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Abstract 

We describe charge transport along a polymer chain with a generic theoretical model 

depending in principle on tens of parameters, reflecting the chemistry of the material. 

The charge carrier states are obtained from a model Hamiltonian that incorporates 

different types of disorder and electronic structure (e.g. the difference between homo- 

and co-polymer). The hopping rate between these states is described with a general rate 

expression, which contains the rates most used in the literature as special cases. We 

demonstrate that the steady state charge mobility in the limit of low charge density and 

low field ultimately depends on only two parameters: an effective structural disorder and 

an effective electron-phonon coupling, weighted by the size of the monomer. The results 

support the experimental observation [N. I. Craciun, J. Wildeman, and P. W. M. Blom, 

Phys. Rev. Lett. 2008, 100, 056601] that the mobility in a broad range of (polymeric) 

semiconductors follows a universal behaviour, insensitive to the chemical detail.  

 

The charge mobility in the now vast class of semiconducting polymers has proven itself 

very difficult to rationalize. Modest changes in the chemistry cause large variation in 

measured mobility and the space of possible parameters that can be explored (including 

molecular weight and processing) defied any attempt at truly predictive modelling. On 

the other hand, the essence of charge transport (temperature, field and charge carrier 

dependence) can be captured by fairly simple models depending on just few parameters 

[1-3]. The intriguing experiments of ref. [4] show that, for a large number of materials, 

the low-charge-density mobility   obeys a simple temperature dependence 

 0 Bexp aE k T   , where the parameter 0  is universal for all materials and the 

only material-dependent parameter is the activation energy aE  ( Bk T  is the thermal 

energy). It is certainly surprising that the chemical and morphological [5] complexity of 

organic semiconductors can be reduced to a single effective parameter for each material. 

In this work we consider a rather general model that should mimic the large parameter 

space encountered in realistic polymers and study how many distinct effective 

parameters actually affect the charge mobility, through a parameter space exploration. 

This approach is somewhat opposite with respect to the most common strategies that 

start with a less general model that already contains a limited number of parameters (as 

in Gaussian disordered models [3] or mobility edge models [6] with four and two 

parameters, respectively). In particular, we allow (i) for a more general (and realistic) 

electronic structure and (ii) for a more general hopping rate expression. 

The main assumptions of this work are that the disorder in the one-dimensional 

electronic Hamiltonian determines the localization of the carrier states and that the 
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electron phonon couplings interactions determine the hopping rates between these states 

[7,8]. We therefore first describe the disordered Hamiltonian in terms of a few 

parameters, then we introduce the models and parameters for the hopping rate and finally 

a model to describe the mobility.   

In a realistic model for charge transport the delocalization of the single electron states 

must vary with energy because it was observed from atomistic simulations  [9-11] (and 

expected from localization theories [12]) that states at the band edge are considerably 

more localized than states few 
Bk T  from the edge. So, rather than assuming a density of 

states (DOS) and an independent constant localization length we generate the one-

electron states involved in the transport by computing the eigenstates of a random 

electronic Hamiltonian [13]. This is defined for a polymer chain as 

 el

0
ˆ 1 . .     n n

n n

H n n n n h c   (1) 

n  represents the transport-relevant orbital of the n-th monomer (site). The site energies 

εn and the couplings τn between neighbouring sites are set to realistic values and they 

include diagonal and off-diagonal disorder, respectively. An alternating copolymer 

structure can also be obtained by assigning different ranges of energies to even and odd 

sites. From the diagonalization of el

0Ĥ  we obtain the wavefunctions 0

i nin
c n   

and the energies Ei of the electronic states. Starting from few realistic parameters 

(energies, couplings and disorder), this model Hamiltonian naturally provides a detailed 

energy landscape of electronic states localized by static disorder (see Figure 1) and a 

realistic DOS. To illustrate the results of this work we consider 14 models of random 

Hamiltonian, different for the average (ε0 and 𝜏0) and standard deviation (σε and σ𝜏) of the 

matrix elements εn and τn, assumed to be normally distributed. They are summarized in 

Table 1 and chosen to reproduce the range of charge mobility observed experimentally 

(see below). 
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Figure 1. Electronic energy landscape for the lowest energy eigenstates of a disordered polymer 

chain of 1000 monomers with periodic boundary conditions and parameters of model 5. Each 

eigenstate is represented by a horizontal segment centered on the site where 
2

nic  is maximum, 

whose length is the localization length, defined as  
1/2

222 n n . The transitions between 

eigenstates which contribute most to the steady state mobility are represented by arrows. They 

are selected to make up 90% of the total particle velocity (definition given in the SI). One should 

note the increased delocalization at higher energy and the importance of delocalized states in 

promoting long range displacement of the carrier.   

