1	SUPPORTING INFORMATION
2	
3	
4	N,N,N-Tris(tert-butoxycarbonyl)-L-arginine: five isoforms whose obtainment depends on
5	procedure and a scrupulous NMR confirmation of their structures
6	
7	Silvana Alfei ^{*,a} , Sara Castellaro ^a
8	
9	^a Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari, Università di Genova, Viale
10	Cembrano 4, I-16148 Genova, Italy
11	
12	
13	
14	*Corresponding author:
15	Dr. Silvana Alfei
10 17	Dipartimento di Farmacia Sezione di Chimica e Tecnologie Farmaceutiche
18	Università degli Studi di Genova
19	Viale Cembrano, 4
20	16148 - Genova, Italy
21	phone: +39 010 353 2296;
22 23	ax: +390103532084;
24	ORCID: 0000-0002-4630-4371
25	
26	
27 28	Table of Contents
29	
30	Figure S1. Graphical Abstract
31	Figure S2. Significant portions of ¹ H NMR spectrum and ¹³ C NMR spectra of the mixture 3a+3b+3c
32	Figure S3. Significant portions of 13 C NMR spectra of the mixture 3a + 3b and of isolated 3a
33	Figure S4. Plausible mechanism for the formation of 6 as mixture <i>E</i> , <i>Z</i>
34	Figure S5. Significant portions of ¹ H NMR spectrum and ¹³ C NMR spectra of the mixture 1/1 of 4 and 4a 5
35	Figure S6. Plausible mechanism for the formation of 10
36	Figure S7. Shape of CH ₂ -N=C signal of 10 and of CH ₂ -NH- signal of 6 <i>E</i> , <i>Z</i> in ¹ H NMR spectra7
37	Experimental procedure S8. Synthesis and analytical data of <i>aN-tert</i> -butoxycarbonyl- <i>L</i> -arginine (2)7
38	Experimental procedure S9. Synthesis and analytical data of <i>aN-tert</i> -butoxycarbonyl- <i>L</i> -ornithine (4)8
39	Experimental procedure S10. Synthesis and analytical data of 1,3-Bis(<i>tert</i> -butoxycarbonyl)guanidine (8)8
40	Experimental procedure S11. Synthesis and analytical data of 1,3-Bis(tert-butoxycarbonyl)-2-(trifluoromethyl-
41	sulfonyl)guanidine (9)
42	Table S12. Formulas, MW, physical state, melting point and Elemental analysis results of reported compounds10

1	Spectrum S13. ¹ H NMR (300 MHz, DMSO) of compound 2	11
2	Spectrum S14. ¹³ C NMR and DEPT-135 (75.5 MHz, DMSO) of compound 2	11
3	Spectrum S15. ¹ H NMR (300 MHz, CDCl ₃) of compounds 3a+3b	12
4	Spectrum S16. ¹³ C NMR (75.5 MHz, CDCl ₃) of compounds 3a+3b	12
5	Spectrum S17. ¹ H NMR (300 MHz, CDCl ₃) of compound 3a	13
6	Spectrum S18. ¹³ C NMR and DEPT-135 (75.5 MHz, CDCl ₃) of compound 3a	13
7	Spectrum S19. ¹ H NMR (300 MHz, CDCl ₃) of compound 3c	14
8	Spectrum S20. ¹³ C NMR (75.5 MHz, CDCl ₃) of compound 3c	14
9	Spectrum S21. ¹ H NMR (300 MHz, DMSO/D ₂ O) of compound 4	15
10	Spectrum S22. ¹³ C NMR and DEPT-135 (75.5 MHz, DMSO/D ₂ O) of compound 4	16
11	Spectrum S23. ¹ H NMR (300 MHz, CDCl ₃) of compound 6 <i>E</i> , Z	16
12	Spectrum S24. ¹³ C NMR and DEPT-135 (75.5 MHz, CDCl ₃) of compound 6 <i>E</i> , Z	17
13	Spectrum S25. ¹ H NMR (300 MHz, CDCl ₃) of compound 10	17
14	Spectrum S26. ¹³ C NMR and DEPT-135 (75.5 MHz, CDCl ₃) of compound 10	18
15	Figure S27. 3D images of the two tautomers 3a and 3b with the calculated energy associated to their structure .	19
16	Figure S28. 3D overlapping images of the two rotamers 6 <i>E</i> , Z and of their tautomer 10 with the calculated ene	rgy
1/	associated to their structure	20
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		

