
 

Accepted Manuscript

River banks and channel axis curvature: effects on the longitudinal
dispersion in alluvial rivers

Stefano Lanzoni, Amena Ferdousi, Nicoletta Tambroni

PII: S0309-1708(17)30748-0
DOI: 10.1016/j.advwatres.2017.10.033
Reference: ADWR 2997

To appear in: Advances in Water Resources

Received date: 26 July 2017
Revised date: 27 October 2017
Accepted date: 28 October 2017

Please cite this article as: Stefano Lanzoni, Amena Ferdousi, Nicoletta Tambroni, River banks and
channel axis curvature: effects on the longitudinal dispersion in alluvial rivers, Advances in Water
Resources (2017), doi: 10.1016/j.advwatres.2017.10.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.advwatres.2017.10.033
https://doi.org/10.1016/j.advwatres.2017.10.033


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

River banks and channel axis curvature: effects on the
longitudinal dispersion in alluvial rivers

Stefano Lanzonia, Amena Ferdousia, Nicoletta Tambronib

aDepartment of Civil, Environmental and Architectural Engineering, University of Padua,
Italy

bDepartment of Civil, Chemical and Environmental Engineering, University of Genova,
Genova, Italy

Abstract

The fate and transport of soluble contaminants released in natural streams

are strongly dependent on the spatial variations of the flow field and of the

bed topography. These variations are essentially related to the presence of the

channel banks and the planform configuration of the channel. Large velocity

gradients arise near to the channel banks, where the flow depth decreases to

zero. Moreover, single thread alluvial rivers are seldom straight, and usually ex-

hibit meandering planforms and a bed topography that deviates from the plane

configuration. Channel axis curvature and movable bed deformations drive sec-

ondary helical currents which enhance both cross sectional velocity gradients

and transverse mixing, thus crucially influencing longitudinal dispersion. The

present contribution sets up a rational framework which, assuming mild sloping

banks and taking advantage of the weakly meandering character often exhibited

by natural streams, leads to an analytical estimate of the contribution to longi-

tudinal dispersion associated with spatial non-uniformities of the flow field. The

resulting relationship stands from a physics-based modeling of the behaviour of

natural rivers, and expresses the bend averaged longitudinal dispersion coeffi-

cient as a function of the relevant hydraulic and morphologic parameters. The
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treatment of the problem is river specific, since it relies on a explicit spatial

description, although linearized, of flow field that establishes in the investigated

river. Comparison with field data available from tracer tests supports the ro-

bustness of the proposed framework, given also the complexity of the processes

that affect dispersion dynamics in real streams.

Keywords: Alluvial rivers, Dispersion, meandering rivers

1. Introduction1

Estimating the ability of a stream to dilute soluble pollutants is a funda-2

mental issue for the efficient management of riverine environments. Rapidly3

varying inputs of contaminants, such as those associated with accidental spills4

of toxic chemicals and intermittent discharge from combined sewer overflows, as5

well as temperature variations produced by thermal outflows, generate a cloud6

that spreads longitudinally affecting the fate of the pollutant.7

The classical treatment of longitudinal transport in turbulent flows relies on8

the study put forward by Taylor (1954) for pipe flows, and extended to natural9

channels by Fischer (1967). Taylor’s analysis indicates that, far enough from the10

source (in the so called equilibrium region), the cross-sectionally averaged tracer11

concentration, C, satisfies a one-dimensional advection-diffusion equation, em-12

bodying a balance between lateral mixing and nonuniform shear flow advection13

(Fickian dispersion model). Under the hypothesis that the velocity field is statis-14

tically steady and the investigated channel reach is geometrically homogeneous15

and extends far inside the equilibrium region, the advection-diffusion equation16

prescribes that the variance of C in the along stream direction s∗ increases17

linearly with time and any skewness, introduced by velocity shear close to the18

contaminant source (i.e., in the advective zone) or by the initial distribution19

of contaminant, begins to slowly decay, eventually leading at any instant to20

a Gaussian distribution of C(s∗) (Chatwin and Allen, 1985). The coefficient21

of apparent diffusivity K∗ governing this behavior, usually denoted as disper-22

sion coefficient, is much greater than the coefficient for longitudinal diffusion by23
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turbulence alone.24

Many engineering and environmental problems concerning the fate and trans-25

port of pollutants and nutrients are tackled resorting to the one-dimensional26

advection-diffusion approach (Rinaldo et al., 1991; Wallis, 1994; Schnoor , 1996;27

Revelli and Ridolfi , 2002; Botter and Rinaldo, 2003) and, therefore, require a28

suitable specification of the longitudinal dispersion coefficient K∗. Also within29

the context of much more refined models developed to account for the formation30

of steep concentration fronts and elongated tails caused by storage and delayed31

release of pollutant in dead zones (see, among many others, Czernuszenko et32

al. (1998), Bencala and Walters (1983) and Bear and Young (1983)), a reliable33

estimate of longitudinal dispersion in the main stream (quantified by K∗) is34

fundamental to properly account for chemical and biological processes acting in35

different channel regions (Lees et al., 2000).36

Several procedures have so far been proposed to estimate the longitudinal37

dispersion coefficient from either tracer data (Rutherford , 1994) or velocity mea-38

surements at a number of cross sections (Fischer , 1967). These approaches are39

usually expensive and time consuming. The lack of experimental data which40

characterizes many applications, as well as the necessity of specifying K∗ when41

carrying out preliminary calculations, has thus stimulated the derivation of var-42

ious semi-empirical and empirical relationships (Fischer , 1967; Liu, 1977; Iwasa43

and Aya, 1991; Seo and Cheong , 1998; Deng et al., 2001; Kashefipour and Fal-44

coner , 2002; Deng et al., 2002; Shucksmith et al., 2011; Sahay and Dutta, 2009;45

Etamad-Shahidi and Taghipour , 2012; Li et al., 2013; Zeng and Huai , 2014;46

Disley et al., 2015; Sattar and Gharabaghi , 2015; Noori et al., 2017; Wang and47

Huai , 2016), which can be cast in the general form:48

K∗ = κ0
β κ1

(
√
cfu)κ2

B∗ U∗u , (1)

where β is the ratio of half channel with, B∗, to mean flow depth, D∗u, cfu49

is the friction coefficient, U∗u is the mean value of the cross-sectionally averaged50

flow velocity within the reach of interest and κi (i = 0, 1, 4) are suitable con-51
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stants, specified in Table 1. Note that in Table 1 we have just reported the52

main formulas, for sake of completeness a wider list of relationships is given in53

the Supplementary Information.54

Table 1: Values attained by the constants of the generalized formula (1) and by the associated

mean value of the discrepancy ratio dr (defined in Section 4.2) for various predictors available

in literature, namely: (1) Fischer et al. (1979); (2) Seo and Cheong (1998); (3) Liu (1977); (4)

Kashefipour and Falconer (2002); (5) Iwasa and Aya (1991); (6) Deng et al. (2001); (7) Wang

and Huai (2016). The dimensionless transverse eddy diffusivity, et, and mixing coefficient,

kt, are defined in Section 2.

(1) (2) (3) (4) (5) (6) (7)

κ0 0.044 9.1 0.72 10.612 5.66 0.06/(et+kt) 22.7

κ1 1.0 -0.38 1.0 -1.0 0.5 0.67 -0.64

κ2 1.0 0.428 -0.5 1.0 -1.0 1.0 0.16

< dr > 1.05 1.24 1.10 1.05 1.04 0.63 1.13

The empirical parameters that are introduced in these relations to address55

the complexity embedded in the mixing process still make the quantifying of K∗56

a challenging task. In many cases, the proposed predictor provides only a rough57

estimate, and the discrepancy between the predicted values of K∗ and those58

determined from tracer test is quite high. Among the many reasons responsible59

for this high scatter, one may be the prismatic character assumed as the basis of60

the Fickian solution (Wang and Huai , 2016). Nevertheless, natural channels are61

usually characterized by a complex bed topography, which strongly affects the62

flow field and, hence, the longitudinal dispersion (Guymer , 1998), but is only63

roughly accounted for in the various approaches. In addition, in some cases a64

suitable tuning of the empirical parameters is needed in order to achieve a good65

agreement with the experimental data (Deng et al., 2001).66

Many of the existing expressions for predicting the longitudinal dispersion67

in rivers have been developed by minimizing the error between predicted and68

measured (through tracer tests) dispersion coefficients. These relations gener-69

ally differ in terms of the relevant dimensionless groups (determined through70
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dimensional analysis) and of the optimization technique (e.g., nonlinear multi71

regression, genetic and population-based evolutionary algorithms) used to cal-72

ibrate the coefficients of the predictor (Seo and Cheong (1998); Kashefipour73

and Falconer (2002); Sahay and Dutta (2009); Disley et al. (2015); Noori et74

al. (2017)). More recently, the dataset provided by the dispersion coefficients75

measured in the field has been used for training and testing artificial neural76

networks or bayesan networks (Alizadeh et al., 2017). A less few attempts were77

devoted to derive analytical relationships by substituting in the triple integral78

ensuing from Fischer analysis of shear flow dispersion the flow field that, un-79

der the uniform-flow assumption, establishes in stable straight channels (Deng80

et al., 2001) and in meandering rivers (Deng et al., 2002). In the present con-81

tribution we follow this latter approach, which has the advantage of being river82

specific, i.e., to relate the dispersion coefficient to the shear flow dispersion that83

actually takes place in the river under investigation. The improvement with84

respect to the contributions by Deng et al. (2001, 2002) are essentially related85

to the morphodynamics-based modelling of the flow that establishes in alluvial86

rivers. In the case of straight rivers, rather than using the general hydraulic87

geometry relationship for stable cross sections, we propose a specific treatment88

of the shear flow effects by dividing the cross section into a central flat-bed re-89

gion and two gently sloping banks computing the flow field therein. In the case90

of meandering rivers, the flow field outside the boundary layers that form near91

to the banks is solved explicitly, although in a linearised way, accounting para-92

metrically for the secondary flow circulations induced by streamline curvatures93

and computing the bed topography by solving the two-dimensional sediment94

balance equation.95

The aim of the present contribution is thus to develop physics-based, analytic96

predictions of the longitudinal dispersion coefficient, accounting for the cross-97

sectional morphology occurring in alluvial rivers. More specifically, we intend to98

relate the estimates of K∗ to the relevant hydraulic, geometric and sedimento-99

logic parameters (flow discharge, bed slope, representative sediment size, bank100

geometry) governing the steady flow in an alluvial river. First, we apply to the101
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flow field which establishes in sinuous, movable bed channels the perturbative102

procedure developed by Smith (1983), that accounts for the fast variations of103

concentration induced across the section by irregularities in channel geometry104

and the presence of bends. This methodology, introducing a reference system105

moving downstream with the contaminant cloud and using a multiple scale per-106

turbation technique, allows the derivation of a dispersion equation relating en-107

tirely to shear flow dispersion the along channel changes in the cross-sectionally108

averaged concentration. Next, we take advantage of the weakly meandering109

character of many natural rivers to clearly separate the contributions to longi-110

tudinal dispersion provided by the various sources of nonuniformities. At the111

leading order of approximation, corresponding to the case of a straight channel,112

we consider the differential advection related to the presence of channel banks,113

solving the flow field by means of a rational perturbation scheme (Tubino and114

Colombini , 1992). At the first order of approximation, we introduce the cor-115

rection to K∗ due to the presence of bends by using the hydro-morphodynamic116

model of Frascati and Lanzoni (2013).117

The proposed methodology is finally validated through the comparison with118

the tracer test data collected in almost straight and in meandering rivers.119

Among others, we consider the detailed dataset provided by Godfrey and Fred-120

erick (1970), which includes detailed measurements of flow depth, longitudinal121

velocity, and the temporal evolution of the tracer concentration at different cross122

sections, as well as estimates of K∗ based on the method of moments. These123

concentration data are here reanalyzed by considering the Chatwin’s method124

(Chatwin, 1980), which indicates if and where a Fickian model likely applies,125

and the routing method, based on the Hayami solution (Rutherford , 1994). We126

anticipate that the proposed framework provides estimates of K∗ that are in127

reasonable good agreement with the values computed from tracer tests.128

The paper is organized as follows. The mathematical problem is formulated129

in Section 2, with particular emphasis on the typical temporal and spatial scales130

which allow to set up a rational perturbative framework and eventually deter-131

mine the overall structure of the dispersion coefficient in alluvial channels. The132
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analytical solutions of the depth averaged flow field used to compute K∗ are133

described in Section 3. The comparison with available field data is reported in134

