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Abstract. A homogenized approach is formulated for studying delamination fracture prob-
lems in laminated beams and plates. The idea is tested on an edge-cracked homogeneous and 
orthotropic beam under mode II dominant conditions. In order to define the field variables, 
the domain is discretized only in the in-plane direction and a multiscale structural theory with 
three unknown variables is used to homogenize and analyze the cracked and intact portions of 
the laminate. An explicit expression for the energy release rate in terms of force and moment 
resultants and rotations is derived through an application of the J-integral using the local 
fields; the expression coincides with that obtained through discrete approaches. A compari-
son with accurate two-dimensional elasticity results highlights the predictive capabilities of 
the model and its limitations. 
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1 INTRODUCTION 

Multilayered structures are often prone to delaminate due to their inhomogeneous structure 
and through-thickness stresses caused by in-service loads and impacts or to the presence of 
flaws caused by manufacturing errors. Onset and propagation of delaminations may be accu-
rately studied introducing cohesive interfaces, which are governed by cohesive traction laws 
[1, 2]. The laws relate the interfacial tractions to the relative displacements between the adja-
cent layers and can be used to model all linear and nonlinear mechanics taking place at the 
interfaces. Introducing cohesive interfaces implies a discrete description and a through-
thickness discretization of the problem, which complicate the solution of the problem espe-
cially when multiple delaminations are present in thin layered structures. 

In this paper, a homogenized approach is proposed for studying cohesive delamination 
fracture of layered systems, which removes the need for the through-thickness discretization. 
The idea is explored using the multiscale structural model formulated in [3, 4] for beams and 
plates with cohesive interfaces. The model is based on the original zigzag theory in [5], and 
assumes a multiscale displacement field described by global variables (first-order equivalent 
single layer theory) and local perturbations to account for the layered structure and the dis-
placement jumps at the cohesive interfaces. A homogenization technique, which imposes con-
tinuity of the tractions at the layer interfaces and the cohesive traction laws, is then applied to 
define the local variables as functions of the global ones. The number of unknown functions 
in the model is independent of the number of layers and delaminations, and is equal to that of 
the global model. The accuracy of the model in predicting the local fields in layered plates 
with continuous, imperfect and fully debonded interfaces and subjected to stationary thermo-
mechanical loads was verified in [3, 4].  

In this work, the capability of the model [3] to predict the fracture parameters in plates 
with finite length delaminations is investigated through the analysis of the brittle fracture of 
an edge-cracked homogeneous and orthotropic layer subjected to end forces and under mode 
II dominant conditions. The main assumption of the work is explained in Fig. 1, which shows 
the actual cracked element (Fig. 1a) and the homogenized element used in the multiscale 
model (Fig. 1b). The energy release rate associated to the collinear propagation of the crack in 
Fig. 1a is derived through an application of the J-integral in the homogenized representation 
of the problem and using the local fields derived a posteriori from the global variables of the 
multiscale model. The resulting expression coincides with that obtained through the solution 
of the discrete problem [6]. 

 

 

Figure 1: (a) a cracked element, and (b) its homogenized representation. 
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2 FRACTURE PARAMETERS IN AN EDGE-CRACKED LAYER 

Consider the traction-free edge-cracked layer shown in Fig. 1a. The layer is subjected to 
end forces applied per unit width and has global thickness 1 2h h h  , with 1h  and 2h  the 

thicknesses of the lower and upper crack arms. The forces act at distances a and c from the 
crack tip which are assumed to be sufficiently long to ensure that the stress field at the crack 
tip is unaffected by their actual distributions and depend only on the force and moment result-
ants. A system of Cartesian coordinates 1 2 3 x x x  is introduced with origin at the mid-plane 

of the lower crack arm. The layer is linearly elastic, homogenous and orthotropic with princi-
pal material axes parallel to the geometrical axes, e.g. a unidirectionally reinforced laminate, 
and under plane-strain conditions parallel to the plane 2 3x x . The problem in Fig. 1a is stud-

ied using the multiscale structural theory formulated in [3]. A cohesive interface is first intro-
duced along the crack line which divides the geometry into two sub-layers. The following 
constitutive and compatibility equations are assumed: 
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with  22 22 23 32 33C C C C C  , ijC the stiffness coefficients, ( )k
ij , ( )k

ij  and ( )k
iv  the stress, 

strain and displacement components, i, j = 2, 3, 4 (the transverse normal stresses have been 
assumed to be negligible). 

