
RiskInDroid: Machine Learning-based Risk
Analysis on Android

Alessio Merlo1, Gabriel Claudiu Georgiu2

1 DIBRIS, University of Genoa, Italy.
Email: alessio@dibris.unige.it

2 Talos Security, s.r.l.s., Savona, Italy.
Email: gabriel.georgiu@talos-sec.com

Abstract. Risk analysis on Android is aimed at providing metrics to
users for evaluating the trustworthiness of the apps they are going to
install. Most of current proposals calculate a risk value according to
the permissions required by the app through probabilistic functions that
often provide unreliable risk values. To overcome such limitations, this
paper presents RiskInDroid, a tool for risk analysis of Android apps
based on machine learning techniques. Extensive empirical assessments
carried out on more than 112K apps and 6K malware samples indicate
that RiskInDroid outperforms probabilistic methods in terms of precision
and reliability.

Keywords: Risk Analysis, Android Security, Static Analysis, Machine
Learning

1 Introduction
Android is still the most widespread mobile operating system in the world, as
more than 300 millions Android-enabled smartphones have been sold only in
the third trimester of 2016 [1]. Therefore, it remains a sensitive target for mal-
ware that aim at exploiting its diffusion to reach a high number of potential
victims. Since users have access to a high number of apps through public mar-
kets and external web sites, they need reliable tools to rate the trustworthiness
of apps they are going to install. App rating is empirically calculated according
to different risk analysis techniques. Currently, most of them calculate a risk
index value (hereafter, RIV) through probabilistic methods applied to the set
of permissions required by the app. We argue that such approaches suffer from
intrinsic limitations in terms of both methodology and setup. To prove this, we
apply some optimizations to existing techniques at the state of the art, and we
evaluate them through an extensive empirical assessment on a dataset made by
112.425 apps and 6.707 malware samples. Then, we propose a novel approach
based on machine learning techniques that we implemented in an open source
tool, i.e., RiskInDroid3 (Risk Index for Android). Finally, we evaluate the per-
formance of RiskInDroid on the same dataset, thereby proving that the proposed
methodology outperforms probabilistic approaches.

3Freely available at: http://www.csec.it/riskindroid

http://www.csec.it/riskindroid

2

Structure of the paper. The rest of the paper is organized as follows: Section
2 briefly introduces the Android architecture and the permission system, while
Section 3 summarizes the related work and introduces probabilistic approaches.
Section 4 discusses some optimization for probabilistic methods and proves their
reliability through an extensive experimental assessment. Section 5 proposes our
machine learning-based methodology while Section 6 summarizes its empirical
evaluation. Finally, Section 7 concludes the paper and points out some future
work.

2 Android in a Nutshell

Android is made by a layered architecture (see Fig. 1) where the top layer hosts
both system and user apps. System apps come with the Android distribution
itself and provide basic functionality (e.g., calendar, email, . . .), while user apps
are packed into compressed archives (i.e., the APKs) and made available to users
on different external sources (e.g., app markets or web sites). Below the app
layer lies the Application Framework that provides a set of modular components
that apps can use to access system and device resources.

Fig. 1: The Android OS architecture.

Android also contains a set of C/C++ native libraries granting optimized core
services (e.g., DBMS, 2D/3D graphics, Codecs, . . .). The Android Runtime pro-
vides virtual machines to execute the apps bytecode. The Hardware Abstraction
Layer (HAL) is a set of libraries allowing the Application Framework to access

3

the actual hardware. The Linux Kernel is at the bottom of the architecture and
grants basic OS functionality as Interprocess Communication (IPC), memory
and process management.

Security and Permissions. Android assigns a unique Linux user ID at Kernel
layer to each app upon installation, thereby sandboxing the execution of apps in
separate Linux users. Android authorizes apps to access core system resources
through Android Permissions (hereafter, APs) that are required by the app and
granted by the user upon installation or at runtime4. APs are declared in an
XML file, i.e., the Android Manifest, contained in the APK. To get services from
core Android APIs, the app should have the corresponding AP. There currently
exist more than 130 APs5, divided into four categories, namely, 1) Normal,
i.e., basic authorizations that are automatically provided by the system upon
installation, 2) Dangerous, required for accessing core APIs, they are granted
by the user, 3) Signature, granted to apps signed by the same developer, and 4)
SignatureOrSystem, automatically granted to system apps. We refer to the whole
set of Android permissions as APSet. Apps are expected to require the least set
of permissions sufficient to work properly, albeit they are often overprivileged
[2]. Apps can also be underprivileged, but in this case they are expected to fail
during execution.