Section 4, while Section 5 is devoted to the discussion of the results. Finally,135

Section 6 summarizes the concluding remarks.136

2. Formulation of the problem137

We consider the behavior of a passive, non-reactive contaminant which (e.g.,138

due to an accidental spill) is suddenly released in an alluvial channel with a139

compact cross section and, in general, a meandering planform. The river cross140

section bed is assumed to vary slowly in the transverse direction as the banks141

are approached. This assumption allows for solving the flow field by adopting142

a closure model of turbulence in which the turbulent viscosity ν∗T is a function143

of the local flow condition (see Section 3.1). The channel has fixed banks,144

a constant free surface width 2B∗, a longitudinal mean slope S, and conveys145

a constant discharge Q∗ (hereafter a star superscript will be used to denote146

dimensional variables). The reach averaged value of the flow depth is D∗u. The147

corresponding cross-section area is A∗u = 2B∗D∗u, while the cross-sectionally148

averaged mean velocity is U∗u = Q∗/A∗u. The erodible channel bed is assumed149

to be made up of a uniform cohesionless sediment with grain size d∗gr, density150

ρs, and immersed relative density ∆ = (ρs − ρ)/ρ, with ρ the water density.151

Moreover, we denote by β = B∗/D∗u the half width to depth ratio, u∗fu =152

(gD∗uS)1/2 the friction velocity (with g the gravitational constant), and cfu =153

(u∗fu/U
∗
u)2 the friction coefficient. These two latter quantities are influenced by154

the bed configuration, which can be either plane or covered by bedforms such155

as ripples and dunes, depending on the dimensionless grain size dgr = d∗gr/D
∗
u,156

and the Shields parameter, τ∗u = u∗2fu/(∆gd
∗
gr).157

2.1. The 2-D dimensionless advection-diffusion equation158

The problem can be conveniently studied introducing the curvilinear or-159

thogonal coordinate system (s∗, n∗, z∗) shown in Figure 1a, where s∗ is the160
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longitudinal curvilinear coordinate coinciding with the channel axis, n∗ is the161

horizontal coordinate normal to s∗, and z∗ is the upward directed axis. The two-162

dimensional advection-diffusion equation for the depth-averaged concentration163

c(s∗, n∗, t∗) reads (Yotsukura, 1977):164

hsD
∗ ∂c
∂t∗

+ D∗U∗
∂c

∂s∗
+ hsD

∗V ∗
∂c

∂n∗

=
∂

∂s∗
(k∗s

D∗

hs

∂c

∂s∗
) +

∂

∂n∗
(k∗n hsD

∗ ∂c

∂n∗
) (2)

where t∗ denotes time, D∗ is the local flow depth, U∗ and V ∗ are the depth-165

averaged longitudinal and transverse components of the velocity, and k∗s and k∗n166

are longitudinal and transverse mixing coefficients which account for the com-167

bined effect of vertical variations of velocity and turbulent diffusion. Moreover,168

hs is a metric coefficient, arising from the curvilinear character of the longitu-169

dinal coordinate, defined as:170

hs = 1 +
n∗

r∗
= 1 + ν n C, (3)

where r∗(s∗) is the local radius of curvature of the channel axis, assumed171

to be positive when the center of curvature lies along the negative n∗-axis,172

ν = B∗/R∗0 is the curvature ratio, n = n∗/B∗ is the dimensionless transverse173

coordinate, C = R∗0/r
∗ is the dimensionless channel curvature, and R∗0 is twice174

the minimum value of r∗ within the meandering reach.175

In meandering channels the cross-sectionally averaged concentration under-176

goes relatively small and rapidly changing gradients, associated with the spatial177

variations of the flow field along the bends, and a slower evolution due to longi-178

tudinal dispersion. In order to deal with the fast concentration changes acting179

at the meander scale, it proves convenient to introduce a pseudo-lagrangian,180

volume following coordinate, ξ∗, which travels downstream with the contami-181

nant cloud and accounts for the fact that the cross-sectionally averaged velocity182

Q∗/A∗ in not constant along the channel (Smith, 1983). This coordinate is183
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defined as:184

ξ∗ =
1

A∗u

∫ s∗

0

A∗ ds∗ − U∗u t∗ (4)

where the integral on the right side is the water volume from the origin of185

the coordinate system to the generic coordinate s∗, while186

A∗ =

∫ B∗

−B∗
D∗ dn∗, A∗ =

∫ B∗

−B∗
hsD

∗ dn∗. (5)

Clearly, A∗ and A∗ can vary along s∗ as a consequence of the variations of187

section geometry induced by the bed topography that establishes in the mean-188

dering channel. The derivation chain rule implies that:189

∂

∂s∗
=

∂

∂s∗
+A ∂

∂ξ∗
,

∂

∂t∗
=

∂

∂t∗
− U∗u

∂

∂ξ∗
(6)

where A = A∗/A∗u. Consequently, for an observer moving with velocity190

U∗u (i.e., with the advected pollutant cloud) the dilution of the concentration191

associated with longitudinal dispersion is accounted for by the coordinate ξ∗ and192

occurs at a length scale comparable with the length of the contaminant cloud,193

L∗c . It then results that c = c(s∗, n∗, ξ∗, t∗), and equation (2) can be rewritten194

as:195

D∗U∗
∂c

∂s∗
+hsD

∗V ∗
∂c

∂n∗
− ∂

∂n∗
(k∗n hsD

∗ ∂c
∂n∗

) = D∗
(
hs U

∗
u−AU∗

) ∂c
∂ξ∗
−hsD∗

∂c

∂t∗
+

+
∂

∂s∗

(
k∗s
D∗

hs

∂c

∂s∗
+A k∗s

D∗

hs

∂c

∂ξ∗

)
+A ∂

∂ξ∗

(
k∗s
D∗

hs

∂c

∂s∗
+A k∗s

D∗

hs

∂c

∂ξ∗

)
(7)

In order to better appreciate how transverse mixing, differential advection,196

longitudinal dispersion and spatial changes in bed topography contribute to di-197

lute the pollutant concentration, equation (2) is made dimensionless introducing198

the following scaling:199

s∗ = L∗ s, ξ∗ = L∗c ξ, n∗ = B∗ n, D∗ = D∗uD, (8)
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t∗ = T ∗0 t (U∗, V ∗) = U∗u (U,
L∗

B∗
V ), (k∗s , k

∗
n) = k∗nu(ks, kn) (9)

where L∗ is the average intrinsic meander length within the investigated200

reach (see Figure 1a), k∗nu is the transverse mixing coefficient for a straight201

channel configuration, and T ∗0 is the typical timescale at which longitudinal202

dispersion operates within the contaminant cloud.203

Besides the timescale T ∗0 = L∗ 2c /K∗u (where K∗u is a typical dispersion coef-204

ficient), other two timescales, T ∗1 = L∗c/U
∗
u and T ∗2 = B∗ 2/k∗nu, characterize the205

processes (longitudinal dispersion, differential advection and transverse mixing)206

that govern the concentration dynamics of the pollutant cloud. In order to en-207

sure that they are well separated (Fischer , 1967; Smith, 1983), we introduce the208

small parameter209

ε =
k∗nu
B∗U∗u

, (10)

and recall the relationships usually adopted to predict the transverse mixing210

coefficients k∗nu and K∗u.211

The rate of transverse mixing is determined by turbulent diffusion, quantified212

by the depth averaged transverse eddy diffusivity e∗t , and vertical variations in213

the transverse velocity, quantified by the transverse dispersion coefficient k∗t214

(Rutherford , 1994). Both coefficients scale as u∗fuD
∗
u and, consequently, the215

transverse mixing coefficient can be expressed as:216

k∗nu = (et + kt)u
∗
fuD

∗
u (11)

Recalling that u∗fuD
∗
u = B∗ U∗u

√
cfu/β, it results that ε = (et+kt)

√
cfu/β.217

Experimental observations in straight rectangular flumes indicate that et usually218

falls in the range (0.10 - 0.26), with a mean value equal to 0.15 (Rutherford ,219

1994). On the other hand, for large rivers the transverse dispersion coefficient220

kt has been related to the mean flow velocity and the channel width through a221

10
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relation of the form (Smeithlov , 1990):222

kt =

[
1

3520

( U∗u
u∗fu

)(2B∗

D∗u

)1.38
]

(12)

Observing that the ratio
√
cfu/β attains values of orderO(10−2) andO(10−3)223

in gravel and sandy rivers (Hey and Throne, 1986; Parker , 2004), it results that224

the parameter ε is indeed small.225

According to the semi-empirical relationship developed by Fischer et al.226

(1979), K∗u = 0.044 (B∗U∗u)2/(u∗fuD
∗
u). This functional dependence is confirmed227

by the dispersion data reported by Rutherford (1994), indicating that the di-228

mensionless ratio K∗u/B
∗U∗u mostly falls in the range 0.14− 36, with mean 4.4229

and standard deviation 5.0. We can then write:230

k∗nu
K∗u

=
kn + kt
0.044

cfu
β2
∼ ε2, (13)

Consequently, T ∗1 /T
∗
0 = ε and T ∗2 /T

∗
0 = ε2, provided that B∗/L∗c = ε2, that231

is the contaminant cloud has reached a length of order of hundred of meters or232

kilometers, depending on the width of the channel section. This result implies233

that the three time scales are well separated, i.e. T ∗0 < T ∗1 < T ∗2 . In other234

words, the longitudinal dispersion operates on a timescale much slower than the235

timescale characterizing transverse mixing which, in turn is much faster than236

nonuniform advection (Fischer , 1967; Smith, 1983).237

The derivation of the longitudinal dispersion coefficient takes advantage of238

the small character of the parameter ε, ensuring the separation of the three239

timescales. Substituting the dimensionless variables (8) and (9) into equation240

(7), we obtain:241

Lc = εD
(
hs −AU

)∂c
∂ξ
− ε2 hsD

∂c

∂t

+ ε2
(
γ
∂

∂s
+ εA ∂

∂ξ

)(γ
ε
ks

D

hs

∂c

∂s
+A ks

D

hs

∂c

∂ξ

)
(14)
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where the differential operator L reads:242

L = γ D
(
U
∂

∂s
+ hs V

∂

∂n

)
− ∂

∂n

(
hsDkn

∂

∂n

)
(15)

