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Abstract

The present phase of Machine Learning is characterized by supervised learning algo-

rithms relying on large sets of labeled examples (n → ∞). The next phase is likely

to focus on algorithms capable of learning from very few labeled examples (n → 1),

like humans seem able to do. We propose an approach to this problem and describe

the underlying theory, based on the unsupervised, automatic learning of a “good” rep-

resentation for supervised learning, characterized by small sample complexity. We

consider the case of visual object recognition, though the theory also applies to other

domains like e.g. speech. The starting point is the conjecture, proved in specific cases,

that image representations which are invariant to translation, scaling and other trans-

formations can considerably reduce the sample complexity of learning. We prove that

an invariant and selective signature can be computed for each image or image patch:

the invariance can be exact in the case of group transformations and approximate under

non-group transformations. A module performing filtering and pooling, like the simple

and complex cells described by Hubel and Wiesel, can compute such signature. The

theory offers novel unsupervised learning algorithms for “deep” architectures for image

and speech recognition. We conjecture that the main computational goal of the ventral

stream of visual cortex is to provide a hierarchical representation of new objects/images

which is invariant to transformations, stable, and selective for recognition—and show
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how this representation may be continuously learned in an unsupervised way during

development and visual experience.
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1. Intoduction

It is known that Hubel and Wiesel’s original proposal [1] for visual area V1—of a

module consisting of complex cells (C-units) combining the outputs of sets of simple

cells (S-units) with identical orientation preferences but differing retinal positions—

can be used to construct translation-invariant detectors. This is the insight underlying5

many networks for visual recognition, including HMAX [2] and convolutional neural

nets [3, 4]. We show here how the original idea can be developed into a comprehensive

theory of visual recognition that is relevant for computer vision and possibly for the

visual cortex.

The first step in the theory is the conjecture that a representation of images and im-10

age patches, with a feature vector that is invariant to a broad range of transformations—

such as translation, scale, viewpoint, pose of a body and expression of a face —makes

it possible to recognize objects from only a few labeled examples. The second step

is proving that hierarchical architectures of Hubel-Wiesel (‘HW’) modules (indicated

by
∧

in Fig. 1) can provide such invariant representations while maintaining selective15

information about the original image. Each
∧

-module provides a feature vector, which

we call a signature, for the part of the visual field that is inside its “receptive field”.

The signature is invariant to 2D affine transformations within its receptive field. The

hierarchical architecture, since it computes a set of signatures for different parts of the

image, is proven to be invariant to a rather general family of locally affine transforma-20

tions, including (globally) affine transformations.

2. Invariant representations and sample complexity

One could argue that the most important aspect of intelligence is the ability to learn.

How do present supervised learning algorithms compare with brains? One of the most

obvious differences is the ability of people and animals to learn from very few labeled25
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Figure 1: A hierarchical architecture built from HW-modules. Each red circle represents the signature vector

computed by the associated module (the outputs of complex cells) and double arrows represent its receptive

fields – the part of the (neural) image visible to the module (for translations this is also the pooling range).

The “image” is at level 0, at the bottom. The vector computed at the top of the hierarchy consists of invariant

features for the whole image and is usually fed as input to a supervised learning machine such as a classifier;

in addition signatures from modules at intermediate layers may also be inputs to classifiers for objects and

parts.

examples. A child, or a monkey, can learn a recognition task from just a few examples.

The main motivation of this paper is the conjecture that the key to reducing the sample

complexity of object recognition is invariance to transformations. Images of the same

object usually differ from each other because of simple transformations such as trans-

lation, scale (distance) or more complex deformations such as viewpoint (rotation in30

depth) or change in pose (of a body) or expression (of a face).

The conjecture is supported by previous theoretical work showing that almost all the

complexity in recognition tasks is often due to the viewpoint and illumination nuisances

that swamp the intrinsic characteristics of the object [5]. It implies that in many cases,

recognition–i.e. both identification, e.g. of a specific car relative to other cars–as well35

as categorization, e.g. distinguishing between cars and airplanes–would require fewer

examples if the images of objects were ”rectified” with respect to all transformations,

or equivalently, if the image representation itself were invariant. The conjecture is

proved, using a dimensionality reduction argument, for the special case of translation

(and any Abelian group–see [6] for more details):40
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Sample complexity for translation invariance

Consider a space of images of dimensions p × p which may appear in any position

within a window of size rp × rp. The natural image representation yields a sample

complexity (for a linear classifier) of order mimage = O(r2p2); the invariant represen-

tation yields a sample complexity of order minv = O(p2).45

The case of identification is obvious since the difficulty in recognizing exactly the same

object, e.g. an individual face, is only due to transformations. In the case of categoriza-

tion, consider the suggestive evidence from the classification task in Fig. 2. The figure

shows that if an oracle factors out all transformations in images of many different cars

and airplanes, providing “rectified” images with respect to viewpoint, illumination, po-50

sition and scale, the problem of categorizing cars vs airplanes becomes easy: it can be

done accurately with very few labeled examples. In this case, good performance can

be obtained from a single training image of each class, using a simple classifier. In

other words, the sample complexity of the problem seems to be very low. We propose

that the ventral stream in visual cortex tries to approximate such an oracle, providing a55

quasi-invariant signature for images and image patches.

