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ABSTRACT 

Microorganisms play a key role in facilitating the cycling of several elements 

in coastal environments, including nitrogen (N). N is a key component for 

maintaining high seagrass productivity and is often the limiting nutrient in marine 

environments. Seagrasses harbour an abundant and diverse microbial community 

(the ‘microbiome’), however their ecological and functional roles related to the 

seagrass host are still poorly understood, in particular regarding N cycling. 

Microorganisms capable of mineralising dissolved organic nitrogen (DON) may play 

a pivotal role in enhancing N availability in coastal environments such as seagrass 

meadows. Thus, the overall aim of my thesis was to enhance current understanding 

of abundance and diversity of the microbial community associated with seagrass 

meadows and their ecological role, with specific focus on N cycling. This was 

achieved by using molecular techniques together with 15N-enrichment experiments 

and nanoscale imaging techniques. 

 

Firstly, I reviewed the literature on the potential effects that microorganisms 

associated with both the above- and belowground seagrass tissue may have on plant 

fitness and the relevance of the seagrass microbiome and I have highlighted literature 

gaps.   

 

For my second chapter, I determined the abundance and community 

composition of bacteria and archaea associated with seagrass Posidonia sinuosa 

meadows in Marmion Marine Park, southwestern Australia. Data were collected 

from different seagrass meadows and meadow ‘microenvironments’, i.e. seagrass 

leaf surface, sediment and water column. I performed the quantitative polymerase 

chain reaction (q-PCR) targeting a series of bacterial and archaeal genes: 16S rRNA, 

ammonia oxidation genes (amoA) and genes involved in mineralisation of DON, via 

the urease enzyme (ureC). High-throughput sequencing was applied to 16S rRNA 

and amoA genes, to explore the diversity of these microbial assemblages related to P. 

sinuosa meadow microenvironments. Results from this chapter show that the P. 
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sinuosa leaf biofilm represents a favourable habitat for microorganisms, as it hosts a 

significantly higher microbial abundance compared to the sediment and water. 

Moreover, 16S rRNA and amoA sequencing data indicate a high degree of 

compartmentalisation of functional microbial communities between the 

microenvironments of the seagrass meadow (leaf, sediment and water column), 

pointing towards the existence of a core seagrass leaf microbiome that could have 

specific interactions with the plant. 

For my third chapter I determined the role that microorganisms inhabiting P. 

sinuosa seagrass leaves may play in the recycling of DON, and subsequent transfer 

of inorganic N (DIN) into plant tissues. To achieve this, I performed an experiment 

whereby seagrass leaves with and without microorganisms were incubated with 

DO15N, and I traced the fine-scale uptake and assimilation of microbially processed 

N into seagrass cells, using nanoscale secondary ion mass spectrometry 

(NanoSIMS). Results from this chapter show for the first time that seagrass leaf 

epiphytic microorganisms facilitated the uptake of 15N from DON, which was 

unavailable to the plant in the absence of epiphytes. This indicates that seagrass 

leaves have limited to no ability to take up DON, and the seagrass leaf microbiome 

could therefore play a much more significant role than previously thought in 

enhancing plant health and productivity.  

Finally, I determined the net nitrification rates associated with ammonia-

oxidising microorganisms (AOM) inhabiting P. sinuosa leaf surfaces, and explored 

whether AOM facilitated, or competed for, the plant’s N uptake. My findings show 

that AOM may compete with seagrasses for NH4
+ uptake, but that their potential to 

outcompete seagrass epiphytic algae for DIN uptake indicates that AOM on seagrass 

leaves may serve as a ‘biocontrol’ over excess epiphytic algal growth. 

In summary, the present thesis represents a significant advance in our 

understanding of the seagrass leaf-microbiome relationship and transformations of N 

within seagrass meadows. Moreover, it opens up new questions for future research 

not only on seagrass-microbiome interactions but other macrophytes in aquatic 

systems that may benefit from the presence of specific N-cycling microorganisms. 
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LIST OF FIGURES AND TABLES 

Fig. 1.1 – Ecosystem services provided by seagrasses. Seagrass meadows: i) attenuate wave 

and water turbulence, thus protecting the coastal line (Barbier et al., 2011), ii) provide 

habitat and nutrients for transient (turtles, dugongs and manta rays) and resident animals (sea 

urchins, crabs, lobster, fish) (Valentine & Duffy, 2006), iii) nursery habitat for juveniles of 

economically important species (Thresher et al., 1992; Erhardt et al., 2001; De Lestang et 

al., 2006; Heck et al., 2015) and, iv) export a high amount of their primary production to 

other ecosystems (Heck et al., 2008). 

 

Fig. 1.2 – Fate of allochthonous nutrient sources in a seagrass meadow in South-Western 

Australia, with a focus on nitrogen. Kelp whole thallus, kelp-fragments and planktonic-

derived organic matter can be trapped into seagrass meadows where they enhance nitrogen 

availability for seagrass uptake through leaching DON. 

 

Fig. 1.3 – Process of ammonia-oxidisation in a seagrass meadow in South Western 

Australia. Kelp (Eklonia radiata) and seston trapped within the meadow leach highly labile 

DON mineralised by microorganisms with the production of ammonium. Ammonium can be 

taken up by seagrass leaves and/or AOM. Nitrification is performed in two steps: oxidation 

of ammonium to nitrite through the use of monooxygenase (encoded by amoA) and 

oxidation of nitrite to nitrate. Ureolytic AOM are able to link the process of DON 

mineralisation and nitrification. In particular, ureolytic AOM can use urea (usually excreted 

by fish and zooplankton) which is mineralised through urease (encoded by ureC) to produce 

CO₂ and NH₄⁺. CO₂ is fixed by the cell, whereas the ammonium is oxidised into nitrite by 

ammonia monooxygenase (Francis et al., 2007). The final product of nitrification, nitrate, 

can be released by microbial cells and it may be hypothetically absorbed by seagrass leaves. 

DON mineralisation and nitrification may take place within the sediment, water column and 

on the surface of seagrass leaves. 

Fig. 2.1 – A conceptual diagram of the functions played by bacteria on the leaves and roots 

of seagrasses. On the leaf: The leaf surface attracts bacteria through the exudation of 

nutrients. Once a bacterial population reaches a specific density threshold, it may induce 

some virulence-related traits. Plants can activate a defence system, which includes the 

production of reactive oxygen species (ROS) and acyl homoserine lactones (AHL)-

degrading enzymes at the attached site. Under high stress conditions, ROS concentrations 

may exceed the plant antioxidant compensation capacity, leading to oxidative stress. The 

presence of specific bacteria, such as Marinomonas spp., which represent a source of 

oxidative enzymes, may enhance plant tolerance to oxidative stress. Some common 

epiphytes, such as Bacillus spp. and some cyanobacteril taxa, represent a source of 

antibacterial and antifouling molecules, which may protect the plant from pathogenic 

attacks. These molecules include lactonase, which degrades Gram- quorum sensing (QS) 

chemicals by hydrolysing the AHL ring and an extracellular DNase (NucB) used to rapidly 

break up the biofilms of both Gram+ and Gram–bacteria. Cyanobacteria can also enhance 

nitrogen availability through nitrogen fixation. On the root: Sulphate-reducing bacteria can 
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enhance nutrient availability by mineralising organic matter; however, free sulphides, one of 

the products of anaerobic mineralisation, are toxic to eukaryotes. Epiphytic sulphide-

oxidising bacteria are able to use the oxygen leached by seagrass roots to oxidise sulphides 

and reduce their toxic effects on plants. Diazotrophic bacteria support seagrass nitrogen 

demand through nitrogen fixation, fueled by organic carbon exuded through seagrass roots 

 

Fig. 3.1 – Map of the Posidonia sinuosa meadows (red dots) chosen for the present study in 

the Marmion Marine Park, offshore Perth, South Western Australia.  

Fig. 3.2 – Mean abundances (+1 SE) of bacterial 16S rRNA, archaeal 16S rRNA, bacterial 

ureC, bacterial amoA, and archaeal amoA within four microenvironments (biofilm, 

sediment, surface water, canopy water) and two separate sampling times (solid colour for 

December 2013 and diagonal stripes for August 2014). In order to compare abundance 

patterns between all genes, log10 abundances are plotted on each y axis, varying from 103 to 

1012 for all functional genes, except AOA (101 to 1012). The four microenvironments are 

plotted on the x axis, whereby each group of three bars represents the three replicate seagrass 

meadows sampled. Error bars indicate standard error, calculated from six replicates for 

biofilm and sediment, and three replicates for surface and canopy water. Gene abundances 

were calculated from standard curves using the r2, y intercept and efficiency values given in 

Table 3.3. 

Fig. 3.3 – Percentage contributions of 16S rRNA sequences for Bacteria and Archaea 

retrieved from water column (WC), sediment and biofilm microenvironments during two 

sampling times (summer, December 2013, and winter, August 2014) from the three P. 

sinuosa meadows in Marmion Marine Park, Western Australia. 

Fig. 3.4 – Heatmap of bacterial and archaeal 16S rRNA (97% sequence identity cutoff) 

obtained from biofilm (Bf), sediment (Se) and water column (WC) of three P. sinuosa 

meadows (M1, M2, M3) during two sampling occasions (Summer and Winter). The 20 most 

abundant OTUs are represented and labelled with their closest sequence match, determined 

using BLAST, and its corresponding accession number. 

Fig. 3.5 – Principal coordinates analysis plot (PCoA) of bacterial and archaeal 16S rRNA 

OTUs from the water column, sediment and biofilm during two sampling occasions. Vectors 

are overlaid, and represent the OTUs which contributed mostly to the diversity of these 

communities.. 

Fig. 3.6 – Venn Diagram of AOB (A, B) and AOA (C, D) OTUs shared among the three 

habitats in summer (A, C), and winter (B, D). The different colours refer to the diffetrent 

seagrass microenvironments (green for biofilm, blue for water and brown for the sediment 

Fig. 3.7 – Heatmap of bacterial and archaeal amoA (97% sequence identity cutoff) obtained 

from biofilm (Bf), sediment (Se) and water column (WC) of three P. sinuosa meadows (M1, 

M2, M3) during two sampling occasions (Summer and Winter). The 20 most abundant 
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OTUs are represented and labelled with their closest sequence match, determined using 

BLAST, and its corresponding accession number. 

Fig. 3.8 – AOB Phylogenetic Tree. The black dots represents nodes with bootstrap values 

>50. Smaller dots have lower bootstrap values, while bigger dots have values >70 and >90 

as shown in the figure. Cluster1 is represented by sequences retrieved from sediment. 

Cluster2 comprises two subclusters, Subcluster1 host 10 OTUs all retrieved from water 

column, while the 94 OTUs of Subcluster2 are representative of all the microenvironments.  

OTUs from Cluster3 belonged to all the microenvironments. All the OTUs were related to 

the Betaproteobacteria, Nitrosomonas sp.-like organismsthey did not match any previously 

identified amoA OTUs.  

 

Fig. 4.1 – NanoSIMS image analysis description. The images represent two (A, B & C) or 

one (D, E & F) seagrass cells from shoots collected at 0.5 and 2 h from DO15N spike, 

respectively. In figures A, B, D & E, 15N-enrichment is expressed as hue saturation intensity, 

where blue represents the natural isotopic abundance of nitrogen (δ15N‰= 28) and 

enrichment is shown as a shift towards magenta (colour scale label in δ15N‰). In A & D, 

maximum 15N enrichment is represented by the value of 100 % enrichment set to 2000 

(δ15N‰); in B & E 15N/14N ratio is reported with increased (3X) scale (6000 δ15N‰). The 

increased scale together with images with natural isotopic element abundances 14N/14C (C & 

F) was used to better discriminate between different seagrass sub-cellular components and 

the epiphytic community, where present. C & F images reveal several clear seagrass sub-

cellular components, highlighted in different colours (correlating with the colours in the box 

plot graphs (Fig. 4.4), except for the cell wall in white), which were used to draw our regions 

of interest (ROIs). Epiphytes and sub-cellular components are additionally labelled: 

epiphytic microbial community (M), epiphytic microalgae (Ep), cell wall (C), vacuole (Va), 

cytosol (Cy), and chloroplast (Ch). From the image analysis of the epiphytic community (C 

& F), epiphytic algae were clearly differentiated from other P. sinuosa epiphytes (e.g. 

bacteria and archaea), and these visible differences were used to drawn the algal and 

microbial ROIs.  

Fig. 4.2 – Mean (±SE) δ15N values for (A,B) bulk tissue of seagrass leaves (n=3 per 

treatment and collection time), after DO15N enrichment (A) without,  and (B) with epiphytic 

microorganisms, and (C) δ15N values for epiphytic algae scraped from seagrass leaves, at 

different time points of incubation (0.5 h, 2 h, 6 h and 12 h). Control material (Ctl) bars 

represent values obtained incubation with DO14N for seagrass leaves (n=3) (A) and (B), and 

for the epiphytic community scraped from seagrass leaves (C), taken at the first (Ctl 0.5 h) 

and last time point (Ctl 12 h). 

Fig. 4.3 – 15N concentration images of seagrass (P. sinuosa) leaf cells after incubation in 

enriched DO15N (amino acid mix) (A-D) with or (E-H) without microorganisms. Seagrass 

leaves were incubated for (A,E) 0.5 h,  (B,F) 2 h, (C,G) 6 h, and (D,H) 12 h. Seagrass sub-

cellular components are indicated (CW=Cell wall, Ch=Chloroplast, Va=Vacuole, 

Cy=Cytosol), as well as microorganisms (M) and epiphytic algae (EP). Enrichment is 
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expressed as hue saturation intensity, where blue represents the natural isotopic abundance 

of nitrogen (δ15N‰= 28) and enrichment is shown as a shift towards magenta (color scale 

label in δ15N‰). The images show a 15N enrichment of seagrass cell wall after (A) 0.5h, and 

the appearance of enriched substrate within the (B) cytosol, (C) vacuole, and (D) 

chloroplasts over the incubation time. Where microorganisms are absent (E-H), a clear 

enrichment is absent. In every image the scale bar represents 5µm. 

