̊ardh
et al. 2016).
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A.3 Human body-weight data

Rimonabant, 20 mg Orlistat, 120 mg bds Rimonabant, 20 mg
Van Gaal et al. 2008 Torgerson et al. 2004 Pi-Sunyer et al. 2006

Time (days) BW (kg) Time (days) BW (kg) Time (days) BW (kg)

0 101.0 0 110.4 0 103.0
28 99.3 84 103.7 14 102.3
56 97.9 168 100.8 28 101.4
112 95.7 364 99.8 84 98.7
140 94.9 448 100.6 112 97.9
168 94.1 532 100.6 140 97.1
196 93.7 616 101.1 168 96.2
224 93.2 728 101.6 196 95.7
252 92.8 812 102.5 224 95.3
280 92.8 252 94.8
308 92.7 280 94.8
336 92.6 308 94.6
364 92.4 336 94.6

364 94.4

Sibutramine, 15 mg Sibutramine, 15 mg Taranabant, 4 mg
Smith et al. 2001 Hauner et al. 2004 Aronne et al. 2010

Time (days) BW (kg) Time (days) BW (kg) Time (days) BW (kg)

0 86.8 0 99.5 0 99.2
30 83.8 28 95.7 14 97.7
60 82.3 56 93.0 28 96.5
90 81.3 84 91.2 56 94.9
120 80.8 126 89.9 84 93.7
150 80.5 168 89.1 112 92.8
180 80.2 210 88.8 140 92.1
210 80.2 252 88.9 168 91.6
240 80.3 294 88.8 196 91.2
270 80.2 336 89.2 224 91.0
300 80.2 378 89.8 252 90.6
330 80.5 280 90.6
360 80.5 308 90.6

336 90.5
364 90.6

Table A.4: Human body-weight data, part 1 (Van Gaal et al. 2008; Torgerson et al.
2004; Pi-Sunyer et al. 2006; Smith and Goulder 2001; Hauner et al. 2004; Aronne
et al. 2010).
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Topiramate, 96 mg Topiramate, 192 mg Topiramate, 256 mg
Wilding et al. 2004 Wilding et al. 2004 Wilding et al. 2004

Time (days) BW (kg) Time (days) BW (kg) Time (days) BW (kg)

0 105.3 0 103.3 0 106.3
14 104.6 14 102.6 14 105.6
28 103.5 28 101.5 28 104.4
42 102.2 42 100.3 42 103.2
56 101.6 56 99.2 56 102.1
84 100.9 84 97.8 84 100.6
112 99.9 112 96.5 112 99.3
140 99.1 140 95.3 140 98.1
168 98.7 168 94.7 168 97.4
196 98.1 196 93.8 196 96.6
224 97.9 224 93.2 224 95.6
252 97.2 252 92.7 252 94.8
280 96.9 280 91.9 280 94.4
308 96.7 308 91.2 308 93.8
336 96.4 336 91.1 336 93.4
364 96.3 364 90.7 364 93.4
392 96.3 392 91.0 392 93.3
420 95.7 420 91.0 420 92.7

Rimonabant, 20 mg Rimonabant, 20 mg
Van Gaal et al. 2005 Despres et al. 2005

Time (days) BW (kg) Time (days) BW (kg)

0 101.7 0 93.3
14 100.9 28 91.3
28 99.8 56 89.8
56 98.4 84 88.2
84 97.0 112 87.5

112 96.5 140 86.6
140 95.6 168 85.7
168 94.7 196 85.6
196 94.3 224 85.2
224 94.0 252 84.7
252 93.6 280 84.8
280 93.4 308 84.6
308 93.4 336 84.6
336 93.2 364 84.7
364 93.1

Table A.5: Human body-weight data, part 2 (Wilding et al. 2004; Van Gaal et al.
2005; Després et al. 2005).
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Lorcaserin, 10 mg bid Phenterm.+Topiram. Phenterm.+Topiram.
Smith et al. 2010 3.75+23 mg 15+92 mg

Allison et al. 2012 Allison et al. 2012

Time (days) BW (kg) Time (days) BW (kg) Time (days) BW (kg)

0 100.4 0 118.4 0 115.1
14 98.7 28 115.5 28 110.8
28 97.4 56 114.3 56 108.3
56 96.1 84 113.5 84 106.5
84 94.9 112 112.4 112 104.9
112 94.0 140 111.8 140 103.6
140 93.5 168 111.1 168 102.4
168 92.9 196 110.6 196 101.5
196 92.6 224 110.4 224 100.9
224 92.4 252 110.2 252 100.4
252 92.2 280 109.9 280 99.9
280 92.1 308 110.0 308 99.9
308 92.2 336 110.2 336 99.9
336 92.4 364 110.3 364 99.7
364 92.3 392 110.4 392 100.0
392 92.8
420 93.0
448 92.9
476 93.2
504 93.3
532 93.5
560 93.8
588 93.9
616 94.0
644 94.2
672 94.4
700 94.6
728 94.9

Table A.6: Human body-weight data, part 3 (Smith et al. 2010; Allison et al. 2012).
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A.4 Exenatide data

Time (h) 2.5 mg 5 mg 7 mg 10 mg

0.25 1.91 3.91 13.78 4.63
0.5 4.68 8.34 19.21 11.67
1 7.14 14.37 21.82 20.32
2 5.37 14.57 23.83 23.94
4 5.93 13.36 32.28 27.15
8 3.02 8.95 39.93 21.42
12 1.57 5.07 22.02 11.16
16 1.22 4.76 20.41 7.14
24 1.21 3.31 16.09 6.14
30 0.60 2.44 6.94 5.63
36 0.60 2.40 4.53 5.03
48 1.18 2.71 4.93 4.02

Table A.7: Plasma concentration in pM for the short-term exenatide data (Fineman
et al. 2011).

Time (weeks) Vehicle 2.5 mg 5 mg 7 mg 10 mg

0 3.53 1.32 1.89 1.48 2.04
0.3 2.49 1.72 4.05 16.08 6.11
0.45 1.74 1.63 3.33 5.05 4.05

1 2.05 2.25 4.61 4.37 8.42
2 2.00 4.90 14.23 14.71 17.86
3 1.89 3.13 10.58 13.65 13.39
4 1.76 4.90 9.62 13.39 14.11
5 1.60 7.92 13.65 18.52 26.89
6 1.96 6.55 28.22 21.93 29.94
7 1.80 11.55 21.09 23.01 30.75
8 1.96 9.33 19.64 20.57 14.93
9 1.70 4.50 6.01 13.15 13.23
10 1.50 1.75 2.89 3.81 3.89
11 3.13 1.88 2.89 5.61 2.61
12 1.70 0.97 1.84 1.44 2.12

Table A.8: Plasma concentration in pM for the long-term exenatide data (Fineman
et al. 2011).
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