In this paper the interface is assumed to be rigid against relative opening displacements and 
the following piecewise linear interfacial traction law is used: 
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with 2ˆ cv  the critical sliding displacement. The law relates the tangential traction, ˆS , to the 

sliding displacement, 2 2 3 1ˆ ( , 2)v x x h   (2) (1)
2 2 3 1 2 2 3 1( , 2) ( , 2)v x x h v x x h   , with SK  the 

interfacial tangential stiffness (see Fig. 2b). The law is composed of an initial stiff branch 
which is used to model the perfect bonding of the two sub-layers in the intact region, and a 
branch with zero interfacial stiffness which is used to model the traction-free delamination. 
The mode II fracture energy, IIcG , is defined by the area under the curve. Neglecting the rela-

tive opening displacements allows to use the simplified version of the multiscale theory in [3] 
and to model mode II dominant problems. This assumption, which is used here to preliminari-
ly assess the accuracy of the homogenized description of the fracture problem, will be re-
moved later to study general fracture problems. 

For the solution of the problem [3], the small-scale displacement field in the layer in Fig. 
1b is defined as: 
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where 02 2( )v x , 2 2( ) x  and 0 2( )w x , are the global variables (first-order shear deformation the-

ory) and 
1

2 2
1

ˆ ( )
k

i

v x



  is the local perturbation which accounts for the jump at the layer interface. 

The jump is derived in terms of the global variables by using the interfacial traction law, Eq. 
(2), and the compatibility and constitutive equations (1), and by imposing continuity of the 
transverse shear tractions of the layers at their surfaces. The macro-scale displacement field in 
the sub-layer k follows as: 
 

 
 ( )

2 2 3 02 2 3 2 2 0 2 2 2 2

( )
3 2 3 0 2

( , ) ( ) ( ) , ( ) ( )

( , ) ( )

k k
S

k

v x x v x x x w x x R

v x x w x

    


 (4) 

 
where 2

44S SR C K  and 1 0SR  . The equilibrium equations are derived using the Principle of 

Virtual Work. They are presented here, in terms of global displacements: 
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A shear correction factor, 44k , has been introduced to improve the approximate description of 

the shear strain of the global first order model. The equilibrium equations (5) are solved in the 
different regions of the layer and boundary and continuity conditions are imposed to calculate 
the unknown constants of the solutions.  

In the cohesive-crack modeling, the energy release rate is typically calculated directly from 

the cohesive traction law, as 
2ˆ

20
ˆ ˆ

v

II S dv G . In this paper, the energy release rate is derived 

through an application of the J-integral. In the cracked layer of Fig. 1a, the energy release rate 

is then calculated as, II J G  3
2
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x
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 , with   a path surrounding the crack 

tip, W  the strain energy density, jn  the components of the unit outward vector normal to the 
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path,  ij jn  the tractions along the contour, and 4 5 0J J  . In the homogenized problem of 

Fig. 1b, the energy release rate is defined calculating J along a similar path. 

Upon substitutions of the macro-scale displacement and strain components of the intact 
and cracked regions into the given expression for the J-integral, and some algebraic manipula-
tions, the energy release rate, 1 2 3II J J J  G , is expressed in terms of the variables of the 

homogenized model as: 
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where ( )

22
k   is defined through the constitutive equation (1) and ( )

23
k post  through local equi-

librium ( ) ( )
22 2 23,3, 0k k post   .  

In order to prove that the energy release rate of the actual problem in Fig. 1a can be accu-
rately predicted from its homogenized representation Fig. 1b through Eqs. (6)-(8), the equa-
tions are expressed in terms of force and moment resultants acting on the three paths, 1 , 2  

and 3 . The procedure is explained here only for the path 2 , Eq. (7); a similar procedure 

should be followed for the other paths. Equation (7) is rewritten by introducing a local coor-
dinate at its mid-plane,  3 1 2 2Z x h h   , and adding and subtracting  2 2 1 2, 2h h  :  
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where  (2)

2 0v Z   is the longitudinal displacement at the mid-plane of the upper crack arm 

(see Eq. (4)). The terms in Eq. (9) which depend on the global displacements, are independent 
of Z  and related to the force and moment resultants acting in the upper sub-layer, 
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where 2  is the rotation of the upper sub-layer at the left edge. Operating on the other paths 

and renaming the rotations of the end cross-sections using ( )i  , the following expression of 
the energy release rate is derived: 
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sion coincides with that derived in [6, 7] for the cracked element in Fig. 1a if the rotations of 
the three end sections coincide. This occurs in all cases when the relative rotations of the 
beam arms at the crack tip in Fig. 1a are negligible so that the arms can be assumed as 
clamped at the crack tip cross section. 