Fig. 4.4 – Box-Whisker plots (median, interquartile range = box, extremes = whiskers) of 
15N enrichment of identifiable microorganisms, epiphytic algae and sub-cellular seagrass 

components: cell wall, cytosol, vacuole, and chloroplast, from NanoSIMS analysis of 

seagrass leaves incubated (left) with, or (right) or without leaf-associated microorganisms, 

for each incubation time (0.5, 2, 6 and 12 h). Control values (Ctl), representing δ15N natural 

abundance for microorganisms, epiphytic algae and seagrass sub-cellular microenvironments 

obtained from incubation with non-enriched DO14N, are displayed for each graph by the 

horizontal line. Note the difference in y-axis scales between microorganisms, epiphytic algae 

and plant sub-cellular components. 

Fig. 4.5 – Images of seagrass (P. sinuosa) leaf cells after incubation in enriched DO15N 

(amino acid mix) for the ‘without microorganisms’ treatment, where there was evidence of 

the presence of residual epiphytic microorganisms. (A) Optical image of the seagrass leaf 

(transverse section) for treatment ‘without microorganisms’ after 2 h of incubation in 

DO15N, (B) NanoSIMS image of the section void of microbes, (C) NanoSIMS image of a 

different section of the same leaf, where algae have not been entirely removed, thereby 

protecting the microorganisms beneath from antibiotic penetration and effect. Enrichment is 

expressed as a hue saturation intensity image, where blue represents the natural isotopic 

abundance of nitrogen (δ15N‰= 28) and enrichment is shown as a shift towards magenta 

(color scale label in δ15N‰). (D) Box-Whisker plots of 15N enrichment of identifiable 

epiphytic microorganisms and sub-cellular (vacuole and chloroplast) seagrass components 

against reference values. δ15N values are reported on the y axes. 

 

Fig. 5.1 – Change in the nutrient concentration (NH4
+, NO3

= and NO2
=) associated with P. 

sinuosa epiphytic microorganisms, in the absence of an ammonia oxidation inhibitor (CTL, 

open circles), and with 100 mg L-1 or 200 mg L-1 added to inhibit ammonia oxidation 

activity (TRT1, grey squares, and TRT2, black triangles, respectively). DIN concentrations 

are reported as µmole N L-1 shoot-1 reported at time zero (T0), after 8 h (T8) and 12 h (T12), 

obtained as an average from triplicate samples, each with the background DIN values 

subtracted. 

Fig. 5.2 – Kelp DO15N enrichment level of Ecklonia radiata thallus obtained by analysing 

blades (dark brown) and leachate (green) by using IRMS. Enriched samples (dots fill) were 

compared to natural 15N/14N concentration in kelp tissue (solid fill) and values are reported 

as mean of three measurements with standard errors. Variations of 15N/14N ratio on the y 

axes are reported in delta N (δ15N ‰). 
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Fig. 6.1 - Key N transformations within the seagrass microbiome. On the leaf: epiphytic 

growth of algae, N-fixing and heterotrophic microorganisms, resulting in increased 

concentrations of dissolved inorganic nitrogen (DIN) at the leaf-biofilm interface; N-fixing 

cyanobacteria facilitating N uptake through the leaves from atmospheric N; heterotrophic 

microorganisms enhancing DIN availability from dissolved organic nitrogen (DON) through 

extracellular enzymes; heterotrophic and ammonia-oxidising microorganisms (AOM), 

epiphytic algae and even seagrass may compete for NH4
+ uptake, however, the production of 

nitrate (NO3
-) by AOM enables DIN uptake by seagrass leaves. Within the sediment: 

heterotrophic microorganisms recycle DON by producing NH4
+, which can be utilised by 

seagrass, AOM or other members of the rhizosphere microbiome. Since nitrification is an 

oxygenic-dependent process, seagrass regulation of O2 exuded from the roots could 

represent a mechanism of biocontrol over AOM activity. Nitrification can be coupled with 

denitrification across the oxic-anoxic interface surrounding the root-rhizosphere, and at the 

sediment surface. O2 and dissolved organic carbon (DOC) released from the above- and 

belowground plant tissue drive microbial processes, including sulphur cycling and N 

fixation in the rhizosphere; thus providing a further mechanism for the recycle of N in the 

rhizosphere in the rhizosphere.  

Fig. 6.2 – Hydrolysis of urea mediated by a seagrass epiphytic ammonia-oxidising 

microorganism. Urea is hydrolysed by the urease enzyme (gene ureC) into CO2, which is 

fixed by the microbial cell, and NH4
+, which can be further incorporated into cell 

constituents, or oxidised into NO2
- by the ammonia monoxygenase enzyme (gene amoA). 

NH4
+ and/or NO2

- released from the microbial cell enhances DIN concentration at the 

seagrass leaf-biofilm interface.  

Fig. 6.3 – Chain image of seagrass cells after 12h form the DO15N spike for the treatment 

‘with microorganisms ’(Chapter 4). The epiphytic community (purple) is highly enriched; 

however, seagrass chloroplasts and cytosol also show a high level of 15N-enrichment. 

Fig. 6.4 – Dynamics of N cycling and seagrass N uptake. On the left, a heterotrophic 

bacterium on the seagrass leaf surface is mineralising DON into DIN through the use of 

extracellular enzymes. On the right, the path of N uptake within seagrass cells. NH4
+ is 

directly transported to the chloroplasts, where it enters the GS/GOGAT cycle whereby 

glutamate is aminated by the enzyme glutamine synthetase (GS) to synthesise glutamine. 

The addition of carbon skeletons (a-ketoglutarate) allows transamination by glutamate 

synthase (GOGAT) to produce two glutamate molecules. One glutamate can be used to start 

the cycle, the other one is used to build amino acids. Once NO3
- enters the cell, it can be 

stored within the vacuole or reduced to NO2
- within the cytosol by the enzyme nitrate 

reductase (NR). NO2
- can enter the chloroplast, where is further reduced to NH4

+ by the 

enzyme nitrite reductase (Nir). 

Fig. 6.5 – Conceptual diagram showing the import of autochthonous nutrient sources from 

‘donor’ habitats, to seagrass meadows in southwestern Australia, and the role that the 
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seagrass epiphytic microbiome plays in transforming DON and DIN, leading to enhanced 

DIN uptake by the host plant. 

 

Table 3.1 Primer concentrations used for polymerase chain reaction (PCR), quantitative 

polymerase chain reaction (q-PCR) and clone library construction for production of DNA 

standards. 

Table 3.2 PCR and q-PCR conditions for each functional gene analysed in this study. 

Table 3.3 The slope (r2) and efficiency (E%) of each q-PCR reaction is reported for every 

DNA sample analysed and sampling time. 

Table 3.4 PERMANOVA test on gene abundances within four seagrass microenvironments 

(water column, canopy water, sediment and biofilm) in two sampling seasons. Permanova 

test shows variations in the abundance of functional genes between microenvironments (first 

column), meadows and sampling times. For each functional gene there are significant 

differences in the abundance within the different microenvironments, but not among 

meadows. Significant differences in AOB and AOA abundances are also related to different 

time points. Significant values (p < 0.05) are shown in bold. 

Table 3.5 Bacterial and archaeal 16S rRNA cover percentage (%), community richness 

(Chao1) and diversity (Simpson) indices. 

Table 3.6 Weighted and unweighted UniFrac measures of differences in the bacterial and 

archaeal community composition between different microenvironments of P. sinuosa 

meadows (biofilm, sediment and water column) and two different seasons (summer, 

December 2013, and winter, August 2014). 

Table 3.7 Bacterial and archaeal amoA cover percentage (%), community richness (Chao1) 

and diversity (Simpson) indices 

Table 3.8 Weighted and Unweighted UniFrac Test on the bacterial and archaeal community 

composition among different microenvironments of P. sinuosa meadows (biofilm, sediment 

and water) and the two sampling seasons (summer, December 2013, and winter, August 

2014). 

Table 4.1 The number of regions of interest (ROIs) drawn for each image analysis 

component (microorganisms, cell wall, cytosol, vacuole and chloroplast) is reported for all 

time points and treatment (with and without microorganisms) and indicated with an asterisk. 

Only the first ten 15N data (reported in δ15N‰) extracted from ROIs are shown; the complete 

dataset was used to draw box plot graphs (Fig. 4.4). 

Table 4.2 2-WAY ANOVA test results of seagrass leaves incubated with and without 

microorganisms collected at different times. Pl refers to plant type (seagrass with 

microorganisms, seagrass without microorganisms and epiphytic algae) and, Ti refers to the 
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collection time (0.5, 2, 6 and 12 h). Data were natural log-transformed prior to analysis to 

meet requirements of homogeneity using Levene’s test (F=2.764, p= 0.131). 

Table 5.1 Environmental concentrations of organic and inorganic nitrogen from above and 

within the canopy meadow reported as µg N L-1 

Table 5.2 NH4
+, NO3

-, and NO2
- (µM) production and net nitrification rates (nmol L-1 d-1 

shoot-1) associated with microorganisms collected from P. sinuosa shoot without 

nitrification inhibitor (-ATU) and the two treatments (100 mg and 200 mg ATU L-1). 

Table 5.3 Ecklonia radiate. Results of 2-way ANOVA testing for differences in the nitrogen 

stable isotope (δ15N) values of different kelp type (blade and leachate) analysed in different 

treatments (unenriched or 15N-enriched blade and 15N-enriched leachate) in aquaria 

experiments. Data were natural log transformed prior to analysis to meet requirements of 

homogeneity using the Levene’s test. 

 

Table 6.1 Microbial 16S rRNA or total cell abundances associated with seagrasses and 

macroalgae. Current study in bold; 1 Novak, 1984; 2 Peduzzi & Herndl, 1994; 3 Moriarty et 

al., 1985; 4 Kirchman et al., 1984; 5 Trias et al., 2012; 6 Mazure & Field, 1980; - no data 

available. 

Table 6.2 Ammonia-oxidising gene abundances in microbiomes from different habitats and 

organisms. Current study in bold; 1. Mosier et al., 2008; 2. Beman et al., 2012; 3. Cao et al., 

2011; 4. Li et al., 2010; 5. Moin et al., 2009; 6. Radax et al., 2011; 7. Trias et al., 2012 
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CHAPTER ONE: GENERAL INTRODUCTION 
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1.1. Seagrass and the role of seagrass meadows in the marine ecosystem 

Seagrasses are marine flowering plants that form benthic habitats along the 

coastal zones of every continent, except Antarctica (Green, 2003; Douglas et al., 

2008). Since seagrass survival is dependent on light intensity in order to produce 

enough carbohydrates to meet their growth and respiration requirements (Dennison 

1987; Fourqurean & Zieman, 1991; York et al., 2013), they are restricted to the 

littoral zone of coastal waters to a maximum depth of 40m depending on seagrass 

species and water quality such as clarity and light attenuation (Kenworthy & 

Haunert, 1991; Duarte, 1991, Dennison et al., 1993; Saunders et al., 2013). Seagrass 

meadows represent one of the most complex and highly productive marine coastal 

ecosystems (Duarte & Chiscano, 1999; Orth et al.,  2006; Hyndes et al.,  2013; 

Hyndes et al.,  2014) and, despite their restricted distribution within the aquatic 

environment (<0.2% of the area of the world’s oceans; Duarte, 2002; Fourqurean et 

al.,  2012), they provide a variety of pivotal ecosystem services (Coles et al.,  1987; 

Lanyon et al.,  1989; Beck et al.,  2001; Duarte et al,. 2013). These services include: 

i) coastal protection from erosion by attenuating wave energy and turbulence 

intensity (Gambi et al.,  1990; Ackerman & Okubo, 1993; Barbier et al.,  2011); ii) 

improvement of water quality by increasing sedimentation and reducing 

resuspension by stabilizing the sediment through their roots and rhizomes (Ward et 

al.,  1984; Gacia et al.,  1999; Terrados & Duarte, 2000; Gacia & Duarte, 2001); iii) 

sequestration of carbon dioxide (which accounts for ca 15% of carbon stored in the 

oceans), thus mitigating the effects of ocean acidification (Nellemann et al.,  2009; 

Fourqurean & Duarte, 2012; Kennedy & Bjork, 2012; Duarte et al.,  2013), and, iv)  

habitat and source of food for many macro- and micro-organisms, both resident (e.g. 

sea urchins, fish, gastropods, bivalves, epiphytic algae and microorganisms) and 

transient (e.g. dugongs, manta ray, turtles and migratory waterfowl; Fig. 1.1; 

Valentine & Heck, 1999; Valentine & Duffy, 2006). A number of studies provide 

evidence for the importance of seagrass meadows as nursery habitat for juveniles of 

economically important species including fish (e.g. snappers, spinfish and groupers; 

Dorenbosch et al.,  2004; Heck et al., 2015), shrimp (Murphey & Fonseca, 1995; 

Erhardt et al.,  2001), crabs (Thresher et al.,  1992) and lobsters (De Lestang et al.,  

2006).  
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Fig. 1.1 –Ecosystem services provided by seagrasses. Seagrass meadows: i) attenuate 

wave and water turbulence, thus protecting the coastal line (Barbier et al.,  2011), ii) provide 

habitat and nutrients for transient (turtles, dugongs and manta rays) and resident animals (sea 

urchins, crabs, lobster, fish) (Valentine & Duffy, 2006), iii) nursery habitat for juveniles of 

economically important species (Thresher et al., 1992; Erhardt et al., 2001; De Lestang et 

al., 2006; Heck et al., 2015) and, iv) export a high amount of their primary production to 

other ecosystems (Heck et al., 2008). 

 

Seagrass meadows are also linked to different ecosystems through the export of a 

high proportion of their production (Wolff, 1980; Suchanek et al., 1985). Canopy 

primary production (PP), has been estimated to be as high as coral reefs and 

mangroves (ca 0.5 Kg C m¯²y¯¹; Hyndes et al., 2014), of which about 70% is 

exported in the form of leaves, particulate and dissolved organic matter to a variety 

of ecosystems (Cebrián, 2000) via passive movement on currents (Fig. 1.1; 

Robertson & Lucas, 1983; Slim et al., 1994). The flow of seagrass organic matter to 

recipient habitats is highly influenced by microbial activities (Säwström et al., 2016) 

as microorganisms drive the regeneration and transformation of organic material 

within the environment (Azam & Malfatti, 2007; Koho et al., 2013, Säwström et al., 

2016). Organic matter released from seagrass ecosystems significantly enhances 

food web structure and productivity of recipient habitats (Vetter, 1994; Vetter, 1998; 

Hyndes et al., 2014) that may be characterised by low primary production and 

limited habitat structure (Kirkman & Kendrick, 1997; Heck et al., 2008). Large 

amounts of leaves and particulate matter can be deposited on beaches (Mateo e al., 
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2003; Mateo et al., 2006) where the leached organic material enhance bacterial 

biomass that become consumed by ciliates and flagellates (Robertson et al., 1982). 

