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Original Article
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a b s t r a c t

Background: Diagnosis and monitoring of localized prostate cancer requires discovery and validation of
noninvasive biomarkers. Nuclear magnetic resonance (NMR)-based metabolomics of seminal plasma
reportedly improves diagnostic accuracy, but requires validation in a high-risk clinical cohort.
Materials and methods: Seminal plasma samples of 151 men being investigated for prostate cancer
were analyzed with 1H-NMR spectroscopy. After adjustment for buffer (add-to-subtract) and endoge-
nous enzyme influence on metabolites, metabolite profiling was performed with multivariate statistical
analysis (principal components analysis, partial least squares) and targeted quantitation.
Results: Seminal plasma metabolites best predicted low- and intermediate-risk prostate cancer with
differences observed between these groups and benign samples. Lipids/lipoproteins dominated spectra
of high grade samples with less metabolite contributions. Overall prostate cancer prediction using
previously described metabolites was not validated.
Conclusion: Metabolomics of seminal plasma in vitro may assist urologists with diagnosis and moni-
toring of either low or intermediate grade prostate cancer. Less clinical benefit may be observed for high-
risk patients. Further investigation in active surveillance cohorts, and/or in combination with in vivo
magnetic resonance spectroscopic imaging may further optimize localized prostate cancer outcomes.
© 2017 Asian Pacific Prostate Society, Published by Elsevier Korea LLC. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Accurate prostate cancer (CaP) diagnosis to prolong life with
minimal morbidity is a daily challenge for urologists. Although
early treatment of localized clinically significant CaP (csCaP) with
curative intent reduces mortality and metastases,1 harms associ-
ated with overdetection and treatment of indolent CaP driven by
injudicious use of serum prostate specific antigen (PSA) and

prostate biopsy have reduced overall CaP detection.2 Limitations of
serum PSA have driven advancements in multiparametric magnetic
resonance imaging and biomarkers in serum (e.g., Prostate Health
Index) and urine [prostate cancer antigen 3 (PCA3), TMPRSS2:ERG
fusion gene].3e6 However, due to cost-effectiveness concerns, these
are used as adjunctive tests rather than as standalone detection
tests despite their improved diagnostic accuracy.5,6

Prostatic fluid, produced as seminal plasma (SP) after physio-
logical prostatic smooth muscle contraction, contains the clinical
biomarkers PSA and prostatic acid phosphatase (PAP).7,8 Malignant
prostatic cells in ejaculates of men with CaP have been shown to
express genes (PCA3, Hepsin) and microRNAs that improve detec-
tion compared with serum PSA.9e11 Metabolomics is a modern
biomarker approach that quantifies small metabolites, most
commonly using nuclear magnetic resonance (NMR) spectroscopy
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or mass spectrometry.12,13 NMR-based metabolomics is highly
sensitive and reproducible with affordable sample-to-sample
costs.12 SP metabolite profiles improve PSA-based diagnosis,14,15

but require clinical validation.
This study investigates the feasibility of SP analysis using NMR-

based metabolomics for the prediction of csCaP in a high-risk
clinical cohort and compares metabolite profile CaP diagnosis
against prostate biopsy and radical prostatectomy (RP) histology.

2. Materials and methods

Ethical approval was obtained from the University of Queens-
land Medical Research Ethics Committee (Project no. 2006000262)
and the Royal Brisbane and Women's Hospital Human Research
Ethics Committee (HREC/09/QRBW/320, HREC/09/QRBW/305 and
1995/088B).

2.1. Patients and clinical data

Male patients (n¼ 154) attending either the Royal Brisbane and
Women's Hospital Urology outpatient department or local private
consulting rooms for investigation of elevated PSA and/or abnormal
digital rectal examination between January 2007 and February
2013 were enrolled in this prospective cohort study. Following
informed consent, patients provided ejaculate specimens on site or
at home prior to or at least 1 month after prostate biopsy, prior to
commencement of any treatment. No specifications to time of day,
relation to voiding, urethral meatus sterilization, or other param-
eters were provided to patients to simplify the sample collection
process. Patients denied surgical treatment for benign prostatic
hyperplasia and subsequent retrograde ejaculation prohibiting
sample collection.