 

Table 1. Hamiltonian parameters in eV for different models of disorder labelled 1-14. ε0 is 

always 0.0 eV and defines the zero of our energy scale. 

Disorder 

model 

average 

coupling 

𝜏0 

diagonal 

disorder 

σε 

off-

diagonal 

disorder 

σ𝜏 

1 0.25 0.0 0.05 

2 1.0 0.0 0.1 

3 0.5 0.0 0.1 

4 1.5 0.0 0.1 

5 1.0 0.1 0.1 

6 1.0 0.1 0.15 

7 0.5 0.1 0.1 

8 1.5 0.1 0.1 

9 1.0 0.2 0.1 

10 1.5 0.0 0.15 

11 1.0 0.1 0.2 

12 1.0 0.2 0.2 

13 1.5 0.2 0.2 

14* 1.0 0.2 0.2 
*with a 1 eV gap between odd and even sites 
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The next step is to express the rate of hopping between the eigenstates of el

0Ĥ , a problem 

that was described in detail in ref. [8], with the main physical ideas summarized here. 

The transition between localized electronic states is caused by electron-phonon coupling 

terms. For an intuitive picture we can imagine that a displacement from the equilibrium 

position along one of these modes k with energy 
I

k  linearly couples any two electronic 

states i and j with a coupling strength ,ij kM . The transition between states i and j can be 

therefore induced by mode k, which we call inducing mode. Following ref. [14] we 

incorporate the effect of the distance between initial and final states by parametrizing 

the coupling as 
2 222

,ij k k ni nj

n

M M c c  , i.e. states are coupled more if they overlap 

more. Without other electron-phonon coupling terms this transition is only possible 

between states whose energy difference is 
I

k  because one phonon is always created or 

destroyed in the hopping process and the hopping rate would take the standard form [15] 

     
2

I I I I
, ( ) 1 ( ) 


   

 
 

      i j ij ijij k k k k k
k

k M N E N E ,  (2) 

with ΔEij being the electronic energy difference between the states, the summation 

running over the inducing modes k; N is the boson occupation and  the Dirac delta.  

However, transitions between states with larger energy difference are possible via the 

exchange of multiple phonons with the system. These are the phonons associated with 

the relaxation of the nuclear geometry following the transition between states i and j, i.e. 

in the language of Marcus theory [16], those  associated with the reorganization energy 

ij  for the hopping process. We have called these modes accepting as they can make up 

for larger energy difference between initial and final states; they are also the modes 

associated with polaronic effects. The resulting rate is a generalization of eq. (2) where 

the Dirac delta is replaced by a broader function, the Franck-Condon weighted density 

of states  FCWT, ij E : 

   

 

2
I I

FCWT,,

I I
FCWT,

( ) 1

( ) .

i j ijijij k k k
k

ijijk k

k M N E

N E


  

  








   

  


   (3) 

The analytical expression for  FCWT, ij E is more manageable if one makes the 

customary assumption that (C) (Q)+ij ij ij   , i.e. that the reorganization energy is the sum 

of a classical component due to low frequency modes 
(C)

Q=(1 )ij ijf  , and a quantum 

component 
(Q)

Q=ij ijf  , due to one effective mode with energy 
A  [17]: 

 
2

FCWT, , '(C)
'B

1
( ) FC

4



   ij ij ww

w wij

E P w
k T
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2

C)

B

( ( ' ) )
exp
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ij

ij

E w w

k T
. (4) 

In eq. (4), w and w’ are the vibrational quantum numbers of the accepting mode in the 

initial and final states, P(w) the Boltzmann population in the initial state and , 'FCij ww  the 

Franck-Condon integrals (explicitly given in the SI and depending on 
(Q)

ij ).  It was 

shown [8], that the rate expression Error! Reference source not found.  is extremely 

general as it can be reduced to Miller-Abrahams [18], Marcus [16], Marcus-Levich-

Jortner [17] or Vukmirovic [15] rates when the appropriate limits are taken.  

The total reorganization energy ij  depends on the delocalization of both states i and j 

through the relation  
1

1 IPR IPRij i j 


  , where  
1

4

( ) ( )IPR


 i j ni jn
c  is the 

inverse participation ratio of state i(j) (a measure of how many sites share the charge) 

and 1  is the reorganization energy for the removal of a carrier from a single site. Note 

that, in the limit 1 0   of hopping between delocalised states, eq. 3 becomes identical 

to eq. 2 as expected. The role of the accepting modes is therefore determined by the 

material dependent parameters 1 , A  and Qf . 