Note that this does not amount to a claim that all vision tasks demand, or would

even benefit from, invariance to geometric transformations. Of course some tasks re-

quire signatures that are selective for (say) pose, but invariant to identity. However, in

those cases, the computational problem is considerably easier since resemblance in the60

input space matches much more closely the desired outcome.

3. Invariance and selectivity

Consider the problem of recognizing an image, or an image patch, independently of

whether it has been transformed by the action of a group like the affine group in R2. We

would like to associate to each object/image I a signature, i.e. a vector which is selec-

tive and invariant with respect to a group of transformations G. Note that our analysis,

as we will see later, is not restricted to the case of group transformations. For now,

we consider groups that are compact and, for simplicity, finite (of cardinality |G|). We

indicate, with slight abuse of notation, a generic group element and its (unitary) rep-
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Figure 2: Sample complexity for the task of categorizing cars vs airplanes from their raw pixel representa-

tions (no preprocessing). (A) Performance of a nearest-neighbor classifier (distance metric = 1 - correlation)

as a function of the number of examples per class used for training. Each test used 74 randomly chosen

images to evaluate the classifier. Error bars represent +/- 1 standard deviation computed over 100 train-

ing/testing splits using different images out of the full set of 440 objects × number of transformation con-

ditions. Solid line: The rectified task. Classifier performance for the case where all training and test images

are rectified with respect to all transformations; example images shown in B. Dashed line: The unrectified

task. Classifier performance for the case where variation in position, scale, direction of illumination, and

rotation around any axis (including rotation in depth) is allowed; example images shown in C. The images

were created using 3D models from the Digimation model bank and rendered with Blender.
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resentation with the same symbol g, and its action on an image as gI(x) = I(g−1x)

(e.g. a translation, gξI(x) = I(x − ξ)). A natural mathematical object to consider is

the orbit OI–the set of images gI generated from a single image I under the action of

the group. We say that two images are equivalent when they belong to the same orbit:

I ∼ I ′ if ∃g ∈ G such that I ′ = gI . This equivalence relation formalizes the idea that

an orbit is invariant and selective. Indeed, if two orbits have a point in common they

are identical everywhere. Conversely, two orbits are different if none of the images in

one orbit coincide with any image in the other [7].

How can two orbits be characterized and compared? There are several possible ap-

proaches. A distance between orbits can be defined in terms of a metric on images,

but its computation is not obvious (especially by neurons). We follow here a different

strategy: intuitively two empirical orbits are the same irrespective of the ordering of

their points. This suggests to consider the probability distribution PI induced by the

group’s action on an image I (gI can be seen as a realization of a random variable; to

have an intuition we can think to PI as the pixels grey level distribution of the image

over the transformations g. The distribution of the transformations is assumed to be

uniform, the uniform Haar measure over the group). It is possible to prove (see [6] for

further details) that if two orbits coincide then their associated distributions under the

group G are identical, that is

I ∼ I ′ ⇐⇒ OI = OI′ ⇐⇒ PI = PI′ . (1)

The distributionPI is thus invariant and selective, but it also inhabits a high-dimensional

space and is therefore difficult to estimate. In particular, it is unclear how neurons or

neuron-like elements could estimate it.

As argued later, neurons can effectively implement high-dimensional inner products,

〈·, ·〉, between inputs and stored “templates” which are neural images followed by a

non linear operation (e.g. a threshold sigmoid) and a pooling operation.

The results proven in [6] say (informally) that an invariant and selective signature of an

image I can be obtained as

µkh(I) =
1

|G|

|G|∑
i=1

ηh(
〈
I, git

k
〉
) (2)
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where ηh, h = 1, · · · , H is a set of nonlinear functions, tk, k = 1, · · · ,K are a set

of randomly chosen images called templates and we suppose G a discrete finite group.

We call ~µ(I) ∈ RHK the signature of image I and it can be proven to be a proxy of

the probability distribution PI . In particular it has the following properties:

Invariance theorem

The distributions represented by equation (2) are invariant, that is for each h, k

µkh(I) = µkh(gI) (3)

for any g in G, where G is the (compact) group of transformations labeled gi in equa-

tion (1).

The result follows simply observing that, for fixed h, k, I and tk, ηh(
〈
I, gtk

〉
) ≡ f(g)

is a function on the group and eq. (2) is the group average over f .

The signature in eq. (2) is also selective since it is a proxy of the probability distribution

PI . This result follows in two steps: 1) eq. (2) gives a proxy of the probability distri-

bution of
〈
I, gtk

〉
(the situation is particularly simple when the nonlinear functions are

indicator functions of width ∆ centered in h; in this case µkh is a bin of the histogram of

the distribution of
〈
I, gtk

〉
) 2) the theorem below (based on the Cramer-Wold theorem,

[8], see [6] for further details) assures that a probability distribution PI can be almost

uniquely characterized by K one-dimensional probability distributions P〈I,tk〉 induced

by the results of projections
〈
I, tk

〉
. More precisely we have:

Selectivity theorem

For (compact) groups of transformations, the distributions represented by equation (1)

can achieve any desired selectivity for an image amongN images in the sense that they

can ε-approximate the true distance between each pair with probability 1−δ, provided

that

K >
c

ε2
ln
N

δ
(4)

where c is a universal constant.