3 Related Work

The scientific literature related to risk analysis of Android apps is rather lim-
ited and mostly focused on APs, so we also take into account works regarding
malware classification because we expect to see some relationships between mal-
ware and high risk apps. Currently available proposals are probabilistic, i.e., the
RIV indicates the probability that an app can be a malware, according to sta-
tistical analysis carried out on datasets containing both apps (that are expected
to be mostly benign) and well-known malware samples. In [3], authors propose a
method for detecting risk signals according to the frequency of security-sensitive
APs. The RIV is calculated according to bayesian probabilistic models that com-
pare the APs required by each app with those requested by other apps in the
same category (that must be known a priori). Furthermore, authors define three
properties that should be granted by any probabilistic function calculating a
RIV for apps, namely, i) monotonicity (i.e., removing an AP should lower the
RIV), ii) coherence (i.e., malware should have higher RIVs than apps), and iii)
ease of understanding (i.e., the RIV of an app should be clearly understandable
to the user, and it should allow straightforward comparison among values).

Also [4] proposes a methodology for calculating a RIV for apps according
to their category. More specifically, for each category, the kind and number of

4It depends on the Android version. Older Android versions (< v. 6) require all
permissions to be granted at install time, while newer versions allow the user to grant
them dynamically at runtime.

5https://developer.android.com/guide/topics/manifest/
permission-element.html

https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html

4

required APs are empirically inferred, thereby identifying permission patterns
belonging to apps in each category. Then, the RIV is calculated by measuring a
distance between the set of APs required by the app and the permission patterns
of its category. Notwithstanding the encouraging empirical results obtained on
a dataset made by 7.737 apps and 1.260 malware samples, the main limitation
of the approach is in the need to know in advance the category of the app.
Such information can be often unreliable as categories are manually chosen by
developers6. Maetroid [5] evaluates app risk according to both APs and metadata
information related to the developer’s reputation and the source app market.
The risk is calculated according to declared APs only, and by assigning static
weights to each AP. Maetroid does not provide a quantitative RIV, but assigns
each app in one (out of three) risk category. A framework for app risk analysis
is discussed in [6]. It is made by three layers carrying out static, dynamic and
behavioral analysis, respectively. The framework combines the results from each
layer and builds up the RIV. Unluckily, the framework is purely theoretical
and lacks of any empirical evaluation, thereby making difficult to assess the
viability of the approach. DroidRisk [7] is a quantitative method for calculating
a RIV. DroidRisk is trained on a set of 27.274 apps and 1.260 malware samples,
whereby it calculates the distribution of declared APs (i.e., those contained in
the Android Manifest file). Then, DroidRisk applies a probabilistic function that
calculates a RIV according to the kind and the potential impact of APs required
by the app. More specifically, DroidRisk calculates a RIV for an app A according
to two values for each AP pi, namely the probability and the impact. Slightly
extending the original notation, given a set of APs S, the probability L(pi, S)
is the probability that pi ∈ S is required in the dataset, i.e., the number of
apps requiring pi on the total set of apps in the dataset; the impact I(pi, S)
is a weight statically applied to each pi ∈ S according to its category (i.e.,
I(pi, N) = 1 , I(pi, D) = 1.5, where N stands for the set of Normal APs and D
for the set of Dangerous ones). Then, the RIV RA for an app A is calculated as∑
pi∈{N]D}

(L(pi, {N]D}) ∗ I(pi, {N]D})), where] indicates the disjoint union

between N and D.

Discussion. We argue that probabilistic methods suffer from some limitations.

1. They are unable to recognize as dangerous the malware that require a limited
set of APs; conversely, they averagely provide high RIVs for apps requiring
many APs.

2. Current proposals deal with declared APs only, without deepening, for in-
stance, which APs are actually exploited by the app. Due to the monotonicity
of probabilistic risk indexes, relying only on declared permissions can impact
the reliability, as apps are often overprivileged by their developers [2] and
can therefore obtain too high RIVs.

6https://support.google.com/googleplay/android-developer/answer/113475?
hl=en

https://support.google.com/googleplay/android-developer/answer/113475?hl=en
https://support.google.com/googleplay/android-developer/answer/113475?hl=en

5

3. Probabilistic methods statically define the impact of APs, that is, all APs be-
longing to the same category (e.g., Normal, Dangerous, Signature, Signature-
OrSystem) equally impact the estimation of the RIV. This choice does not
allow to provide different impacts to APs, e.g., according to their distribution
on the set of malware.

4. The validity of RIV is strictly dependent with the chosen dataset, as well as
the ratio between apps and malware samples; therefore, the dataset should
be large enough - w.r.t. the set of available apps and malware samples - to
be statistically significant to calculate a reliable RIV.