The additional parameter γ = εL∗c/L
∗ arises because of the presence of two243

spatial scales. The spatial variations of c associated with longitudinal disper-244

sion at the scale of the contaminant cloud are described by the slow variable245

ξ, whereas the comparatively small and rapidly changing variations in concen-246

tration across the flow associated with stream meandering are accounted for247

through the fast variables s, n. The parameter γ describes the relative impor-248

tance of transverse mixing, which tends to homogenize the contaminant con-249

centration, and nonuniform transport at the bend scale, which, on the contrary,250

enhances concentration gradients. It is readily observed that γ = ε−1λ/2π,251

where the dimensionless meander wavenumber λ = 2πB∗/L∗ typically ranges252

between 0.1 and 0.3 (Leopold et al., 1964). The product γε then turns out of253

order O(10−2) and, hence, gives rise to higher order terms in the perturbation254

analysis described in the next Section.255

2.2. The longitudinal dispersion coefficient256

The presence of different spatial and temporal scales can be handled em-257

ploying a multiple scale technique (Nayfeh, 1973). To this purpose we expand258

the concentration c = c(s, n, ξ, t) as:259

c = c0 + ε c1 + ε2 c2 + . . . (16)

We substitute this expansion into (14), and consider the problems arising at260

various orders of approximation:261

O(ε0) L c0 = 0 (17)

O(ε) L c1 = D
(
hs − UA

)∂c0
∂ξ

(18)

O(ε2) L c2 = D
(
hs − UA

) ∂c1
∂ξ
− hsD

∂c0
∂t

, (19)
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Figure 1: Sketch of a meandering channel and notations. a) Plan view. b) Typical cross-

section in a neighborhood of the bend apex. Note the scour at the outer bank and the

deposition caused by the point bar at the inner bank. c) Average cross-section, typically

occurring nearby the inflection point of the channel axis.

coupled with the requirements that ∂ci/∂n = 0 (i = 0, 1, 2) at the channel262

banks, where the normal component of the contaminant flux vanishes.263

The partial differential equations (17), (18) and (19) provide a clear insight264

into the structure of the contaminant concentration. Recalling that, for a steady265

open channel flow, the depth-averaged (i.e., two-dimensional) continuity equa-266

tion, written in dimensionless form, reads:267

∂(UD)

∂s
+
∂(hsV D)

∂n
= 0, (20)

we integrate (17) across the section and find that c0 does not depend on268

s, n and, hence, it is not affected by the fluctuations induced by flow mean-269

dering. Equation (18) suggests a solution of the form c1 = g1(s, n) ∂c0/∂ξ,270

with g1 a function describing the nonuniform distribution across the section of271
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the contaminant concentration. Similarly, equation (19) indicates that c2 =272

g2(s, n) ∂2c0/∂ξ
2. The depth-averaged concentration then results:273

c(s, n, ξ, t) = c0(ξ, t) + ε g1(s, n)
∂c0
∂ξ

+ ε2 g2(s, n)
∂2c0
∂ξ2

+O(ε3) (21)

and clearly discriminates the slower evolution due to longitudinal dispersion,274

embodied by the terms c0, ∂c0/∂ξ, ∂
2c0/∂ξ

2, from the small and rapidly varying275

changes associated with the spatial variations of the flow field, described by the276

functions g1 and g2.277

Integrating (21) across the section and along a meander, the cross-sectionally278

averaged concentration can be approximated as c̄ = c0 + O(ε3) provided that279

< ḡi >= 0 (i = 1, 2), where:280

c̄ =
1

2A

∫ 1

−1
hsD cdn, ḡi =

1

2A

∫ 1

−1
hsDgi dn, 〈ḡi〉 =

∫ s+1/2

s−1/2
ḡi ds (22)

It is important to note that only averaging (21) along the entire meander281

length ensures that the arbitrary constant embedded in gi does not actually282

depend on s.283

We are now ready to derive the advection-diffusion equation, governing the284

evolution of the cross-sectionally averaged concentration c̄, and the related lon-285

gitudinal dispersion coefficient. We sum together equations (18) and (19), in-286

tegrated across the section and along a bend, and require that the flux of con-287

taminant vanishes, i.e.,
∫ 1

−1DUgidn = 0 (i =1,2), a condition needed in order288

to eliminate secular terms which would lead c2 to grow systematically with s.289

We eventually obtain:290

∂c0
∂t

= K
∂2c0
∂ξ2

+O(ε) (23)
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where:291

K = 〈A2K〉, K =
1

2A

∫ 1

−1
D (

hs
A − U) g1 dn, (24)

while the function g1(s, n), describing the cross-sectional distribution of the292

concentration, results from the solution of the O(ε) equation:293

L g1 = D (hs − UA), (25)

with the requirements that ∂g1/∂n = 0 at the channel banks, where the294

normal component of the contaminant flux vanishes, and 〈ḡ1〉 = 0.295

Before proceeding further, some observations on the expression (24) are296

worthwhile. In accordance with Fischer (1967), the contribution to longitudinal297

dispersion provided by vertical variations of the velocity profile (embodied by298

the terms of (14) containing ks) is of minor importance. Longitudinal dispersion299

is essentially governed by shear flow dispersion induced by the nonuniform dis-300

tribution across the section of both the contaminant concentration, accounted301

for through the function g1(s, n), and the flow field, quantified by D (hs−UA).302

This latter term, however, differs from the much simpler term (1−U) that would303

arise in the classical treatment pursued by Fischer (1967), as a consequence of304

the fact that here the mean flow velocity can in general vary along the channel,305

as accounted for through the volume-following coordinate ξ. In addition, it is306

important to observe that the bend averaged coefficient K is always positive307

while, in the presence of river reaches characterized by rapid longitudinal vari-308

ations of the flow field, the coefficient K can also attain negative values, thus309

favoring spurious instabilities (Smith, 1983).310

Finally, it is useful to relate the local and the bend averaged dispersion311

coefficients, K and K, to the local dispersion coefficient D that arises when312

considering only the fast coordinate s. Decomposing the concentration c and313

velocity U∗ as the sum of their cross-sectionally averaged values, c̄, Ū∗, plus314

the corresponding fluctuations c′, U
′∗, the classical one-dimensional advection-315
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dispersion equation results:316

∂c̄

∂t∗
+
Q∗

A∗
∂c̄

∂s∗
= − 1

A
∂

∂s∗

∫ B∗

−B∗
D∗U

′∗c′dn∗ (26)

Setting c′ = (B∗2U∗u/k
∗
nu) g1 ∂c̄/∂s

∗, after some algebra it can be demon-317

strated that:318

D∗ =
(U∗u B

∗)2

k∗nu
D, D =

1

2A

∫ 1

−1
D (Ū − U) g1 dn, (27)

and, consequently, K = D and K = 〈A2D〉.319

2.3. Structure of the longitudinal dispersion coefficient in meandering channels320

Natural channels are seldom straight. In the general case of a meandering321

planform configuration, the problem can be faced by taking advantage of the322

fact that, in nature, the curvature ratio ν appearing in (3) is typically a small323

parameter, ranging in the interval 0.1−0.2 (Leopold et al., 1964). This evidence324

is widely used to describe the flow field in meandering channels (Seminara, 2006)325

and to model their long term evolution (Frascati and Lanzoni , 2010, 2013). It326

implies that the flow field and the bed topography of a meandering channel327

can be determined by studying the relatively small perturbations associated328

with deviations from a straight channel configuration. We then introduce the329

expansions:330

[U(s, n), D(s, n), A(s)] = [U0(n), D0(n), 1] + ν [U1(s, n), D1(s, n), A1(s)]

+ ν2 [U2(s, n), D2(s, n), A2(s)] + O(ν3) (28)

where the unperturbed O(ν0) state corresponds to a straight channel. Sim-331

ilarly, we expand in terms of ν the function g1 and the dimensionless transverse332

mixing coefficient kn:333

[kn(s, n), g1(s, n)] = [kn0(n), g10(n)] + ν [kn1(s, n), g11(s, n)] + O(ν2) (29)
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The longitudinal dispersion coefficient in meandering channels is determined334

by substituting (28) and (29) into (24), and recalling (3). We obtain:335

K = K0 + ν K1 + ν2K2 + O(ν3) (30)

where336

K0 =
1

2

∫ 1

−1
(1− U0)D0 g10 dn (31)

K1 =
1

2

∫ 1

−1
(1− U0) < D0g11 +D1 g10 > dn+

+
1

2

∫ 1

−1
< nC − U1 − U0A1 > D0 g10 dn (32)

K2 =
1

2

∫ 1

−1
(1− U0) < D0 g12 +D1 g11 +D2 g10 > dn+

+
1

2

∫ 1

−1
< (nC − U1 − U0A1) (D0 g11 +D1 g10) > dn+

−1

2

∫ 1

−1
< U2 + U1A1 + U0A2 > D0 g10 dn (33)

It is immediately recognized that the leading order contribution K0 corre-337

sponds to the classical solution obtained by Fischer (1967). It accounts for338

dispersion effects which arise in a straight uniform flow as a consequence of the339

transverse gradients experienced by U0 and the concentration distribution in340

the bank regions (Figure 1). Note that neglecting these effects is equivalent to341

set U0 = D0 = 1, such that K0 = 0. It is also easy to demonstrate that the342

O(ν) correction K1 is identically zero. Indeed, A1 = 0, and the various integrals343

involve products of even (1 − U0, D0, g10) and odd (D1, U1, g11, n) functions344

that, integrated across a symmetrical section, yields a zero contribution. Fi-345

nally, the O(ν2) term K2 includes the effects of the near bank velocity and346

concentration gradients, mainly represented by the first integral on the right347

hand side of equation (33), and those due to the complex structure of the flow348

field, the bed topography and the spatial distribution of the concentration in-349

duced by the meandering stream. The former contribution to K2 is likely of350

minor importance when dealing with wide and shallow sections (i.e., with large351
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β), as often occurs in alluvial rivers and, in the following will be neglected in352

order to keep the model at the lower level of complexity. In fact, as it will be353

seen in the next section, the solution of the flow field in a meandering channel is354

available in closed form only by neglecting the boundary layers that form near355

to the banks (Frascati and Lanzoni , 2013).356

The functions g1i(s, n) (i = 0, 1) that describe the cross sectional distribu-357

tion of c are obtained by solving the partial differential equations that arise by358

substituting from (28) and (29) into (25). They read:359

γD0U0
∂g1i
∂s
− ∂

∂n

(
D0kn0

∂g1i
∂n

)
= f1i(s, n) i = 0, 1 (34)

and are subject the constraints that ∂g1i/∂n = 0 at the walls and360

∫ 1

−1
D0 < g1i > dn = b1i with b10 = 0, b11 = −

∫ 1

−1
< g10(D1+D0nC) > dn.