Thus selectivity could be achieved (up to ε) via empirical proxy of the one-dimensional

distributionP〈I,tk〉 of projections of the image onto a finite number of templates tk, k =65
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1, ...,K under the action of the group. Note that number K of projection is in general

infinite. A probability function in d variables (the image dimensionality) induces a

unique set of 1D projections which is selective; empirically a small number of projec-

tions is usually sufficient to discriminate among a finite number of different probability

distributions. Note that the bound of the number of templates in (4) is very general. A70

better bound can be obtained if we restrict to a the set of specific images.

4. Memory-based learning of invariance

Notice that the computation of a proxy of P〈I,tk〉 requires the observation of the im-

age and “all” its transforms gI . Ideally, however, we would like to compute an invariant

signature for a new object seen only once. For example, we can recognize a new face75

at different distances after just one observation. It is remarkable that this is also made

possible by the projection step. The key is the observation that
〈
gI, tk

〉
=
〈
I, g−1tk

〉
(this is true in the case of unitary groups; however any differentiable transformation can

be turned unitary dividing by the modulus of the determinant of its Jacobian, which,

in the most generic case, will be a function of the spatial coordinates). The same80

one-dimensional distribution is obtained from the projections of the image and all its

transformations onto a fixed template, as from the projections of the image onto all

the transformations of the same template. Indeed, the distributions of the variables〈
I, g−1tk

〉
and

〈
gI, tk

〉
are the same. Thus it is possible for the system to store for

each template tk all its transformations gtk for all g ∈ G and later obtain an invariant85

signature for new images without any explicit knowledge of the transformations g or of

the group to which they belong. Implicit knowledge of the transformations, in the form

of the stored transformed templates, allows the system to be automatically invariant to

those transformations for new inputs.

Finally note that a visual system need not recover the actual probabilities from the em-90

pirical proxy µkn in order to compute a selective signature. The set of µkh(I) values

is sufficient, since it identifies the associated orbit. Crucially, mechanisms capable of

computing invariant representations under affine transformations for future objects can

be learned and maintained in an unsupervised, automatic way by storing and updating
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sets of transformed templates which are unrelated to those future objects.95

5. A theory of pooling

The above argument requires an effective normalization of the elements of the inner

product (e.g.
〈
I, git

k
〉
7→ 〈I,gitk〉
‖I‖‖gitk‖ ) for the property

〈
gI, tk

〉
=
〈
I, g−1tk

〉
to be valid.

Notice that invariant signatures can be computed in several ways from one-dimensional

probability distributions. Instead of the µkh(I) components directly representing the100

empirical distribution, the moments mk
h(I) = 1/|G|

∑|G|
i=1(

〈
I, git

k
〉
)h of the same

distribution can be used [9] (this corresponds to the choice ηh(·) ≡ (·)h ). Under weak

conditions, the set of all moments uniquely characterizes the one-dimensional distri-

bution P〈I,tk〉 (and thus PI ). h = 1 corresponds to pooling via sum/average (and is the

only pooling function that does not require a nonlinearity); h = 2 corresponds to ”en-105

ergy models” of complex cells (the models have its origin in the observation that recep-

tive fields of adjacent cells are often quadrature pairs and their sum gives a measure of

the motion energy [10]) and h = ∞ is related to max-pooling (limh→∞(mk
h(I))1/h).

In our simulations, just one of these moments usually seems to provide sufficient se-

lectivity to a hierarchical architecture. Other nonlinearities are also possible [11]. The110

arguments of this section begin to provide a theoretical understanding of “pooling”,

giving insight into the search for the “best” choice in any particular setting–something

which is normally done empirically (e.g. [12]). According to this theory, these differ-

ent pooling functions are all invariant, each one capturing part of the full information

contained in the PDFs.115

6. Implementations

The theory has strong empirical support from several specific implementations

which have been shown to perform well on a number of databases of natural images.

Support is provided by HMAX, an architecture in which pooling is done with a max

operation and invariance to translation and scale is mostly hardwired, though it could120

also be learned. Its performance on a variety of tasks is discussed in [6] (see also
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Figure 3: Performance of a recent model [15] (inspired by the present theory) on Labeled Faces in the Wild,

a same/different person task for faces seen in different poses and in the presence of clutter. A layer which

builds invariance to translation, scaling, and limited in-plane rotation is followed by another which pools

over variability induced by other transformations.