We argue that more reliable RIVs can be obtained through a machine learning
approach based on

– four sets of permissions for each app A, namely
1. Declared Permissions (DAPA), i.e., declared in the Android Manifest

file;
2. Exploited permissions (EAPA), i.e., APs that are actually exploited in

the app code;
3. Ghost permissions (GAPA), i.e., APs that the app tries to exploit in the

code, but they are not declared in the Android Manifest file;
4. Useless permissions (UAPA), i.e., declared APs that are not exploited

in the app code.
– a statistically significant dataset. Our dataset is made by 112.425 apps and

6.707 malware samples from different sources. In details, apps comes from the
Google Play Store7 (98.162 apps), Aptoide8 (7.516 apps), and Uptodown9

(6.747 apps). Malware samples have been mostly taken from the DREBIN
dataset [8] (5.560 samples); the remaining samples come from publicly avail-
able repositories, namely the Contagio dataset [9], the Husted’s dataset [10]
and the Bhatia’s dataset [11].

– dynamic impact for each AP, calculated on the basis of its distribution on
the whole dataset. The aim is to weigh APs according to their statistical
distribution over malware samples and apps.

4 Reliability of Probabilistic Risk Indexes

In this section, we empirically evaluate the reliability of RIVs calculated through
probabilistic methods. To this aim, we extend the methodology proposed in [7] by
introducing the notion of dynamic impacts. Dynamic impacts allow to take into
account the characteristics of a statistically significant dataset in the calculation
of a probabilistic RIV. It is worth noting that all current proposals adopt static
impacts, i.e., defined according to some heuristics but independently from the
characteristics of the dataset. In order to apply dynamic impacts, an extensive
statistical analysis on the dataset must be carried out in advance.

7http://play.google.com/store/apps
8http://www.aptoide.com/page/apps
9http://en.uptodown.com/android

http://play.google.com/store/apps
http://www.aptoide.com/page/apps
http://en.uptodown.com/android

6

4.1 Statistical Analysis on APs

We took into account the dataset described in the previous section, i.e., made
by 112.425 apps and 6.707 malware samples. We systematically extracted infor-
mation on the four sets of permissions from each app in the dataset. We built a
Permission Checker tool that given an app A (i.e., an APK file) in input, it pro-
vides back statistics on each AP set. DAPA is straightforwardly retrievable from
the Android Manifest file, while EAPA, GAPA and UAPA are inferred through
static analysis. More in details, the Permission Checker carries out reverse en-
gineering on the APK to retrieve the app bytecode. Then, for each method
invocation in the bytecode, the Permission Checker analyzes the APs required
to execute the method. In the end, the Permission Checker builds a set PSA

containing all APs exploited in the bytecode. Remaining sets are built as fol-
lows:

– EAPA = {pi|pi ∈ DAPA ∧ pi ∈ PSA};
– GAPA = {pi|pi /∈ DAPA ∧ pi ∈ PSA};
– UAPA = {pi|pi ∈ DAPA ∧ pi /∈ PSA};

We indicate with DAP, EAP, GAP, and UAP, the disjoint union of single
app permissions sets, for all apps in the dataset, namely: DAP =

⊎
A DAPA,

EAP =
⊎

A EAPA, GAP =
⊎

A GAPA, and UAP =
⊎

A UAPA.

Tab. 1: Statistics on APs on the dataset
MALWARE APPS

AP Set MAX AP AVG AP Std. dev. MAX AP AVG AP Std. dev.
DAP 87 10.67 5.76 96 5.84 4.39
EAP 15 4.25 3.19 24 3.81 2.40
GAP 9 1.15 1.26 23 2.9 2.11
UAP 84 6.42 4.58 91 2.03 2.78

Discussion. Tab. 1 summarizes global statistics on the four AP sets. Such val-
ues indicate that malware declare more APs than apps on average (i.e., 10.67
vs. 5.84) but they exploit very few of them (i.e., 4.25). Furthermore, malware
seldom try to exploit undeclared APs (AV GGAP = 1.15) in comparison to apps
(AV GGAP = 2.9). Fig. 2 and Fig. 3 show the distribution of the top ten APs for
malware and apps, respectively. For each AP, the y-axis shows the percentage
of malware/apps having the AP.

Some APs related to networking are equally divided between malware and
apps, e.g., INTERNET, ACCESS_NETWORK_STATE and ACCESS_WIFI_STATE; since
apps often require to connect to Internet, it is difficult to evaluate the RIV ac-
cording to these APs. Other APs are required more frequently by malware than
apps; for instance, a comparison between DAP plots in Fig. 2 and Fig. 3 suggests
that an app requiring the READ_PHONE_STATE, the RECEIVE_BOOT_COMPLETED
and the READ_CONTACTS could be potentially dangerous. The biggest gap between
malware and apps is related to SMS APs; in fact, as shown in the DAP plot of