Given a set of hopping rates the mobility can be computed in several ways. Here we use 

an adaptation of the method originally proposed in [19] with the detail given in [7] and 

the SI, based on evaluating the steady state solution of the master equation in the limit 

of low field and low carrier density (i.e. ignoring inter-carrier Coulombic interactions 

[20]). We will compare with experimental data extrapolated to the same limit, while 

generalizations, including to non-equilibrium situations, would be possible within the 

model but are not considered here. We ignore the role of inter-chain hopping, which has 

been shown to be correct for polymers with very long persistence length [21], with 

means to extend the results to the general case recently proposed in [13] at the cost of 

additional parameters in the model. These corrections could become more significant if 

the inter-chain hopping had substantially different transport characteristics from the 

intra-chain one. However, experiments on aligned thin films indicate no anisotropy of 

mobility [22] (and activation energy [23]), supporting the approximation proposed here 

in the first instance. To evaluate the mobility one needs to introduce the distance between 

monomers d as an additional model parameter, which we initially set to a value of the 

correct order of magnitude, 1 nm, while the role of this parameters is further discussed 

below.  

To summarize, the model incorporates (i) parameters of the electronic Hamiltonian that 

determine DOS and localization characteristics (𝜏0, σε, σ𝜏), (ii) parameters determining 

the local electron phonon coupling ( 1 , A , fQ), (iii) parameters determining the non-

local electron phonon coupling (the set of 
I

k  and kM ), (iv) the inter-monomer distance 

d. In the remainder of the paper we analyse their relative importance attempting an 

answer to the question in the title. 
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The role of 1  on the mobility is virtually negligible on the ( ) T  curves, as shown in 

Figure 2 for the electronic Hamiltonian models 5 and 12. The result is due to the fact 

that polaronic effects are negligible when the transport is mediated by fairly delocalized 

states (which have a negligible reorganization energy), an assumption implicit in many 

of the models proposed so far, which is therefore validated by our more general model. 

This observation is in contrast with the extremely important role attributed to 1  in works 

considering the hopping rate between small molecules [24]. The limited importance of 

polaronic effects makes completely unimportant also the parameters that control their 

detail, i.e. A  and fQ (see also Figures S3 and S4 in the SI). For the remainder of this 

work, we have set the relevant parameters to realistic values: 1  = 0.45 eV [25], A  = 

0.198 eV, fQ = 0.4 [8]).  

 

 

Figure 2.  Mobility as a function of temperature computed using different values for the 

reorganization energy of the single site 1 . Results are shown for disorder models 5 and 12 (but 

are similar for any disorder model). They are computed with model (a) (see caption of Figure 3) 

for the inducing modes electron-phonon coupling.  

 

The inducing modes participate to the rate expression (2) or (3) through the mode 

frequencies 
I

k  and coupling strengths 
2

kM  and there are in principle many conceivable 

possibilities. However, we show in Figure 3 that the ( ) T  curves do not change much 

if we consider different combinations of low and high frequency inducing modes, 

provided that 
2 kM  is kept constant. In particular, the differences between the different 

distributions of  I

k  values are negligible if one excludes the very unphysical model 

where there is a single high frequency inducing mode. The numerical results suggest 

that one can capture the variability between chemical systems simply by considering 

only one low frequency inducing mode (model (a) in Figure 3), and therefore a single 

parameter M2 (now dropping the suffix k) that is essentially a measure of how effectively 

the nuclear motions mix the electronic states. The parameter M2 is ultimately just a pre-

factor multiplying each rate (see eq. 2). As the mobility obviously scales as the squared 
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distance between sites d2, the product d2M2 can be taken as one single effective 

parameter directly proportional to the mobility and the only relevant parameter beside 

those defining the electronic Hamiltonian in Eq. (1). To obtain realistic ranges of 

mobilities with the choice of d equal to 1 nm, the results are presented with M set to      

2.0 · 10-4 eV. However, the conclusions do not depend on this pair of choices.  