[13, 14, 15, 16, 17]). Good performance is also achieved by other very similar ar-

chitectures [18]. This class of existing models inspired the present theory, and may

now be seen as special cases of it. Using the principles of invariant recognition the

theory makes explicit, it is possible to develop models that incorporate invariance to125

more complex transformations that cannot be solved by the architecture of the network

and thus must be learned from examples of objects undergoing transformations. These

include non-affine and even non-group transformations, allowed by the hierarchical ex-

tension of the theory (see below). Performance for one such model is shown in figure 3

(see caption for details).130
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7. Extensions of the Theory

7.1. Invariance Implies Localization and Sparsity

The core of the theory applies without qualification to compact groups such as

rotations of the image in the image plane or 3D rotations of 3D objects in 3D space.

Translation and scaling are however only locally compact, and in any case, each of

the modules of Fig. 1 observes only a part of the transformation’s full range. Each∧
-module has a finite pooling range, corresponding to a finite “window” over the orbit

associated with an image. Exact invariance for each module, in the case of translations

or scaling transformations, is equivalent to a condition of localization/sparsity of the

dot product between image and template (see [6] for details). In the simple case of the

translation group in one dimension the condition is (for simplicity I and t have support

center in zero; a similar condition can be written for the scale group in one dimension:

in this last case for the condition to make sense we require the image to be bandpass):

〈
I, gxt

k
〉

= 0 |x| > a. (5)

Since this condition is a form of sparsity of the generic image I w.r.t. a dictionary of

templates tk (under a group), this result may provide a computational justification for

sparse encoding in sensory cortex [19]. Strictly speaking the condition is valid when135

the object has localized support in the pooling region (is an isolated object); however

it holds approximately whenever 〈I, gxt〉 has a fast decay with the transformation (e.g.

wavelet coefficients).

It turns out that localization yields the following surprising result (see [6] for further

details):140

Optimal invariance theorem

Gabor functions of the form (here in 1D) t(x) = e−
x2

2σ2 eiω0x are the templates that are

simultaneously maximally invariant for translation and scale (at each x and ω.)

Since a frame of Gabor wavelets follows from natural requirements of completeness,145

this may be related to the choice of wavelets for the Scattering Transform approach of

Mallat based on wavelets [20].
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A similar equation of 5, if relaxed to hold approximately becomes a sparsity condition

for the class of images I ∈ C ⊆ Rd w.r.t. the dictionary tk under the group G when

restricted to a subclass C of similar images. This property (which is related to the150

notion of ”incoherence” in compressive sensing [21]) requires that I and tk have a rep-

resentation with sharply peaked correlation and autocorrelation. When the condition

is satisfied, the basic HW-module equipped with such templates can provide approxi-

mate invariance to non-group transformations such as rotations in depth of a face or its

changes of expression (see [22] or [6] for further details).155

In summary, the localization condition can be satisfied in two different regimes. The

first one, exact and valid for generic I , yields optimal Gabor templates. The second

regime, approximate and valid for specific subclasses of C of images, yields highly

tuned templates, specific for the subclass. Note that this argument suggests generic,

Gabor-like templates in the first layers of the hierarchy and highly specific templates at160

higher levels. Note also that incoherence increases with increasing dimensionality.

7.2. Hierarchical architectures

We have focused so far on the basic HW-module. Architectures consisting of

such modules can be single-layer as well as multi-layer (see Fig. 1). In our the-

ory, the key property of hierarchical architectures of repeated HW-modules–allowing165

the recursive use of modules in multiple layers–is the property of covariance. By

a covariant response at layer ` we mean that the distribution of the values of each

projection is the same if we consider the image or the template transformations, i.e.

distr(
〈
µ`(gI), µ`(t

k)
〉
) = distr(

〈
µ`(I), µ`(gt

k)
〉
), ∀k.

One-layer networks can achieve invariance to global transformations of the whole im-170

age while providing a selective global signature which is stable with respect to small

perturbations of the image (see [6] and [11] for details). The three main reasons for

a hierarchical architecture such as Fig. 1 are (a) the need to compute representations

that are not affected by clutter, (b) the need to compute an invariant representation not

only for the whole image but especially for all parts of it, which may contain objects175

and object parts, and (c) invariance to global transformations that are not affine, but

are locally affine, that is, affine within the pooling range of some of the modules in

12



the hierarchy (any differentiable transformation, no matter how complex, can be seen

locally as an affine transformation).

Of course, one could imagine local and global one-layer architectures used in the same180

visual system without a hierarchical configuration, but there are further reasons favor-

ing hierarchies including compositionality and reusability of parts. In addition to the

issues of clutter, sample complexity and connectivity, one-stage architectures are un-

able to capture the hierarchical organization of the visual world where scenes are com-

posed of objects which are themselves composed of parts. Objects can move in a scene185

relative to each other without changing their identity and often changing the scene only

in a minor way. The same is often true for parts within an object. Thus global and local

signatures from all levels of the hierarchy must be able to access memory in order to

enable the categorization and identification of whole scenes as well as of patches of

the image corresponding to objects and their parts. Fig. 4 show examples of invari-190

ance and stability for wholes and parts. In the architecture of Fig. 1, each
∧

-module

provides discriminability, invariance and stability at different levels, over increasing

ranges from bottom to top. Thus these architectures match the hierarchical structure

of the visual world and enable retrieval of items from memory at various levels of size