Moreover, seagrass wracks represent a nutrient source for shore birds, terrestrial 

rodents (such as ground squirrels, capybara and nutria; Kantrud, 1991) and crabs 

(Gunter, 1967). Seagrass detritus is also commonly found in deep sea canyons where 

it subsidises low autochthonous productivity (Vetter, 1994; Vetter, 1998; Polis & 

Strong, 1996). Indeed, tropical and temperate regions provide a multitude of 

examples of trophic transfer and faunal interactions between seagrass meadows and 

adjacent habitats. The value of seagrass meadows for the provision of these pivotal 

ecological services has been estimated to vary from ca US$29,000 per ha per year 

(for nutrient cycling solely; Costanza et al., 2014) up to AU$230,000 per ha per year 

(for enhanced fishery production in southern Australia; Blandon & zu Ermgassen, 

2014). Despite the extremely different monetary values attributed to seagrass 

meadows, these estimates highlight the key importance of seagrass habitats. 

 

1.2 Seagrass morphology and physiological adaptation to a nutrient poor 

environment  

Seagrasses colonised the marine environment about 100 millions of years ago 

from terrestrial plant ancestors (Den Hartog, 1970; Larkum et al., 2006) and 

developed many characteristics to live and reproduce submerged in water 

(Hemminga & Duarte, 2000). Seagrass shoots are connected and stabilised through 

rhizomes and roots. Seagrass leaf tissue consists of an enlarged aerenchyma system 

for translocation of oxygen derived from photosynthesis into below-ground tissues 

(Borum et al., 2007), and a high concentration of chloroplasts are present within the 

epidermal cells (Ferreira et al., 2013). Above the epidermis, a very thin cuticle is 

present (<0.5µm; Kuo, 1993), thus providing seagrasses with an advantageous 

opportunity to uptake nutrients through the whole leaf surface. Nutrient uptake, in 

fact, occurs from the water column through the leaves and from the sediment through 

the roots (Borum et al., 1989; Penhale & Thayer, 1980). Transport of nutrients 

throughout the plant occurs through the vascular system, enabling the physiological 

interaction between shoots and roots via the rhizome (Libes & Boudouresque, 1987; 

Marbà et al., 2002).  
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The high primary production levels of seagrassesimplies a high nutrient demand 

(Hillman et al., 1989) and, as in all photosynthetically driven ecosystems, nitrogen 

(N) and phosphorous are two important nutrients that are considered to limit seagrass 

growth and primary production (Short, 1987; Zimmerman et al., 1987; (Powell et al., 

1989; Williams, 1990; Kenworthy & Fonseca, 1992; Touchette & Burkholder, 

2000). In general, seagrasses that grow in temperate areas are N-limited, whereas 

tropical seagrasses are P-limited due to the tendency for phosphorous to become 

adsorbed to carbonate sediments (Short et al., 1985; Williams, 1990; Kenworthy & 

Fonseca, 1992). In some cases, seagrass growth may be co-limited by both N and P 

(Thursby, 1984; Agawin et al., 1996; Udy & Dennison, 1997; Touchette & 

Burkholder, 2000). Inorganic N (DIN), ammonium in particular, is the preferred 

source of nitrogen taken up by seagrasses (Terrados & Williams, 1997; Lee & 

Dunton, 1999; Touchette & Burkholder, 2000), however, low environmental 

concentrations of DIN are common in coastal waters (e.g. to 0.4μM for NH4
+, and 

<0.05 to 1.7μM for NO2-
- and NO3; Touchette & Burkholder, 2000; Gobert et al.,  

2002; Barron & Duarte, 2009).  

In order to survive in a nutrient poor environment, seagrasses have developed 

different adaptations to optimize N uptake. For example, the growth of Posidonia 

spp. leaves varies seasonally to optimize nutrient uptake and reduce leaf damage 

(Gobert et al., 2002). Seagrass leaves of Posidonia spp. reach maximum length in 

summer, resulting in the meadow forming a barrier that encloses the water and its 

nutrients in the canopy (Gacia et al., 1999; Gobert et al., 2002; Lepoint et al., 2002). 

However, the most significant adaptation of seagrasses is the capacity of the canopy 

to assimilate nutrients by both leaves and roots (Iizumi & Hattori, 1982; Thursby & 

Harlin, 1982; Stapel et al., 1996). In general, inorganic N uptake rates are higher for 

leaves than roots (Short & McRoy, 1984; Touchette & Burkholder, 2000 Alexandre 

et al., 2010; Alexandre et al, 2014), with a few exceptions such as Zostera marina  

and Thalassia testudinum  whose N uptake by roots exceeds the substrate taken up 

by above ground tissue (Lee & Dunton, 1999; Thursby & Harlin, 1982). Nitrogen 

absorption through seagrass leaves can provide 40 to 74% of the annual N 

requirement for plant growth (Touchette & Burkholder, 2000; Lepoint et al., 2002). 

Since the uptake of nutrients by roots is primarily limited by substrate diffusion from 

pore water to seagrass tissue (Stapel et al., 1996; Lee & Dunton, 1999), the mean 
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annual nutrient fluxes across the sediment only provide up to 20% of N required for 

plant growth and development (Gobert et al., 2002).  

 

1.3 Importance of allochthonous material for seagrass N subsidy and uptake of 

organic nitrogen 

The imbalance between low concentrations of inorganic-N typically detected 

in seagrass meadows (Gobert et al., 2002) and seagrass N demand, has led to the idea 

that seagrass adaptations, while important, are not sufficient to explain seagrass high 

productivity against oligotrophic environment (Touchette & Burkholder, 2000; 

Gobert et al., 2002; Barron & Duarte, 2009). Recent studies have demonstrated that 

significant biomass of allochthonous materials, for example seston (Barron & 

Duarte, 2009) and kelp (Kirkman & Kendrick, 1997; Wernberg et al., 2006; de 

Bettignies et al., 2013), is transported into seagrass meadows (Fig. 1.2). By reducing 

water flow, seagrass leaves force suspended particles to fall into the canopy, thus 

enhancing nutrient deposition and accumulation within the meadow (Agawin & 

Duarte, 2002). Seston contribution to the organic matter pool in seagrass sediments 

has been estimated between 50 and 300 g C m-² yr-1 (Kenworthy & Thayer, 1984), 

which is equivalent to ca 7 to 45 g N m-² yr-1 (Hemminga et al., 1991). Detrital 

macrophytes also represent a significant constituent of the allochthonous material 

pool trapped within seagrass meadows. Kelps are among the most productive 

components of benthic marine ecosystems (Mann, 1973; Cambridge & Hocking, 

1997), and a large biomass of kelp detached from rocky reefs can be transported into 

seagrass meadows as entire kelp thalli or smaller-sized particulate organic matter 

(POM; Fig. 1.2) (Wernberg et al.,  2006). Since seagrass meadows can lose from 1% 

up to 77% of their biomass through leaves/nutrient export (Heck et al., 2008), 

including large amounts of their N, macroalgal material could subsidise marine 

plants with an extra source of available N (Cambridge & Hocking, 1997; Lourey & 

Kirkman, 2009; Hyndes et al., 2012).  

Dissolved organic nitrogen (DON) represents the main form of nitrogen lost 

during leaching of POM and, Hyndes and colleagues (2012) showed that freshly 

detached kelp thalli and few weeks old thalli are able to exude a high amount of 

DON, but low DIN, in a relative short time (24hours). Leached DON is considered 

to be highly labile (Blum & Mills, 1991), and therefore, readily available for 
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bacterioplankton and residential microorganisms of recipient habitats in which they 

deposit. Microorganisms play a pivotal role by mineralizing organic material, which 

deposit in seagrass beds that would otherwise be unavailable for seagrass uptake. 

Nonetheless, extremely low microbial mineralisation rates of annual sedimentary N 

inputs have been detected in seagrass beds (Holmer et al., 2001; Gacia et al., 2002), 

suggesting an alternative path for seagrass nitrogen uptake.  

 

Fig. 1.2 – Fate of allochthonous nutrient sources in a seagrass meadow in South-Western 

Australia, with a focus on nitrogen. Kelp whole thallus, kelp-fragments and planktonic-

derived organic matter can be trapped into seagrass meadows where they enhance nitrogen 

availability for seagrass uptake through leaching DON. 

 

Vonk and colleagues (2008) were the first to hypothesise and demonstrate that 

uptake of DON by seagrass (Thalassia hemprichii, Halodule uninervis and 

Cymodocea rotundata) leaves and roots may represent a significant mechanism to 

supply N to seagrasses in a low inorganic-N environment. By incubating marine 

plants with enriched 15N-amino acids and urea, the appearance of enriched 15N 

within seagrasses suggested the existence of N-acquisition mechanisms that allow 

direct uptake by plants of DON. In this experiment, seagrass leaves exhibited a high 

uptake affinity for DIN (ammonium and nitrate) and urea and a lower affinity for 

amino acids. Roots had a higher uptake affinity for ammonium and amino acids and 

a lower affinity for nitrate and urea. In comparison, the above-ground tissue of 

Zostera noltii, Cymodocea nodosa and Caulerpa prolifera had a higher uptake 

affinity for urea, glycine and leucine than below-ground tissue (Van Engeland et al., 
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2013). Alexandre and colleagues (2015) presented evidence for the uptake of alanine 

and trialanine by Zostera marina leaf tissue, even if amino acids concentrations were 

significantly lower than the values reported for roots, and it has been demonstrated 

that in low-nutrient environments, Z. noltii takes any form of nitrogen that is 

available (La Nefie at al., 2014). Although, a variety of studies have been performed 

with enriched DO15N and different seagrass species, doubts exist on the capability of 

seagrass to utilise DON directly. In fact, in these studies, the role of seagrass leaf 

epiphytic microorganisms in DON mineralisation have never been considered as 

microorganisms present on seagrass leaf surface were never removed. Given the 

possibility that heterotrophic microorganisms (capable of mineralising DON) may be 

part of the seagrass leaf community, their presence needs careful consideration as 

their metabolism may enhance DIN availability for seagrass uptake. Indeed, Hyndes 

and colleagues (2012) were the first to hypothesise that the appearance of kelp-

derived DON within seagrass tissue during a field experiment was linked to the 

microbial transformation of organic matter within the canopy water. In this study, 

Hyndes and colleagues characterised the kelp leachate in a laboratory aquarium and 

detected low DIN concentration but high DON and urea. Because kelp is unlikely to 

release urea they linked the presence of this product to the microbial catabolisation 

of large N compounds (Berg & Jørgensen, 2006) suggesting a link between 

mineralisation of leached DON and seagrass leaf uptake.  

 

1.4 The importance of microorganisms for organic nitrogen cycling in seagrass 

meadows 

Significant seagrass-microbial interactions are likely because seagrass harbour 

diverse and abundant microbial communities on the surface of their roots and leaves 

(Weidner et al.,  2000; Uku & Björk, 2001; Uku et al., 2007; Borowitzka, Lavery, & 

van Keulen, 2007; Piazzi et al.,  2007; Crump & Koch, 2008; Hamsi et al., 2013). 

Seagrasses are able to influence their leaf and root epiphytic microbial community 

through changes in physical-chemical conditions on tissue surface by exuding 

oxygen (Larkum et al., 2007; Borum et al., 2007; Duarte & Chiscano, 1999), 

nutrients (Wetzel & Penhale, 1979; Moriarty et al., 1986), and antimicrobial 

substances (Reichelt et al., 1984; Engel et al., 2006; Bushmann & Ailstock, 2006). 

Studies on seagrass epiphytic community diversity indicate that: (i) plant-attached 
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microorganisms are different from the microbial community present in the 

surrounding environments (e.g. sediments and water column) (Pasmore & Costerton, 

2003; Bhadury & Wright, 2004); (ii) leaf- and root-attached microorganisms are 

different to each other, which is not surprising due to the different environmental 

conditions provided by leaves and roots (Haglund et al., 2002; Touchette, 2007); and 

(iii) leaf-attached microbial community diversity seems to be related to the seagrass 

species rather than location (Crump & Koch, 2008). Since microorganisms are key 

players in the recycling of nitrogen (Henriksen, 1988; Glibert & Bronk, 1994; 

Arrigo, 2005; Papadimitriou et al., 2005; Uku, et al., 2007), seagrasses may depend 

on specific N cycling processes performed by microorganisms within their meadows, 

one of which could be the mineralisation of DON. Microbial mineralisation of DON 

can take place within or outside the microbial cell by intracellular or extracellular 

enzymes that break down dissolved organic nitrogen (Berman, 2003). The path 

utilised by microorganisms to mineralise DON depends on substrate molecular 

weight (Chrost, 1991; Stepanauskas et al., 1999). Low molecular weight (LMW) 

molecules (<1KDa) can be transported within microbial cells, while high molecular 

weight (HMW) molecules need to be converted into LMW molecules by 

extracellular enzymes, including hydrolases, oxidases, deaminases and lyases 

(Halemejko & Chrost 1986, Amy et al.,  1987; Geisseler et al.,  2010). The final 

product of mineralisation of DON is ammonium (Berman & Bronk 2003; Solomon 

et al., 2010; Kirchman, 2012), which can be released into the environment and taken 

up by the seagrass itself or used by different microorganisms to satisfy their 

nutritional requirements.  

Most of the studies of seagrass microbiology have focused on the role that 

bacteria within seagrass sediments play in the regeneration of nutrients (Jørgensen, 

1982; Shieh & Yang, 1997; Säwström et al, 2016). These studies indicate that 

microbial mineralisation dominates over the immobilisation of PON and DON in the 

seagrass rhizosphere. For example, the bacterial community associated with the 

rhizosphere of different seagrass species (Thalassia hemprichii, Halodule uninervis, 

H. pinifolia, Halophila ovalis and Syringodium isoetifolium) responded to the 

addition of 15N-labeled phytodetritus within a short timeframe suggesting that plant 

15N enrichment was due to the microbial mineralisation of DON and/or 15N 

inorganic became available to seagrass uptake once microorganisms died and their 

cell contents were released within the sediment (Evrard et al.,  2005). In particular, 
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sulphate-reducing bacteria (SRB) represent the main drivers of nutrient 

mineralisation in coastal sediments (Duarte, 1990) and SRB abundance within 

seagrass beds is dramatically higher compared to bare sediments due to the ability of 

seagrasses to trap nutrients within their beds (Shieh & Yang, 1997). The most 

abundant group of SRB identified in seagrass-colonised sediments belongs to the 

Family Desulfobacteraceae (Deltaproteobacteria), which are able to oxidise organic 

nutrients in order to produce CO2. Microbial mineralisation of OM occurs through a 

number of electron acceptors (such as oxygen; Holmer et al., 2001; Kristensen & 

Holmer, 2001), and it is, therefore, largely supported by the photosynthetic oxygen 

released from seagrass roots  (Larkum et al., 2007). While these studies suggests that 

mineralised DON would be promptly available for seagrass uptake, annual budgets 

on nitrogen inputs in seagrass sediments show that it is usually insufficient to satisfy 

the seagrass N demand. For example, N mineralisation in the sediments of 

Cymodocea rotundata and Thalassia hemprichii could only supply between 6 and 

22% of ammonium annually taken up by roots (Holmer et al., 2001). 

