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Abstract
In the framework of a theory for invariant sensory signal rep-
resentations, a signature which is invariant and selective for
speech sounds can be obtained through projections in template
signals and pooling over their transformations under a group.
For locally compact groups, e.g., translations, the theory ex-
plains the resilience of convolutional neural networks with filter
weight sharing and max pooling across their local translations
in frequency or time. In this paper we propose a discrimina-
tive approach for learning an optimum set of templates, under a
family of transformations, namely frequency transpositions and
perturbations of the vocal tract length, which are among the pri-
mary sources of speech variability. Implicitly, we generalize
convolutional networks to transformations other than transla-
tions, and derive data-specific templates by training a deep net-
work with convolution-pooling layers and densely connected
layers. We demonstrate that such a representation, combin-
ing group-generalized convolutions, theoretical invariance guar-
antees and discriminative template selection, improves frame
classification performance over standard translation-CNNs and
DNNs on TIMIT and Wall Street Journal datasets.
Index Terms: speech representations, neural networks, speech
invariance, speech recognition

1. Introduction
Speech recognition systems built with statistical learning algo-
rithms rely on the pre-assumption that the unknown probability
distribution of speech data is fixed or similar for both train and
test sets [1, 2]. Consequently, the mismatch caused by different
speakers, speaking styles or pronunciations/accents is a major
challenge for generic, real-world speech recognition. A number
of normalization/adaptation techniques are applied to deal with
such variability [3, 4]. On the other hand, human speech per-
ception is remarkably robust to signal variations. Apart from the
sophisticated contextual inference through complex language
models, the lower-level neural representation of speech sounds
might also be important for speech recognition [5, 6]. An in-
variant representation of the speech signal, in both biological
and artificial systems, is crucial for improving the robustness of
acoustic to phonetic mapping, decreasing the sample complex-
ity (i.e., the required train set size) and enhancing the general-
ization performance of learning across distribution mismatch.

Representations invariant to transformations [7] that have a
locally compact group structure can be obtained through a fea-
ture map that defines equivalence classes [8, 9]. The invariant
map is obtained by the average over the group G of (possibly
non-linear) measurements: the projections on a template t of the

set of transformed signals {gx|g ∈ G}. Additionally, multiple
maps over a set {tk}Kk=1 account for a selective representation
with components given by µkη(x) = 1/|G|

∑
g η(〈gx, tk〉),

where η is the non-linear measurement function. In extension,
the approach can yield approximate invariance to unknown,
non-group transformations, given access to a sufficient num-
ber of class-specific templates (and their transformed versions)
[8]. The framework leads to biologically plausible neural repre-
sentation models, forms predictions about representations in the
ventral stream of the visual cortex [10] and provides mathemat-
ical justifications for a class of generalized convolutional net-
work models [9]. Based on our previous work on audio repre-
sentations [11, 12, 13], we propose a representation learning al-
gorithm for invariance to more generic speech transformations.

Our contributions in this paper are: 1) a general framework
for discriminative learning of invariant and selective representa-
tions, 2) a generalized convolutional network, defined for trans-
formations other than local shifts, that can be discriminatively
trained for optimal templates; our framework includes convo-
lutional neural networks (CNNs) [14, 15] as a canonical spe-
cial case, 3) an application to the transformations of vocal tract
length (VTL) variations, and 4) improving, through VTL trans-
formation invariance, the phone classification performance of
standard CNNs and DNNs on TIMIT and World Street Journal
(WSJ) datasets.