Patient data collected included age, serum PSA and detailed
prostate biopsy, and radical prostatectomy histology records. Bi-
opsy and RP specimens were reported by uropathologists according
to the 2005 International Society of Urological Pathology classifi-
cation.16 Patients were monitored for biopsy progression, such as
CaP detection following initial false negative biopsy or upgraded
Gleason score with further biopsy or RP (n¼ 60).

Risk stratification (low, intermediate, high risk) was performed
according to the D’Amico criteria recommended in the American
Urological Association Guidelines17 and used to determine csCaP
presence (intermediate, high risk requiring treatment; Table 1).

Given established disparity between biopsy and RP histopathology,
risk classification accuracy was optimized using whichever histo-
pathology best described tumor characteristics.

2.2. Specimen processing

Ejaculate specimens were deposited directly into sterile
microurine jars containing 20 mL Hanks Balanced Salt Solution
(HBSS; Gibco, Life Technologies Australia, Mulgrave, Australia) for
the first 117 patients used initially for cytology and RNA analyses,
which was thereafter replaced by phosphate buffered saline (PBS)
(in-house preparation) because glucose in HBSS interfered with
preliminarymetabolomics analysis. All specimenswere provided to
the laboratory without cooling as soon as logistically possible by
the patients and were processed in the laboratory within 2 hours of
production. Specimens were combined with 20 mL HBSS or PBS,
layered over 10 mL isotonic Percoll (GE Healthcare-Pharmacia,
Rydalmere, Australia) and centrifuged at 974g for 30e60minutes at
4�C. Isolated supernatants, referred to as SP, were snap-frozen on
dry ice in 1-mL aliquots and stored at e80�C.

2.3. Sample preparation

SP samples were thawed on wet ice and distributed in 100-mL
aliquots. Eighty mL of PBS solutionwere added alongwith 20 mL D2O
as lock substance that contained 4,4-dimethyl-4-silapentane-1-
sulfonic acid (DSS) as internal chemical shift standard and 1,1-
difluoro-1-trimethylsilanyl methylphosphonic acid as internal pH
indicator leading to final concentrations of 100mM, resulting in 200
mL total sample volume. Samples were transferred to sterile 3-mm
NMR tubes (Bruker Biospin, Rheinstetten, Germany).

2.4. NMR spectroscopy

NMR spectra of SP samples were measured on a Bruker Avance
900 spectrometer operating at a 1H frequency of 900.13 MHz
(Bruker Biospin), equipped with a 5-mm self-shielded z-gradient
triple resonance cryoprobe and SampleJet sample changer. One-
dimensional (1D) nuclear Overhauser effect spectroscopy
(NOESY) spectra were acquired at 298 K with the “noesypr1d” pulse
sequence, accumulating 200 transients (following 8 dummy scans)
at 32,738 data points with a spectral width of 14 ppm.18 The
transmitter frequency was set to the water resonance, which was

Table 1
Demographic information for patients based on biopsy and radical prostatectomy (RP) histology.

Age (y) Serum PSA (ng/mL) Pathological stage, n

pT2 pT3a pT3b

Biopsy n¼ 151
Overall 61 (55e66) 6.5 (4.3e9.2)
CaP status Positive (n¼ 98) 60.5 (55e65) 6.4 (4.5e11)

Negative (n¼ 53) 62 (55.75e68.25)NS 6.5 (3.6e7.9)NS

csCaP status Present (n¼ 82) 61 (55e66) 6.75 (4.5e11.9)
Absent (n¼ 69) 61 (55e67)NS 6.0 (3.6e8.1)*

RP n¼ 60
Overall 57 (54e64) 6.15 (4.1e9.1)
ISUP group 1 (n¼ 2) 56 (54e57) 6.5 (4e9 ) 2

2 (n¼ 30) 57.5 (53e64) 5.5 (4e7) 26 3 1
3 (n¼ 20) 57 (55e61) 7.3 (5e12) 15 5
4 (n¼ 1) 55 19 1
5 (n¼ 7) 60 (55e68) 10 (6e12) 3 1 3

Primary/ tertiary pattern � 4 (n¼ 33) 57 (55e64) 7.3 (5e12) 23 7 3
3 (n¼ 27) 57 (51e63)NS 5.4 (4e7)** 25 2 1

Median and interquartile range are shown for age and serum PSA. All comparisons were made using the ManneWhitney U test (two-tailed).
* P< 0.05, ** P< 0.01.
CaP, prostate cancer; csCaP, clinically significant prostate cancer; ISUP, International Society of Urological Pathology; NS, not significant; PSA, prostate specific antigen.
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suppressed by continuous wave irradiation during the NOESY
mixing time of 0.1 seconds and relaxation delay of 3.0 seconds.
Tuning/matching, shimming, and data acquisition were performed
automatically with the IconNMR interface for high-throughput
automation. Samples were measured in one batch per sample
collection buffer and ordered randomly within these batches.