While little information is available on N cycling by microorganisms associated 

with the seagrass rhizosphere, even less is known of the nitrogen processes 

performed by heterotrophic microorganisms associated with seagrass leaves and 

their possible contribution to the whole plant nitrogen budget. Plant leaf 

microorganisms, as well as strains present within the sediment, may be able to 

mineralise DON by using photosynthetic oxygen lost through leaf surface as electron 

acceptor, thus linking the recycle of N through heterotrophic metabolism.  

The process of DON mineralisation can be linked to other microbial processes 

by such as nitrification (in presence of oxygen) and denitrification or annamox in 

suboxic and anoxic conditions (Zehr et al., 2002; Galloway et al., 2008). Ammonia-

oxidizing microorganisms (AOM), both bacteria (AOB) and archaea (AOA), are key 

players in nitrogen cycling in marine systems, since they link the process of N 

mineralisation to nitrification (Kowalchuk & Stephen, 2001; Francis et al., 2007), 

thus avoiding the loss of ammonium from the system. Ammonium oxidation is 

typically thought to be an obligatory aerobic, chemoautotrophic process restricted to 

just a few groups of bacteria (belonging to Proteobacteria) and archaea (belonging 

to Thaumarchaeota; Kowalchuk & Stephen, 2001). AOM perform the first step of 

nitrification: the conversion of ammonium (NH4
+) to nitrite (NO2

-) through ammonia 

monooxygenase (encoded by the gene amoA) (Francis et al., 2007). Recent studies 
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have shown (Alonso-Sáez et al., 2012) that some autotrophic archaea and bacteria 

may be able to link the process of mineralisation of organic nitrogen, in particular 

urea, to nitrification. Among DON compounds, urea has long been recognised as an 

important N source in many marine coastal environments (Antia et al., 1991, 

Crandall & Teece, 2012) which can derive from zooplankton and fish excretion 

(Miller & Glibert, 1998; Conover & Gustavson, 1999), bacterial regeneration (Cho 

& Azam, 1995) and release from the sediment (Cho et al., 1996; Fig.1.3). These 

microorganisms assimilate urea into the cell and break it down using urease 

(encoded by the gene ureC) with production of CO2 and NH4
+. CO2 is fixed by the 

cell, whereas the ammonium is oxidised into nitrite by ammonia monooxygenase 

(Francis et al., 2007) and released into the environment. Nitrite released by AOMs 

can be taken up by different bacterial groups (i.e. nitrifying bacteria) that perform the 

second step of nitrification: the oxidation of nitrite to nitrate (NO3
-), which is then 

released by microbial cells (Francis et al., 2007; Hong & Keith, 2016; Fig. 1.3).  
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Fig. 1.3 – Process of ammonia-oxidisation in a seagrass meadow in South Western 

Australia. Kelp (Eklonia radiata) and seston trapped within the meadow leach highly labile 

DON mineralised by microorganisms with the production of ammonium. Ammonium can be 

taken up by seagrass leaves and/or AOM. Nitrification is performed in two steps: oxidation 

of ammonium to nitrite through the use of monooxygenase (encoded by amoA) and 

oxidation of nitrite to nitrate. Ureolytic AOM are able to link the process of DON 

mineralisation and nitrification. In particular, ureolytic AOM can use urea (usually excreted 

by fish and zooplankton) which is mineralised through urease (encoded by ureC) to produce 

CO₂ and NH₄⁺. CO₂ is fixed by the cell, whereas the ammonium is oxidised into nitrite by 

ammonia monooxygenase (Francis et al., 2007). The final product of nitrification, nitrate, 

can be released by microbial cells and it may be hypothetically absorbed by seagrass leaves. 

DON mineralisation and nitrification may take place within the sediment, water column and 

on the surface of seagrass leaves. 

 

AOMs have been found associated with a variety of marine organisms such as 

sponges, corals and macroalgae, but they can also be found in the water column or 

marine sediments such as mangrove and seagrass beds. Using quantitative-PCR, 

Trias and colleagues (2012) found a great abundance of AOM on macroalgae, 

especially AOB (1% of total bacteria) compared to that previously demonstrated for 

other marine habitats [i.e. 0.1% for marine sponges (Bayer et al., 2008)]. They 

hypothesised that the process of ammonium oxidation is largely performed by 

microorganisms inhabiting the macroalgae surface using photosynthetic oxygen 

produced and exuded by algal surface. The fact that a similar environment to that of 

macroalgae is found on seagrass leaves, which constantly release oxygen during the 

Fish associated 

with seagrass 

meadow  

zooplankton seston kelp thallus 
Ammonia-oxidising 

microorganism 
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photosyntetic process (Larkum et al., 2007; Borum et al., 2007), suggests that 

seagrass leaves may represent and ideal habitat for AOMs. In reality, nothing is 

known about the relationship between AOM and seagrasses in terms of competition 

for or provision of nitrogen. Effectively, their relationship seems controversial since 

seagrass may actively compete with AOM for ammonium uptake (Sousa et al., 2012; 

Soana & Bartoli, 2013), however, marine plants may still benefit from the release of 

the final product of nitrification, NO3
-. In this context, the ecological significance of 

AOM on marine autotrophs needs further attention. 

 

1.5 Study Area 

South-western Australia hosts the largest and the most diverse seagrass 

meadows in the world, covering an extensive area of about 2200sq km, which is 

similar to the surface occupied by rainforest in the entire continent (Kirkman & 

Walker, 1989). The generally high productivity of seagrasses, which should be 

paralleled by a high nutrient demand, has attracted attention for this area due to the 

oligotrophic nature of these waters because of the influence of the Leeuwin Current.  

The Leeuwin Current is a tropical current that transports warm, low salinity and low 

nutrient water along the Western Australian coast from north-west to south-west 

(Thompson, 1984; Holloway & Nye, 1985). Interestingly, despite the extremely low 

nutrient concentration of these waters, extensive Posidonia sp. meadows persist and 

flourish in this area. Eight Posidonia species are found in the south-western coast of 

Western Australia comprising P. robertsoniae, P. kirkmanii, P. coriacea P. 

denhartogii, P. australis, P. angustifolia and P. sinuosa. Each species has distinct 

habitat requirements such as minimum light demands and water hydrodynamics. In 

particular, P. sinuosa is the dominant species from north of Perth (Western 

Australia) to Lacepede Bay (South Australia; Kirkman & Walker, 1989). It usually 

colonises depths of approximately 2 to 10 m in continuous and dense meadows 

(Kirkman & Kuo, 1990) that can be monospecific or mixed meadows with P. 

australis (Cambridge & Kuo, 1982).   

North of Perth, offshore reefs and islands, tombolas and the shore form many 

lagoons, an example is the sheltered Marmion Marine lagoon (the sampling site for 

this study) which is characterised by high density meadows of P. sinuosa. This is a 

key representative area characterised by the presence of rich and diverse marine 
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habitats, including kelp forests and seagrass beds that contribute to nutrient and 

energy flows in coastal ecosystems and stabilise sandbanks. In this area, P. sinuosa 

meadows and rocky reefs exist in close proximity. The common brown kelp 

Ecklonia radiata, participates in forming the highest benthic biomass of the rocky 

reef communities with an average density of 20 to 80 plants m−2 in the region 

(Kendrick et al., 1998). Large meadows of P. sinuosa (Cambridge & Kuo, 1979) 

occur inshore of these reefs, where leaf and epiphyte production range from 600 to 

900 and 133 to 161 g dry wt m−2 yr−1, respectively (Cambridge & Hocking, 1997). 

Flow of material across different habitats in this region appear evident and it has 

been estimated that between 1270 and 7800 t dry wt km−2 of detached kelp passes 

through seagrass meadows (Kirkman & Kendrick, 1997), resulting in significant 

increase of nutrients being released into the meadows. Whether P. sinuosa would be 

able to uptake leached DON directly through leaves or leaf-associated 

microorganisms mediate seagrass N uptake remains a knowledge gap. 

 

1.6 Aims and Objectives 

In addition to seagrass, their epiphytes, and microphytobenthos, allochthonous 

inputs can contribute significantly to the organic matter pool of seagrass ecosystems. 

These sources are likely to be essential for the health of seagrass meadows in 

oligotrophic environments, particularly in supplying nitrogen, which is considered a 

major limiting nutrient for seagrass productivity. Hence, microbial (bacterial and 

archaeal) nutrient demands in seagrass ecosystems can potentially depend on one or 

a variety of nutrient sources. In general, benthic microbial incorporation of organic 

matter into seagrass ecosystems is influenced by: (i) the organic matter 

concentrations in the environment (Bouillon & Boschker, 2006); (ii) the microbial 

community’s location in the ecosystem; and (iii) the microbial community proximity 

to autochthonous and allochthonous organic matter inputs (Boschker et al.,  2005; 

Williams et al.,  2009). While there has been considerable focus on the role of 

sedimentary microorganisms in incorporating organic matter into seagrasses, there is 

limited understanding of the role of microbes associated with seagrass leaves. 

The aim of this study is twofold: 

To determine the importance of microorganisms associated with seagrass leaves and 

their role in enhancing nitrogen availability and uptake in seagrasses,  
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To verify and quantify microbial processing of allochthonous N sources in seagrass 

meadows.  

The research can be outlined in four specific objectives: 

 

1.  Review the literature on the current knowledge of seagrass microbiome 

diversity, interactions and potential effects that microorganisms associated with both 

the above- and belowground seagrass tissue may have on plant fitness, highlighting 

literature gaps.   

 

2. Quantify and compare the abundance of bacterial and archaeal 16SrRNA 

genes, and genes involved in nitrogen cycle (amoA and ureC) and diversity of 

16SrRNA and amoA genes in the water column above the canopy, and within 3 

micro-habitats of seagrass meadows (canopy water, leaves surface and sediment). To 

achieve this, I determined whether patterns in those parameters are variable 

according to the microhabitat examined and time. 

3. Determine whether seagrass leaves are capable of taking up DON intact or if 

the uptake is mediated by microbial mineralisation of organic matter. To achieve 

this, I traced the fine-scale uptake and assimilation of microbial processed N into 

seagrass cells, by using the innovative Nanoscale secondary ion mass spectrometry 

(NanoSIMS). 

4.  Determine the nitrification rates associated with AOMs inhabiting P. sinuosa 

leaf surface and the role of AOMs in enhancing, or competing with, seagrass N 

uptake. Hence, I performed a series of experiments using a mixture of simple 15N-

algal amino acids and a more complex organic 15N-compounds kelp derived, in order 

to mimic two common allochthonous nitrogen sources for seagrass meadows of 

South-Western Australia.  
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CHAPTER TWO: THE SEAGRASS HOLOBIONT AND THE ROLE OF 

MICROORGANISMS IN SUPPORTING AQUATIC ANGISOSPERMS 
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2.1 Introduction 

Seagrasses are marine flowering plants which colonised the aquatic 

environment about 100 million years ago (den Hartog, 1970; Les et al., 1997; Orth et 

al., 2006), and are present in coastal areas of all continents except Antarctica 

(Hemminga & Duarte, 2000; Green, 2003). Seagrasses are important benthic 

ecosystem engineers and, where canopy meadows are present, provide a variety of 

ecological services (Costanza et al., 1997; Orth et al., 2006). They represent an 

important source of food and a habitat for a number of organisms (Valentine & 

Heck, 1999; Beck et al., 2001, Heck et al., 2003; Valentine & Duffy, 2006), support 

different ecosystems through the export of their primary production (Wolff, 1980; 

Suchanek et al., 1985; Duarte & Cebrian, 1996; Heck et al., 2008), and are extremely 

important for coastal protection due to their capacity to reduce wave intensity and 

turbulence (Gambi et al., 1990; Ackerman & Okubo, 1993). Seagrasses also harbour 

diverse communities of epi- and endophytic bacteria associated with their leaves and 

roots (Weidner et al.,  2000; Krutz et al., 2003; Jensen et al., 2007; Uku et al., 2007; 

Crump & Koch, 2008; Hamisi et al., 2010; Garcias-Bonet et al.,  2012; Garcias-

Bonet et al., 2016).  

From our knowledge of terrestrial plant-microbiota interactions, it has become 

clear that the presence of a specific set of microorganisms can have great 

consequences for plant growth, health and productivity (Compant et al., 2005; 

Rodríguez et al., 2006; Hayat et al., 2010). There is substantial field and laboratory-

based evidence showing that seagrasses, while supporting their epiphytic microbial 

communities through the exudation of nutrients (Brylinski, 1971; Kirchman, 1984; 

Wang et al., 2014), obtain a number of advantages in return from these communities 

(McClung et al., 1983; Wirsen et al., 2002; Jensen et al., 2007). The close 

association between marine plants and microorganisms (Kirchman, 1984; Welsh, 

2000; Holmer et al., 2001; Kurilenko et al., 2007; Cole & McGlathery, 2011) 

supports the idea that seagrasses and seagrass microbiota constitute a ‘holobiont’ 

(Thompson et al., 2014; Bordenstein & Theis, 2015), where the holobiont is defined 

as an organism (biont) that has/have symbiotic relationships with a variety of other 

organisms, including prokaryotes and eukaryotes (Margulis, 1991). The organism 
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and its symbiotic partners, together (holo, meaning whole) represent an integrated 

community that support each member for the success of survival (Margulis, 1991). 