7

DAP

IN
TE

RN
ET

RE
AD

_P
HO

NE
_S

TA
TE

AC
CE

SS
_N

ET
WO

RK
_S

TA
TE

WR
IT

E_
EX

TE
RN

AL
_S

TO
RA

GE

SE
ND

_S
MS

AC
CE

SS
_W

IF
I_

ST
AT

E

RE
CE

IV
E_

BO
OT

_C
OM

PL
ET

ED

AC
CE

SS
_C

OA
RS

E_
LO

CA
TI

ON

RE
CE

IV
E_

SM
S

WA
KE

_L
OC

K
0

25

50

75

100

EAP

IN
TE

RN
ET

RE
AD

_P
HO

NE
_S

TA
TE

AC
CE

SS
_N

ET
WO

RK
_S

TA
TE

AC
CE

SS
_W

IF
I_

ST
AT

E

AC
CE

SS
_C

OA
RS

E_
LO

CA
TI

ON

AC
CE

SS
_F

IN
E_

LO
CA

TI
ON

VI
BR

AT
E

GE
T_

TA
SK

S

CH
AN

GE
_W

IF
I_

ST
AT

E

WA
KE

_L
OC

K
0

25

50

75

100

GAP

VI
BR

AT
E

WA
KE

_L
OC

K

AC
CE

SS
_C

OA
RS

E_
LO

CA
TI

ON

AC
CE

SS
_F

IN
E_

LO
CA

TI
ON

CH
AN

GE
_N

ET
WO

RK
_S

TA
TE

KI
LL

_B
AC

KG
RO

UN
D_

PR
OC

ES
SE

S

AC
CE

SS
_W

IF
I_

ST
AT

E

BL
UE

TO
OT

H

BL
UE

TO
OT

H_
AD

MI
N

CH
AN

GE
_W

IF
I_

ST
AT

E
0

25

50

75

100

UAP

WR
IT

E_
EX

TE
RN

AL
_S

TO
RA

GE

SE
ND

_S
MS

RE
CE

IV
E_

BO
OT

_C
OM

PL
ET

ED

RE
CE

IV
E_

SM
S

RE
AD

_S
MS

WA
KE

_L
OC

K

RE
AD

_C
ON

TA
CT

S

IN
ST

AL
L_

SH
OR

TC
UT

IN
TE

RN
ET

RE
AD

_L
OG

S
0

25

50

75

100

Fig. 2: Top 10 APs for malware

DAP

IN
TE

RN
ET

AC
CE

SS
_N

ET
WO

RK
_S

TA
TE

WR
IT

E_
EX

TE
RN

AL
_S

TO
RA

GE

AC
CE

SS
_W

IF
I_

ST
AT

E

WA
KE

_L
OC

K

RE
AD

_P
HO

NE
_S

TA
TE

VI
BR

AT
E

GE
T_

AC
CO

UN
TS

AC
CE

SS
_C

OA
RS

E_
LO

CA
TI

ON

RE
AD

_E
XT

ER
NA

L_
ST

OR
AG

E
0

25

50

75

100

EAP

IN
TE

RN
ET

AC
CE

SS
_N

ET
WO

RK
_S

TA
TE

WA
KE

_L
OC

K

WR
IT

E_
EX

TE
RN

AL
_S

TO
RA

GE

AC
CE

SS
_W

IF
I_

ST
AT

E

VI
BR

AT
E

RE
AD

_P
HO

NE
_S

TA
TE

AC
CE

SS
_C

OA
RS

E_
LO

CA
TI

ON

AC
CE

SS
_F

IN
E_

LO
CA

TI
ON

CA
ME

RA
0

25

50

75

100

GAP

VI
BR

AT
E

WA
KE

_L
OC

K

AC
CE

SS
_C

OA
RS

E_
LO

CA
TI

ON

GE
T_

TA
SK

S

AC
CE

SS
_F

IN
E_

LO
CA

TI
ON

RE
AD

_P
HO

NE
_S

TA
TE

WR
IT

E_
EX

TE
RN

AL
_S

TO
RA

GE

AC
CE

SS
_W

IF
I_

ST
AT

E

BL
UE

TO
OT

H

CA
ME

RA
0

25

50

75

100

UAP

WR
IT

E_
EX

TE
RN

AL
_S

TO
RA

GE

GE
T_

AC
CO

UN
TS

RE
AD

_E
XT

ER
NA

L_
ST

OR
AG

E

RE
CE

IV
E_

BO
OT

_C
OM

PL
ET

ED

AC
CE

SS
_W

IF
I_

ST
AT

E

RE
AD

_P
HO

NE
_S

TA
TE

RE
AD

_C
ON

TA
CT

S

SY
ST

EM
_A

LE
RT

_W
IN

DO
W

CA
ME

RA

CA
LL

_P
HO

NE
0

25

50

75

100

Fig. 3: Top 10 APs for apps

Fig. 2, 2 out of 10 APs deal with SMS (i.e., SEND_SMS and RECEIVE_SMS), while
no SMS-related APs appear in the DAP plot of Fig. 3. It is worth noticing
that albeit almost 50% of malware require SEND_SMS, and more than 40% re-
quire RECEIVE_SMS, they seldom exploit them (as shown by the absence of such
APs in the corresponding EAP set)10.