Figure S2. Significant portions of the ¹H NMR spectrum and of the ¹³C NMR spectrum of the mixture 3a + 3b + 3c

Figure S3. Significant portions of the 13 C NMR spectra of the mixture 3a + 3b and of isolated 3a

Figure S4. Plausible mechanism for the formation of 6 as mixture *E*, *Z*

14 Figure S5. Significant portions of the ¹H NMR spectrum and of the ¹³C NMR spectra of the mixture 1/1 4 + 4a

Figure S7. Shape of CH₂-N=C signal of 10 (above) and of CH₂-NH- signal of 6 *E*, *Z* (under) in the ¹H NMR spectra 5

6 Experimental procedure S8.

7 Synthesis of ^aN-tert-butoxycarbonyl-L-arginine (2) [16a, c]

8 In a one-neck flask, equipped with magnetic stirrer, we introduced L-arginine HCl (1.00; 4.8 mmol), dioxane (3.3 mL) 9 and 1 N NaOH (5.0 mmol). After cooling at 0°C, Di-tert-butyl-carbonate (Boc₂O) was added (1.1 equiv.) and the reaction 10 mixture was left under stirring for one night at r.t. The progress of the reaction was followed by TLC eluted in ethyl 11 acetate (AcOEt)/MeOH 9/1. Then the reaction mixture was poured into a separating funnel and extracted with *n*-hexane. 12 The organic phase was treated with saturated NaHCO₃ and the aqueous phases combined, acidified with 10% KHSO₄ to 13 pH = 2, while cooled at 0°C, extracted with *tert*-butanol and dried on Na₂SO₄ overnight. After evaporation of the solvent 14 at reduced pressure was obtained 2 that was investigated by IR and NMR analysis for checking the degree of purity and 15 was used in the next step without further purifications. 16

^α*N-tert-butoxycarbonyl-L-arginine* (2) [16a, b, c] 1.21 g, white solid, 92% yield; m.p. 150°C dec., lit. 159-160 °C dec.
[16a], 145-150°C dec. [16c]; FTIR (KBr) 3500-2400 (OH), 3374 (NH), 3203 (NH), 1729 (C=O acid), 1671 (C=O urethanecarbamate) cm⁻¹; ¹H NMR (300 MHz; DMSO-*d*₆) δ 1.38 (s, 9H, CH₃ Boc), 1.49-1.69 (m, 4H, ^βCH₂^γCH₂), 3.09 (m, 2H, ^δCH₂), 3.84 (m, 1H, ^αCH), 7.04 (d, *J* = 7.9 Hz, 1H ^αNH), 7.30 (brs, 3H, ^ωNH₂ + ^ω, NH), 7.92 (t, 1H, ^δNH); ¹³C NMR (75.5 MHz; DMSO-*d*₆) δ 25.45, 28.39, 31.30, 41.30, 53.42, 78.18, 155.71, 157.04, 174.29; Anal Calc. for

 $21 \qquad C_{11}H_{22}N_4O_4 \ (274.32 \): \ C, \ 48.16\% \ ; \ H, \ 8.08\% \ ; N, \ 20.42\% \ ; \ found: \ C, \ 47.75 \ \% \ ; \ H, \ 7.78\% \ ; \ N, \ 20.21\% \ .$

2 **Experimental procedure S9**.

3 Synthesis of ^aN-tert-butoxycarbonyl-L-ornithine (4) [22]

4 In a 50 mL two-neck flask ^{*a*}N-tert-butoxycarbonyl-^{δ}N-Cbz-L-ornithine (2.05 g, 5.6 mmol), Pd/C 10% (1.19 g) and MeOH 5 (38 mL) were introduced and the reaction mixture was maintained under stirring and at r.t. and under H₂ pressure (1.5 6 bar) for 5 h. After checking the completeness of the reaction by TLC (MeOH 100%), the catalyst is eliminated by filtration 7 on a celite plug which was washed with H₂O two times. The filtrate was evaporated at reduced pressure and at temperature 8 not exceeding 50-60°C to obtain an off-white solid which was treated with tetrahydrofuran (THF) and filtered. After 9 washing with THF the solid was brought to constant weight under reduced pressure and then left overnight in a desiccator 10 over P₂O₅ obtaining the desired product.