In this chapter, an overview is given of the diversity of epiphytic bacteria 

among seagrass species and environmental communities, underlining the presence of 

species-specific microbiota. I review the various positive and negative interactions 

that occur between marine plants and colonising bacteria that will shape the final 

seagrass epiphytic community, and the advantages that seagrass obtain from their 

epi- and endophytes. Finally, I discuss the mode of transmission of the microbiome 

across seagrass generations, highlighting the literature gaps. 

2.2 Seagrass microbiota specificity 

Seagrass tissues provide a physical substrate for a great variety of epiphytic 

organisms belonging to the prokaryotic and eukaryotic domains, including 

autotrophs (diatoms, cyanobacteria, encrusting algae) (Borowitzka, 1989; 

Borowitzka et al., 1990; Uku & Björk 2001; Uku et al., 2007; Borowitzka et al., 

2007; Piazzi et al., 2007; Hamsi et al., 2013), and heterotrophs (microorganisms, 

fungi, invertebrates) (Weidner et al., 2000; Devarajan et al., 2002; Krutz et al., 2003; 

Jensen et al., 2007; Crump & Koch, 2008a; Sakayaroj et al., 2010). Both the above- 

and below-ground tissues host a high abundance of microorganisms, ranging 

between 1 x 106 and 8.5 x 106 cells cm−2 for leaves (Kirchman, et al., 1984), and 

between 105 and 106 cells cm−2 for root and rhizome tissue (Blaabjerg & Finster, 

1998). Seagrasses seem to possess a core microbiome of epiphytic microorganisms, 

which differ from the microbial strains present in the surrounding environments (e.g. 

the SAR11 cluster of the water column; Weidner et al., 2000). Additionally, bacterial 

communities associated with various seagrasses present similar patterns among 

individuals of the same species sampled at different locations, rather than among 

individuals of different species taken from the same environment, indicating that 

seagrasses may support species-specific microbiota (Crump & Koch, 2008; Uku et 

al., 2007). For example, although Stuckenia pectinata and Potomogeton perfoliatus 

were collected from meadows located in close proximity, their epiphytic 

communities were highly divergent between the two species (Crump & Koch, 2008). 

Epiphytic cyanobacteria of C. serrulata showed similarities among plants collected 
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at different sites (dominated by the genus Lyngbya and Cyanosarcina), and distinct 

differences between C. serrulata and T. hemprichii cyanobacterial populations (the 

most abundant cyanobacterial genus of T. hemprichii being Synechococcus), 

suggesting that specific interactions between seagrass and microbiome may be 

involved in the establishment of these associations (Uku at al., 2007). For each plant 

species (P. perfoliatus, Vallisneria americana, Zostera marina and S. pectinata) 

analysed by Crump & Koch (2008), a few strains were present on all replicates. 

However, they were generally the most abundant microorganisms associated with 

each seagrass species, suggesting species-specific dominance of a few bacterial taxa. 

Two bacterial taxa from Z. marina roots and leaves collected at Chesapeake Bay 

(USA) were closely related to taxa associated with Z. marina roots in a study 

conducted in Denmark (Europe), suggesting the presence of a cosmopolitan Z. 

marina-associated microbial community (Crump & Koch, 2008). Yet, the possibility 

that generalist strains may be associated with more seagrass species exists. In fact, 

Crump and Koch (2008) identified 12 members of the Proteobacteria, Spirochaetes, 

and Bacteroidetes that were associated with more than one plant species. They 

hypothesised that these ubiquitous populations comprise unique, adapted, and 

potentially mutualistic communities of plant-attached bacteria. Several studies also 

highlight significant differences between the microbial communities inhabiting 

different sections of a plant, implying that, for example, the ‘leaf’ microbiome may 

differ significantly from the ‘root’ microbiome. In the case of Vallisneria americana, 

the most significant difference between portions of the plant was due to the 

dominance of Gram negative (Gram-) bacteria isolated from the root surface, 

compared to the high abundance of Gram positive (Gram+) isolated from the 

rhizosphere (Krutz et al., 2003). Also, Epsilonproteobacteria, Gammaproteobacteria 

and Actinobacteria seem important colonisers of Z. marina roots, while 

Deltaproteobacteria appears to dominate the rhizosphere (Jensen et al., 2007).  

Microorganisms can also live endophytically in between and inside root 

epidermal, exodermal and cortex cells (Kuo 1993; Kusel et al., 1999, Kristensen 

2005), and within leaf tissues (Garcias-Bonet et al., 2012). Few studies have 

investigated the diversity of seagrass leaf and root endophytes. For Posidonia 

oceanica, the low number of bacterial operational taxonomic units (OTUs) found in 

internal tissues suggests a high level of specialisation to an endophytic life (Garcias-
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Bonet et al., 2016). For example, Posidonia oceanica represents a source of 

Marinomonas species associated with its microbiota (Lucas- Elío et al., 2012). In 

comparison, Marinomonas strains have not been found associated with internal 

tissue of Z. Marina or C. serrulata and only one bacterium related to M. vaga was 

found as an epiphyte on Halophila stipulacea leaves (Weidner et al., 2000).  

2.3 Seagrass-bacterial interactions are both positive and negative 

The specificity of seagrass microbiota depends on the ability of plants to shape 

their epiphytic microbial communities through a series of positive (such as the 

release of nutrients from plant surface; McRoy et al., 1972; McRoy & Goering, 

1974; Kirchman et al., 1984) and negative (the production of antimicrobial defences) 

interactions (Zidorn, 2016). Seagrass leaves and roots exude nutrients that can attract 

bacteria to the plant surface (Wood & Hayasaka 1981; Perry & Dennison, 1999), and 

bacteria isolated from the roots of Z. marina demonstrate chemotaxis toward root 

exudates; in particular toward amino acids (Wood & Hayasaka, 1981; Krutz et al., 

2003). In terms of plant tissue colonization, it seems that seagrass epiphytic bacteria 

may adhere selectivily to substrates released by the plant (Lucas-Elío et al., 2012). 

The results obtained by Kurilenko and colleagues (2007) support this evidence: 

during their experiment, two epiphytes isolated from Z. marina leaves attached 

exclusively to the seagrass in preference to abiotic surfaces, and remained viable for 

the duration of the experiment (60 hours). Moreover, they showed that free-living 

bacteria that settled on seagrass leaves were considered not viable 30 hours after 

settlement, suggesting that plant defences and/or competition with resident bacteria 

may have affected their viability (Kurilenko et al., 2007). Vascular plants are able to 

recognise microbe-derived compounds and adjust their defence and growth 

responses according to the type of microorganism encountered (Bais et al., 2004) and 

a recent study has shown that similar receptors exist in seagrasses (e.g. T. 

testudinum) that perceive the presence of bacterial lipopolysaccharides (Loucks et 

al., 2013). 
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2.3.1 Seagrass defences:  

Seagrass defences include secondary metabolites and reactive oxygen species 

(ROS). Plant secondary metabolites can be divided into three chemically distinct 

groups: terpenes (e.g. terpenoids), phenolics (e.g. flavonoids and phlorotannins), and 

nitrogen-containing compounds (e.g. alkaloids) (Fig. 2.1; Zidorn, 2016). Sieburth 

and Conover (1965) were among the first to demonstrate that phlorotannins from 

two macroalgae inhibit two species of fouling bacteria. Subsequent studies have 

shown that extracts and purified metabolites from marine plants can inhibit 

microorganisms associated with biofilm formation (Bernard & Pesando, 1989; 

Sundberg et al., 1997; Steinberg & De Nys 2002; Xu et al., 2005; Engel et al., 2006; 

Newby et al., 2006), and help plants in resisting decomposition by saprophytes and 

pathogens (Zapata & McMillan, 1979; Engel et al., 2006; Kannan et al., 2010). For 

example, antibacterial activity in the leaves of Posidonia australis was detected 

against the Gram+ bacteria Streptococcus pyogenes and S. pneumoniae but not 

against Gram- bacteria (Reichelt et al., 1984). Extracts from Halodule beaudettei, 

Syringodium filiforme, Enhalus acorioides and Halophila minor were active at 

different levels against Pseudoalteromonas bacteriolytica and the stramenopiles 

Halophytophthora spinosa and Schizochytrium aggregatum (Engel et al., 2006). 

Additionally, three species of estuarine seagrass (Potamogeton pectinatus, 

Potamogeton perfoliatus and Ruppia maritima) had antimicrobial effects on 12 

strains of Gram+ and a few species of Gram- bacteria (Bushmann & Ailstock, 2006).  

Seagrass defences through secondary metabolites are activated when 

membrane receptors (encoded by resistance R-genes) recognise and bind specific 

molecules (elicitors) originating from pathogens, and thus alert the plant of their 

presence (Bent, 1996; Boller & Felix, G. (2009). Subsequently, a process of local 

defence responses begins with the production of reactive oxygen species and 

secondary metabolites at the site of the attempted attack (Fig. 2.1; Bent, 1996). 

Although the mechanism of action of many secondary metabolites has not been 

characterised yet, it seems that some molecules are able to interfere with bacterial 

quorum sensing (QS). Many plant pathogenic bacteria are dependent on QS to 

invoke disease, due to the fact that some virulence-related traits are induced only 

when the bacterial population reaches a specific density threshold (Andersen et al., 
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2010; Barnard et al., 2007; de Kievit and Iglewski, 2000; von Bodman et al., 2003). 

The most studied signalling molecules of Gram- bacteria are the acyl homoserine 

lactones (AHLs) (Williams 2007), and their concentrations in biofilm can be up to 

1,000-fold higher than in the environment (Stoodley et al., 2002; Dobretsov et al., 

2009). In regards to plant defence, the mechanism of interference with QS is 

achieved by producing AHL-degrading enzymes (Fig. 2.1; Manefield et al., 2002; 

Bauer & Mathesius, 2004). One class of seagrass secondary metabolites with 

promising properties against AHLs is the flavones, which showed a minimum 

inhibitory concentration at 8-31 µg ml-1 towards a bacterial density of 5 x 105 colony 

forming bacteria ml-1.  

Reactive oxygen species, generated in response to a stressor by NADPH 

oxidase in the infected area (Torres et al., 2006), include different compounds (such 

as superoxide anion radical, O2
–, hydrogen peroxide, H2O2, and the highly reactive 

hydroxyl radicals, ·OH) that target DNA, RNA, proteins and lipids of many bacteria 

(Cabiscol Català et al., 2000; Zhao & Drlica, 2014). To protect themselves, resident 

bacteria can express a variety of antioxidant enzymes (i.e. peroxidase, catalase and 

other oxidases) that degrade ROS and reduce the damage. Moreover, it seems that 

some of the bacteria that successfully settle on seagrass tissue produce oxidising-

enzymes that may enhance the plant’s tolerance to oxidative stress (Stajner et al., 

1997, Sanchez-Amat et al., 2010). Following the production of ROS in response to a 

pathogenic attack, the seagrass has a need to protect itself from oxidative stress 

through the additional production of several enzymes that express antioxidant 

activity. For example, Costa and colleagues (2015) found a higher antioxidant 

scavenging capacity within the leaves of P. oceanica covered with epiphytes, when 

compared to leaves that were not colonised by epiphytes: the epiphytes caused a 

higher production of ROS in P oceanica leaves. Among the cultivable microbiota of 

P. oceanica leaves, the bacterium Marinomonas mediterranea MMB-1 has proven to 

be an excellent source of oxidative enzymes, including tyrosinase, which produces 

melanin from L-tyrosine (Fig. 2.1; Sanchez-Amat et al., 2010). Since melanins are 

known free radical scavengers, they could protect the producer strains from oxidative 

stress and, in case of cellular death with consequent release of intracellular 

molecules, melanins may protect the plant itself, acting as a sink for extracellular 

oxidative radicals (Geng et al., 2008; Sanchez-Amat et al., 2010). 
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2.3.2 Support of microbiota by seagrass  

Bacteria that successfully colonise the seagrass surface must be able to 

withstand interactions with the plant’s defence and competition with other members 

of the microbiome (Egan et al., 2013). In turn, they will benefit from the release of 

nutrients and dissolved organic nutrients from plant tissues (Kirchmanl, 1984; 

Penhal & Thayer, 1980). Bacterial epiphytes of Z. marina obtain carbon (C), 

nitrogen (N) and phosphorus (P) from low molecular weight organic compounds lost 

through leaching from the leaves (Fig. 2.1; Brylinski, 1971; Kirchmanl 1984). By 

placing Z. marina roots in a solution containing enriched substrates [e.g. 

(15NH4)2
14CO3)], it was found that nutrients were absorbed from the solution by plant 

roots, transferred to leaves and consumed by leaf-associated epiphytes 

(Kirchmanl 1984). Seagrass roots and rhizomes also exude 2-11% of the organic 

carbon produced during photosynthesis, which can be used by bacteria to satisfy 

their C demand (Fig. 2.1; Moriarty et al., 1986; Pollard & Moriarty, 1991; Holmer et 

al., 2001). Importantly, seagrasses may also represent a source of vitamins, iron 

(Thomas et al., 2008; Burke et al., 2011b; Fernandes et al., 2011) and sulphur for 

their microbiota (Bhararthi et al., 2016). For example, ferric iron represents a key 

molecule for cell-cell communication of some bacterial species in biofilms, 

including Bacillus subtilis (Vlamakis et al., 2013), a common component of seagrass 

and macrophytal microbiota (Ravikumar et al., 2012). Since in terrestrial plants, B. 

subtilis is responsible for the plant’s defence against pathogens (by inhibiting the 

growth of plant pathogens such as Pseudomonas syringae; Chen et al., 2012), the 

exudation of these molecules by its seagrass host may be pivotal to the recruitment 

of the ‘right microbiota’ from the environment (Vlamakis et al., 2013). Members of 

the seagrass microbiome are also able to use dimethylsulfoniopropionate (DMSP) 

excreted by seagrasses (Jean et al., 2006; Borges & Champenois, 2015) as a source 

of sulfur, which can then be incorporated into bacterial proteins (Kiene et al., 2000). 

Genetic evidence indicates that strains of Roseobacter, commonly found on 

macroalgae (Brinkhoff et al., 2008), have the capacity to utilise DMSP produced by 

the algae (Egan et al., 2013). Since populations of Roseobacter are also commonly 

detected on the leaves of Z. marina, P. perfoliatus, and S. pectinata (Crump & Koch, 

2008), these bacteria may also be able to use DMSP produced by the seagrass. 