2.5. Spectral processing

NMR spectra were processed in TopSpin 3.2 (Bruker Biospin).
The free induction decays were baseline corrected by a Gaussian
function (0.1 ppm filter width) for postacquisition water deconvo-
lution,19 followed by multiplication with an exponential window
function (0.1 Hz line broadening), and Fourier transformation to
65,536 points. Subsequently, the spectra were manually phased,
manually baseline corrected with a cubic spline curve, and refer-
enced to DSS at 0.0 ppm. For all further data manipulation, the
spectra were truncated to d¼ 10.0e0.25 ppm, exported into MAT-
LAB 2015b (The Mathworks Inc., Natick, Massachusetts, USA), and
scaled according to the Bruker NC_proc parameter.

2.6. “Add-to-subtract” glucose exclusion

Preliminary analysis revealed glucose at sometimes dominant
levels in most samples (Fig. 1). As HBSS contains 1 g/L D-glucose
and ejaculate volumes were varied, the exogenous glucose con-
centration and its influence on subsequent multivariate statistical
analysis (MVSA) was unpredictable. Thus, we used the “add-to-
subtract” method20 to exclude glucose signals from the NMR
spectra: (1) we added 1 mL of 1M D-glucose in PBS to each sample
and repeated NMR measurement with identical experimental

parameters, leading to a total of 302 spectra for 151 patients (151
original, 151 with additional glucose); (2) using Topspin’s multiple
display, we determined the corresponding scaling factor between
Spectrum 2 and Spectrum 1 for each sample that ensures elimi-
nation of the glucose signal upon subtraction; (3) then the exported
Spectra 1 and 2 for each sample were aligned using “icoshift”21 on
the glucose peaks at 3.37e3.44 ppm and then along 10 equal seg-
ments; and (4) for each sample Spectrum 2 was scaled with the
scaling factor recorded in Topspin and subtracted from Spectrum 1.
The resulting difference spectra were stored in a separate matrix.

2.7. Spectral alignment and data reduction

The peaks of all difference spectrawere aligned at full resolution
using “icoshift”, initially on the lactate doublet at 1.32 ppm and
subsequently on manually defined segments. No shifting artefacts
were identified. Using an in-house MATLAB script, the aligned
difference spectra were data reduced to buckets of 0.01 ppmwidth
over the range 10.0e5.08 ppm and 4.52e0.25 ppm, excluding the
water signal region.

2.8. Multivariate statistical analysis

Metabolite data (X) matrices containing original and difference
(add-to-subtract) data were quantile normalized with the “affy”
package22 in R version 3.2.223 and imported into SIMCA Pþ 12.0
(Umetrics, Umeå, Sweden) for MVSA together with clinical data
variables (Y-matrix).

X-matrices were Pareto-scaled before unsupervised principal
components analysis (PCA).24 To determine which metabolite sig-
natures were associated with clinical data (cancer/risk status; Y-

0 2.0 0.0 –0.20.1 8.0 6.0 4.8.1 6.1 4.1 2.16.2 4.2 2.2 0.24.3 2.3 0.3 8.22.4 0.4 8.3 6.30.5 8.4 6.4 4.44.5 2.5
f1 (ppm)

B - PBS

A - HBSS

Lipids/lipoproteins

DSS
DFTMP

Gluc
Cit

PCho

LacPyr
Val Ile

Leu

Ala+
Lys

Leu+
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SpeCho

Fig. 1. Sections of one-dimensional (1D) nuclear Overhauser effect spectroscopy (NOESY) spectra from seminal plasma (SP) measured at 900 MHz. (A) 1D NOESY spectrum of SP
collected in HBSS, with additional peaks due to exogenous glucose present. (B) 1D NOESY spectrum of SP collected in PBS. Ala, alanine; Arg, arginine; Asn, asparagine; bPBS, Panel B
e PBS (panel labelling); Cho, choline; Cit, citrate; DFTMP, 1,1-difluoro-1-trimethylsilanyl methylphosphonic acid; DSS, 4,4-dimethyl-4-silapentane-1-sulfonic acid; f1, Chemical shift;
Fru, fructose; Gln, glutamine; Gluc, glucose; Glu, glutamate; Ile, isoleucine; Lac, lactate; Leu, leucine; Lys, lysine; PCho, phosphocholine; Pyr, pyruvate; SP, seminal plasma; Spe,
spermine; Val, valine.
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matrix), supervised partial least squares (PLS) was performed.24