2. Related Work
Previous work on group-invariant speech representations fo-
cused on feed-forward, unsupervised networks using either ran-
dom templates under speech-specific transformations [11, 12]
or predefined wavelets under scaling and translations [16]. Such
approaches are tractable to analyze and have nice theoretical
guarantees regarding the type of invariances in the resulting rep-
resentations. However, they are generally outperformed by ex-
plicit, large-scale, supervised training models [14, 15]. In this
paper we extend a framework for group-invariant representa-
tions to the supervised regime, i.e. using data-specific, learned
templates instead of random (or analytic) ones. CNNs can be
shown to be a special case that approximates invariant repre-
sentations for the translation group. Learning the filters jointly
with the network parameters has been explored as an alternative
to the base Mel-filter responses [17]. In contrast, we build on
top of a first-layer, filterbank representation and learn the tem-
plates of a subsequent convolutional layer.

The idea to generalize CNNs beyond translations has been
previously explored in tiled convolutional networks [18], that
redefine weight-sharing for robustness to 2D rotations and scal-
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ing, and scattering networks defined using wavelets over roto-
translation groups [19]. Convolutional maxout networks [20]
use an equivalent double pooling over translations and neuron
outputs, without the group relationship in the pooled neuron
functions and with a single (max) nonlinerarity. Other gener-
alizations of CNNs include kernel based interpolation for in-
variance to affine groups [21], layers of kernel maps [22] or the
generalization of convolutions from spatial grids to graphs [23].

Most of these approaches however were developed for im-
age data, where common transformations are relatively easy to
model. On the contrary, the transformations relevant for speech
are normally less intuitive or not tractable. As we will discuss
(Sec. 3.4), this imposes difficulties in learning an invariant con-
volution/pooling module through back-propagation. A simple
workaround will be employed via augmenting the input sam-
ples. On its own, data augmentation is a widely-applied method
for neural network-based speech recognition [24, 25].

3. Convolutional Neural Networks over
Transformation Groups

3.1. Symmetries, groups and invariant representation

Symmetries of an object are transformations that keep a given
property unchanged. A simple example is rotations of a circle
centered at the origin of the 2D plane — although the points
composing the object moved, the shape is invariant under rota-
tions. Symmetries, which typically form a group [26], are being
actively pursued as a theoretical tool for understanding invari-
ant feature representations [7, 8, 9, 21, 27, 28], obtained from
multilayer convolutional networks.

The symmetries of interest for signal representation are
transformations that keep the “identity” unchanged, where by
identity we refer to the classes of a learning problem. For exam-
ple, let x ∈ X ⊂ Rd be a speech segment, and Φg(·) :X → X
a mapping between different speakers that preserves the sublex-
ical identity, e.g., the phoneme label. Assume the mapping is
parametrized by an element g ∈ G of an abstract group G. Let
ρ(y|x) be the posterior distribution of the segment label y ∈ Y
given the observation x. A symmetry in this case would imply

ρ(y|x) = ρ (y|Φg(x)) , (1)

for all x ∈ X , y ∈ Y , g ∈ G, or equivalently that the trans-
formation Φg is irrelevant for the purpose of inference on the
phoneme labels. Then a feature map F : X → F that is invari-
ant to the transformations Φg means

F (x) = F (Φg(x)) (2)

for all inputs x and transformation g ∈ G. To avoid degenerate
feature maps, we also require that F is selective, meaning that
if x′ is not a transformed version of x, i.e. @g ∈ G : x′ =
Φg(x), then F (x′) 6= F (x). It is easy to show that under the
symmetry assumption, an invariant and selective feature map
F (x) is a sufficient statistic [29, 30] of the original signal x.
Therefore, learning on F (x) is statistically equivalent to learn-
ing on x. On the other hand, since F collapses equivalent points
into one canonical representation, the size of the input sample
space and the hypothesis space get reduced. Consequently, the
sample complexity of the learning problem is reduced [8, 9].

3.2. Convolution and pooling over group orbits

The group orbit Ox is the set of all transformed versions of x:

Ox = {Φg(x)|g ∈ G} ⊂ X (3)

Our model is based on the fact that the feature map F (x) : x 7→
Ox is naturally invariant and selective. We first show that when
the transformations Φg are translations, convolutional neural
networks (CNNs) are approximating this feature map. We then
extend the architecture to more general transformations.