3  APPLICATION TO AN ENF SPECIMEN  

The model presented in Sect. 2 is applied to the End Notched Flexural specimen shown in 
Fig. 2a. The energy release rate is calculated using Eq. (11) and for 1 2h h h   turns out to be 

2 2
22 9 16( )IIC h P a hG . The dimensionless energy release rate is presented and compared 

with accurate 2D solutions [7] on varying the dimensionless crack length in Fig. 3a; relative 
percent errors are presented in Fig. 3b.  

The energy release rate coincides with the classical solution from the literature which as-
sumes the two delaminated arms of the beam as clamped at the crack tip cross-section. This 
limitation of the solution is a consequence of the assumptions of the multiscale model, which 
imposes continuity of the rotations of the sub-layers at the crack tip cross-section. The model 
then neglects the relative rotations of the arms at the crack tip, or root-rotations, which play an 
important role in the presence of short cracks and/or thick beams, as shown in Fig. 3b. The 
limitation may be overcome by improving the solution a posteriori using the root rotations 
defined in [7]. It is expected that this limitation of the multiscale treatment will be partially 
overcome in layered systems where zigzag perturbations of the displacements are included in 
the description of the problem which leads to relative rotations of the sub-layers.  

 The load-deflection response of a specimen with geometrical and material properties de-
fined in the caption is shown in Fig. 3c. The homogenized model is able to capture the snap-
back instability which appears in the post-peak response. 

As explained above, the energy release rate in the cohesive interface modeling of fracture 
is typically derived using measures of the interfacial tractions and relative crack displace-
ments. In order to preliminary verify the capability of the proposed approach to analyze cohe-
sive delamination fracture, the energy release rate has also been calculated using the J-integral 
and a path around the crack surfaces. This calculation is conveniently performed using 
Bueckner’s superposition principle, which requires the calculation of the transverse shear 
tractions in a specimen with no crack and the relative sliding displacements in the cracked 
specimen. The resulting energy release rate coincides with that given by Eq. (11). 
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Figure 2: (a) ENF specimen, and (b) interfacial traction law used for modelling perfectly brittle mode II fracture. 

 

 

Figure 3: (a) dimensionless energy release rates, and (b) relative percent error with respect to accurate 2D solu-
tions [7] in an unidirectionally reinforced ENF specimen with elastic constants 0.071T LE E , 

0.033LT LG E  , 0.32 LT , and 0.45 TT  (subscripts L and T indicate in-plane principal material direc-

tions). (c) load-deflection response of a specimen made of IM7/8552 graphite/epoxy with 161LE   GPa, 

0.774IIc G  N/mm, h = 1.5 mm, L = 50 mm, initial crack length = 30 mm, shear correction factor, 44 5 6k  . 



Hossein Darban and Roberta Massabò 

4 CONCLUSIONS  

A novel homogenized approach has been proposed to study delamination fracture prob-
lems. The idea has been put into practice through a multiscale structural model with a reduced 
number of variables which removes the need for the through-thickness discretization typically 
used in the cohesive-interface approaches. For a preliminary validation of the idea an edge-
cracked homogeneous and orthotropic layer under mode II dominant conditions has been con-
sidered and the energy release rate has been derived through an application of the J-integral 
using the local fields calculated through the multiscale model. We showed that the derived 
expression of the energy release rate coincides with the classical solution of the problem. The 
expression neglects the contributions of the root rotations, which can be calculated a posterio-
ri using the equations derived in [7]. The model is expected to partially account for the root 
rotations in multilayered structures where zigzag functions are introduced to enrich the global 
displacement fields. Numerical results have been presented for an ENF specimen and com-
pared with accurate 2D solutions. The model captures the load-displacement response of the 
specimen including the snap-back instability. 
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