(35)

The forcing terms f1i are obtained recalling the expression of the metric361

coefficient hs, and read:362

f10 = D0(1− U0) (36)

f11 = (nC − U1 − U0A1) +D1(1− U0)− γ D0V1
dg10
∂n

+

− ∂

∂n
[(kn1 + nCkn0)D0 + kn0D1)

dg10
dn

] (37)

where kni = Di, having assumed that k∗n = (et + kt)u
∗
fuD

∗ (Deng et al.,363

2001).364

The solution of the boundary value problems given by (34) and its constraints365

is in general given by the sum of a homogeneous solution, common to any366

order of approximation, and a particular solution related to the forcing term367

f1i. The homogeneous solution can be written in term of Fourier series, and368

generally depends on the transverse distribution of concentration at the injection369

section. However, in the case of a sudden release of contaminant treated here,370
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it tends to decrease exponentially with the coordinate s and, hence, vanishes371

far downstream of the input section (Smith, 1983). This condition is equivalent372

to impose that the O(ε) and O(ε2) pollutant fluxes vanish (
∫ 1

−1DUgidn = 0 for373

i =1,2), as required in the derivation of equation (23).374

Finally, note that, for the uniform flow in a straight channel, the along375

channel gradient of g10 is identically zero and (34) yields the classical relation376

(Fischer , 1967, 1973; Rutherford , 1994):377

g10(n) =

∫ n

−1

[
1

D0 kn0

∫ n1

−1
D0(U0 − 1) dn2

]
dn1 + α0 (38)

where the constant α0 allows g10 to satisfy the integral condition (35), but378

does not give any contribution to K0.379

3. Depth averaged flow field in alluvial channels380

The characteristics of the steady flow that establishes in alluvial channels381

are determined by the form of the cross section and the planform configuration382

of the channel. The governing two-dimensional equations of mass and momen-383

tum conservation are in general obtained by depth-averaging the corresponding384

three-dimensional equations, and by accounting for the dynamic effects of sec-385

ondary flows induced by curvature and of the boundary layers that form near386

to the channel banks.387

The complexity of the problem prevents the derivation of general solutions in388

closed form. Also numerical solutions are non straightforward, owing to the diffi-389

culty of modeling secondary circulations (Bolla Pittaluga and Seminara, 2011).390

However, the governing equations can be linearized in the presence of gently391

sloping channel banks and meandering channels with wide and long bends, such392

that the flow field can be solved by perturbing the uniform flow solution in393

terms of two small parameters δ and ν. We resort just to these solutions, which394

have the pratical advantage to explicitily account, although in a simplified form,395

for the effects excerted on the basic flow field by the bank shape and the chan-396

nel axis curvature. We then estimate analytically the longitudinal dispersion397
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coefficient through (31) and (33).398

In the following, we first derive the cross-sectional distribution of the lon-399

gitudinal velocity U0 in a straight channel with gently sloping banks (small δ).400

Next, we briefly recall the structure of U1 in wide and long meander bends401

(small ν) with either an arbitrary or a regular distribution of the channel axis402

curvature.403

3.1. Straight channels404

The uniform turbulent flow field that establishes throughout a cross section405

of a straight channel can be conveniently studied introducing the local orthog-406

onal coordinate system (s∗, σ∗, ζ∗), where s∗ is the longitudinal (in this case407

straight) coordinate (directed downstream), σ∗ is the transverse curvilinear co-408

ordinate aligned along the cross-section profile (with origin at the channel axis),409

and ζ∗ is the coordinate normal to the bed (pointing upward) (see Figure 1c).410

The curvilinear nature of σ∗ is accounted for through the metric coefficient:411

hσ = 1 +
ζ∗

cosϕ

∂2D∗0
∂σ∗2

, cosϕ =

√
1−

(∂D∗0
∂σ∗

)2
, (39)

with D∗0(σ∗) the local value of the flow depth, ϕ the angle that the vertical412

forms with ζ∗, and D∗z = D∗0/ cosϕ the flow depth measured normally to the413

bed (Figure 1).414

The uniform character of the flow implies, on average, the flow characteristics415

do not vary in time and along the direction s∗. Hence, denoting by u∗(σ∗, ζ∗) the416

corresponding component of the velocity, the longitudinal momentum equation,417

averaged over the turbulence, reads (Appendix A):418

S hσ g +
∂

∂σ∗

(
ν∗T
hσ

∂u∗

∂σ∗

)
+

∂

∂ζ∗

(
ν∗Thσ

∂u∗

∂ζ∗

)
= 0, (40)

where ν∗T is the eddy-viscosity used to express the turbulent Reynolds stresses419

through the Boussinesq approximation.420

In general, the channel cross section is assumed to consists of (Figure 1c): i)421

a central region of width 2B∗c and constant depth depth D∗c , and ii) two bank422
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regions, each one characterized by a width (B∗-B∗c ) and wetted perimeter P ∗0 .423

In natural channels the flow depth is usually much smaller than the wetted424

perimeter and, consequently the dimensionless parameter425

δ =
D∗u

P ∗0 +B∗c
(41)

is small. We will take advantage of this for solving equation (40). To this426

aim, we introduce the scaling:427

ζ =
ζ∗

D∗z(σ∗)
, σ =

σ∗

P ∗0 +B∗c
, D0 =

D∗0
D∗u

, u =
u∗

u∗fu
, (42)

νT =
ν∗T

D∗uu
∗
fu

, uf =
u∗f
u∗fu

, (43)

where u∗f = (gD∗0S)1/2 is the local value of the friction velocity, related to428

the local bed shear stress τ∗b by the relation u∗f = (τ∗b /ρ)1/2. Note that, having429

normalized ζ∗ with D∗z , it turns out that:430

∂

∂ζ∗
=

1

D∗z

∂

∂ζ
,

∂

∂σ∗
=

1

P ∗0 +B∗c

(
∂

∂σ
− ζF1

∂

∂ζ

)
, (44)

with431

F1 =
1

D0

∂D0

∂σ

[
1 +

δ2D0 (∂2D0/∂σ
2)

1− δ2 (∂D0/∂σ)2

]
. (45)

Substituting (42) and (43) into (40), the dimensionless longitudinal momen-432

tum equation results:433

1

D2
z

∂

∂ζ

[
hσνT

∂u

∂ζ

]
+ δ2

(
∂

∂σ
− ζF1

∂

∂ζ

)[
νT
hσ

(
∂

∂σ
− ζF1

∂

∂ζ

)
u

]
+ hσ = 0

(46)

Under the assumption that the transverse slope of the channel bank varies434

slowly, such that the normals to the bed do not intersect each other, it is possible435

to express the dimensionless eddy viscosity νT as:436

νT (ζ) = uf DzN (ζ), (47)
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The simplest model for the function N (ζ) is that introduced by Engelund437

(1974), whereby N = 1/13. In the following, we will adopt this scheme which438

allows for an analytical solution of the problem, and, as shown by Tubino and439

Colombini (1992), leads to results that agree both qualitatively and quantita-440

tively with those obtained with a more accurate model for the function N (ζ).441

Under the assumption of a constant N , a slip condition has to be imposed at442

the bed, such that:443

u|ζ=0 = uf

[
2 + 2.5 ln

(
Dz

dgr

)]
. (48)

The other two boundary conditions to be associated to equation (46) require444

that the dimensionless shear stress vanishes at the water surface and equals uf445

at the bed:446

[
νT

(
1

D0

∂u

∂ζ
− δ2

hσ

∂u

∂σ

)]

ζ=1

= 0,

[
νT
Dz

∂u

∂z

]

ζ=0

= u2f . (49)

The presence of the small parameter δ allows the expansion of the flow447

variables as:448

(
u, uf

)
=
(
u0, uf0

)
+ δ2

(
u1, uf1

)
+O(δ4). (50)

The cross sectional distribution u(σ, ζ) of the longitudinal velocity is ob-449

tained by substituting this expansion into equations (46), (48) and (49), by450

collecting the terms with the same power of δ2, and by solving the resulting451

differential problems (see Appendix A). Integrating u along the normal ζ to the452

bed, the local value U0(σ) of the depth-averaged longitudinal velocity results:453

U0 = U00 + δ2 U01 +O(δ4) (51)

where U00 is a function of the local flow depth D0(σ) and the relative grain454

roughness dgr, while U01 depends also on ∂D0/∂σ (i.e., the local slope) and455

∂2D0/∂σ
2 (Appendix A).456

The cross sectional distribution of U0 needed to compute the longitudinal457

dispersion coefficient is then determined by specifying the relative bed roughness458
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dgr and, more importantly, the across section distribution of the flow depth459

D0(σ). In the absence of experimental data, we need to describe the bank460

geometry. Here, we propose to handle empirically the problem assuming a461

transverse distribution of the flow depth of the form:462

D∗0(σ) = D∗c erf
[
βf ( 1−

√
|σ| )

]
, σ ∈ [−1, 1], (52)

with βf a shape parameter measuring the steepness of the banks. Note463

that, according to (52), erf(βf ) should be equal to 1 in order to ensure that464

D∗0(0) = D∗c . The latter requirement is fulfilled only asymptotically, for βf465

tending to infinity. For this reason, in the following we will consider only values466

of βf ≥ erf−1(0.999) = 2.32675, corresponding to D∗c < D∗0(0) ≤ 0.999D∗c .467

Note also that βf is related to the parameter δβc through the relation:468

δ βc =

[
1− erf−1(0.999)

βf

]2
(53)

where βc = B∗c /D
∗
u and having assumed D∗0(B∗c ) ' 0.999D∗c . As βf increases469

also δβc increases, resulting in progressively steeper cross sections (Figure 2a)).470

Note that increasing values of δ imply higher bank slopes. In the limit of471

βf = 2.32675, it results δβc equal to 0, corresponding to B∗c = 0 (no central472

region), while as βf →∞, the classical rectangular cross-sectional configuration473

(P ∗0 =0) is recovered (Figure 2a).474

Interestingly, the distributions of uf1(σ) shown in Figure 2b indicate an475

increase of the friction velocity uf , with respect to the uniform flow, in the476

steeper portion of the bank, and a corresponding decrease in the part of the bank477

adjacent to the central region. This trend, due to the longitudinal momentum478

transfer from the center of the cross section (where flow velocities are higher)479

to the banks, implies that the channel can transport sediments even though the480

bank toes are stable. Note also that uf1(σ) vanishes towards the center of the481

cross section, where the bottom is flat, and at the outer bank boundary, where482

D0 tends to zero.483
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Figure 2: (a) Cross-sectional bed profile for various βf and for δ = 0.1 and δ = 0.2. (b) Cross-

section distributions along σ coordinate of the O(δ2) corrections provided to the dimensionless

friction velocity uf1, for the values of βf considered in plot a) and for dgr = 0.02.