Recall that CNNs consist of interleaved spatial convolution
and pooling layers. In the convolution layer, the convolution
between an input x and a template (or filter) t is computed as

y[i] =
∑
j

x[j]t[i− j] =
∑
j

x[j ]̃t[j − i] = 〈x,Φi(t̃)〉, (4)

where t̃[i] = t[−i] is the mirror reflected template, and Φi is
an operation that shifts the signal by i samples. Succinctly, the
convolution layer is computing the inner product between x and
transformed templates Φi(t̃). In the pooling layer, a statistic
(e.g., MEAN or MAX) of the output values y[i] is computed,
typically within a local pooling range. We show that this is
actually approximating the invariant feature map F (x) = Ox

under the translation group.
The orbit Ox, being a set of signals, is uniquely associated

with the probability distribution induced by the Haar measure
on the transformation group G. From Cramér-Wold theorem
[31], this high-dimensional distribution can be characterized in
terms of projections onto unit vectors (templates). Specifically,
for a unit-normed template t, the set of inner product values

{〈Φg(x), t〉|g ∈ G} (5)

specifies a one-dimensional distribution. Given enough tem-
plates, the set of one-dimensional distributions uniquely char-
acterizes the original orbit Ox. When the group is unitary,
we could equivalently apply the (inverse) transformation to the
template t and leave x unchanged:

〈Φg(x), t〉 = 〈x,Φ−1
g (t)〉 = 〈x,Φg−1(t)〉 (6)

Comparing this with Eq. (4), one can see that this is exactly
what the convolution layer in CNNs is computing. The next
step (the pooling layer) can be seen as finding a suitable descrip-
tion for those one-dimensional distributions. Natural choices
include discrete histograms and moments, or the MAX statistic
which is typically used in CNNs.

In summary, a CNN is approximating the invariant feature
representation that maps x to the orbit Ox, via interleaved con-
volution and pooling along the translation group. The above
derivation applies to more general transformations than trans-
lations, under the main assumption of forming a unitary and
locally compact group. Therefore, by replacing the translation
group with other transformations, we get a natural generaliza-
tion of CNNs. In this paper, we make the case for generic trans-
formations for speech signals, specifically vocal tract length
(VTL) perturbations, which we describe in Section 3.4.

3.3. Discriminative learning of optimal templates

The characterization of high dimensional distributions through
one-dimensional projections is exact if all (infinitely many)
templates on the unit sphere are used (Cramér-Wold theorem).
For a finite set of input signals and finite number of random tem-
plates a Johnson-Lindenstrauss lemma-type argument can guar-
antee approximate characterization [9, 10]. The use of (random)
samples of natural signals as templates [11] is also supported
through the biologically plausible hypothesis that the collection
and neural memorization of transformed signals is performed
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through unsupervised observations (memory-based learning).
The template selection can also satisfy optimality criteria from
a theory perspective. For example, it can be shown that Gabor
functions, which are also biological model functions of cortical
simple cells, are optimal templates when maximal invariance to
both scale and position is desired [10].

In this paper we explore learning the templates in a data-
driven way, by jointly training for the templates and classifier
that minimize a classification cost function on a labeled train-
ing set. This is the standard way of setting the filter weights (or
choosing the templates) in a CNN through training data and su-
pervision. Discriminatively learned templates have proven to be
very effective in different speech tasks, including phone recog-
nition and large vocabulary recognition [14, 15].