11 ^aN-tert-butoxycarbonyl-L-ornithine (4) [22b] 1.06 g, white solid, 81.6% yield; m.p. dec.; FTIR (KBr) 3500-2400 (OH),

3380 (NH₂), 1690 (C=O acid + C=O urethane carbamate), 1585 (NH) cm⁻¹; ¹H NMR (300 MHz; DMSO- d_6/D_2O) δ 1.41 12

13 (s, 9H, CH₃ Boc), 1.50-1.80 (m, 4H, ${}^{\beta}CH_{2}{}^{\gamma}CH_{2}$), 2.89 (t, J = 6.5 Hz, 2H ${}^{\delta}CH_{2}$) 3.80 (m, 1H, ${}^{\alpha}CH$); ${}^{13}C$ NMR (75.5 MHz;

14 DMSO- d_0/D_2O) δ 25.42, 30.25, 31.58, 40.90, 57.01, 81.83, 158.35, 178.92; Anal Calc. for C₁₀H₂₀N₂O₄ (232.28): C,

15 51.71%; H, 8.68%; N, 12.06%; found: C, 51.47%; H, 8.94%; N, 12.28%.

16

17 **Experimental procedure S10.**

18 Synthesis of 1,3-Bis(tert-butoxycarbonyl)guanidine (8) [26]

19 In a 20 mL one-neck flask guanidine hydrochloride 7 (1.19 g, 12.5 mmol), H₂O (12.5 mL) and dioxane (2.5 mL) were 20 inserted. The reaction mixture was added under stirring at 0 °C with di-tert-butyl carbonate (5.98 g, 27.4 mmol) and 21 maintained at r.t. for 24 h, then was evaporated up to a third of the volume obtaining a white suspension which after 22 dilution with H₂O (25 mL) was extracted with AcOEt (3 x 25 mL). The extracts were washed with 10% citric acid (15 23 mL), H₂O (15 mL), saturated NaCl (15 mL) and dried over anhydrous Na₂SO₄ overnight. The elimination of the solvent 24

at reduced pressure gave a solid which was treated with petroleum ether and filtered, obtaining 8.

1,3-Bis(tert-butoxycarbonyl)guanidine (8) [26] 1.94 g, white solid, 60% yield; m.p. 145-147°C (petroleum ether), lit. 25

26 144°C [26]; FTIR (KBr) 3370 (NH), 3310 (NH), 1588 (C=NH), 1730 (C=O), 1638 (NH) cm⁻¹; ¹H NMR (300 MHz;

- 27 DMSO-*d*₆) δ 1.41 (s, 18H, CH₃ Boc), 8.00-11.00 (two brs, 3H, NH); ¹³C NMR (75.5 MHz; DMSO-*d*₆) δ 28.80, 80.51,
- 28 159.21, 159.48; Anal Calc. for C₁₁H₂₁N₃O₄ (259.30): C, 50.95%; H, 8.16%; N, 16.21%; found: C, 50.74 %; H, 8.48%; N,
- 29 16.42%.
- 30
- 31

1	Experimental procedure S11.
---	-----------------------------

2	Synthesis of 1,3-Bis(tert-butoxycarbonyl)-2-(trifluoromethylsulfonyl)guanidine (9) [26]
3	In a 50 ml two-neck flask equipped with a dropping funnel, magnetic stirrer and a nitrogen valve 8 (1.86 g, 7.2 mmol),
4	CH ₂ Cl ₂ (36 mL) and Et ₃ N (1.0 mL) were inserted. After cooling at -78°C, the mixture was added dropwise with triflic
5	anhydride (1.3 mL), the solution was allowed to reach r.t. and was stirred under nitrogen stream for 24 h. The dark solution
6	was then washed with 2 N KHSO ₄ and H_2O and the organic phase was dried over anhydrous Na_2SO_4 . The elimination of
7	the solvent under reduced pressure provided the crude 9 which was dissolved in CH_2Cl_2 (10 mL) and was percolated on
8	a small silica column (h = 10 cm, ϕ = 2 cm) eluting with CH ₂ Cl ₂ (20 mL). The elimination of the solvent under reduced
9	pressure provided 9.
10	1,3- Bis(tert-butoxycarbonyl)-2-(trifluoromethylsulfonyl)guanidine (9) [26] 1.98 g, white solid, 70% yield; m.p. 105-
11	108°C, lit. 115°C [26]; FTIR (KBr) 3377 (NH), 3306 (NH), 1787 (C=NSO ₂ CF ₃), 1736 (C=O), 1631 (NH) cm ⁻¹ ; ¹ H NMR
12	(300 MHz; CDCl ₃) δ 1.54 (s, 18H CH ₃ Boc), 10.1 (br s, 2H, NH); ¹³ C NMR (75.5 MHz; CDCl ₃) δ 27.84, 86.02, 117.16,
13	$121.40, 151.43; \text{ Anal Calcd for } C_{12}H_{20}F_3N_3O_6 \ (391.36): C, \ 36.83\%; \ H, \ 5.15\%; \ N, \ 14.56\%; \ Found: \ C, \ 36.77\%; \ H, \ 5.04\%; \ H,$
14	N, 14.24%.
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	