3.2. Meandering channels484

The flow field that takes place in a meandering channel with a compact485

cross section is strictly related to the secondary flow circulations driven by486

the curvature of streamlines and the deformation of the channel bed, which487

generally exhibits larger scours in the correspondence of the outer bank of a488

bend (Seminara, 2006). Although numerical models have the advantage to489

overcome the restrictions affecting theoretical analyses (e.g., linearity or weak490

non-linearity, simplified geometry) they still require a large computational effort491

to correctly include the effects of secondary helical flow and to reproduce the492

bed topography of movable bed channels (Bolla Pittaluga and Seminara, 2011;493

Eke et al., 2014). That is why linearized models have been widely adopted494

to investigate the physics of river meandering (Seminara, 2006), the long-term495

evolution of alluvial rivers (Howard , 1992; Frascati and Lanzoni , 2009; Bogoni496
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et al., 2017), and the possible existence of a scale invariant behavior (Frascati497

and Lanzoni , 2010). These models, owing to their analytical character, not498

only provide insight on the basic mechanisms operating in the process under499

investigation, but also allow to develop relatively simple engineering tools which500

can be profitably used for practical purposes.501

In the following we refer to the linearized hydro-morphodynamic model de-502

veloped by Frascati and Lanzoni (2013) that, in the most general case, can man-503

age also mild along channel variations of the cross section width. The model is504

based on the two-dimensional, depth-averaged shallow water equations, written505

in the curvilinear coordinates s, n and, owing to the large aspect ratio β usually506

observed in natural rivers, neglects the presence of the near bank boundary lay-507

ers. The flow equations, ensuring the conservation of mass and momentum and508

embedding a suitable parametrization of the secondary flow circulations, are509

coupled with the two-dimensional sediment balance equation, complemented510

with the relation describing the rate of sediment transport. The solution of511

the resulting set of partial differential equations takes advantage of the fact512

that, in natural channels, the curvature ratio ν is small (ranging in the interval513

0.1-0.2), and assume that flow and topography perturbations originating from514

deviations of the channel planform from the straight one are small enough to515

allow for linearization. In the case of a constant width rectangular section (for516

which D∗c = D∗u), the dimensionless flow field yields:517

(U,D) = (1, 1) + ν(U1, D1) +O(ν2) (54)

where518

U1(s, n) =
∞∑

m=0

ucm sin(Mcn)

D1(s, n) = (h1C + h2C′ + h3C′′)n+
∞∑

m=0

dcm sin(M n)

(55)

Here, C(s) is the local curvature of the channel, C′(s) and C′′(s) its first519

and second derivatives, hi and di (i = 1, 3) are constant coefficients, M =520
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(2m+ 1)π/2, and ucm(s), dcm(s) are functions of the longitudinal coordinate s:521

ucm =
4∑

j=1

ccmj
eλcmj

s +Acm

4∑

j=1

[
gcj0

∫ s

0

C(ξ) eλcmj
(s−ξ)dξ + gcj1C

]

dcm =
4∑

j=1

dmj
dj−1um
dsj−1

+Am

5∑

j=1

dcmj
dj−1C
dsj−1

(56)

We refer the interested reader to Frascati and Lanzoni (2013) for further522

details about the model, its derivation and implementation, while all the co-523

efficients needed to compute U1 and D1 are reported in the Supplementary524

Information. It is worthwhile to note that the relevant dimensionless param-525

eters (geometric, hydraulic and sedimentological) needed as input data to the526

model are the width to depth ratio β, the dimensionless grain size dgr, and the527

Shields parameter for the uniform flow conditions, τ∗u.528

The expressions (54) are used to compute the forcing term f11, needed to529

solve the boundary value problem (34) for g11. Note that by substituting (54)530

into (38) yields g10 = 0 (owing to the neglecting of bank effects). The partic-531

ular solution of (34) is obtained by writing the forcing term as f11 = p(s)q(n)532

(i.e., separating the variables through Fourier series), and by introducing the533

appropriate Green function (Morse and Feshbach, 1953). We obtain:534

g11(s, n) =
1

γ

∞∑

m=0

(−1)m+1 cos[µ2m+1(n+ 1)]

∫ s−s0

0

pm(s− χ) e−µ
2
2m+1χ/γdχ

(57)

where µm = mπ/2,535

pm(s) =
2

M2
c

(−1)mC(s)− ucm(s), (58)

and s0 denotes the position of the injection section. By assumption, the536

length scale over which the contaminant cloud has evolved, L∗c , is well in excess537

of the transverse mixing distance, ∼ U∗0B
∗2/k∗n. Consequently, the position s0538

of the injection section can be set arbitrarily far upstream, taking s0 = −∞.539
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Physically, this is equivalent to assume that the solution depends only on values540

of p(s−χ) upstream of s over a diffusion length scale. Indeed, the integral with541

respect to the dummy variable χ decays as exp(−µ2
mχ/γ), and hence depends542

on the values of p closest to s.543

The solution (57) is in general valid for an arbitrary, although slowly varying,544

spatial distribution of the channel axis curvature. It takes a particularly simple545

form in the schematic case of a regular sequence of meanders with the axis546

curvature described by the sine generated curve C(s) = e2πıs + c.c. (Leopold et547

al., 1964), where i is the imaginary unit, and c.c. denotes complex conjugate.548

In this case the flow field reads (Blondeaux and Seminara, 1985):549

U1(n) = [du0n+ du1sinh(Λ1n) + du2sinh(Λ2n)]e2πis + c.c.

D1(n) = [dd0n+ dd1sinh(Λ1n) + dd2sinh(Λ2n)]e2πis + c.c.
(59)

The constant coefficients duj , ddj(j = 0, 1, 2), Λ1, Λ2 (reported in the Sup-550

plementary Information) depend on β, dgr, τ∗u, and λ. The above relationships551

indicate that both the flow depth and the velocity tend to increase towards the552

outside channel bank. The deepening of the outer flow that takes place in a553

movable bed, in fact, pushes the thread of high velocity towards the outside554

bank, unlike in the fixed bed case, where the predicted thread of high velocities555

is located along the inside of the bend.556

The forcing term f11 = nC −U1 can thus be written as f11 = p(s)q(n) + c.c.,557

with p(s) = e2πis and q(n) = n − du0n − du1sinh(Λ1n) − du2sinh(Λ2n). It558

follows that:559

g11(s, n) =
1

γ

∞∑

m=0

bm
2πı+M2/γ

cos[M (n+ 1)] e2πıs + c.c. (60)

where bm are constant coefficients (see Supplementary Information). Substi-560

tuting (60) into (33) and recalling (24) we finally obtain the relationship giving561

the bend averaged O(ν2) correction to the longitudinal dispersion coefficient562
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associated with a regular sequence of meanders:563

K = ν2
∞∑

m=0

M2 bmb̃m
M4 + (2πγ)2

(61)

where a tilde denotes complex conjugate.564

4. Comparison with tracer field data565

4.1. The considered dataset566

In order to test the validity of the proposed theory, we need information not567

only on the dispersion coefficient and the average hydrodynamic properties of568

the considered river reach, but also on the planform shape of the channel, on569

the geometry of the cross sections and, possibly, on the cross sectional velocity570

distribution. Despite the numerous tracer experiments carried out on river dis-571

persion (Seo and Cheong , 1998; Nordin and Sabol , 1974; Yotsukura et al., 1970;572

McQuivey and Keefer , 1974), only a few report also this type of information.573

In particular, the data collected by Godfrey and Frederick (1970) include the574

time distribution of the local tracer concentration C at a number of monitoring575

section and the cross-section distributions of the flow depth, D∗(n∗), and of576

the vertical profiles of the longitudinal velocity u∗(n∗, z∗). This dataset there-577

fore provides all the information needed to assess the robustness of the present578

modeling framework. In each test a radiotracer (gold-198) was injected in a579

line source across the stream. About 15 ml of the tracer, a highly concentrated580

solution of gold chloride in nitric and hydrochloric acid, was diluted to a vol-581

ume of 2 l. The injection was made at a uniform rate over a 1-minute period.582

The concentration of radionuclide used in each test was proportional to the583

discharge (about 2,6 GBq m−3s−1 ). The concentrations near to the stream584

centerline were observed by a scintillation detector. The resolving time for the585

entire system was found to be 50 s. The error due to the resolving time is about586

5-10%.587

Among the five river reaches considered by Godfrey and Frederick (1970),588

three exhibit almost straight planforms: the Copper Creek below gage (near589
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Gate City, Va), the Clinch River above gage (hereafter Clinch River a.g., near590

Clinchport, Va), and the Clinch River below gage (hereafter Clinch River b.g.,591

near Speers Ferry, Va). The other two river reaches, the Powell River near592

Sedville (Tenn) and the Copper Creek above gage (near Gate City, Va) have593

meandering planforms. These latter data have been integrated with the esti-594

mates of K∗ obtained from tracer tests carried out in other five straight and595

eight meandering rivers, namely the Queich, Sulzbach and Kaltenbach rivers596

(Noss and Lorke., 2016), the Ohio, Muskegon, St. Clair and Red Cedar rivers597

(Shen al., 2010), the Green-Duwamish River (Fischer , 1968), the Missouri River598

(Yotsukura et al., 1970), the Lesser Slave River (Beltaos and Day , 1978), and599

the Miljacka River (Dobran, 1982). Figure 3 shows the planform configura-600

tions of the investigated reaches, extracted from topographic maps, while the601

geometrical, hydraulic and sedimentologic parameters of each stream are re-602

ported in Table 2. In particular, the curvature ratio ν and the wavenumber λ603

have been determined from the spatial distribution of channel axis curvature604

through the automatic extraction procedure described by Marani et al. (2002).605

The mean grain size estimates have been obtained on the basis of information606

available from literature (Godfrey and Frederick , 1970; Yotsukura et al., 1970;607

Beltaos and Day , 1978), from the USGS National Water Information System608

[http://waterdata.usgs.gov/nwis], or from direct inspection (Dobran 2007, per-609

sonal communication). In addition to real meandering stream data, Table 2610

reports the laboratory data characterizing the longitudinal dispersion experi-611

ment carried out by Boxall and Guymer (2007) in a flume with a sine generated612

meandering planform and a sand bed that was artificially fixed by chemical613

hardening after the initially uniform trapezoidal cross section was shaped by614

the flow.615

For a given test i, we used the data collected by Godfrey and Frederick616

(1970) to compute at each monitored cross section j the area A∗ij and the total617

wetted perimeter P ∗ij . We then used the cross sectional velocity data u∗ij(n
∗, z∗)618

to compute the depth averaged velocity U∗ij(n
∗) and the flow discharge Q∗ij . All619

the relevant quantities deduced from the experimental dataset are collected in620
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Figure 3: a) Plan view of the river reaches investigated by Godfrey and Frederick (1970)

and location of the monitored cross sections. b) Planforms of further meandering streams

(Fischer , 1968; Yotsukura et al., 1970; Beltaos and Day, 1978; Dobran, 1982; Shen al., 2010;

Noss and Lorke., 2016) considered for testing the present theoretical approach.

Table S1 reported in the Supplementary Information. In particular, the values621

of the mean slope are those provided directly by Godfrey and Frederick (1970),622

while the friction velocities have been estimated under the hypothesis of a locally623

uniform flow field.624

The dispersion coefficients estimated by Godfrey and Frederick (1970) have625

been obtained by applying the method of moments. However, the presence of626

a relatively long tail in the temporal distribution of the concentration (Figure627

4a) and the sensitivity of small concentrations to measurement errors limit the628

accuracy of this method (Rutherford , 1994). For this reason, we have recalcu-629

lated the dispersion coefficients by considering the Chatwin’s method (Chatwin,630

1980), which has also the advantage to give an indication whether a monitoring631

section is located or not whitin the equilibrium region, where a Fickian disper-632

sion model can be applied. Figure 4b shows an example of the application of633

the method to the tracer data collected in the Clinch Creeek (test T10). The634
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Chatwin method introduces the transformed variable Ĉ(t∗), defined as:635

Ĉ = ±
√
t∗ ln

Cmax
√
t∗max

C
√
t∗

(62)

where C = C(s∗j , t
∗) is the temporal distribution of the cross-sectionally636

averaged concentration measured a the j-th cross section, Cmax is the corre-637

sponding peak concentration, t∗max is the peaking time, and the + and − signs638

apply for t∗ ≤ t∗max and t∗ > t∗max, respectively. In the transformed plane Ĉ, t∗,639

a temporal distribution of tracer concentration following a Gaussian behavior640

should plot as a straight line. The slope −0.5 (Q∗/A∗j ) /
√
K∗j and the intercept641