4.2 Dynamic Impacts

We argue that calculating a RIV according to the distribution of APs on malware
and apps in the dataset may improve the accuracy of current probabilistic risk
indexes. To empirically assess this thesis, we apply the probabilistic method
proposed in DroidRisk [7] on our dataset using both static and dynamic impacts.
We consider static impacts as defined in the original DroidRisk paper, namely,
I(pi, N) = 1 for pi being a Normal AP, and I(pi, D) = 1.5 for pi being a

10Complete statistics are available at: http://www.csec.it/riskindroid.

http://www.csec.it/riskindroid

8

Dangerous one. We define a dynamic impact as follows:

I(pi, S) = P (pi|M,S)
P (pi|A,S) (1)

being P (pi|M,S) the probability that a malware requires pi in the set S, and
P (pi|A,S) the probability that an app requires pi in the same set S. In this way,
the impact value increases as APs are more often required by malware than apps,
and vice versa. Note that also in this case, the probability for pi is calculated as
the number of malware/apps requiring pi on the total number of malware/apps
in the dataset. It is also worth noting that the value of dynamic impacts is
independent from the AP category. Since DroidRisk takes into consideration only
declared permissions, we calculated dynamic impacts only for declared APs, i.e.,
I(pi, DAP). Tab. 2 shows an excerpt of dynamic impacts w.r.t. the dataset.

Tab. 2: Dynamic impacts for DAP on the full dataset.
AP values in DAP P (pi|M,DAP) P (pi|A,DAP) Dyn. Imp. AP values in DAP P (pi|M,DAP) P (pi|A,DAP) Dyn. Imp.
INTERNET 96.66 94.83 1.02 READ_PHONE_STATE 90.04 30.97 2.91
ACCESS_NETWORK_STATE 70.84 89.32 0.79 WRITE_EXTERNAL_STORAGE 69.79 58.49 1.19
SEND_SMS 50.45 1.83 27.51 ACCESS_WIFI_STATE 48.61 36.02 1.35
RECEIVE_BOOT_COMPLETED 46.31 14.55 3.18 ACCESS_COARSE_LOCATION 38.03 18.26 2.08
RECEIVE_SMS 37.93 1.80 21.02 READ_SMS 36.72 1.48 24.88
ACCESS_FINE_LOCATION 36.29 16.77 2.16 READ_EXTERNAL_STORAGE 6.38 17.38 0.37
READ_CONTACTS 24.66 5.73 4.31 READ_CALL_LOG 0.46 0.91 0.51
READ_SYNC_SETTINGS 0.60 0.73 0.82 WRITE_SYNC_SETTINGS 0.72 0.78 0.92
RECORD_AUDIO 12.26 5.40 2.27 READ_CALL_LOG 0.46 0.91 0.51
READ_CALENDAR 10.97 1.16 9.44 NFC 0.03 0.61 0.05

4.3 Evaluating Probabilistic Methods

We carry out an empirical assessment aimed at evaluating i) if the usage of dy-
namic impacts could improve the quality of probabilistic RIV, ii) to which extent
probabilistic methods are reliable, and iii) understand potential improvements
towards more reliable RIVs.

0 20 40 60 80 100

10

20

30

0 20 40 60 80 100

10

20

30

Risk Index Value

malware
apps

0 20 40 60 80 1000 20 40 60 80 100
Risk Index Value

malware
apps

Fig. 4: Risk Index Values with static (left) and dynamic (right) impacts.

9

Discussion. Our analysis indicates that the average RIV for apps is slightly
lower with static impacts (i.e., 52.87 vs. 58.43); on malware, this gap is wider
(i.e., 71.29 vs. 86.10). Fig. 4 shows the RIV distribution for both malware and
apps in the dataset based on static and dynamic impacts. We consider 20 classes
of RIVs, each comprising all apps having a RIV between 5i and 5i+ 5%, where
i ∈ {0, . . . , 19}. The x-axis of each plot indicates the RIV, while the y-axis
indicates the number of RIVs in each class. It is worth noting that in both
cases malware have higher RIV on average, thereby suggesting that probabili-
stic methods are reliable in principle. However, our results also bring out their
limitations. First, malware and apps histograms in Fig. 4 often overlap, thereby
indicating that probabilistic methods may sometimes provide similar RIVs for
malware and apps. In this case, the reliability of RIV depends on the gap between
the overlapping histograms. For instance, let us consider the 60%-65% class for
static impacts, where both histograms are almost equal; this indicates that each
app having a RIV in this interval have rather the same chance to be a malware
or not: this would be acceptable for RIVs around 50% only. Dynamic impacts
allow to keep the gap in each class wider, at the cost of widening the overlap
interval (i.e., histograms overlap from 50% and 80% with static impacts, and
from 40% to 95% for dynamic impacts). Furthermore, RIV is averagely high for
apps (> 40%) and it does not span on the whole value interval (i.e., from 0%
to 100%). Finally, as previously conjectured, probabilistic methods are unable
to recognize as risky the malware that declare few or none APs (consider the
overlap on class 0%-5% in both plots).