and complexity. These results are part of a general theory of hierarchical architectures195

which is beginning to take form (see [11, 20, 23, 24]) around the basic function of com-

puting invariant representations. The property of compositionality discussed above is

related to the efficacy of hierarchical architectures vs. one-layer architectures in deal-

ing with the problem of partial occlusion and the more difficult problem of clutter in

object recognition. Hierarchical architectures are better at recognition in clutter than200

one-layer networks [25] because they provide signatures for image patches of several

sizes and locations. However, hierarchical feedforward architectures cannot fully solve

the problem of clutter. More complex (e.g. recurrent) architectures are likely needed

for human-level recognition in clutter (see for instance [26, 27, 28]) and for other as-

pects of human vision. It is likely that much of the circuitry of visual cortex is required205

by these recurrent computations, not considered in this paper.
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Figure 4: Empirical demonstration of the properties of invariance, stability and discriminability of the hi-

erarchical architecture in a specific 2 layer implementation (HMAX). (a) shows the reference image on the

left and a deformation of it (the eyes are closer to each other) on the right; (b) shows the relative change

in signature provided by 128 HW-modules at layer 2 (C2) whose receptive fields contain the whole face.

This signature vector is (Lipschitz) stable with respect to the deformation. Error bars represent ±1 standard

deviation. Two different images (c) are presented at various location in the visual field. (d) shows the relative

change of the signature vector for different values of translation. The signature vector is invariant to global

translation and discriminative between the two faces. In this example the HW-module represents the top of

a hierarchical, convolutional architecture. The images were 200× 200 pixels.
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8. Visual Cortex

The theory described above effectively maps the computation of an invariant sig-

nature onto well-known capabilities of cortical neurons. A key difference between

transistors – the basic components of our digital computers – and neurons is the num-

ber of connections: 3 wires vs. 103 − 104 synapses per cortical neuron. Taking into

account basic properties of synapses, it follows that a single neuron can compute high-

dimensional (103 − 104) inner products between input vectors and the stored vector of

synaptic weights [29].

Consider an HW-module of “simple” and “complex” cells [1] looking at the image

through a window defined by their receptive fields. Suppose that images of objects in

the visual environment undergo affine transformations. During development–and more

generally, during visual experience–a set of |G| simple cells store in their synapses

an image patch tk and its transformations g1tk, · · · , g|G|tk–one per simple cell. This

is done, possibly at separate times, for K different image patches tk (templates),

k = 1, · · · ,K. Each gtk for g ∈ G is a sequence of frames, literally a movie of an im-

age patch tk transforming. There is a very simple, general, and powerful way to learn

such unconstrained transformations. Unsupervised learning is the main mechanism:

for a “complex” cell to pool over several simple cells, the key is a modified Hebbian

rule based on temporal association (Foldiak-type rule, [30]): cells that fire in temporal

contiguity are wired together. At the level of complex cells this rule determines classes

of equivalence among simple cells – reflecting observed time correlations in the real

world, that is, transformations of the image. Time continuity allows associative label-

ing of stimuli based on their temporal contiguity.

Later, when an image is presented, the simple cells compute
〈
I, git

k
〉

for i = 1, ..., |G|.

The next step, as described above, is to give a proxy of the one-dimensional probability

distribution of such a projection, that is, the distribution of the outputs of the simple

cells. It is generally assumed that complex cells pool the outputs of simple cells. Thus

a complex cell could compute

µkh(I) =
1

|G|

|G|∑
i=1

σ(
〈
I, git

k
〉

+ h∆) (6)

15



where σ is a smooth version of the step function (σ(x) = 0 for x ≤ 0, σ(x) = 1 for

x > 0) and h = 1, ...,H (this corresponds to the choice ηh(·) ≡ σ(·+ h∆)) . Each of

these H complex cells would estimate one bin of an approximated CDF (cumulative210

distribution function) for P〈I,tk〉. Since a distribution can be represented exactly by

all its moments and approximatively (in general) by a few of them, the complex cells

could compute, instead of an empirical CDF, one or more of its moments, ηh(·) ≡ (·)h;

as explained before h = 1 is the mean, h = 2 corresponds to an energy model of com-

plex cells; very large h is related to a max operation. Conventional wisdom mostly215

interprets the available physiological data to suggest that simple/complex cells in V1

may be described in terms of energy models. Our theory suggests that in addition to

energy models some of the complex cells may represent other moments of the distri-

bution or even different linear combinations of them. A number of other models are

clearly allowed by the theory since many functions that depend on the CDF – such as a220

linear combination of its moments – are invariant; a sufficient set of them can contain

sufficient information for discrimination.

As described above, a template and its transformed versions may be learned from un-

supervised visual experience through Hebbian plasticity. Hebbian plasticity, as for-

malized by Oja, can yield Gabor-like tuning–i.e. the templates that provide optimal225

invariance to translation and scale, since the statistics of natural images is translation

invariant and approximately scale invariant. Remarkably, our analysis and empirical

studies [11] find that quantitative properties of the associated Gabor-like tuning fits ex-

perimental data in different species.