0.5x∗j /
√
K∗j of this line allow one to estimate the dispersion coefficient

√
K∗j642

and the cross sectionally averaged velocity Q∗/A∗j .643

The data suggest that, for all the sections, only the rising limb and the near644

peak region of the concentration time distribution are approximately linear,645

and hence can be described by a Gaussian distribution. Conversely, a departure646

from the linear trend is evident in the correspondence of the tails, indicating a647

deviation from the Fickian behavior.648

The values of K∗j estimated by considering the linear part of Ĉ(t∗) for all the649

data collected by Godfrey and Frederick (1970) turn out invariably smaller than650

those calculated according to the method of moments (see Table S2 of the Sup-651

plementary Information). In order to assess the sensitivity of these estimates652

to the method used to derive them, we applied also the routing method based653

on the Hayami solution (Rutherford , 1994). This method, provided that the654

dynamics of the cross-sectionally averaged concentration is Gaussian, takes ad-655

vantage of the superimposition of effects to determine the temporal distribution656

of C in a section, given the local values of U∗, K∗ and the concentration-time657

curve in an upstream section.658

The resulting solution has the advantage that it can be used to route down-659

stream a given temporal distribution of concentration without invoking the660

frozen cloud approximation. In fact, for moderately large values of s∗ and t∗661

it gives a concentration profile similar to that provided by the classical Taylor662
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Figure 4: a) Temporal distributions of the concentration measured by Godfrey and Frederick

(1970) in the tracer test T10 carried out along the Clinch River b.g.: black circles indicate

the measured concentration; continuous lines denote the concentration profiles predicted by

applying the Hayami’s calibration method. b) The Chatwin’s transformation is applied to

the data shown in a): black circles indicate the measured data; continuous straight lines are

regression lines fitted to concentrations near the peak. c) Comparison between the dispersion

coefficients estimated by means of the present theoretical approach and Chatwin and Hayami

methods.

solution. For all the monitored sections, except the first one, it is thus possible663

to estimate the values of U∗ and K∗ which ensure the best agreement between664

the measured and predicted concentration profiles. Figure 5 shows the results of665

the application of the Chatwin and Hayami methods. In some cases the Hayami666

method tends to yield larger values of K∗. Possible reasons of this behaviour667

are the pour fitting of the routed solutions and the significance of the tail owing668

to the entrapment and retarded release of the tracer into dead zones, absorption669

on sediment surfaces, hyporheic fluxes.670

Nevertheless, the most significant differences between the two approaches671

generally occurs in sections where the estimate deviates significantly (longer672

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

error bars in Figure 5a) from the average value in the considered river reach, i.e.673

where the dynamic of the tracer cloud is likely influenced by some localised effect,674

such as irregularities along the channel sides, or the channel bed, determining675

the retention of a certain amount of tracer. On the other hand, the average676

velocity estimated with the two methods are very similar (Figure 5b). In the677

following, we will consider the estimates of the dispersion coefficients provided678

by the Chatwin method when referring to the measured values of K∗.679

4.2. Comparison with straight river dispersion data680

Before pursuing a comparison between observed and predicted dispersion681

coefficients, it is worthwhile to test the reliability of the flow field model de-682

scribed in Section 3.1. Figure 6 shows the cross sectional distribution of the683

flow depth (left panels) and depth averaged velocity (right panels) measured684

by Godfrey and Frederick (1970) in six locations along the Clinch River b.g.685

(test T10). The theoretically predicted velocities, shown in Figure 6, have been686

obtained either by introducing into equation (51) the observed flow depth, or687

by considering the simplified cross sectional geometry described by equation688

(52) and selecting the value of βf which better interpolates the measured depth689

profile. The agreement between measured and computed velocity distributions690

is in general reasonably good (correlation coefficient, R2
U = 0.81).691

The comparison between the estimates of K∗ obtained from the tracer data692

of Godfrey and Frederick (1970) and those predicted by inserting in equation693

(31) the flow field described by equation (51) are shown in Figure 7a. Figures694

7a) and b) also show in white squares a comparison between the dispersion695

coefficients evaluated according to the present theoretical approach and those696

estimated from measurements by Noss and Lorke. (2016) and Shen al. (2010)697

for the Queich, Sulzbach, Kaltenbach, Muskegon Rivers.698

The theoretical estimates are reasonably good, with about 70% of predictions699

ensuring an error smaller than ±30% (dotted lines in Figure 7a). Overall, the700

model tends to underestimate the dispersion coefficient for the larger values of701

K∗, which, usually occour in the most distant sections from the injection, where702
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Figure 5: a) The dispersion coefficients predicted by the Hayami method are plotted versus

the values provided by the Chatwin method. The error bar measures the scatter of the local

value of the dispersion coefficient provided by the Haymi method with respect to the average

value of each river reach. b) The average velocity values of each cross section predicted by the

Hayami and Chatwin methods are plotted versus the field value. The continuous line denotes

the perfect agreement; the dashed lines corresponds to a ±50 % error.

the measured concentration profiles are particularly flat.703

In any case, the present estimates of K∗ are definitely more accurate than704

those provided by other predictors available in literature, as documented by705

the values of the discrepancy ratios, dr = log(K∗pred/K
∗
meas), plotted in Figure706
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7b) and 7d). To give a visual perception of the goodness of the different mod-707

els, Figure 7 shows the data relative to the models displaying the best (smaller708

mean discrepancy ratio) and worst (larger mean discrepancy ratio) performance709

according to Table 1 (a Figure reporting all the data is provided in the Supple-710

mentary Information). Note that, the coefficient κ0 of the formula proposed by711

Deng et al. (2001) and reported in Table 1, has been here reduced by 1/15. In-712

deed, this coefficient was originally determined by introducing a multiplicative713

empirical constant ψ (= 15, according to Deng et al. (2001) ) in order to achieve714

a better agreement with the observed dispersion coefficients. These coefficients,715

at least in the specific case of the data provided by Godfrey and Frederick (1970),716

were calculated through the method of moments that, as discussed above, tend717

to overestimate K∗ with respect to the Chatwin or the routing methods. Nev-718

ertheless, even by reducing the value of κ0, the predictions of K∗ obtained from719

the formula by Deng et al. (2001) are significantly less accurate (mean discrep-720

ancy ratio < dr >= 0.63) than those resulting from the present theoretical721

approach (< dr >= 0.19). Even worse results are attained when considering722

other predictors (see Table 1).723

It is important to stress that the present methodology, being physically724

based, does not need the introduction of any fitting parameter. The input data725

are simply the flow discharge, the free surface channel width, the longitudi-726

nal slope, the friction velocity (strictly associated with the sediment grain size727

and the type of bed configuration, i.e., plane or dune covered), and the cross-728

sectional distribution of the flow depth or, alternatively, its simplified analytical729

description (equation (52)). Finally, we observe that including the higher order730

effects that the presence of the channel banks exert on the transverse gradient731

of U0 (associated to the O(δ2) contribution in equation (51)) always leads to732

improve the estimate of K∗ (< dr >= 0.190, instead of 0.188).733
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Table 2: Tracer tests considered to assess the present theoretical framework. Definitions are

as follows: B∗, half cross-section width; Q∗, flow discharge; S, longitudinal channel slope;

δ, relative variation rate of the cross section in the transverse direction= D∗
u/(P

∗
0 + B∗

c ); ν,

curvature ratio = B∗/R∗
0 , with R∗

0 twice the minimum radius of curvature of the channel axis

within a meandering reach; λ, dimensionless meander wavenumber, = 2πB∗/L∗, with L∗ the

intrinsic meander length. All the quantities are averaged along the investigated river reach.

River B∗ Q∗ S u∗
fu Planform δ ν λ

(m) (m3/s) (%) (m/s)

Clinch River a.g.1 17.3 6.8 0.03 0.045 straight 0.032 0 -

Clinch River b.g.2 30 9.1,85,51 0.04 0.05,0.085,0.076 straight 0.04,0.07,0.07 0 -

Copper Creek a.g.3 8.5 1.5,8.5 0.13 0.08,0.104 straight 0.06,0.09 0 -

Copper Creek b.g.4 8.5 0.9 0.30 0.104 meandering 0.044 0.11 0.04

Powell River5 17.2 4 0.03 0.052 meandering 0.047 0.15 0.036

Green-Duwamish6 20.0 12 0.02 0.049 meandering 0.07 0.13 0.090

Lesser Slave7 25.4 71 0.01 0.055 meandering 0.17 0.2 0.063

Missouri8 90 950 0.01 0.055 meandering 0.06 0.05 0.04

Miljacka9 5.7 1 0.11 0.055 meandering 0.08 0.09 0.05

Exp. Flume 10 0.5 0.025 0.12 0.031 meandering 0.19 0.08 0.157

Queich 1 11 1.52 0.21 0.12 0.048 meandering 0.25 0.13 0.32

Queich 2 11 0.95 0.25 0.19 0.068 straight 0.42 0. -

Sulzbach 1 11 1.315 0.16 0.32 0.079 meandering 0.25 0.11 0.21

Sulzbach 2 11 0.72 0.16 0.26 0.025 straight 0.6 0. -

Kaltenbach 11 1.01 0.15 0.52 0.103 straight 0.4 0. -

Muskegon 12 35 48.41 0.6 0.24 straight 0.06 0. -

Ohio 12 235 1405 0.007 0.061 meandering 0.04 0.05 0.1

St Clair 12 276.6 5000 0.088 0.083 straight 0.06 0 -

Red Cedar 12 6.33/12.34 2.7/19.8 0.2 0.11/0.14 meandering 0.19/0.15 0.01 0.02/0.04

1 Godfrey and Frederick (1970), test T5;

2 Godfrey and Frederick (1970), tests T2, T7, T10;

3 Godfrey and Frederick (1970), tests T1, T6;

4 Godfrey and Frederick (1970), test T3;

5 Godfrey and Frederick (1970), test T4;

6 Fischer (1968);

7 Beltaos and Day (1978);

8 Yotsukura et al. (1970);

9 Dobran (1982);

10 Boxall and Guymer (2007);

11 Noss and Lorke. (2016);

12 Shen al. (2010);
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Figure 6: Cross sectional distributions of the flow depth D∗ and of the depth averaged velocity

U∗
0 across six sections of the Clinch River b.g.. Black circles correspond to the data measured

by Godfrey and Frederick (1970) in test T10. Continuous lines represent the smoothed cross

section described by (52) and the corresponding velocity profiles (R2
D = 0.95; R2

U = 0.84).

Dotted lines represent the velocity profile predicted by substituting into equation (51) the

actual flow depth distributions (R2
U = 0.81).

37



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10  12  14  16  18

K
* [m

2
 s

-1
] 

p
re

d
ic

te
d

a) Godfrey and Frederick (1970)
other straight rivers (Table 2)

-3

-2

-1

 0

 1

 2

 3

 0  2  4  6  8  10  12  14  16  18

lo
g

(K
* p

re
d
/K

* m
e

a
s
)

b) Godfrey and Frederick (1970)
other straight rivers (Table 2)

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10  12  14  16  18

K
* [m

2
 s

-1
] 

p
re

d
ic

te
d

K
*
[m

2
 s

-1
] measured

c) Seo Cheong (1998)
Deng et al. (2001)

-3

-2

-1

 0

 1

 2

 3

 0  2  4  6  8  10  12  14  16  18

lo
g

(K
* p

re
d
/K

* m
e

a
s
)

K
*
[m

2
 s

-1
] measured

d)

Figure 7: On the left: Comparison between the dispersion coefficients predicted theoretically

and those estimated from tracer test data (Godfrey and Frederick , 1970) in almost straight

channels by applying the Chatwin method. a) Present theoretical approach. c) Deng et al.