Multivariate model quality was judged by the R2 (“goodness of
fit”) and Q2 (“goodness of prediction”) figures of merit (Table S1).
PLS models were validated by 200-fold response permutation.

Traditional statistical analysis, including the nonparametric
ManneWhitney U test, logistic regression, and receiver operating
characteristic analysis were performed in MedCalc 12.7 for Win-
dows (MedCalc Software, Ostend, Belgium).

2.9. Targeted metabolite profiling

SP metabolites were quantified using NMR suite 8.1 (Chenomx
Inc., Edmonton, Canada)25 using DSS as internal concentration
standard. Logistic regression on the SP metabolite concentrations
was performed in MedCalc, similar to that previously described.15

3. Results

3.1. Clinical cohort demographics

From 151 patients who provided SP samples, 80 were initially
diagnosed with CaP and an additional 18 patients diagnosed during
the follow-up period.Within these 98 patients, 82met csCaP criteria.
Sixty patients underwent RP for localized CaP in which 59 were
determined to be high risk per the D’Amico criteria, with six upgra-
ded from low risk. The Gleason grade subgroups according to Inter-
national Society of Urological Pathology (ISUP) category with
corresponding stage based on RP histology are presented in Table 1.
Primary Gleason Pattern 4 or higher or tertiary Pattern 5was present
in 34 patients based on RP histology. The demographic information

for each group (Table 1) demonstrated that serum PSAwas higher in
those with high D’Amico risk or who were ineligible for active sur-
veillance. The remaining38patients received radiationbased therapy
(n¼ 17), androgen deprivation therapy for metastatic disease (n¼ 2)
or embarking on conservative management (active surveillance,
watchful waiting; n¼ 12), although sevenwere lost to follow up.

3.2. Unsupervised multivariate statistical analysis

The SP samples were analyzed with 1H NMR spectroscopy. One-
dimensional NOESY spectra were measured, aligned, and data
reduced to 0.01 buckets. For initial PCA, buckets corresponding to
ethanol, resulting from sample preparation, were excluded, as were
spectra that were outliers due to broad resonances (n¼ 2). PCA
yielded a model (Table S1 M1) with six principal components (PCs),
in which samples clustered per the buffer solution used (PC1/PC2;
Figs. 2Ae2C), with higher glucose levels in samples prepared in
HBSS. In higher PCs, sample variation was observed due to inter-
sample differences of lipids/lipoproteins, phosphocholine, choline,
and citrate, as well as spermine (data not shown), which were
unrelated to CaP in this analysis.

The “add-to-subtract” method20 was used to remove glucose
signals from NMR spectra. Following measurement of a “baseline
spectrum” (Spectrum 1), glucose was added in high concentration
to the sample in the same NMR tube and a second spectrum was
measured (Spectrum 2). Spectrum 2was subtracted from Spectrum
1 with an appropriate scaling factor to remove glucose signals but
preserve signals of all other compounds in the resulting difference
spectrum. The method assumes that introduction of the compound

Fig. 2. Principal components analysis of seminal plasma NMR spectra from men being investigated for prostate cancer (n¼ 151), prepared with different buffer solutions (Hanks
Balanced Salt Solution: filled square, phosphate buffered saline: empty square). (AeC) Initial sample clustering is observed due to the difference in buffer solutions and resulting
sample glucose content (principal component 1) and intersample differences in metabolite (citrate, choline, lipids/lipoproteins and phosphocholine) variation (principal component
2). (DeF) After add-to-subtract elimination of glucose, the previously observed effects of different buffer solutions are no longer apparent (D). No clustering was present according
to CaP status (blue squares¼ benign; red triangles¼ CaP). (A, B, D, E) Scores plots. (C, F) Loadings plots. CaP, prostate cancer; Cho, choline; Cit, citrate; Gluc, glucose; Lip, lipids/
lipoproteins ; NMR, nuclear magnetic resonance; PCho, phosphorylcholine; PC, principal component.
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of interest does not change sample conditions, preserving sample
matrix, line shapes, and signal frequencies.