5 RiskInDroid: a Machine Learning-based Risk Index

We argue that the intrinsic limitations of probabilistic methods applied to APs can
be overcome by machine learning techniques able to build up more reliable RIVs.
In this section we present the methodology at the basis of RiskInDroid, then we
provide an extensive empirical assessment of the tool.

5.1 Methodology

Machine learning techniques are used for classifying elements, i.e., given a set of
classes, they evaluate each element and assign a class to it. Therefore, they
are particularly suitable for binary classification of malware. However, some
techniques also provide a probability value related to the prediction. We leverage
machine learning techniques to classify apps into two classes, i.e., malware and
non malware, and we use the classification probability to build up a RIV. For our
purpose, we adopt the scikit-learn library [12], that implements a set of machine
learning techniques and provides a probability function for some of them.

Machine learning techniques require feature vectors to compare and classify
elements. In our context, elements are apps, and features are APs. We define
feature vectors as follows: given APSet the set of APs, for each app A we define
four feature vectors FV A

S , with S ∈ {DAPA, EAPA, GAPA, UAPA}. Each FV

10

is a binary vector of cardinality |APSet|, where FV A
S [i] = 1 if pi ∈ S, and

FV A
S [i] = 0 otherwise. We adopt a supervised learning approach. Supervised

learning requires classifiers to be trained on a training set before being applied
to classify new elements. We train a set of supervised classifiers on a subset of
the dataset and then we use them to classify the remaining APKs.

5.2 Selection of classifiers

The scikit-learn library implements 15 supervised classifiers with probability
estimation, which means that they adopt proper techniques to provide a proba-
bility value for each classification result (also for algorithms that do not natively
provide a probability on classification like, e.g., SVM and Decision Trees). In
order to choose the more reliable ones, we empirically evaluated them on three
sets randomly extracted from the dataset and containing the same number of
apps and malware samples each (i.e., 6.707 malware samples and 6.707 apps),
considering only DAP as permission set. We select classifiers according to three
empirical rules:

1. Accuracy > 90%, in order to discard the less reliable classifiers.
2. 4% < AVG Score < 95%, to avoid binary classifiers, i.e., that tend to

provide scores around 100% for malware and 0% for apps.
3. 5% < Std. Dev. to exclude classifiers that distribute in a little subset of

the whole interval.

We evaluated the classifiers (using the default parameters provided by scikit-
learn) by applying the K-fold cross validation [13] with K = 10. In a nut-
shell, the K-fold cross validation (see Fig. 5 for an example with K = 4) is an
iterative statistical method where the dataset is divided into K independent sets
(i.e., folds), each with approximately the same number of elements. At each it-
eration on K, the ith fold acts as the testing set, while the remaining k− 1 folds
form the training set. The testing set is used to validate the model built through
the training set. The accuracy value is calculated according to the number of
samples in the testing set whose class have been predicted correctly. The ad-
vantage of K-fold cross validation is that all samples are used both to train and
to test the model, thereby reducing the overfitting problem that occurs when a
model classifies correctly in the training set but not in the testing one.

At each iteration, a classifier is trained on a training set of about 1342 ele-
ments (i.e., 671 apps and 671 malware samples) and tested with the remaining
9 sets, assuming that a score (i.e., the probability associated with the classifica-
tion) ≥ 50% implies recognizing the element as malware, while a score < 50%
implies that the element is not malware. By comparing the nature of the element
with its classification, we are able to recognize the correctness of the evaluation.
The accuracy value is calculated as the ratio between the number of correct
classifications on the total number of classified elements. The average score and
standard deviation (i.e., σ) statistics are calculated on the classification proba-
bilities returned by classifiers in the testing phase. Results are reported in Tab.
3. Since all classifiers had a very similar behavior on all three sets, we report the
average value for each metric.