The localization condition (Equation 5) can also be satisfied by images and templates230

that are similar to each other. The result is invariance to class-specific transforma-

tions. This part of the theory is consistent with the existence of class-specific modules

in primate cortex such as a face module and a body module [31, 32, 16]. It is in-

triguing that the same localization condition suggests general Gabor-like templates for

generic images in the first layers of a hierarchical architecture and specific, sharply235

tuned templates for the last stages of the hierarchy. This theory also fits physiology

data concerning Gabor-like tuning in V1 and possibly in V4 (see [11]). It can also be

shown that the theory, together with the hypothesis that storage of the templates takes

16



place via Hebbian synapses, also predicts properties of the tuning of neurons in the face

patch AL of macaque visual cortex [11, 17].240

From the point of view of neuroscience, the theory makes a number of predictions. One

is that the machinery implementing selectivity and invariance should be similar across

all visual and auditory areas. One more speculative prediction concerns complex cell

responses: they may correspond to invariant measurements associated with histograms

of the outputs of simple cells or of moments of their response distribution. Note also245

that this neural interpretation is also valid if “simple cells” are dendritic compartments

rather than cells themselves. The theory implies that, under some conditions, exact or

approximate invariance to all geometric image transformations can be learned, either

during development or in adult life. It is, however, also consistent with the possibility

that basic invariances may be genetically encoded by evolution and possibly refined250

and maintained by unsupervised visual experience.

9. Discussion

The goal of this paper is to introduce a new theory of learning invariant repre-

sentations for object recognition which cuts across levels of analysis [11, 33]. Some

of the existing models between neuroscience and machine learning, such as HMAX255

[2, 34, 35] and Convolutional Neural Networks [3, 4, 36, 37], are special and limited

cases of the theory. Despite significant advances in sensory neuroscience over the last

five decades, a true understanding of the basic functions of the ventral stream in visual

cortex has proven elusive. Thus it is interesting that the theory of this paper follows

from a novel hypothesis about the main computational function of the ventral stream:260

the representation of new objects/images in terms of a signature that is invariant to

transformations learned during visual experience, thereby allowing recognition from

very few labeled examples–in the limit, just one. A main contribution of our work

to machine learning is a novel theoretical framework for the next major challenge in

learning theory beyond supervised learning: the problem of representation learning.265

Acknowledgments

We would like to thank the McGovern Institute for Brain Research for their support.

17



We would also like to thank for having read earlier versions of the manuscript Yann Le-

Cun, Ethan Meyers, Andrew Ng, Bernhard Schoelkopf and Alain Yuille. We also thank

Michael Buice, Charles Cadieu, Robert Desimone, Leyla Isik, Gabriel Kreiman, Lak-270

shminarayanan Mahadevan, Stephane Mallat, Pietro Perona, Maximilian Riesenhuber,

Ryan Rifkin, Terrence J. Sejnowski, Steve Smale, Haim Sompolinsky for useful com-

ments. This material is based upon work supported by the Center for Brains, Minds

and Machines (CBMM), funded by NSF STC award CCF-1231216. This research was

also sponsored by grants from the National Science Foundation (NSF-0640097, NSF-275

0827427), and AFSOR-THRL (FA8650-05-C-7262). Additional support was provided

by the Eugene McDermott Foundation. At the time of our writing, the working mono-

graph [11] contains the most up-to-date account of the theory. The current monograph

evolved from one that first appeared in July 2011 ([11]).

References280

[1] D. Hubel, T. Wiesel, Receptive fields, binocular interaction and functional archi-

tecture in the cat’s visual cortex, The Journal of Physiology 160 (1) (1962) 106.

URL http://jp.physoc.org/content/160/1/106.full.pdf

[2] M. Riesenhuber, T. Poggio, Models of object recognition, Nature Neuroscience

3 (11).285

URL http://www.nature.com/neuro/journal/v3/n11s/full/

nn1100_1199.html

[3] K. Fukushima, Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position, Biological

Cybernetics 36 (4) (1980) 193–202.290

URL http://www.springerlink.com/content/

r6g5w3tt54528137

[4] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel,

Backpropagation applied to handwritten zip code recognition, Neural computa-

tion 1 (4) (1989) 541–551.295

18

http://jp.physoc.org/content/160/1/106.full.pdf
http://jp.physoc.org/content/160/1/106.full.pdf
http://jp.physoc.org/content/160/1/106.full.pdf
http://jp.physoc.org/content/160/1/106.full.pdf
http://www.nature.com/neuro/journal/v3/n11s/full/nn1100_1199.html
http://www.nature.com/neuro/journal/v3/n11s/full/nn1100_1199.html
http://www.nature.com/neuro/journal/v3/n11s/full/nn1100_1199.html
http://www.nature.com/neuro/journal/v3/n11s/full/nn1100_1199.html
http://www.springerlink.com/content/r6g5w3tt54528137
http://www.springerlink.com/content/r6g5w3tt54528137
http://www.springerlink.com/content/r6g5w3tt54528137
http://www.springerlink.com/content/r6g5w3tt54528137
http://www.springerlink.com/content/r6g5w3tt54528137
http://www.springerlink.com/content/r6g5w3tt54528137
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1989.1.4.541


URL http://www.mitpressjournals.org/doi/abs/10.1162/

neco.1989.1.4.541

[5] T. Lee, S. Soatto, Video-based descriptors for object recognition, Image and Vi-

sion Computing 29 (2012) 639–652.