PCA of the difference spectra (Figs. 2De2F, Table S1 M2) showed
no sample grouping due to differences in buffer used (Fig. 2D). The
predominant drivers of sample variation were lipids/lipoproteins
(PC1), an inverse relationship between choline and phosphocholine
as well as citrate. An association with csCaP was suggested by the
presence of lipids/lipoproteins, although separation between clin-
ical groups was not observed in any PC.

Given that the inverse relationship observed between phos-
phocholine and choline is due to PAP-mediated hydrolysis, a reac-
tion which was not inhibited in these samples,26 choline-based
metabolites (choline, phosphocholine, and glycerophosphocho-
line) were excluded to remove their effect of unbalanced regulation
on the MVSA. However, subsequent PCA (Fig. 3, Table S1 M3)
showed no obvious clustering, with most variation due to lipids/li-
poproteins, citrate, and serine (Figs. 3A, 3B). Fructose and spermine
were other significant sources of variation in PC3/PC4 (Figs. 3C, 3D).

3.3. Supervised multivariate statistical analysis

In the unsupervised PCAs, which determine sources of variation
potentially independent of underlying biology, no sample clus-
tering into clinical groups was seen, prompting the need for

supervised MVSA. First, the presence of csCaP according to the
D’Amico criteria based on biopsy was used as the predictive vari-
able in PLS analysis (Fig. 4, Table S1 M4) and demonstrated lipids/
lipoproteins to be associated with variation for csCaP, which were
mostly limited high-risk patients. Furthermore, there was potential
subgrouping among the D’Amico risk groups (Fig. 4B).

Based on these results and reports that maximal metabolite
disturbances are observed in low- and intermediate-risk tumors,
we analyzed with PLS a subgroup of 11 samples correlating to these
grades confirmed by RP histology only (Figs. 5Ae5C, Table S1 M5).
The single low-risk sample was separated from the intermediate-
risk samples due to reduced lactate, pyruvate and lipids/lipopro-
teins and increased citrate, myo-inositol, spermine and fructose
(Figs. 5A, 5C). Within these low/intermediate-risk samples, sepa-
ration was seen in accordance with primary Gleason Pattern 4,
associated with higher levels of lipids/lipoproteins, lactate, and
pyruvate as well as lower levels of citrate, spermine, and myo-
inositol (Figs. 5B, 5C). These relationships were observed when
classifiers based on all low/intermediate-risk patients, determined
by biopsy or RP, were performed (Figs. 5D, 5E; Table S1 M6). When
benign samples were considered with risk group combinations and
Primary Gleason Pattern 4 presence, minimal separation was
observed and models were weak/nonpredictive (Fig. S1, Table S1
M7eM10).

Fig. 3. Principal components analysis after exclusion of choline containing metabolites demonstrated that lipids/lipoproteins, citrate, and serine were influential metabolites (A, B)
as well as fructose and spermine (C, D). No clustering was present according to CaP status (blue squares¼ benign; red triangles¼ CaP). (A, C) Scores plots. (B, D) Loadings plots. CaP,
prostate cancer; Cit, citrate; Fru, fructose; Lip, lipids/lipoproteins; PC, principal component; Ser, serine; Spe, spermine.
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Analysis of only the samples collected in PBS, unaffected by any
external glucose (Fig. S2, Table S1 M11e17), showed similar re-
lationships to those seen for the full cohort. Specifically, valid
models were obtained for separation between low- and
intermediate-risk samples (M12, Figs. S2C, S2D; limited by sample
size) and low-risk and benign samples (M13, Figs. S2E, S2F). Find-
ings were confirmed with PCA (M15e17, Fig. S3) and driven by
lactate levels (Fig. S4). The presence of the TMPRSS2:ERG fusion

gene, detected in the epithelial cell fraction of SP, used as Y variable
was weakly but nonpredictively associated with lipid/macromole-
cule resonances (Fig. S5, Table S1 M18).