Given a loss function L (e.g., cross-entropy), the templates
can be learned through (stochastic) gradient descent, by moving
iteratively in the negative gradient direction

t← t− α∂L
∂t

(7)

where α is the learning rate and the gradient vector ∂L/∂t is
computed via the chain-rule (back propagation) as

∂L

∂t
=
∂y

∂t

∂L

∂y
=

∑
i

∂y[i]

∂t

∂L

∂y[i]
=

∑
i

∂Φi
∂t

x
∂L

∂y[i]
(8)

where y[i] (see Eq. (4)) is the output of the convolution
layer, and ∂L/∂y[i] is itself recursively computed via back-
propagation from upper layers. In standard CNNs, Φi is a trans-
lation, so the derivative ∂Φi/∂t is straightforward to compute.
However, for arbitrary transformations Φi, the derivative might
be generally difficult to compute analytically. As a workaround,
we modify the network architecture slightly: instead of apply-
ing the transformations to the templates t, as in Eq. (6), we
leave the transformations to the input x. In this way, y[i] will
depend only linearly on t, making the derivative ∂y[i]/∂t easy
to compute.

3.4. Vocal tract length perturbation and invariant module

Vocal tract length (VTL) normalization [3] is a widely applied
technique in speech recognition for modeling and removing
inter-speaker variability due to vocal tract length [4, 32, 33]. A
warp factor, estimated for each speaker, is used to normalize the
corresponding speech data to account for the difference of their
vocal tract length from the canonical mean. The reverse, i.e., in-
troducing perturbations of the VTL, has been recently explored
as a means for augmenting the training set [24, 25]. In this pa-
per, we will consider VTL as a transformation that preserves the
posterior probability over phoneme labels, i.e., Eq. (1).

We propose an invariant signature extraction using group-
convolution/group-pooling modules, one per template t, illus-
trated in Fig. 1. The input signal x is a speech frame, repre-
sented as 40-dimensional Mel-fiterbank, together with 7 con-
text frames on both sides of the time index. VTL warpings,
through a piecewise linear frequency warping function (imple-
mented in Kaldi [34]), with 9 evenly distributed warp factors
in [0.9, 1.1] are applied to x to create transformed inputs. A
template t, randomly initialized and trained discriminatively, is
a localized patch that shifts on both frequency and VTL axes.
This is equivalent to a convolution operator in the joint trans-
formation space. Similar to frequency-based CNNs for speech
recognition [14, 15], the templates cover the whole time axis.
In contrast, we introduce an additional dimension over the VTL
transformations.

Context
15 

time-frames

40 frequency 
bands

Vocal Tract 
Length 

Perturbations

Convolution Layer 
Feature Maps

Pooled Feature 
Maps

Local MAX Pooling

Convolution over 
Group

Figure 1: Invariant group-convolution and pooling module.

TIMIT dev TIMIT test WSJ dev WSJ test

DNN 58.70 58.25 58.33 63.65
CNN 63.07 62.41 61.07 66.78
VTL-CNN 65.26 64.62 64.27 70.08

Table 1: Frame classification accuracy.

The dot product values between templates and transformed
input signals form the convolution layer feature maps; MAX
pooling is performed, locally across frequency regions, similar
to CNNs to avoid global frequency shift invariance, and glob-
ally across all warps.

4. Experimental Evaluation
We empirically evaluate the proposed model and compare it
with canonical CNNs and fully connected Deep Neural Net-
works (DNNs). The input to each convolution/pooling module
is a 15-by-40-by-9 dimensional tensor, described in Sec. 3.4.
For the convolution layer, we use 91 filters with a kernel size
of 8 and 3 on the frequency and VTL axis respectively, with
a stride of 1. Pooling is over local regions of size 6 over fre-
quency and global over VTL. The full network consists of the
convolution layer, pooling layer, and two fully connected layers
(1024 units) with Rectified Linear Units (ReLUs) and a final
linear layer to predict the posterior probability of frame labels.
Comparisons with the proposed model are performed under a
similar setting (filter and pooling kernel sizes). To ensure the
same number of parameters in the convolution layer, we use
3 × 91 filters for the conventional CNNs1. As a baseline com-
parison, we also include results using DNNs. Specifically, we
replace the convolution-pooling with a dense layer, resulting in
a DNN with 3 hidden layers.