[6] F. Anselmi, J. Leibo, L. Rosasco, J. Mutch, A. Tacchetti, T. Poggio, Unsupervised300

learning of invariant representations with low sample complexity: the magic of

sensory cortex or a new framework for machine learning?, Center for Brains,

Minds and Machines (CBMM) Memo No. 1. arXiv:1311.4158v5.

[7] H. Schulz-Mirbach, Constructing invariant features by averaging techniques, in:

Pattern Recognition, 1994. Vol. 2 - Conference B: Computer Vision amp; Image305

Processing., Proceedings of the 12th IAPR International. Conference on, Vol. 2,

1994, pp. 387 –390 vol.2.

[8] H. Cramer, H. Wold, Some theorems on distribution functions, J. London Math.

Soc. 4 (1936) 290–294.

[9] A. Koloydenko, Symmetric measures via moments, Bernoulli 14 (2) (2008) 362–310

390.

[10] E. Adelson, J. Bergen, Spatiotemporal energy models for the perception of

motion, Journal of the Optical Society of America A 2 (2) (1985) 284–299.

URL http://www.opticsinfobase.org/abstract.cfm?URI=

josaa-2-2-284315

[11] F. Anselmi, J. Leibo, J. Rosasco, L. Mutch, A. Tacchetti, T. Poggio, Magic Mate-

rials: a theory of deep hierarchical architectures for learning sensory representa-

tions, CBCL paper.

URL http://cbcl.mit.edu/publications/ai-publications/

2013/Magic_working_paper_May6_2013.pdf320

[12] K. Jarrett, K. Kavukcuoglu, M. Ranzato, Y. LeCun, What is the best multi-stage

architecture for object recognition?, IEEE International Conference on Computer

19

http://www.mitpressjournals.org/doi/abs/10.1162/neco.1989.1.4.541
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1989.1.4.541
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1989.1.4.541
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-2-2-284
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-2-2-284
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-2-2-284
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-2-2-284
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-2-2-284
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-2-2-284
http://cbcl.mit.edu/publications/ai-publications/2013/Magic_working_paper_May6_2013.pdf
http://cbcl.mit.edu/publications/ai-publications/2013/Magic_working_paper_May6_2013.pdf
http://cbcl.mit.edu/publications/ai-publications/2013/Magic_working_paper_May6_2013.pdf
http://cbcl.mit.edu/publications/ai-publications/2013/Magic_working_paper_May6_2013.pdf
http://cbcl.mit.edu/publications/ai-publications/2013/Magic_working_paper_May6_2013.pdf
http://cbcl.mit.edu/publications/ai-publications/2013/Magic_working_paper_May6_2013.pdf
http://cbcl.mit.edu/publications/ai-publications/2013/Magic_working_paper_May6_2013.pdf
http://cbcl.mit.edu/publications/ai-publications/2013/Magic_working_paper_May6_2013.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5459469
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5459469
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5459469


Vision (2009) 2146–2153.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=5459469325

[13] S. Voinea, C. Zhang, G. Evangelopoulos, L. Rosasco, T. Poggio, Word-level in-

variant representations from acoustic waveforms, in: INTERSPEECH 2014 - 15th

Annual Conf. of the International Speech Communication Association, Singa-

pore, 2014.

[14] C. Zhang, S. Voinea, G. Evangelopoulos, L. Rosasco, T. Poggio, Phone classifica-330

tion by a hierarchy of invariant representation layers, in: INTERSPEECH 2014 -

15th Annual Conf. of the International Speech Communication Association, Sin-

gapore, 2014.

[15] Q. Liao, J. Z. Leibo, T. Poggio, Learning invariant representations and applica-

tions to face verification, in: Advances in Neural Information Processing Systems335

(NIPS). Lake Tahoe, NV., 2013.

[16] J. Z. Leibo, J. Mutch, T. Poggio, Why The Brain Separates Face Recognition

From Object Recognition, in: Advances in Neural Information Processing

Systems (NIPS), Granada, Spain, 2011.

URL http://cbcl.mit.edu/publications/ps/Leibo_Mutch_340

Poggio_face_invar_v08_cam_rdy_letter_Dec2011.pdf

[17] J. Z. Leibo, F. Anselmi, J. Mutch, A. F. Ebihara, W. Freiwald, T. Poggio,

View-invariance and mirror-symmetric tuning in a model of the macaque face-

processing system, in: Computational and Systems Neuroscience, Salt Lake City,

USA, 2013, pp. I–54.345

[18] N. Pinto, D. Doukhan, J. DiCarlo, D. Cox, A high-throughput screening approach

to discovering good forms of biologically inspired visual representation, PLoS

Computational Biology 5 (11).