Indeed, information from whole genome sequencing of Marinomonas sp.MWYL1A, 

https://doi.org/10.1601/nm.2460
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isolated from the root surface of the salt marsh grass Spartina anglica, and its 

relative M. posidonica IVIA-Po-181T isolated from P. oceanica, indicate that these 

Marinomonas strains share the capability to catabolise DMSP (Lucas-Elío et al., 

2012).  

2.4 Role of epiphytic and endophytic microorganisms in maintaining plant 

fitness 

Vascular plants support a variety of epi- and endophytic microorganisms, 

which may profoundly influence plant health and productivity. Bacteria can enhance 

plant growth through the increase of nutrient availability (e.g. through nitrogen 

fixation or by mineralising organic compounds; Welsh 2000; Evrard et al., 2005; 

Cole & McGlathery 2011), produce or modulate plant hormones, thus influencing 

shoot and root development (Kamper et al., 1975; Werner et al., 2009; Kurtz et al., 

2003), and confer immunity against a variety of plant pathogens by producing 

antibacterial compounds (Armstrong et al., 2001; Burja et al., 2001; Wu et al., 2012; 

Vlamakis et al., 2013). Many plant growth-promoting bacteria (PGPB) associated 

with terrestrial plants have been identified (Bashan & Holguin, 1998; Vessey, 2003), 

and the use of PGPB to increase crop yields has become a common practice in the 

field of agriculture (Ortíz-Castro et al., 2009). Similar to terrestrial ecosystems, 

bacteria associated with seagrasses may play a pivotal role in supporting their host 

fitness, as outlined below.  

2.4.1 Microorganisms provide nutrients to seagrass 

Experimental evidence for nutrient limitation of seagrass growth in tropical 

and temperate regions is provided by a number of studies, and marine plants may 

depend on their associated bacteria for enhanced nutrient availability (Donnelly & 

Herbert 1999; Hansen et al., 2000; Welsh, 2000; Cole & McGlathery, 2011). 

Nitrogen and phosphorous are two essential nutrients that can limit seagrass growth 

and primary production (Zimmerman, et al., 1987; Williams, 1990; Touchette & 

Burkholder, 2000). Thus, most studies on bacterial-seagrass interactions have 

focused on nitrogen (N) fixation and mineralisation of organic N and phosphorous 

(P). A significant portion of the seagrass plant’s nitrogen requirement may be 
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fulfilled through nitrogen fixation on the leaves by cyanobacteria, and on the roots 

by sulphate-reducing bacteria (SRB) (Fig. 2.1; Welsh et al., 1996; Welsh, 2000; 

Nielsen et al., 2001; Pereg-Greg, 2002; Hamisi et al., 2009). In reality, direct 

evidence of nitrogen exchange between microbial hosts and seagrass tissue itself 

does not exist, however, indirect evidence has been reported. For example, Uku and 

colleagues (2007) found that cyanobacterial abundance was higher on seagrasses 

sampled from oligotrophic waters when compared to the same species from a less 

oligotrophic site, suggesting that a mutualistic symbiosis may exist between 

seagrasses and cyanobacteria, and that seagrasses may benefit from the diazotrophic 

nature of their epiphytic community in terms of N supply. Additionally, considerable 

nitrogenase activity has been identified in cyanobacterial populations associated with 

various seagrass species at different locations (Welsh, 2000; Hamisi et al., 2009; 

Cole et al., 2012). For sulphate-reducing bacteria, quantification of the contribution 

of anaerobic nitrogen fixation to seagrass productivity shows that it may represent a 

substantial input of nitrogen, especially for seagrasses located in tropical and 

subtropical regions, where up to 65% of N requirement could be provided by N-

fixation (Hansen et al., 2000). Z. capricorni roots incubated with 15N2 showed the 

appearance of about 50% of the total 15N within seagrass tissue after 6 hours of 

incubation (Donohue & Moriarty 1990). These results suggest: (i) the existence of 

direct exchange of N between the bacteria and the plant itself; or (ii) the possibility 

that fixed nitrogen may become available to the plant once the bacteria die and the 

cell components are mineralised (Donohue & Moriarty 1990). In fact, mineralisation 

of organic nutrients by seagrass microbiota may also increase the availability of N 

and P for uptake by seagrasses (Smith et al., 1984a,b; Evrard et al., 2005). In field-

based experiments, after marine sediment was fertilised with organic matter, 

inorganic nutrients were provided by microbial mineralisation, and seagrasses (e.g. 

Thalassia and Halodule) showed significant growth responses to nutrient additions 

(Powell et al., 1989). It also seems possible that seagrass leaf epiphytes, such as 

cyanobacteria Anabena sp., Calothrix braunii, and Nostoc sp. (Uku et al., 2007; 

Hamisi et al., 2013), may increase P availability for seagrass uptake by being able to 

solubilise phosphorous compounds to inorganic forms (Sharma et al., 2013).  

The internal cells of seagrass roots support a diverse community of bacteria, 

which may have beneficial effects on the plant by expressing protease activity and 
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being able to solubilise inorganic phosphorus from insoluble compounds (Jose, et al., 

2014), thus increasing nutrient availability. Endophytic bacteria (including Kocuria 

sp., Vibrio sp., Saccharomonaspora sp., Bacillus sp., Desulfovibrio zosterae and 

Celerinantimonas diazotrophicus) isolated from the root tissues of C. serrulata, P. 

oceanica and Z. marina are also able to fix nitrogen (Nielsen et al., 1999a, Ivanova 

et al., 2004, Werner et al., 2009, Garcias-Bonet et al., 2016). Nutrient translocation 

experiments using labelled nitrogen isotopes have shown that nitrogen is not only 

translocated in the same seagrass shoot from roots to leaves and vice versa, but also 

between shoots of the clonal plant up to tens of centimeters (Marbà et al 2002). This 

clonal connectivity suggests that, although endophytic bacteria may be present only 

in a few shoots of the clone (such as in the case of P. oceanica endophytic N-fixing 

bacteria), the whole plant could benefit from their activity (Garcias-Bonet et al., 

2016).  

2.4.2 Microorganisms protect seagrass from toxic compounds  

Seagrasses often grow in suboxic or anoxic sediments (Goodman et al., 1995; 

Borum et al., 2005). Anaerobic mineralisation of organic matter in coastal marine 

sediments is due to the activity of sulphate-reducing bacteria (SRB, Jørgensen, 

1982), and a high abundance and activity of SRB has been reported in the seagrass 

rhizosphere compared with non-vegetated sediments (Shieh & Yang 1997), probably 

due to the increased organic carbon availability surrounding the plant’s below-

ground tissue (Fig. 2.1; Holmer & Nielsen, 1997). An endophytic Sulfitobacter and 

Desulfovibrio zosterae, both isolated from Z. marina roots, are capable of 

mineralising organic nutrients by reducing sulphate (Nielsen et al 1999; Ivanova et al 

2004). This mineralisation process supplies nutrients for seagrass growth (Holmer et 

al., 2001), but also results in the accumulation of highly toxic compounds, especially 

hydrogen sulphides (Bagarinao, 1992), and sulphide poisoning has been linked to 

recent die-back events of seagrasses worldwide (Koch & Erskine, 2001; Borum et 

al., 2005; Holmer et al., 2006). Seagrasses can respond to this potential phytotoxin 

by translocating photosynthetically produced oxygen from leaves into the roots, with 

consequent leaching of oxygen into the sediment to enhance sulphide oxidation 

(Armstrong & Armstrong, 2005). Slow, spontaneous sulphide oxidation can be 

accelerated by intervention of some of the seagrass epiphytic bacteria that metabolise 
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toxic substances. For example, nitrate-reducing sulphide-oxidising bacteria have 

been found associated with H. wrightii roots (Küsel et al., 2006). Sulphide-oxidising 

bacteria may be partly responsible for the oxidation of sulphide that has been 

observed during daytime in seagrass-inhabited sediments (Lee & Dunton, 2000) and 

Spartina alterniflora roots (Lee et al., 1999), with consequent relief of sulphite toxic 

effects on plants. 

2.4.3 Microorganisms enhance seagrass growth  

Plant hormones, also known as phytohormones, regulate plant growth and 

affect seed germination, time of flowering and fruit production (Miransari & Smith, 

2014; Davies, 2010). Five major classes of plant hormones exist: abscisic acid, 

auxins, cytokinins, ethylene and gibberellins (Gaspar et al., 1996; Kende & Seevaart, 

1997; Davies, 2010). In terrestrial plants, root-associated microorganisms are able to 

synthesise and release hormones as secondary metabolites, enhancing plant 

development and root proliferation (Kampert et al., 1975; Ortíz-Castro et al., 2009). 

It is commonly thought that bacterial production of plant hormones, which do not 

have the same function in microbial cells, may have evolved in bacteria because of 

their importance for the bacterium-plant relationship (Bacon et al., 2011). Of these 

growth regulating substances, indole-3-acetic acid (IAA) represents the primary 

active auxin in most plants, and both IAA and cytokinins affect cell division and 

stimulate growth of plant roots and shoots (Woodward & Bartel, 2005). Bacteria 

with plant growth-promoting traits have been found associated with a number of 

seagrasses. For example, the strains of Actinobacteria kocuria sp. and Vibrio sp. that 

were isolated from C. serrulata internal root cells are both involved in the 

production of IAA (Werner et al., 2009). Epiphytic Methylophilus sp., associated 

with H. stipulacea leaves and V. americana internal root tissue (Kurtz et al., 2003) 

can produce cytokinins with similar growth-promoting activity to that found in 

terrestrial plants (Ryu et al., 2006). A Proteobacterium isolated from H. stipulacea 

leaves is closely related to Alteromonas macleodii, which has also been found to 

produce plant growth-promoting oligosaccharides from alginate, a polymer 

commonly found in algal cells (Natsume et al., 1994; Ferrier et al., 2002). PGPB 

belonging to Marinomonas sp. have already been shown to assist the differentiation 

and growth of macroalgae from the genus Ulva (Ravindra et al., 2011; Witchard, 
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2015), while M. posidonica, a member of the P. oceanica leaf endophytic 

microbiome (Lucas-Elío et al., 2012; Celdran et al., 2012; Goecke & Imhoff, 2016), 

is suspected to play a similar role in the development of seagrass shoots (Celdran et 

al., 2012). Cedran and colleagues (2012) grew P. oceanica shoots from sterilised 

seeds and performed experiments by inoculating germinated seeds with and without 

M. posidonica. The low growth rates of 2-week-old P. oceanica shoots cultured in 

sterilised media confirmed that inoculation with M. posidonica significantly 

enhanced shoot growth and development, suggesting that this bacterium may have 

profound implications for the development of P. oceanica during its early life-

history stages (Cedran et al., 2012).  

2.4.4 Microorganisms protect seagrass from pathogens and fouling organisms 

Bacteria associated with seagrass above- and below-ground tissue represent a 

rich source of bioactive metabolites, and some microorganisms may play a protective 

role, releasing chemicals that protect their host from pathogens and biofouling by 

other organisms (Armstrong et al., 2001). The epiphytic bacterium M. mediterranea 

MMB-1 on P. oceanica synthesises an antibacterial agent, marinocine, with activity 

against both Gram+ and Gram- bacteria, such as E. coli and P. aeruginosa (Lucas-

Elío et al., 2006). Seagrass epiphytic cyanobacteria play a pivotal role in plant 

protection from pathogens (e.g. Staphylococcus epidermis; Jaki et al., 1999) by 

producing antimicrobial and antifungal molecules, such as majusculamide A-D, 

malyngolide, laxaphycin A-B and diterpenoids (Burja et al., 2001). Representatives 

of the genus Bacillus are usually found in high abundance as seagrass leaf epi- and 

endophytes (E. acoroides and T. Hemprichii), and show incredibly high activity 

against biofilm-forming bacteria (Marhaeni et al., 2010). Interestingly, Nijland and 

colleagues (2010) found that Bacillus licheniformis can use an extracellular DNase 

(NucB), in addition to AHL-degrading enzymes, to rapidly break up the biofilms of 

both Gram+ and Gram- bacteria. Bacillus licheniformis has been isolated recently 

from the seagrass T. hemprichii (Achadi Nugraheni et al., 2010), and it may use this 

strategy against its bacterial competitors to obtain a selective advantage over them: 

thus providing its eukaryotic host with a powerful tool to control bacterial biofouling 

(Fig. 2.1).  
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Fig. 2.1. – A conceptual diagram of the functions played by bacteria on the leaves and 

roots of seagrasses. On the leaf: The leaf surface attracts bacteria through the exudation of 

nutrients. Once a bacterial population reaches a specific density threshold, it may induce 

some virulence-related traits. Plants can activate a defence system, which includes the 

production of reactive oxygen species (ROS) and acyl homoserine lactones (AHL)-

degrading enzymes at the attached site. Under high stress conditions, ROS concentrations 

may exceed the plant antioxidant compensation capacity, leading to oxidative stress. The 

presence of specific bacteria, such as Marinomonas spp., which represent a source of 

oxidative enzymes, may enhance plant tolerance to oxidative stress. Some common 

epiphytes, such as Bacillus spp. and some cyanobacteril taxa, represent a source of 

antibacterial and antifouling molecules, which may protect the plant from pathogenic 

attacks. These molecules include lactonase, which degrades Gram- quorum sensing (QS) 

chemicals by hydrolysing the AHL ring and an extracellular DNase (NucB) used to rapidly 

break up the biofilms of both Gram+ and Gram—bacteria. Cyanobacteria can also enhance 

nitrogen availability through nitrogen fixation. On the root: Sulphate-reducing bacteria can 

enhance nutrient availability by mineralising organic matter; however, free sulphides, one of 

the products of anaerobic mineralisation, are toxic to eukaryotes. Epiphytic sulphide-

oxidising bacteria are able to use the oxygen leached by seagrass roots to oxidise sulphides 

and reduce their toxic effects on plants. Diazotrophic bacteria support seagrass nitrogen 

demand through nitrogen fixation, fueled by organic carbon exuded through seagrass roots. 
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Seagrass endophytic bacteria such as Actinobacteria, which are commonly 

associated with the seagrass internal root tissue (e.g. Z. marina, T. hemprichii; 

Jensen et al., 2007), are also able to synthesise a broad spectrum of antiviral, 

antiparasitic and antibacterial compounds, which are active against several pathogens 

(e.g. Vibrio sp., Aeromonas hydrophyla and A. sobria; Wu et al., 2012).  