(2001)’s (ψ=1) and Seo and Cheong (1998)’s predictors. White squares in a) are the dispersion

coefficients evaluated according to the present theoretical approach versus the values estimated

from measurements by Noss and Lorke. (2016) and Shen al. (2010) for the Queich, Sulzbach,

Kaltenbach, Muskegon Rivers. The continuous line denotes the perfect agreement; the dotted

lines corresponds to a ±30 % error. On the right: b) and d) values of the discrepancy ratio

associated with the data respectively plotted in figures a) and c). The continuous line denotes

the perfect agreement; the dashed lines corresponds to a ±50 % error.
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4.3. Comparison with meandering river dispersion data734

In the case of meandering streams, besides Q∗, B∗, S, u∗fu, additional input735

information to the present model is the spatial distribution of channel axis736

curvature. These data are used to determine the dimensionless parameters β,737

τ∗u, dgr, ν, as well as the along channel distribution of the channel axis curvature738

C (s) needed to compute the flow field through equations (55). The expressions739

of U1(s, n) and D1(s, n) are then employed to compute f11 and to solve the740

problem (34) for g11, and, ultimately, to obtain the O(ν2) correction (33) to the741

longitudinal dispersion coefficient.742

In order to test the reliability of the flow field model described in Section 3.2,743

a comparison with the flow depths (left panels) and depth averaged velocities744

(right panels) measured by Boxall and Guymer (2007) at the apex and the745

cross-over sections of an experimental meandering channel is reported in Figure746

8. The theoretically predicted velocities have also been compared with the747

velocity profiles calculated according to Smith (1983) for the theoretical flow748

depth distributions (continuos lines on the left panels):749

U∗ =
D∗0.5U∗uD

∗
u

H∗u
(63)

where H∗u is the cross-sectional average of D∗1.5. The cross sectional shapes750

predicted by the present model reproduce correctly (R2
D=0.90) the topography751

variations induced by alternating bends (possible departures being related to the752

presence of bedforms not accounted for in the model). The overall comparison753

appears reasonably good also in terms of depth integrated longitudinal velocities754

(R2
U = 0.93) and the theoretically predicted profiles yield a better performance755

with respect to those calculated according to the approximate method proposed756

by Smith (1983) (R2
U=0.91).757

Figure 9a) shows the comparison between the bend averaged values of the758

longitudinal dispersion coefficient estimated from the measures carried out by759

Godfrey and Frederick (1970) in the Copper Creek and in the Powell River760

and those predicted by either the leading term K0 (equation (31)) entailing a761
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Figure 8: Cross sectional distributions of the flow depth D∗ and of the depth averaged velocity

U∗ across two sections of the experimental meandering channel of Boxall and Guymer (2007).

Black circles correspond to the data measured by Boxall and Guymer (2007). Continuous

lines represent the theoretical cross section (D0 + νD1), described by (52) and (59), and the

corresponding velocity profiles. Dotted lines represent the velocity profile predicted according

to Smith (1983) for the theoretical flow depth distributions (continuos lines on the left panels).

straight channel, or by considering also the correction ν2K2 (equation (33)),762

accounting for the presence of river bends. This correction turns out to pick up763

the right order of magnitude and, on the whole, ensures a degree of accuracy764

greater than that attained when neglecting curvature effects (< dr >= 0.32765

instead of < dr >= 0.76). As expected, when treating the river as straight, the766

predicted values of K∗0 are systematically lower than those observed in the field.767

In is worthwhile to note that the points corresponding to cross sections T3-S1,768

T3-S2 and T4-S1, for which the theory tends in any case to overestimate K∗,769

are quite close to the injection section and, therefore, likely fall outside the zone770

where a Fickian dispersion model holds.771

The ability of the present theoretical framework to give robust estimates of772

K∗ is confirmed by Figure 9b), reporting the predicted values of K∗ against773
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those resulting from the tracer test data for all the considered meandering774

streams. On the whole, the effect of the curvature is to slightly improve the775

degree of accuracy (< dr >= 0.22, instead of 0.29), although sometimes the776

theoretical coefficients turn out to be lower than those observed in the field.777

This can be partly explained with the fact that the predicted O(ν2) correction778

does not account for the near bank velocity gradients associated with the pres-779

ence of a boundary layer and has been obtained on the basis of a linearized780

treatment of the flow field, which tends to underestimate the intensity of both781

secondary circulations and transverse bed deformations forced by the mean-782

dering stream. Clearly, a number of other processes act in the field to make783

dispersion not entirely Fickian, contributing to the data scatter. We return784

later on this issue. Finally, note that for the considered set of rivers, the results785

remain basically unaltered (< dr >=0.225, instead of 0.22) when, instead of786

considering the observed spatially varying curvature signal, we consider a se-787

quence of regular meanders with maximum curvature equal to the inverse of the788

mean minimum radius of curvature within the river reach.789

5. Discussion790

The rational perturbative framework developed in the previous sections,791

based on a suitable scaling of the two-dimensional advection-diffusion equa-792

tion and on the introduction of a reference system, traveling downstream with793

the contaminant cloud, accounting for the along channel variability of the cross-794

sectionally averaged velocity, provides a clear picture of the processes affecting795

the spreading of a contaminant in alluvial rivers.796

The velocity gradients that characterize the near bank regions of natural797

streams, where the flow depth progressively vanishes, influence the longitudinal798

dispersion at the leading order of approximation (equation (31)), corresponding799

to a straight channel planform. Secondary circulations driven by centrifugal800

and topographical effects typical of meandering channels provide a second order801

correction (equation (33)). The presence of a secondary helical flow enhances802
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Figure 9: Comparison between the dispersion coefficients predicted by equations (31), (33)

and those estimated from the tracer test carried out in meandering rivers: a) Copper River

b.g. and Powell River; b) Copper b.g., Powell, Green-Duwamish, Lesser Slave, Missouri,

Miljacka, Queich, Sulzbach , Ohio, Red Cedar rivers and in the experimental flume of Boxall

and Guymer (2007). The sources of data are reported in Table 2. The continuous line denotes

the perfect agreement; the dashed lines corresponds to a ±50 % error.

transverse velocity gradients which, in turn, tend to increase the longitudinal803

dispersion coefficient. On the contrary, the increased transverse mixing pro-804

moted by secondary currents e.g., (Boxall et al., 2003) would lead to a reduction805

of longitudinal dispersion. This behavior is summarized in the analytical rela-806

tion (61), obtained by considering a regular sequence of sine generated bends.807

Bend effects are explicitly accounted for through the dependence on ν2 while808

the characteristics of the flow field and the bottom topography affect the co-809
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Figure 10: The theoretical values of bend averaged longitudinal dispersion coefficient K pre-

dicted by (61) are plotted versus the aspect ratio β for ν = 0.1 and kn0 = 0.225. a) λ = 0.1,

dgr = 0.01, plane bed; . b) λ = 0.1, dgr = 0.001, dune covered; c) τ∗ = 0.09; λ = 0.1, plane

bed; d) τ∗u = 0.09, ds = 0.01, λ = 0.1, 0.13, 0.16.

efficients bm. Moreover, as observed by Fischer (1969) and Smith (1983), the810

ratio γ of cross-sectional mixing timescale to longitudinal advection timescale,811
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accounts for the frequency of alternating bends along the meandering reach. In812

the case of long enough bends, i.e such that γ is much smaller than 1, the term813

(2πγ)2 at the denominator of (61) can be neglected with respect to M4. On the814

contrary, if γ increases, K tends to decrease. This is the case of short bends, for815

which the changes in the flow field associated with alternating curves are too816

fast to allow cross-sectional mixing to eliminate concentration gradients.817

Figure 10 shows two typical examples of the variations of K as a function818

of the aspect ratio β for either plane (Figure 10a) or dune-covered bed (Figure819

10b). In both cases, for given values of the dimensionless parameters ν, dgr820

and γ, the bend averaged longitudinal dispersion coefficient increases with the821

Shields parameter, τ∗u. On the other hand, for a given τ∗u, the values of K cor-822

responding to quite different dimensionless grain sizes dgr exhibit a relatively823

narrow range of variations, as shown in Figure 10c. Finally, Figure 10d demon-824

strates that K tends to increase significantly when approaching the resonant825

conditions (see, e.g., Lanzoni and Seminara (2006)). Nevertheless, it must be826

recalled that the meandering flow field in a neighborhood of the resonant state827

cannot be described by the linear model adopted here, but it would require a828

weakly nonlinear approach.829

In general, the linearized treatment of the flow field set as the basis of the830

present theoretical framework holds for relatively wide bends (small ν), long831

enough meanders to ensure slow longitudinal variations of the flow field (small832

λ), small intensity of the centrifugally driven secondary flow, a condition met833

for small values of ν/(β
√
cfu), and small amplitude of bed perturbations with834

respect to the straight configuration (small ν
√
τ∗u/cfu and λβ

√
τ∗u) (Bolla Pit-835

taluga and Seminara, 2011; Frascati and Lanzoni , 2013). These intrinsic limita-836

tion of the theory can partly explain the deviations of the predicted dispersion837

coefficients from the values estimated from tracer test data. Other physical pro-838

cesses however concur to the scatter of data. The bed configuration predicted839

by the considered hydro-morphodynamic model stems from the imposed flow840

discharge, corresponding to that actually observed during the tracer tests. Nev-841

ertheless, this discharge can differ from the formative discharge really producing842
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the considered river bed configuration. The presence of regulation works and843

human activities (e.g., sediment mining, dredging) can modify the bed topog-844

raphy and, consequently, the structure of the flow field controlling shear flow845

dispersion. Finally, the presence of bedforms, width variations, islands, and846

dead zones all concur to a non-perfectly Fickian behavior, enhancing the rate847

of dispersion and causing the long tails usually observed in concentration-time848

curves. The Gaussian solution resulting from a Fickian approach to dispersion849

can then be used only to describe the upper portion of the concentration-time850

curves, as indicated by the tracer data plotted using Chatwin’s transformation.851

Other approaches are needed to fit these curves, such as the transient storage852

models, that account for the effects of temporary entrapment and subsequent re-853

entrainment of pollutants (Cheong and Seo, 2003), the adoption of a fractional854

advection-dispersion equation (Deng et al., 2004), or asymptotic treatment of855

one-dimensional solutions from an instantaneous point source (Hunt , 2006).856

6. Conclusions857

We set a physics-based theoretical framework to estimate the longitudinal858

dispersion coefficient on the basis of the hydro-morphodynamic modeling of the859

flow field and the bed topography that establish in alluvial rivers. The rational860

perturbative framework has been developed on the basis of a suitable scaling of861

the two-dimensional advection-diffusion equation, and by the introduction of a862

reference system moving with the contaminant cloud with a velocity that varies863

according to the cross sectional geometry. This framework provides a clear864

picture of the processes affecting the spreading of a contaminant in natural865

stream, that can be summarized as follows.866

The longitudinal dispersion dynamics in alluvial rivers is controlled by ve-867

locity shear at the banks and secondary circulations driven by centrifugal and868

topographical effects. In particular, the helical flow associated to these circula-869

tions enhances relatively small and rapidly changing velocity and concentration870

gradients, both in the transverse and in the longitudinal directions, which in871
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general lead to an increase of the longitudinal dispersion coefficient. Never-872

theless, the planform shapes of meandering channels are usually characterized873

by relatively small values of the curvature ratio ν, implying that the increased874

transverse mixing, also promoted by secondary flows, affects the concentration875

distribution only at higher orders of approximation.876

Another consequence of the small values typically attained by ν is the pos-877

sibility to separate the contribution to shear flow dispersion provided by near878

bank velocity gradients associated to the unperturbed straight configuration879

(equation (31)) from that induced by streamline curvatures and by the alternat-880