Table S12. Formulas, MW, physical state, melting point and elemental analysis results of the most important reported

- compounds
- 5

Compounds	Formula	MW	Physical state	M.p. Lit.[]	Required (%)	Found (%)	Error
2	$C_{11}H_{22}N_4O_4$	274.32	White solid	150°C, dec. 159-160°C[16a] 145-150°C[16c]	C 48.16 H 8.08 N 20.42	C 47.75 H 7.78 N 20.21	C-0.43 H-0.30 N-0.21
3 a	$C_{21}H_{38}N_4O_8$	474.55	Yellowish glassy solid	Low melting	C 53.15 H 8.07 N 11.81	C 53.12 H 8.21 N 11.67	C-0.03 H+0.14 N-0.14
3a+3b	$C_{21}H_{38}N_4O_8$	474.55	White solid	124-125°C 123-124°C[17]	C 53.15 H 8.07 N 11.81	C 53.21 H 8.45 N 11.67	C+0.06 H+0.38 N-0.14
3c	$C_{16}H_{30}N_4O_6$	374.22	White solid	139°C	C 51.32 H 8.08 N 14.96	C 51.23 H 8.28 N 15.27	C -0.09 H +0.20 N +0.31
4	$C_{10}H_{20}N_2O_4$	232.28	white solid	dec.	C 51.71 H 8.68 N 12.06	C 51.47 H 8.94 N 12.28	C-0.24 H+0.26 N+0.22
6 E, Z	$C_{21}H_{38}N_4O_8$	474.55	white solid	102-104°C	C 53.15 H 8.07 N 11.81	C 53.27 H 8.47 N 11.77	C+0.12 H+0.40 N-0.04
6 E	$C_{21}H_{38}N_4O_8$	474.55	white solid	102°C	C 53.15 H 8.07 N 11.81	C 53.28 H 8.45 N 11.74	C+0.13 H+0.38 N-0.07
6 Z	$C_{21}H_{38}N_4O_8$	474.55	white solid	102-104°C	C 53.15 H 8.07 N 11.81	C 53.25 H 8.41 N 11.79	C+0.10 H+0.34 N-0.02
8	$C_{11}H_{21}N_3O_4$	259.30	white solid	145-147°C 144°C[26]	C 50.95 H 8.16 N 16.21	C 50.74 H 8.48 N 16.42	C-0.21 H+0.32 N+0.21
9	$C_{12}H_{20}F_{3}N_{3}O_{6}S$	391.36	white solid	105-108°C 115°C[26]	C 36.83 H 5.15 N 14.56	C 36.67 H 5.04 N 14.24	C-0.16 H-0.11 N-0.32
10	$C_{21}H_{38}N_4O_8$	474.55	white solid	102-104°C	C 53.15 H 8.07 N 11.81	C 53.30 H 8.27 N 12.00	C+0.15 H+0.20 O+0.19

Spectrum S15. ¹H NMR (300 MHz, CDCl₃) of compounds 3a+3b

Spectrum S16. ¹³C NMR (75.5 MHz, CDCl₃) of compounds 3a+3b

Compound 3a

Spectrum S20. ¹³C NMR (75.5 MHz, CDCl₃) of compound 3c

```
1
```

2 Compound 4

Spectrum S21. ¹H NMR (300 MHz, DMSO/D₂O) of compound 4

Spectrum S22. ¹³C NMR and DEPT-135 (75.5 MHz, DMSO/D₂O) of compound 4

Compound 6 E/Z

Spectrum S23. ¹H NMR (300 MHz, CDCl₃) of compound 6 E, Z

Spectrum S24. ¹³C NMR and DEPT-135 (75.5 MHz, CDCl₃) of compound 6 E, Z

Compound 10

Figure S27. 3D images of the two tautomers 3a and 3b with the calculated energy associated to their structure

- Figure S28. 3D overlapping images of the two rotamers 6 E, Z and of their tautomer 10 with the calculated energy
- 8 associated to their structure