The presence of specific epiphytic bacteria also seems to influence the structure 

of epiphytic algal assemblages of marine plants (Cedran et al., 2012). The ability of 

seagrass microbiota to influence algal fouling depends upon the production of a 

variety of compounds with antifouling activity (Dahms et al., 2006). In the specific 

case of P. oceanica, algal epiphytes can be present in high abundance (up to 30% of 

the seagrass biomass; Mazsella & Ott, 1984), supporting a substantial community of 

grazers (Orth & Van Montfrans, 1984), and displaying high species diversity (Boero, 

1981; Mazsella et al., 1989). Although antifouling molecules produced by M. 

posidonica have not been characterised yet, Cedran and colleagues (2012) showed 

that this endophytic bacterium plays an important role in regulating algal settlement. 

Patterns in the epiphytic algal community were driven mainly by changes in the 

abundances of red crustose, filamentous and red corticated algae, which were higher 

on P. oceanica leaves where the bacterium M. posidonica was present, in 

comparison to leaves that did not contain the bacterium (Cedran et al., 2012). Among 

seagrass epiphytes, cyanobacteria show a strong antifouling activity by producing a 

variety of antialgal compounds, such as fischerellin, aponin and 

galactosyldiacylglycerol, with the most studied compound being cyanobacterin 

(Gleason & Paulson, 1984; Borowitzka, 1995; Papke et al., 1997; Jaki et al., 1999; 

Ghasemi et al., 2003), which inhibits the growth of the common fouling diatom 

Nitzschia pusilla (Gleason & Paulson, 1984; Dahms, Ying & Pfeiffer 2006; Bhadury 

& Wright, 2004; Mazard,et al., 2016). Bioactivity against green algae was also 

detected in cyanobacterial species commonly associated with seagrass leaves (e.g. 

Fischerella, Nostoc, Calothrix and Oscillatoria; Bagchi et al., 1990; Schlegel et al., 

1998, Mazard et al., 2016). 



31 

 

2.5 Potential for vertical transmission of microbial communities between plant 

generations 

In terrestrial plants, the acquisition of microbial endophytes can occur both 

horizontally (i.e. mature plants and seeds are colonised by strains present in the 

environment) and vertically, whereby microorganisms are transmitted within seeds 

from parental plants (Truyens et al., 2014). In the terrestrial sphere, the dynamics of 

horizontal tissue colonisation by endophytic bacteria begins with an infection of the 

root tissue, which allows the bacteria to reach the root xylem vessels, and 

subsequently migrate upwards into the stem base, leaf base and leaves James et al., 

2002, Compant et al., 2005b, 2008a. Although no direct evidence exists for a similar 

pattern of colonisation of marine plants, it seems that some endophytic bacteria of 

seagrass roots (Thalassia hemprichii, Cymodocea serrulata, Halodule uninervis, 

Syringodium isoetifoliu) originally belong to strains present within the rhizosphere, 

which eventually penetrate inside seagrass tissue (Kusel et al., 1999). Interestingly, 

eight out of the nine endophytic bacteria (Kocuria spp., Bacillus spp., Vibrio spp., 

Saccharomonospora, Photobacterium) isolated from C. serrulata roots are able to 

carry out cellulase activity (Jose et al., 2014), which may be useful in penetrating 

inside the plant tissue.  Streptomyces spp. and Bacillus spp., often found as leaf 

endophytes, present cellulase activity, but it is still unknown whether they use these 

enzymes to colonise seagrass aboveground tissues (Larkum, 2006). 

During vertical transmission in terrestrial plants, microorganisms are passed 

into the seeds from parental plants directly through gametes (Agarwal & Sinclair, 

1996; Madmony et al., 2005; Malfanova et al., 2013), or via vascular connections 

(Rand & Cash, 1933; Samish & Etinger-Tulczynska, 1963; Agarwal & Sinclair, 

1996; Truyens et al., 2014). Most seagrass genera are dioecious with separate male 

and female clones and, usually in spring, pollen is released to fertilise the female 

flower and produce seeds. Surprisingly, there are no currently published studies 

regarding the transmission of microorganisms from seagrass parental plants to their 

offspring. Some authors have speculated that M. posidonica IVIA-Po-181T, 

characterised by an unusually small genome size (3.9 Mb versus 4.6 Mb and 5.1 Mb 

of M. mediterranea and Marinomonas sp. MWYL1, respectively), might be 

transmitted across generations (Lucas-Elío et al., 2012). They inferred that the 
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smaller size of the M. posidonica genome could be a consequence of a close and 

stable relationship with P. oceanica, which makes a high genomic potential for the 

adaptation to different environments unnecessary (Lucas-Elío et al., 2012).  

The seagrass genera Amphibolis and Thalassodendron are uniquely viviparous, 

with seedlings developing while still attached to the mother plant from which they 

receive nutrients (Kuo & Kikman, 1990). These seeds lack the hypocotyl designated 

for nutrient storage and develop footing tissue that enable them to attach to the 

maternal plant. In both genera, the footing tissue presents similar characteristics and 

contains a high number of transfer cells in the outermost layers (Kuo & Kirkman, 

1990). Transfer cells are cells characterised by regions of wall ingrowths, considered 

to be involved in short-distance transport of nutrients. Although direct evidence for 

the transport of nutrients through transfer cells is lacking in seagrasses, such proof 

exists for terrestrial plants (Gunning et al., 1968; Browning & Gunning, 1979), 

suggesting that these cells may have a similar role in marine plants (Kuo & Kirkman, 

1990). Briefly, nutrients are transported through the maternal vascular system and 

unloaded at the interface of fruit tegument and epidermal cells of the ‘footing’ tissue, 

which attaches the seedling to the maternal plant (Kuo & Kirkman, 1990). At this 

interface, nutrients are absorbed apoplastically by wall ingrowths of epidermal cells, 

and loaded into the footing vascular system, from where they travel to reach the 

developing seedling (Kuo & Kirkman, 1990). Since seagrass restoration efforts for 

these species may depend upon the facilitation of seedling recruitment in situ (Irving 

et al., 2013; Tanner, 2015), it would be beneficial to understand whether their 

seedlings acquire not only nutrients but also endophytic microorganisms from 

maternal plants, as has been shown for terrestrial plants (Puente et al., 2009b). 

However, further research is needed on the acquisition and mode of transmission of 

seagrass-associated microbiota 

2.6 Concluding remarks and future perspectives for microbial implications in 

seagrass management  

Studies on microbial ecology in the marine environment have been extensively 

improved through the use of culture-independent techniques, yet information on the 

diversity and function of epiphytic and endophytic microorganisms associated with 
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above- and belowground tissue of seagrass is limited when compared to terrestrial 

plants or analogous marine systems (e.g. corals and sponges). In terms of bacterial 

diversity, it seems that the seagrass epiphytic community may comprise both 

generalist and specialist strains (Crump & Koch 2008; Lucas-Elío et al, 2012). Some 

bacteria are well-adapted to live in association with plants and are common 

epiphytes of several seagrass species, whereas others (e.g. Marinomonas spp.) 

appear to be part of the microbiota of specific seagrasses (Posidonia spp.). Bacteria 

and their secondary metabolites appear to provide important cues for the 

development of their host, since seed germination highlights a key role for bacteria 

in the early life stages of seagrass (Celdran et al., 2012). However, while the field 

has moved a long way from the first observations that microbiota can assist in the 

morphological development of seagrasses (Celdranet al., 2012), there is clearly more 

work to be carried out, probably most critically in relation to the mechanisms of 

recruitment of microorganisms from the environment, and whether seagrass are able 

to pass some strains to their offspring. The possible existence of vertical 

transmission of bacteria is intriguing, as it would enable a plant with an established 

endophytic community to pass bacteria with beneficial characteristics to the 

offspring. Since it has been suggested that a link exists between the endophytic 

content of plant seeds and seed quality, this is especially important in terms of 

management. The potential to control the quality of seeds by inoculating them with 

specific beneficial strains would be of dramatic consequence with respect to efforts 

at seagrass restoration. Finally, most of these studies have investigated only bacteria-

seagrass associations, overlooking the diversity and role that archaea and other 

microorganisms may play in maintaining plant fitness. Indeed, it is crucial to 

understand the mechanisms that regulate these specific interactions and their 

ecological significance. 
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CHAPTER THREE: AMMONIA-OXIDISING AND UREOLYTIC MICROBIAL 

COMMUNITIES OF SEAGRASS MEADOWS (POSIDONIA SINUOSA) IN 
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3.1 Abstract 

Seagrass meadows are important coastal engineer ecosystems, and the uptake of 

nitrogen (N) is essential for maintaining seagrass growth and primary production. 

Field and experimental studies show that seagrasses preferentially uptake inorganic 

nitrogen (DIN) and small amino acids, however, the majority of the N pool of coastal 

waters is composed of complex organic nitrogen molecules (DON) and urea. 

Microorganisms in various ecosystems are responsible for nutrient cycling via a 

series of enzyme-mediated transformations and microbial recycling of N may be key 

processes contributing to the high seagrass productivity. Under oxic conditions, the 

mineralisation of bioavailabile DON is linked to nitrification which consists of two-

step oxidation of ammonium to nitrite and nitrate by ammoni-oxidising 

microorganisms (AOM) mediated by ammonia monooxygenase (encoded by the 

amoA operon) or hydrolysis of urea mediated by urease (encoded by the ureC 

operon). 

In this study, I determined the abundance and diversity of bacteria and archaea 

(using the 16S rRNA gene) and AOM (using the bacterial and archaeal amoA gene, 

AOB and AOA, respectively) and, the abundance of ureolytic ammonia-oxidising 

bacteria (using the ureC gene), associated with four microenvironments of Posidonia 

sinuosa meadows (surface water, canopy water, sediment and leaves) in two 

sampling occasions. In general, bacteria outnumbered archaea 10:1 in all the 

microenvironments and times. Among the four microenvironments, P. sinuosa 

leaves always hosted the highest abundance of microorganisms (varying between 107 

to 1010) compared to other microenvironments (104 to 107). Furthermore, 16S rRNA 

phylogenetic analyses suggested the presence of a P. sinuosa ‘core microbiota’ that 

differed from the surrounding environment. In the specific case of AOM, AOB 

abundance was up to 2 orders of magnitude greater than AOA on P. sinuosa leaves, 

however, AOA showed a higher host specificity than AOB, indicating a closer 

relationship between the plant and epiphytic AOA. Within the AOB community, 

ureolytic genes were detected in high abundance, presenting AOB with the ability to 

switch from autotrophy to mixotrophy ammonia concentrations are low and use 

small organic compounds, such as urea, to fuel the reaction of nitrification. 
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3.2 Introduction 

Nitrogen (N) is one of the most important elements required for the success of 

all living organisms, as it is a component of amino acids, proteins and a variety of 

organic compounds (Vitousek et al., 1991; Liu et al., 2010; Hill et al., 2011). 

Recycling of N in seagrass meadows occurs in different ways. Seagrass canopies, by 

reducing water velocity and turbulence (Gacia et al. 1999, Koch et al 2006), enable 

the formation of a nutrient rich water layer (Gobert et al. 2002, Agawin & Duarte, 

2002) so that N can be directly taken up and retained within seagrass tissue (Vonk et 

al. 2008, Van Engeland et al. 2011) or recycled by microroganisms present in the 

system (Duarte, 1990; Shieh & Yang, 1997; Evrard et al., 2005; Säwström et al, 

2016). 

The microbial regeneration of bioavailable N can occur via N fixation and the 

subsequent mineralisation of organic N. Under oxic conditions, the final product of 

microbial mineralisation of organic N is ammonium (NH4
+). Ammonium is further 

transformed to nitrite (NO2
-) and nitrate (NO3

-) via nitrification, which links organic 

matter degradation with the production of dissolved inorganic N (DIN) (Francis et 

al., 2005, Špela et al., 2012). The conversion of NH4
+ to NO2

- represents the first and 

rate-limiting step of nitrification, which is mediated by ammonia monooxygenase, a 

membrane-bound multiple subunit enzyme encoded by the amo operon. This operon 

consists of at least three genes, amoC, amoA, and amoB; the amoA gene encodes the 

alpha subunit containing the putative enzyme active site (Norton et al., 2002). As it 

is highly conserved, the amoA gene has been extensively used as a molecular marker 

for identifying potential nitrifying microorganisms (AOMs; Francis et al., 2005; 

Junier et al., 2010). Ammonia oxidation is restricted to bacteria belonging to Gamma 

and Betaproteobacteria (Teske et al., 1994; Purkhold, 2000) and archaea, classified 

within the new phylum Thaumarchaeota (Könnek et al., 2005; Brochier-Armanet et 

al., 2008, Pester et al., 2011). The presence and activity of ammonia-oxidising 

bacteria (AOB) and archaea (AOA) has been extensively researched in several 

terrestrial, freshwater and marine environments (Ward, 2005; Gonzalez et al., 2012; 

Peralta et al., 2014), as they can live free in the water, in the sediment, or on the 

surface of different substrates (e.g. macroalgae) (Francis et al., 2005, Santoro & 

Casciotti, 2011; Trias et al., 2012).  
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Within coastal environments, DON often represents the largest N reserve, 

contributing up to 85% of the total N pool (Voss et al., 2013). Evidence suggests 

potential mixotrophy for ammonia-oxidising microorganisms (Ingalls et al., 2006) 

and the ability to break down urea, an organic N-containing molecule with two 

molecules of ammonia and one of carbonic acid (Koper et al., 2004; Solomon et al.; 

2010; Alonso-Saez et al.; 2012; Lu et al., 2012). Degradation of urea may satisfy 

microbial carbon demand, while the two molecules of ammonia could be used in turn 

to fuel ammonia oxidation (Alonso-Saez et al., 2012). Among DON compounds, 

urea has long been recognised as an important N source in tropical, subtropical, and 

temperate marine environments (Antia et al., 1991; Crandall & Teece 2012), where it 

is primarily derived from zooplankton and fish excretion (Bidigare, 1983; Miller & 

Glibert, 1998; Conover & Gustavson, 1999), bacterial regeneration (Cho & Azam, 

1995; Walsh et al., 2000) and release from the sediment (Cho et al., 1996). The 

hydrolysis of urea is catalysed by the urease enzyme, releasing ammonia via three 

genes: ureA, ureB and ureC. The ureC gene encodes for the alpha subunit of urease, 

and is highly conserved in all known ureolityc genes (Koper et al., 2004).  