 

Figure 3.  Mobility as a function of temperature for disorder models 5 and 12 computed using 

four different models for the inducing modes. The inducing mode frequencies  
I

k  and 

coupling strengths 
2

kM   have been set as follows. Model (a): one low energy mode (6.2 meV); 

model (b): four modes from low to intermediate energy (6.2, 12.4, 37.2, 49.6 meV); model (c): 

five modes from low to high energy (6.2, 12.4, 37.2, 49.6, 186 meV); model (d): one high energy 

mode (186 meV). The values of
2

kM  have been chosen to be identical for all inducing modes 

with strength such that 
2

kk
M = 4.0 · 10-8 eV2 to reproduce the experimental range of mobilities.  

 

To evaluate the role of the type and magnitude of disorder we have computed the 

temperature dependent mobility for the range of models reported in Table 1 and reported 

the results in Figure 4. The first key observation is that the   T  curves are non-

intersecting, i.e. the effects of different types of disorder (diagonal, off-diagonal, 

combined), different inter-monomer coupling and different on-site energy alternation 

can be combined together into just one effective parameter that differentiates the various 

systems.  As the log  vs 1/T plot is well fitted by a straight line, each   T  curve can 

be associated with an activation energy, which can offer a natural measure of the 

combined effect of all types of disorder. In the infinite temperature limit the mobility 

seems to converge to a very limited range of values (100-4000 cm2V-1s-1 with our choice 

of d2M2).     
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Figure 4. Top: experimental hole mobility vs. 1/T for a range of organic semiconductors, 

adapted from ref. [4] and augmented with additional data points [26]. Bottom: mobility vs. 1/T 

from various models of chains of 1000 monomers with a variety of disorder parameters (see 

Table 1), including an alternating copolymer (model 14). The lines are obtained from a least 

squares linear fitting of log µ vs. 1000/T. 

 

The results of the model are strikingly similar to the experimental results reported by 

Blom et al. [4,26] for a broad range of chemically different organic semiconductors and 

also reported in Figure 4. All experimental data can be fitted by an Arrhenius 

temperature dependence  0 Bexp aE k T     at low field and low charge density. 

There seems to be a common infinite temperature mobility μ0 = 30 cm2V-1s-1 valid for 

all materials considered. It was therefore proposed that there is a single material-specific 

parameter determining the temperature dependent mobility in all organic 

semiconductors. A 1/T dependence seems to contradict the 1/T2 dependence predicted 

from models based on hopping in a Gaussian DOS. It has been argued that in organic 

diodes the average charge carrier density in a device at zero bias exceeds 1×1021 m-3 due 

to the diffusion of charges from the contacts [4]. The presence of such a finite carrier 

density would then cause the mobility to follow a ln[μ] ∝ 1/T temperature dependence 

over the temperature range where J–V measurements are usually carried out [26]. 

However, the model calculations presented here demonstrate that an Arrhenius-like 

temperature dependence is a fundamental property of transport along polymer chains.  
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According to our model,   T  only depends on two parameters, a combined effect of 

disorder (which determines the activation energy) and the weighted strength of the 

electron-phonon coupling, d2M2, acting as a pre-factor for our computed mobility. To 

fully account for the experimental observation we can speculate that the parameter d2M2  

is approximately a constant for this class of materials. The scaling of d and M supports 

this idea. One can partition the polymer into nearest neighbour interacting sites in 

different ways, e.g. considering a smaller or larger unit to take as “the monomer”, and 

this partition defines the other parameters of the model. According to the definition of 

M, the product dM should remain constant in order to have consistent models with 

different definitions of the monomer length, e.g. if we consider larger monomers, the 

effect of inducing modes will be weaker. As we have noted when we discussed the 

negligible importance of reorganization energy, the most effective charge hopping 

events involve fairly delocalized states (tens of monomers) and it is therefore not 

surprising that the electron-phonon coupling terms, being averaged over a large portion 

of the material, become weakly dependent on the chemical detail for similar classes of 

compounds.   Intuitively, the hopping is promoted by low frequency modes that alter the 

energy and coupling between the π-conjugated segments. The most relevant modes are 

out-of-plane and torsional modes of the carbon backbone.  

In conclusion, we performed a parameter space exploration of a generic charge transport 

model suitable for realistic polymers in the limit of low charge density and electric field. 

We have found that the temperature dependence of the mobility of conjugated polymers 

is determined by just two effective parameters, even though the model itself depends in 

principle on many tens of parameters. Remarkably, we find that polaronic effects, very 

different from system to system, are irrelevant for the computed mobility. The model 

helps explaining the experimental observation of a universal temperature dependence of 

the mobility determined by a single experimental parameter. To fully account for the 

experimental observation we have tentatively speculated that the strength of the mixing 

between electronic states due to the inducing modes is similar across all materials 

considered. 
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