4.1. Frame classification on TIMIT and WSJ

We evaluate the proposed model on two standard datasets:
TIMIT [35] and Wall Street Journal (WSJ) [36]. We use the
Kaldi speech recognition toolkit [34] for data pre-processing.
Particularly, we compute the frame-level, 40-dimensional Mel-

1As the VTL dimension for our network disappears after pooling,
the output of the pooling layer for CNNs is actually 3 times larger, lead-
ing to 3 times more parameters in the first fully connected layer.
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Figure 2: Training cost and dev set frame accuracy against the
training iterations on the TIMIT dataset.

filterbank features as base data representation. The feature ex-
traction module (convolution/pooling layer), together with the
classifier (densely connected layers) are trained jointly, and all
the parameters are initialized randomly without pre-training.
The labels are mono-phone HMM states generated by running
force-alignment on the ground-truth transcriptions with GMM-
HMM decoders based on MFCC features.

For TIMIT, we use the standard train, development (dev)
and core-test data partitioning. Figure 2 shows the training costs
and frame accuracy on the dev set with respect to the training it-
erations. As we observe, the DNN, despite having more param-
eters, does not perform as well as the CNN, which is consistent
with previous work on applying CNNs for speech recognition
[14, 15]. Moreover, our model, denoted as VTL-CNN, works
better than both CNN and DNN. It also converges faster, which
might be related to the fact that in principle an invariant repre-
sentation reduces the sample complexity [8], i.e., the network
needs to see less data for a given level of performance.

For WSJ, we use the si84-half, dev93, and eval92 splits
given by the s5 recipe of Kaldi as the training, development,
and test sets. Due to space limitations, we omit the performance
curve for WSJ, but summarize the frame accuracy on the devel-
opment and test sets for both datasets in Table 1.

4.2. Comparison with data augmentation

It is natural to ask whether the performance gain of our model
comes from pooling over generalized transformations or simply
because it sees “more” data, i.e., all the VTL warped speech
frames. We explore this in depth by training the same models
on the original TIMIT and the VTL augmented training set. The
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CNN
CNN (augmentation)        
DNN
DNN (augmentation)

Figure 3: Performance of models trained on original and VTL-
augmented TIMIT.

augmented dataset is explicitly shuffled to avoid similar train-
ing samples in a mini-batch. The results are shown in Fig. 3.
For both CNNs and DNNs, there is no significant difference
between the networks trained on the original or the augmented
sets, and thus no matching of the VTL-CNN performance in
Fig. 2. This indicates that the augmented data by itself does
not necessarily boost the performance; the architecture of the
proposed model is more important in this sense.

It is worth mentioning that alternative techniques can be
applied for making better use of augmented training data. For
example, in [24], model averaging is used to combine the pre-
dictions from VTL warped data. Speaker-specific estimates of
the warping factor are used in [25] to introduce small VTL per-
turbations. In contrast, our feature is expected to be (approx-
imately) invariant to VTL variation without requiring an esti-
mate of the “true” warping factor in advance.

5. Conclusions
In this paper, we outlined a framework for learning a feature
map that is approximately invariant under general transforma-
tion groups. We showed how CNNs are a special case of
this framework for representations invariant to local frequency
shifts. We proposed a new model that generalizes the convo-
lutional networks to include specific invariance with respect to
VTL perturbation and demonstrated its effectiveness on stan-
dard speech datasets. This work is an extension of our previous
model [12] for invariant speech representations in the sense that
we are discriminatively learning an optimal set of templates in a
data-driven way by jointly training the feature extraction mod-
ule and the classifier. The proposed model and extensions will
be subsequently evaluated on phone recognition as well as large
vocabulary continuous speech recognition tasks. To decrease
the computational cost of explicitly transforming the input sig-
nals, while still avoiding computing derivatives of non-tractable
transforms, we are actively exploring the use of more tractable,
parametric transformations.
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