11

testing set

training set

fold 1

Accuracy1

fold 2

Accuracy2

fold 3

Accuracy3

fold 4

Accuracy4

Accuracy = 1
4

∑4
i=1 Accuracyi

Fig. 5: Example of 4–fold cross validation

Tab. 3: Empirical evaluation of classifiers in the scikit-learn library
Classifier AVG

Accuracy
Malware Apps
AVG
Score σ

AVG
Score σ

Support Vector Machines (SVM) 94.89 94.83 7.42 4.73 8.34
Gaussian Naive Bayes (GNB) 84.64 99.87 1.82 0.05 1.11

Multinomial Naive Bayes (MNB) 90.69 94.88 7.65 4.89 6.29
Bernoulli Naive Bayes (BNB) 89.97 99.07 4.87 0.69 4.19

Decision Tree (DT) 95.68 99.68 3.29 0.73 3.62
Random Forest (RF) 96.73 97.31 8.19 4.09 8.87

AdaBoost (AB) 94.19 52.83 1.45 47.48 1.44
Gradient Boosting (GB) 95.11 94.28 8.99 6.88 10.26

Stochastic Gradient Descent (SGD) 93.62 97.61 6.89 4.80 9.30
Logistic Regression (LR) 94.96 93.36 8.23 4.85 9.38

Logistic Regression CV (LR-CV) 94.93 96.41 8.21 4.71 9.21
K-Nearest Neighbors (K-NN) 94.29 98.69 6.22 4.82 11.34

Linear Discriminant Analysis (LDA) 93.88 98.11 6.42 1.93 6.18
Quadratic Discriminant Analysis (QDA) 78.18 100 0.31 0.06 1.32

Multilayer Perceptron Neural Network (MPNN) 97.06 99.12 4.31 1.68 5.51

Discussion. GNB, BNB and QDA grant low accuracy, while DT, RF, SGD,
LR-CV, K-NN, LDA and MPNN have too high average score for apps. Finally,
AB has a low standard deviation and provides similar scores for malware and
apps (i.e., from 47% to 53% in both cases). Only four classifiers meet all require-
ments, namely, SVM, MNB, GB and LR. Therefore, we chose to adopt them in
RiskInDroid.

6 Experimental Results

RiskInDroid has been developed in Python and implements the selected four
classifiers. For each app A, RiskInDroid calculates the RIV on all four APs sets

12

(i.e., DAPA, EAPA, GAPA, and UAPA), by combining the corresponding fea-
ture vectors in a unique one, i.e., FV A

all = FV A
DAPA

‖FV A
EAPA

‖FV A
GAPA

‖FV A
UAPA

.
The RIV is calculated as the average score value of all four classifiers. To train
each classifier in RiskInDroid, we applied the 10-fold cross validation on one
of the three sets used to evaluate the classifiers. We also used the same set to
empirically assess whether applying all four APs sets may improve the accuracy.
To this aim, our tests returned the following average accuracy values: 92.93%
for DAP, 88.36% for EAP, 79.12% for GAP, 91.09% for UAP, and 94.87% for all
sets. Therefore, we chose to consider all sets.

Tab. 4: Average RIV calculated by probabilistic methods and RiskInDroid.
APK Category Static Impacts Dynamic Impacts RiskInDroid
Malware 71.29 86.10 84.34
Apps 52.87 58.43 16.89

Discussion. Tab. 4 shows the average RIV calculated by RiskInDroid, w.r.t.
probabilistic methods in the previously discussed configurations. RiskInDroid sub-
stantially lowers the average RIV for apps. Fig. 6 compares the distribution of
RIVs with probabilistic methods based on dynamic impacts and RiskInDroid.
The latter distributes RIVs on the whole risk interval, and restricts the histogram
overlapping in the center of the interval. This is reasonable as the median value
implies the maximum uncertainty (i.e., RIV = 50% means that the APK has
the same probability to be malware or not).

0 20 40 60 80 100

10

20

30

0 20 40 60 80 100

10

20

30

Risk Index Value

#
R

IV
s

malware
apps

(a) Dynamic impacts

0 20 40 60 80 1000 20 40 60 80 100
Risk Index Value

malware
apps

(b) RiskInDroid

Fig. 6: Distribution of RIV: probabilistic methods vs RiskInDroid.

RiskInDroid and Malware Detection. We further evaluated the reliability of
RIVs by assessing the relationship between apps with high RIVs and malware.
More in detail, we selected all apps having RIV>75%, and we analyzed them

13

Tab. 5: App analysis with VirusTotal: Experimental Results.
APK source # apps with

RIV >75%
% of apps with Flags >X

Flags >1 Flags >3 Flags >5 Flags >10 Flags >15
Google Play 635 14.6% 9.4% 8.7% 7.8% 7.1%
Aptoide 125 26.5% 12.6% 123% 12% 8.5%
Uptodown 86 24.4% 15.6% 8.9% 4.4% 2.2%

through VirusTotal11, a free suite hosting more than 50 online antivirus. Such
antivirus are signature-based, i.e., they compare the app with a set of known
malware footprints. For each analysis, VirusTotal also provides the number of
antivirus (i.e., flags) recognizing the submitted APK as malware.