3.4. Targeted metabolite profiling

SPmetabolite quantificationwith subsequent logistic regression
showed that citrate or myo-inositol were not significant predictors

Fig. 4. Supervised, partial least squares analysis of seminal plasma NMR spectra in predicting csCaP (according to D’Amico criteria) following add-to-subtract. Minimal separation is
seen according to csCaP (blue squares¼ benign, red triangles¼ csCaP; A). When coloured according to risk subgroups (blue squares¼ benign; green dots¼ low risk; yellow dia-
monds¼ intermediate risk; red triangles¼ high risk/cancer present; panel B), potential intragroup clustering was seen due to pyruvate, serine and lipids/lipoproteins (high/in-
termediate risk), and TMAO (low risk). (A, B) Scores plots. (C) Loadings plot. csCaP, clinically significant prostate cancer; Lip, lipids/lipoproteins; NMR, nuclear magnetic resonance;
Pyr, pyruvate; Ser, serine; TMAO, trimethylamine N-oxide; PC, principal component.

Fig. 5. Supervised, partial least squares analysis of seminal plasma NMR spectra in predicting CaP risk (according to D’Amico criteria) following add-to-subtract. Separation between
low- (green dots) and intermediate- (yellow diamonds) risk patients based on RP histology due to elevated lactate, lipids/lipoproteins and pyruvate and reduced citrate, fructose,
myo-inositol, and spermine in intermediate-risk samples (A,C). These relationships were observed when expanded to all low and intermediate risk patients (D, E). Discrimination
within the low/intermediate group was observed due to primary Gleason Pattern 4 (filled square¼ present; empty square¼ absent) and higher lipids/lipoproteins, lactate, and
pyruvate as well as reduced citrate, myo-inositol and spermine (B,C). (A, B, D) Scores plots. (C, E) Loadings plots. CaP, prostate cancer; Cit, citrate; Fru, fructose; Gln, glutamine; Glu,
glutamate, Lac, lactate; Lip, lipids/lipoproteins; Myo, myo-inositol; Pyr, pyruvate; RP, radical prostatectomy; Spe, spermine; UC1, unknown compound 1.; PC, principal component.
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of CaP status (Table 2). Significant metabolites for CaP status
(choline, leucine) and csCaP (leucine, valine) did not significantly
improve diagnosis compared with serum PSA metabolite
predictability.

4. Discussion

In this paper, we present the largest validation study of SP-based
metabolite prediction of CaP using high resolution NMR spectros-
copy, having analyzed SP metabolite profiles from 151 men being
investigated for CaP. Undue influence of exogenous glucose con-
tained in the HBSS buffer used for RNA analyses was successfully
excluded by applying add-to-subtract and revealed inherent vari-
ation due to enzyme-dependent changes in choline-based metab-
olites. SP metabolites best predicted low- and intermediate-risk
CaP with differences observed between these groups and benign
and high-risk samples. Metabolites previously reported to deter-
mine CaP, such as citrate, spermine, and myo-inositol, showed
minimal predictive ability in this clinically applicable cohort. These
findings were confirmed with targeted metabolite quantification.

Well described prostatic metabolite changes due to CaP, spe-
cifically reduced citrate and polyamines (e.g., myo-inositol, sper-
mine) and increased intracellular lactate, choline, and creatine,12

were not predictive in this study due to the following underlying
clinical and biological factors. Clinically, the study population pre-
sented here contains patients suspected of harboring CaP,
encountered in daily urological practice (Table 1). In earlier reports

where SP metabolites significantly improved CaP detection, CaP-
positive samples were compared with healthy controls or men
unlikely to have CaP, suggested by marked discrepancies in serum
PSA between groups. Our population contained heterogeneous
disease states, inclusive of all tumor grades with predominance
toward high-risk CaP. Although group separation was observed
between CaP risk groups (Fig. 5, Figs. S2, S3), we could not truly
exclude CaP in patients with a negative biopsy due to limitations in
biopsy-based CaP detection and known metabolic changes in early
tumorigenesis, which may lead to confounding overlap between
groups and invalid statistical models. To exclude uncertainty
among the control group, a subanalysis of the presence or absence
of Gleason Pattern 4 on RP histology showed overlap of groups
(M10, Figs. S1G, S1H), likely owing to reduced metabolite influence
in poorly differentiated tumors. Similarly, limitations of biopsy-
based risk stratification given known upstaging at RP in up to
40% of patients may confound the accuracy of risk subgroup ana-
lyses.27 When analyses based only on RP-based diagnosis were
expanded to include biopsy-based diagnosis to increase sample
size, sample grouping was less obvious despite similar metabolite
patterns being observed in the loadings plot (Fig. 5). Thus, a larger
low-/intermediate-risk RP cohort would be expected to accurately
“upclassify” (upstage) low-risk samples with metabolite patterns
similar to intermediate-/high-risk samples, as shown elsewhere.28