ing sequence of bars and pools which establishes in the perturbed meandering881

configuration (equation (33)). The former contribution can be accounted for882

analytically for gently sloping channel banks.883

The longitudinal dispersion coefficient, averaged over the meander length in884

order to deal with longitudinal variations of the flow field, depends on the rele-885

vant bulk hydrodynamic and morphologic dimensionless parameters, β, dgr, τ∗u,886

λ, ν and γ. The latter parameter, accounting for the ability of cross-sectional887

mixing to adapt to along-channel flow changes, could lead to a reduction of888

the longitudinal dispersion coefficient in the presence of a sequence of relatively889

short bends (equation (61)).890

The comparison with field data obtained from tracer tests indicates that the891

proposed approach provides robust estimates of the reach averaged longitudi-892

nal dispersion coefficient. The residual scatter can be partly explained by the893

linearized character of the hydro-morphodynamic model used to estimate K∗.894

Flow nonlinearities, enhancing both transverse mixing and shear flow disper-895

sion, induce opposite effects on longitudinal dispersion. Other possible causes896

of the departures between predicted and estimated coefficients are associated897

with the not entirely Fickian behavior of the dispersion process, whereby the898

concentration-time curves decay more slowly than if they were Gaussian.899
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Appendix A. Cross-sectional distribution of a uniform turbulent flow900

in a straight channel901

Let us consider the longitudinal momentum equation averaged over the tur-902

bulence, written terms of the local curvilinear orthogonal coordinate system903

(s∗, σ∗, ζ∗) (Lanzoni and D’Alpaos, 2015):904

∂u∗

∂t∗
+ u∗

∂u∗

∂s∗
+
v∗

hσ

∂u∗

∂σ∗
+ w∗

∂u∗

∂ζ∗
= −g ∂H

∗

∂s∗

+
1

ρ hσ

[
∂(hσT

∗
ss)

∂s∗
+
∂T ∗σs
∂σ∗

+
∂(hσT

∗
ζs)

∂ζ∗

]
− v2 + Tσσ/ρ

hσ

∂hσ
∂s∗

(A.1)

where hσ is the metric coefficient associated with the curvilinear transverse905

coordinate σ, u∗, v∗, w∗ are the components of the velocities along the three906

coordinate axes, H∗ is the elevation of the water surface with respect to an907

horizontal reference plane, g is the gravitational constant, ρ is the water density908

and T ∗ss,T
∗
σs,T

∗
ζs, T

∗
σσ are components of the turbulent Reynolds stress tensor.909

In the case of uniform flow conditions, as those occurring in a straight channel910

with a compact cross section (Figure 1c), the relevant variables do not vary in911

time and along the main flow direction s∗.912

Expressing the components Tσs and Tζs of the Reynolds stress tensor through913

the Boussinesq eddy-viscosity approximation:914

Tσs = ρ
ν∗T
hσ

∂u∗

∂σ∗
Tζs = ρ ν∗T

∂u∗

∂ζ∗
(A.2)

equation (A.1) simplifies to:915

S hσ g +
∂

∂σ∗

(
ν∗T
hσ

∂u∗

∂σ∗

)
+

∂

∂ζ∗

(
ν∗Thσ

∂u∗

∂ζ∗

)
= 0, (A.3)

where S = −∂H∗/∂s∗ is the longitudinal water surface slope that, under916

uniform flow conditions, coincides with the bed slope and the energy slope, and917

ν∗T is the turbulent eddy viscosity.918
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Under the assumption of a constant vertical distribution of the ν∗T , the lon-919

gitudinal slip-velocity at the bottom must satisfy the following condition:920

u∗|ζ∗=0 = u∗f

[
2 + 2.5 ln

(
D∗z
d∗gr

)]
(A.4)

where u∗f = (gD∗0S)1/2 is the local value of the friction velocity. In addition,921

the shear stress must vanish at the water surface and take the value ρu∗2f at the922

bed, namely:923

[
ν∗T

(
∂u∗

∂ζ∗
− 1

h2σ

∂D∗z
∂p∗

∂u∗

∂p∗

)]

ζ∗=D∗z

= 0,

[
ν∗T
∂u∗

∂ζ∗

]

ζ∗=0

= u∗2f (A.5)

In terms of the dimensionless variables (42) and (43), the problem described

by equations (A.3), (A.4) and (A.5) becomes:

D−2z
∂

∂ζ

[
hσνT

∂u

∂ζ

]
+ δ2

(
∂

∂σ
− ζF1

∂

∂ζ

)[
νT
hσ

(
∂

∂σ
− ζF1

∂

∂ζ

)
u

]
+ hσ = 0

(A.6)

u|ζ=0 = uf

[
2 + 2.5 ln

(
Dz

dgr

)]
(A.7)

[
νT

(
1

D0

∂u

∂ζ
− δ2

hσ

∂u

∂σ

)]

ζ=1

= 0,

[
νT
Dz

∂u

∂z

]

ζ=0

= u2f (A.8)

The solution of this problem is obtained by expanding u(ζ, σ) and uf (σ) in924

terms of the mall parameter δ:925

(
u, uf

)
=
(
u0, uf0

)
+ δ2

(
u1, uf1

)
+O(δ4). (A.9)

Substituting this expansion into equations (46), (A.7), (49), and collecting926

the terms with the same power of δ2, we obtain a sequence of ordinary differential927

problems that can be readily solved in closed form. After some algebra we find:928

• O(δ0)929

u0(ζ, σ) =

(
−13 ζ2

2
+ 13 ζ + 2 +

5

2
ln
D0

dgr

)√
D0 (A.10)

uf0(σ) =
√
D0 (A.11)
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• O(δ2)930

u1(ζ, σ) =
√
D0

{[(45

8
ln(

D0

dgr
) +

7

2
+

25

16
ln(
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dgr
)2
) 1

13
+
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− 7

8
− 5

16
ln(
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)
ζ2 +

(7

4
+

5

8
ln(
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dgr
)
)
ζ +

5

8
ln(

D0

dgr
) +

1

2
+ 13

(ζ
4
− ζ4

16
+
ζ3

4
− 3 ζ2

8

)]

D0
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∂σ2
+
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16
ln(
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dgr
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33
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25

8
ln(
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) 1

13
−
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(33
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+
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ln(

D0
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7

4
+

5
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ln(

D0

dgr
) +

13
(
− ζ2

8
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16
+
ζ

4

)] (∂D0

∂σ
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}

(A.12)

uf1(σ) =

√
D0

13

[(
5 +

5

8
ln
D0

dgr

)
D0

∂2D0

∂σ2
+

(
59

8
+

5

4
ln
D0

dgr

)(
∂D0

∂σ

)2
]

(A.13)

It is worthwhile to note that, at the leading order of approximation, the931

friction velocity is proportional to the square root of the local flow depth (equa-932

tion (A.11)), as it occurs under uniform flow conditions, while the first order933

correction (equation (A.13)) quantifies the effects due to the cross slope and934

curvature of the section bed profile.935

The local value of the depth-averaged longitudinal velocity U0(σ) = U00(σ)+936

δ2U01(σ) is then determined by integrating u0 and u1 along the normal ζ. It937

results:938

U00 =
u∗fu
U∗u

(19

3
+ 2.5ln

D0

dgr

)√
D0 (A.14)

U01 =
u∗fu
U∗u

√
D0

{[781

390
+

395

312
ln(

D0

dgr
) +

25

208
ln2(

D0

dgr
)
]
D0D0,σσ

+
[17437

3120
+

465

208
ln(

D0

dgr
) +

25

104
ln2(

D0

dgr
)
]
D0,

2
σ

}
+

+
u∗fu
U∗u

√
D0

2

{[5

2
+

5

4
ln(

D0

dgr
)D0,σ

]
+
[ 1

D0

∫ σ

0

D0,
2
σ dσ −D0,σ

]}
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Finally, we convert the coordinates σ to the corresponding Cartesian coor-939

dinates n by observing that:940

n(σ) =
1

βδ

∫ σ

0

√
1−

(
δ
∂D0

∂σ′

)2

dσ′ =
1

βδ

[
σ − δ2

2

∫ σ

0

(
∂D0

∂σ′

)2

dσ′ +O(δ4)

]

(A.15)
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Notations941

A∗[m2] local cross sectional area.

A∗u[m2] mean value of the cross sectional area in the reach.

B∗[m] free surface half width of the channel.

B∗c [m] half width of the central channel region.

C[/] cross sectionally averaged concentration

c[/] depth averaged concentration

cfu[/] friction coefficient

C[m−1]] channel curvature

D∗[m] local flow depth.

D∗c [m] flow depth of the central region of the channel.

D∗u[m] cross-sectionally averaged flow depth.

D∗z [m] flow depth measured normally to the bed.

d∗gr[m] grain size.

dr[m] discrepancy ratio.

e∗t [m
2/s] depth averaged eddy diffusity

g[m/s2] gravitational acceleration.

H∗[m] elevation of the water surface with respect to an horizontal refer-

ence plane

H∗u[m1.5 cross sectional average of D∗1.5

(hs, hσ)[/] metric coefficients.

K∗[m2/s] mean value of the longitudinal dispersion coefficient in the reach.

K∗u[m2/s] dispersion coefficient scale.

k∗nu[m2/s] transversal mixing coefficient for a straight channel.

(k∗s , k
∗
n)[m2/s] longitudinal and transversal mixing coefficient.

k∗t [m2/s] transverse dispersion coefficient.

L∗[m] average intrinsic meander length.

L∗c [m] contaminant cloud length

n∗[m] horizontal coordinate normal to s∗.

P ∗0 [m] wetted perimeter of each bank region of the channel.

Q∗[m3/s] flow discharge.

R∗0[m] twice the minimum value of the radius of curvature.

r∗[m] local radius of curvature.

S[/] longitudinal channel slope.

s∗[m] longitudinal curvilinear coordinate coinciding with the channel

axis.

942
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T ∗0 [s] longitudinal dispersion time-scale.

T ∗1 [s] differential advection time-scale.

T ∗2 [s] transverse mixing time-scale.

t∗[s] time.

U∗[m/s] depth averaged longitudinal velocity.

U∗u [m/s] mean value of the cross sectionally averaged longitudinal velocity

in the reach.

u∗[m/s] longitudinal component of the velocity.

u∗f [m/s] local friction velocity.

u∗fc[m/s] scale for the friction velocity in the central region of the channel.

u∗fu[m/s] scale for the friction velocity under uniform flow conditions.

uf0, uf1[/] leading and first order dimensionless friction velocity.

V ∗[m/s] depth averaged transverse component of velocity.

z∗[m] upward directed axis.

β[/] half free surface width to uniform depth ratio.

βc[/] half central region width to uniform depth ratio.

βf [/] cross section shape parameter measuring the steepness of the

bank.

γ[/] relative importance of transverse mixing and nonuniform trasport

∆[/] immersed relative sediment density

δ[/] relative variation rate of the cross section in the transverse direc-

tion.

ε∗n[m2/s] transverse mixing coefficient contribution due to dispersion.

λ[/] dimensionless meander wave number

ζ∗[m] coordinate normal to the bed.

ξ∗[m] pseudo-lagrangian coordinate

λ[m]

ν[/] curvature ratio

ν∗T [m2/s] turbulent viscosity.

ρ[kg/m3] water density.

ρs[kg/m
3] sediment density.

σ∗[m] transverse curvilinear coordinate.

ϕ angle that the vertical forms with the normal to the bed

943
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