Tab. 5 summarizes the results. They indicate that the methodology at the
basis of RiskInDroid is promising and the corresponding RIVs are reliable, since
some apps having high RIV are also recognized as malware by VirusTotal. How-
ever, it is worth pointing out that high RIV does not necessarily imply that
an app is malware. For instance, social network apps require a lot of dangerous
permissions and manage user data; such apps are risky for the security and pri-
vacy of the end user, but they are not malware. Finally, the experiments with
VirusTotal indicate that apps from Google Play are less likely to be malware
w.r.t. those provided by Aptoide and Uptodown: this is an expected result as
Google Play carries out security assessments on its apps12.

Tab. 6: Performance of RiskInDroid on a set of 13.414 APKs (6.707 apps and
6.707 malware samples)

Classifiers
Training Phase Testing Phase

DAP only All sets DAP only All sets
AVG T [ms] σ [ms] AVG T [ms] σ AVG T [ms] σ [ms] AVG T σ [ms]

SVM 43460 60 97170 870 15 4 18 5
MNB 32 4 53 11 6 3 7 3
GB 5620 52 21806 403 9 3 11 5
LR 81 9 188 11 4 2 5 2
Total 49193 67 119220 890 34 12 41 15

Performance of RiskInDroid. The performance of RiskInDroid has been evalu-
ated on a general purpose desktop PC equipped with an Intel i7-3635QM @ 3.40
GHz, and 16GB RAM. Tab. 6 summarizes the results. Performance of classifiers
is evaluated in terms of average time and standard deviation, during the training
and the testing phase. Using all sets decreases the average performance up to
240% during the training phase. However, it is worth noticing that this phase
is executed once at the beginning. Instead, the testing phase is very quick and
lasts in few millisecs both with one and all sets, thereby suggesting to adopt all
four sets to obtain a higher accuracy.

11http://www.virustotal.com
12http://googlemobile.blogspot.it/2012/02/android-and-security.html

http://www.virustotal.com
http://googlemobile.blogspot.it/2012/02/android-and-security.html

14

7 Conclusion and Future Work

In this paper we empirically assessed the reliability of probabilistic risk index
approaches for Android apps, and we proposed a novel methodology based on
machine learning aimed at overcoming the shortcomings of the probabilistic
solutions. We implemented the methodology in a tool, RiskInDroid, that we
empirically evaluated. Future development of this research includes extending
the feature set beyond APs, by taking into account suspicious API calls and
URLs, both recognizable in the bytecode through the static analysis technique
we adopted to build the permission sets.

References

1. Gartner, “Gartner Says Five of Top 10Worldwide Mobile Phone Vendors Increased
Sales in Second Quarter of 2016.”

2. A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions
demystified,” in Proceedings of the 18th ACM Conference on Computer and Com-
munications Security, CCS ’11, (New York, NY, USA), pp. 627–638, ACM, 2011.

3. C. S. Gates, N. Li, H. Peng, B. Sarma, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy, “Generating Summary Risk Scores for Mobile Applications,” IEEE
Transactions on dependable and secure computing, vol. 11, no. 3, pp. 238–251, 2014.

4. H. Hao, Z. Li, and H. Yu, “An Effective Approach to Measuring and Assessing
the Risk of Android Application,” in Theoretical Aspects of Software Engineering
(TASE), 2015 International Symposium on, pp. 31–38, IEEE, 2015.

5. G. Dini, F. Martinelli, I. Matteucci, M. Petrocchi, A. Saracino, and D. Sgandurra,
“Risk analysis of android applications: A user-centric solution,” Future Generation
Computer Systems, pp. –, 2016.

6. S. Li, T. Tryfonas, G. Russell, and P. Andriotis, “Risk Assessment for Mobile
Systems Through a Multilayered Hierarchical Bayesian Network,” 2016.

7. Y. Wang, J. Zheng, C. Sun, and S. Mukkamala, “Quantitative Security Risk As-
sessment of Android Permissions and Applications,” in IFIP Annual Conference
on Data and Applications Security and Privacy, pp. 226–241, Springer, 2013.

8. D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, “DREBIN: Ef-
fective and Explainable Detection of Android Malware in Your Pocket,” in NDSS,
2014.

9. “Contagio mobile malware mini dump, Available: http://contagiominidump.
blogspot.com/; [Accessed: January 3, 2018].”

10. N. Husted, “Android malware dataset,” 2011.
11. A. Bhatia, “Collection of android malware samples.”
12. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

13. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical
Learning: With Applications in R. Springer Publishing Company, Incorporated,
2014.

http://contagiominidump.blogspot.com/
http://contagiominidump.blogspot.com/

	RiskInDroid: Machine Learning-based Risk Analysis on Android