Biologically, gene expression and metabolite alterations occur
early in tumorigenesis and are more pronounced in lower grade
(Gleason � 7) compared with higher grade (Gleason � 8) tumors,28

Table 2
Logistic regression weightings following targeted metabolite quantification using Chenomx, similar to that reported by Li et al.18

Metabolite Mean (± SE) (mM) Logistic regression (log base 10) ROC analysis

P Coefficient SE AUC Std. Error

Prostate cancer status Alanine 0.1734 (0.0208) 0.7998 0.5211 2.0552 0.555 0.0498
Choline 1.3326 (0.1392) 0.0291 2.0211 0.9263 0.556 0.0495
Citrate 2.9243 (0.2643) 0.1490 �1.2433 0.8616 0.542 0.0490
Creatine 0.1156 (0.0114) 0.8786 �0.1850 1.2113 0.565 0.0492
Fructose 1.0591 (0.1004) 0.9631 �0.0413 0.8938 0.603 0.0510
Glucose 3.2694 (0.2118) 0.9144 �0.0262 0.2439 0.629 0.0487
Glutamine 0.5802 (0.0604) 0.8559 �0.3076 1.6943 0.541 0.0509
Glycerophosphocholine 0.2259 (0.0236) 0.0951 �1.0546 0.6318 0.603 0.0485
Lactate 0.8520 (0.0645) 0.5879 �0.5962 1.1003 0.579 0.0484
Leucine 0.4067 (0.0416) 0.0008 �12.3505 3.6772 0.572 0.0499
Myo-inositol 0.3251 (0.0238) 0.9287 �0.1095 1.2238 0.592 0.0472
Phosphocholine 0.1810 (0.0459) 0.1042 0.6905 0.4250 0.543 0.0499
Serum PSA 8.0867 (0.6075)* 0.0601 1.5605 0.8299 0.593 0.0472
Pyruvate 0.3709 (0.0373) 0.9736 �0.0286 0.8672 0.546 0.0493
Uridine 0.1793 (0.0167) 0.7146 0.1528 0.4180 0.568 0.0495
Valine 0.3206 (0.0392) 0.0013 1.4923 1.6868 0.534 0.0503

Clinically significant prostate cancer Alanine 0.1734 (0.0208) 0.1629 �2.2913 1.6421 0.592 0.0466
Choline 1.3326 (0.1392) 0.1595 1.1536 0.8200 0.584 0.0467
Citrate 2.9243 (0.2643) 0.1147 �1.4430 0.9147 0.580 0.0466
Creatine 0.1156 (0.0114) 0.8808 �0.1703 1.1364 0.603 0.0465
Fructose 1.0591 (0.1004) 0.5227 �0.5368 0.8397 0.611 0.0470
Glucose 3.2694 (0.2118) 0.3728 0.1970 0.2211 0.584 0.0475
Glutamine 0.5802 (0.0604) 0.4141 1.1168 1.3674 0.572 0.0473
Glycerophosphocholine 0.2259 (0.0236) 0.4243 �0.4494 0.5624 0.599 0.0463
Lactate 0.8520 (0.0645) 0.8719 �0.1501 0.9313 0.582 0.0467
Leucine 0.4067 (0.0416) 0.0025 �9.2502 3.0562 0.597 0.0466
Myo-inositol 0.3251 (0.0238) 0.4242 0.9335 1.1681 0.609 0.0459
Phosphocholine 0.1810 (0.0459) 0.2600 0.4343 0.3856 0.506 0.0477
Serum PSA 8.0867 (0.6075)a) 0.0228 1.7942 0.7880 0.617 0.0456
Pyruvate 0.3709 (0.0373) 0.6820 �0.3337 0.8146 0.569 0.0472
Uridine 0.1793 (0.0167) 0.2795 0.4318 0.3993 0.568 0.0473
Valine 0.3206 (0.0392) 0.0030 9.7952 3.2968 0.571 0.0471