URL http://dx.plos.org/10.1371/journal.pcbi.1000579

20

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5459469
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5459469
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5459469
http://cbcl.mit.edu/publications/ps/Leibo_Mutch_Poggio_face_invar_v08_cam_rdy_letter_Dec2011.pdf
http://cbcl.mit.edu/publications/ps/Leibo_Mutch_Poggio_face_invar_v08_cam_rdy_letter_Dec2011.pdf
http://cbcl.mit.edu/publications/ps/Leibo_Mutch_Poggio_face_invar_v08_cam_rdy_letter_Dec2011.pdf
http://cbcl.mit.edu/publications/ps/Leibo_Mutch_Poggio_face_invar_v08_cam_rdy_letter_Dec2011.pdf
http://cbcl.mit.edu/publications/ps/Leibo_Mutch_Poggio_face_invar_v08_cam_rdy_letter_Dec2011.pdf
http://cbcl.mit.edu/publications/ps/Leibo_Mutch_Poggio_face_invar_v08_cam_rdy_letter_Dec2011.pdf
http://dx.plos.org/10.1371/journal.pcbi.1000579
http://dx.plos.org/10.1371/journal.pcbi.1000579
http://dx.plos.org/10.1371/journal.pcbi.1000579
http://dx.plos.org/10.1371/journal.pcbi.1000579


[19] B. Olshausen, et al., Emergence of simple-cell receptive field properties by learn-350

ing a sparse code for natural images, Nature 381 (6583) (1996) 607–609.

[20] S. Mallat, Group invariant scattering, Communications on Pure and Applied

Mathematics 65 (10) (2012) 1331–1398. doi:10.1002/cpa.21413.

URL http://dx.doi.org/10.1002/cpa.21413

[21] E. Candes, J. Romberg, Sparsity and incoherence in compressive sampling355

(2006).

[22] J. Z. Leibo, Q. Liao, F. Anselmi, T. Poggio, The invariance hypothesis implies

domain-specific regions in visual cortex, bioRxivdoi:10.1101/004473.

[23] S. Soatto, Steps Towards a Theory of Visual Information: Active Perception,

Signal-to-Symbol Conversion and the Interplay Between Sensing and Control,360

arXiv:1110.2053 (2011) 0–151.

[24] S. Smale, L. Rosasco, J. Bouvrie, A. Caponnetto, T. Poggio, Mathematics of

the neural response, Foundations of Computational Mathematics 10 (1) (2010)

67–91.

URL http://www.springerlink.com/index/365

k650503137550j23.pdf

[25] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, T. Poggio, A theory

of object recognition: computations and circuits in the feedforward path of the

ventral stream in primate visual cortex, CBCL Paper #259/AI Memo #2005-036.

URL http://dspace.mit.edu/handle/1721.1/36407370

[26] S. S. Chikkerur, T. Serre, C. Tan, T. Poggio, What and where: A Bayesian infer-

ence theory of attention, Vision Researchdoi:10.1016/j.visres.2010.

05.013.

URL http://dx.doi.org/10.1016/j.visres.2010.05.013

[27] D. George, J. Hawkins, A hierarchical bayesian model of invariant pattern recog-375

nition in the visual cortex, in: Proceedings of the IEEE International Joint Con-

ference on Neural Networks (IJCNN), Vol. 3, 2005, pp. 1812–1817.

21

http://dx.doi.org/10.1002/cpa.21413
http://dx.doi.org/10.1002/cpa.21413
http://dx.doi.org/10.1002/cpa.21413
http://dx.doi.org/10.1101/004473
http://www.springerlink.com/index/k650503137550j23.pdf
http://www.springerlink.com/index/k650503137550j23.pdf
http://www.springerlink.com/index/k650503137550j23.pdf
http://www.springerlink.com/index/k650503137550j23.pdf
http://www.springerlink.com/index/k650503137550j23.pdf
http://www.springerlink.com/index/k650503137550j23.pdf
http://dspace.mit.edu/handle/1721.1/36407
http://dspace.mit.edu/handle/1721.1/36407
http://dspace.mit.edu/handle/1721.1/36407
http://dspace.mit.edu/handle/1721.1/36407
http://dspace.mit.edu/handle/1721.1/36407
http://dspace.mit.edu/handle/1721.1/36407
http://dx.doi.org/10.1016/j.visres.2010.05.013
http://dx.doi.org/10.1016/j.visres.2010.05.013
http://dx.doi.org/10.1016/j.visres.2010.05.013
http://dx.doi.org/10.1016/j.visres.2010.05.013
http://dx.doi.org/10.1016/j.visres.2010.05.013
http://dx.doi.org/10.1016/j.visres.2010.05.013
http://dx.doi.org/10.1016/j.visres.2010.05.013


[28] S. Geman, Invariance and selectivity in the ventral visual pathway, Journal of

Physiology-Paris 100 (4) (2006) 212–224.

URL http://linkinghub.elsevier.com/retrieve/pii/380

S0928425707000034

[29] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous

activity, The Bulletin of Mathematical Biophysics 5 (4) (1943) 115–133.

URL http://link.springer.com/article/10.1007/

BF02478259385
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