Among 151 patients, CaP status (positive 98, negative 53) and D'Amico risk (high¼ 82, low¼ 69) were used as dependent variables for logistic regression analysis (P to enter
0.05, P to exclude >0.1).
AUC, area under the curve; CaP, prostate cancer; PSA, prostate specific antigen; ROC, receiver operating characteristic; SE, standard error.
Bold indicate P < 0.05.
a) Serum PSA determined using immunoassay, units ng/mL.
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supported by our analysis of low- and intermediate-risk patients
(Fig. 5, Figs. S2, S3). In addition to direct metabolic changes, the
inverse relationship between lactate and fructose resulting in
group separation between low- and intermediate-risk and benign
samples may indicate disturbed SP homeostasis of anions (zinc) or
enzymes (PSA, PAP) known to improve sperm function,29 resulting
in impaired sperm glycolysis. Indeed, poor discrimination of
metabolite profiles from high-risk tumors was demonstrated here
and in other studies, likely due to accumulated genetic alterations
with disease progression.28,30 Thus, patients with lower grade tu-
mors may be amenable to SP-mediated in vitro or magnetic reso-
nance spectroscopic imaging (MRSI)-mediated in vivo assessment
or monitoring as a potential substitute for repeat biopsy in active
surveillance.28,31

Altered metabolite homeostasis correlates with increased fatty
acid synthesis, due to or in association with TMPRSS2:ERG fusion
gene translocation associated with aggressive CaP, may account for
the overwhelming influence of lipids/lipoproteins in high-risk pa-
tients in this study, similar to that reported by others.32 Higher
grade tumors overexpress the oncogene MYC, which is associated
with dysregulated lipid metabolism33 and display altered choles-
terol metabolism to increase energy storage.30 Upregulated lipid
subclasses have been described between normal, localized, and
metastatic prostatic cells, with choline kinase a implicated in de
novo lipogenesis in aggressive metastatic cells.34 Systemically, lipid
and energy metabolites in serum have been strongly associated
with aggressive CaP35 and may improve CaP detection.

This study was an opportunistic analysis of SP samples collected
initially for cytology and subsequently epithelial cell RNA analyses.
The exogenous glucose contained in the HBSS required significant
correction using add-to-subtract, which did not introduce further
influence into the MVSA. Subsequently, the uninhibited changes in
choline-based metabolites showed significant influence in the
preliminary MVSA. These metabolite peaks were excluded because
PAP-catalyzed hydrolysis of phosphocholine to choline is a rapid,
endogenous reaction to enhance spermatozoal function and pro-
tection.26 Variations in time from sample production to processing,
despite most being done within 2 hours, are likely to cause sig-
nificant variation among these metabolites independent of under-
lying CaP due to the unknown degree of reaction completion. Given
the postulated role of choline in tumor progression, as indicated by
elevated in vivo levels, reliable quantification of choline-based
metabolites in SP is desired. Thus, a sample collection/storage
protocol should be implemented that limits the PAP reaction to
2e3% progression, such as our recommendation that ejaculate
samples be collected in a sterile urine jar containing 5mM tartrate
in 20mL PBS solution cooled to 4�C.26 Althoughmalignant prostatic
metabolite contribution to SP, considering concurrent contribu-
tions from multiple organs and resulting proteolysis, may intui-
tively be minimal or diluted, our findings are similar to those seen
in tissue extracts and in vivo,28,30 likely to be enhanced by spectral
acquisition at 900 MHz. Although prostatitis is known to reduce
prostatic citrate and zinc content12 and potentially affect MVSA,
this influence in the current study would be minimal due to the
focus on RP-based and malignant pathology, as well as only being
confirmed histologically for two patients.

In conclusion, metabolomics of seminal plasma in vitro may
assist diagnosis and monitoring of either low or intermediate grade
prostate cancer. Lipids/lipoproteins dominated spectra of high
grade samples with fewer contributions from other metabolites. As
a validation study, we were unable to replicate previous perfor-
mance of SP-based metabolite prediction of CaP in 151 men being
investigated for CaP. Dedicated metabolomics protocols ideally in
serial collections may maximize information recovery. The value of
metabolomics analysis of SP for CaP currently appears to be in

active surveillance of low- or intermediate-grade tumors suspi-
cious of understaging, in which in vivo correlation with MRSI and
monitoring in vitrowith SP or in vivowithMRSI may further clinical
practice.
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