Inorganic N can be a limiting nutrient in the marine environment, and the 

ability of using small organic compounds, such as urea, to fuel the process of 

nitrification may therefore represent an ecological advantage for AOMs in times of 

ammonia depletion. However, while AOMs containing the ureC gene have been 

investigated in a range of environments such as soils, estuarine and open-ocean 

communities and sponges (Fujita et al., 2008; Alonso-Saez et al., 2012; Levičnik-

Höfferle et al.; 2012, Lu et al., 2012), nothing is known about these microorganisms 

within seagrass meadows, nor their role in N cycling. Seagrass meadows are 

important benthic habitats spread along the coastal areas of all continents except 

Antarctica (Moncreiff et al., 1992; Duarte & Chiscano, 1999; Barron & Duarte, 

2009; Hyndes et al., 2014). Since microorganisms are abundant and diverse in 

seagrass ecosystems (Kirchman, et al., 1984; Blaabjerg & Finster, 1998; Uku et al., 

2007; Crump & Koch, 2008), and they have been shown to play a critical role in 

DON recycling other aquatic systems (e.g. mangroves; Alongi 1994), seagrass-

associated microorganisms may play a pivotal role in the recycling of N within these 

coastal habitats. In particular, AOMs capable of mineralising urea may enhance N 
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availability within seagrass meadows, with profound implications for N regeneration 

in coastal waters. 

In this study, I explored the abundance and diversity of bacteria and archaea in 

four different microenvironments of three P. sinuosa meadows: surface water above 

the canopy, water within the canopy, biofilm on seagrass leaves, and sediment in the 

meadow. Additionally, I investigated the presence of microorganisms involved in 

two N cycling processes that have potentially strong links to each other, and to the 

plant’s N-uptake: the hydrolysis of urea, and ammonia-oxidation. By using 

functional genes involved in ammonia oxidation and ureolysis as markers, I 

compared the abundances and diversity of AOMs and abundances of ureolytic 

bacteria within P. sinuosa meadows on two sampling occasions.  

3.3 Materials and Methods 

3.3.1 Sample collection and processing 

The Marmion Marine Park in South Western Australia is characterised by 

oligotrophic waters because of the influence of the Leeuwin Current that transports 

warm, low salinity and low nutrient water along the Western Australian coast from 

north-west to south-west (Thompson 1984; Holloway & Nye, 1985). Despite the low 

level of environmental nutrient concentrations, extensive and dense meadows of 

seagrass Posidonia sinuosa are found in this area, in close proximity of rocky reefs 

dominated by brown kelps, order Laminariales. Inorganic nitrogen concentrations 

are often low in the area but higher DON values are detected (Table 5.2 Chapter 5). 

For this study, samples were collected from three Posidonia sinuosa meadows in 

Marmion Marine Park (31°48’49.21’’S 115°42’41.23’’E; 31°48’08.50’’S 

115°43’07.29’’E; 31°48’55.85’’S 115°43’38.39’’E), south-western Australia. For 

each meadow, samples were collected from four microenvironments [surface water 

(50 cm depth), canopy water (3-4 m depth), sediment (0-2 cm) and seagrass leaves] 

on two separate sampling occasions (December 2013 and August 2014), to 

determine if any patterns observed in microbes across the different 

microenvironments were consistent across two times. I collected six replicate 

samples of sediment and seagrass shoots, and triplicate 1 L water samples from both 
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the surface and canopy water. Sediment samples were collected within each meadow 

at a distance of 1mt along a transect by using sterile 5 mL glass vials which 

penetrated the first 2 cm of the oxygenic sediment layer.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1- Map of the Posidonia sinuosa meadows (red dots) chosen for the present study 

in the Marmion Marine Park, offshore Perth, South Western Australia.  

 

3.3.2 DNA isolation 

For sediment and seagrass biofilm samples, DNA was isolated using the 

PowerSoil and PowerBiofilm DNA Isolation Kits (Mo-Bio, USA), respectively, 

according to the manufacturer’s instructions. DNA from water samples was 

manually extracted following the method of Gilbert and colleagues (2011). DNA 

was eluted in nuclease free water (QIAGEN, USA), quantified using the Qubit 

dsDNA HS Assay kit and Qubit® 2.0 Fluorometer (Invitrogen, California, USA), 

and stored at -20 °C.  
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3.3.3 PCR amplification and preparation of q-PCR standards 

To confirm the presence/absence of each gene (16S rRNA, amoA, and ureC) in 

each seagrass meadow compartment (surface water, canopy water, sediment, 

biofilm), PCRs were performed on every extracted DNA sample. Primer pairs are 

listed in Table 3.1 for each gene, and PCR conditions are detailed in Table 3.2. For 

bacterial and archaeal 16S rRNA and bacterial ureC, the final PCR volume reaction 

was 25 µl, while for bacterial and archaeal amoA, the PCR final volume reaction was 

50 µl. Positive amplification for each reaction was confirmed using gel 

electrophoresis with a 1.5% agarose gel. Duplicate PCR products were combined, 

and the resulting bands were isolated from the gel using the PCR product 

purification kit Isolate II (Bioline, London, UK), following the manufacturer’s 

instructions, except for archaeal 16S rRNA, which was purified using the Agencourt 

AMPure XP PCR Purification kit (Beckman Coulter, California, USA). Purified 

PCR products were then quantified using the Qubit® 2.0 Fluorometer (Invitrogen). 

Cloning of purified amplicons was performed using the pGEM T Easy Vector 

System II (Promega, Wisconsin, USA) following the manufacturer’s instructions. 

Transformed cells were plated on Luria-Bertani agar plates containing ampicillin 

(100 µg ml-1), X-gal (40 µg ml-1) and IPTG (1 mM). For each gene, white colonies 

containing the vector were screened using PCR with the M13 primers (Table 3.1) 

and DNA fragment size was checked. For all the genes, 1 µl of template DNA was 

used in a 25 µl final reaction volume, containing 12.5 µl of GoTaq Master Mix 

(Promgea), primers M13F and M13R (final concentration reported in Table 3.1). 

PCR cycle conditions are reported in Table 3.2. The fragment size was confirmed 

using gel electrophoresis, and purified using the Agencourt AMPure XP – PCR 

Purification (Beckman Coulter, California, USA), according to the manufacturer’s 

instructions. Purified PCR products were sequenced at the Australian Genome 

Research Facility (AGRF, Perth). Taxonomy was inferred using the Basic Local 

Alignment Search Tool nucleotide (BLASTn; Madden et al., 2002; Boratyn, et al., 

2013) on the National Centre for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov) to confirm that PCR clones contained the expected 

genes. Purified clones were then quantified using the Qubit® 2.0 Fluorometer 

(Invitrogen) and used to construct q-PCR standard curves, ranging from 103 to 107 

http://www.ncbi.nlm.nih.gov/
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copies µl-1 for all the genes and seagrass meadow microenvironments, except for 

archaeal amoA in the water column and canopy water (104 to 108 copies µl-1). 

3.3.4 The quantitative polymerase chain reaction (q-PCR) 

The quantitative polymerase chain reaction (q-PCR) was used to assess the 

abundance of bacterial and archaeal 16S rRNA genes, as well as genes representing 

bacterial and archaeal ammonia oxidisers (amoA) and ureolytic bacteria (ureC). 

Primer pairs are listed for each gene in Table 3.1, and the slope (r2) and efficiency 

(E%) of each q-PCR reaction is reported in the Table 3.3. All q-PCR reactions were 

performed on an iCycler iQ 5 thermal cycler (Bio-Rad, California, USA). Standard 

curves for each gene were constructed using serial dilutions of environmental DNA, 

amplified and cloned as described above. Real-time PCR were performed in a 15 µl 

reaction mixture made of 7.5 µl of SensiFAST Sybr No-Rox Kit (Bioline, London, 

UK), 1 µl of DNA template, and primers at the final concentrations reported in Table 

3.1 All reactions were run in technical triplicate for each sample and gene. 

Conditions of q-PCR are reported for each gene in Table 3.2.  
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Table 3.1 Primer concentrations used for polymerase chain reaction (PCR), quantitative polymerase chain reaction (q-PCR) and clone library 

construction for production of DNA standards. 

Target 

gene 

Target organism Primer pair Primer sequence, 

5’ - 3’ 

Final primer 

concentration in 

25/50 µl PCR 

reaction 

Final primer 

concentration 

in 15 µl PCR 

reaction 

Fragment 

size, bp 

Reference 

16S 

rRNA 

Bacteria 

 

Bact 1369F 

Prok 1492R 

(“BACT2”) 

 

CGGTGAATACGTTCYCGG 

GGWTACCTTGTTACGACTT 

 

300 

 

300 

 

123 Suzuki et al., 2000 

16S 

rRNA 

Archaea Parch519f 

ARC915r 

CAGCCGCCGCGGTAA 

GTGCTCCCCCGCCAATTCCT 

 

300 300 396 Coolen et al., 2004 

amoA Bacteria ammonia 

oxidisers 

 

amoA1F 

amoA2R 

GGGGTTTCTACTGGTGGT 

CCCCTCKGSAAAGCCTTCTTC 

 

500 500 490 Rotthauwe et al., 

1997 

 

amoA Archaea ammonia 

oxidisers 

 

Arch-amoA-F 

Arch-amoA-R 

STAATGGTSTGGCTTAGACG 

GCGCCATCCATCTGTATGT 

 

400 400 630 Francis et al., 2005 

ureC Bacteria ammonia 

oxidisers 

 

L2F 

733R 

ATHGGYAARGCNGGNAAYCC 

GTBGHDCCCCARTCYTCRT 

 

700 700 389 Fujita et al., 2008 

ureC Archaea ammonia 

oxidisers 

 

Thaum-UreC-F 

Thaum-UreC-R 

ATGCAATYTGTAATGGAACWACWAC 

AGTTGTYCCCCAATCTTCATGTAATTTTA 

 

800  390 Alonso-Sáez et al., 

2012 

ureC Archaea 

 

CRUR_F155 

CRUR_R1420 

GTHTTTGGKGGVGGVAARAGY  

GCRCCAAACATDGGBCKRTA 

800  1265 Yakimov et al., 

2011 

 

Cloning 

  

M13F 

M13R 

 

CGCCAGGGTTTTCCCAGTCACGAC 

TCACACAGGAAACAGCTATGAC 

 

200 
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Table 3.2 PCR and q-PCR conditions for each functional gene analysed in this study. 

 

 

Target 

gene/organisms 

Den. 

Step 

Num.  

cycles 

Den. 

Step 

Ann. Step Ext. Step Num.  

cycles 

Den. 

Step 

Ann. Step Ext. Step 

PCRs conditions     

B 16S rRNA 94 °Cx2 min     30 94 °Cx1min 55 °Cx1 min   72 °Cx2 min 

A 16S rRNA 94 °Cx4 min     30  94 °Cx30 sec 53°Cx1 min  72 °Cx2 min 

B amoA 94 °Cx7 min 10 94 °Cx1 min 60->50 °C 

x 40 sec 

72 °Cx90 sec 30 94 °Cx1 min 50 °Cx40 sec 72 °Cx90 sec 

A amoA 94 °Cx7 min 10 94 °Cx1 min 60->50 °C 

x 40 sec 

72 °Cx90 sec 30 95 °Cx40 sec 56 °Cx30 sec 72 °Cx1 min 

B ureC 94 °Cx5 min     30 94 °Cx1 min 54 °Cx90 sec 72 °Cx2 min 

A ureC 94 °Cx5 min     30 94 °Cx1 min 54 °Cx90 sec 72 °Cx2 min 

A ureC 94 °Cx5 min     35 94 °Cx1 min 50 °Cx1 min 72 °Cx2 min 

B and A Cloning 94 °Cx2 min     30 94 °Cx1 min 55 °Cx1 min 72 °Cx2 min 

Q-PCRs 

conditions 

         

Target 

gene/organisms 

Denaturation 

Step 

Number of  

cycles 

Denaturation 

Step 

Annealing 

 Step 

Extension Step Ref   

B 16S rRNA 95 °Cx10 min 45 95 °Cx15 sec 62 °Cx5 sec 72 °Cx15 sec Suzuki et al., 2000   

A 16S rRNA 94 °Cx5 min 40  94 °C30 sec 63°Cx40 sec 72 °Cx40 sec  Coolen et al., 2004   

B ureC 95 °Cx10 min 45 95 °Cx15 sec 54 °Cx90 sec   62 °Cx45 sec and 78 

°Cx15 sec 

      Fujita et al., 2008   

B amoA 95 °Cx3 min 40 95 °Cx40 sec 55 °Cx30 sec 72 °Cx1 min and 78 

°Cx20 sec 

  Rotthauwe et al., 

1997 

 

  

A amoA 95 °Cx3 min 40 95 °Cx40 sec 56 °Cx30 sec   72 °Cx1 min and 76 

°Cx20 sec 

  Francis et al., 2005   
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Table 3.3 The slope (r2) and efficiency (E%) of each q-PCR reaction is reported for every 

DNA sample analysed and sampling time. 

 

 

 

 

 

Target Compartment  r2 Summer 
E% 

Summer 

r2 Winter 
E% 

Winter 

Bacterial 

16S rRNA 

Water Column and 

Canopy Water 
0.999 89.6 0.999 82.9 

Biofilm 
0.999 88.0 0.999 92.8 

Sediment 
0.999 88.0 0.998 87.6 

Archaeal 

16S rRNA 

Water Column and 

Canopy Water 
0.999 87.4 0.999 94.8 

Biofilm 0.998 94.6 1.000 95.8 

Sediment 0.999 82.0 0.999 92.8 

Bacterial amoA 

Water Column and 

Canopy Water 
0.998 86.2 0.993 91.3 

Biofilm 0.998 83.8 0.994 78.4 

Sediment 1.000 84.7 0.998 85.1 

Archaeal amoA 

Water Column and 

Canopy Water 
1.000 93.1 0.999 95.6 

Biofilm 0.999 92.3 1.000 74.5 

Sediment 1.000 97.8 0.999 95.3 

Bacterial ureC 

Water Column and 

Canopy Water 
0.999 79.7 0.999 82.8 

Biofilm 0.999 77.2 0.999 77.4 

Sediment 0.999 76.2 0.999 80.0 
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3.3.5 16S rRNA and amoA sequencing 

For both sediment and biofilm samples, the six replicates of extracted DNA for 

each time point and from each meadow were pooled together, so that each meadow 

and each time point was represented by a single sample. The same was done for the 

three replicates from each compartment (surface water and canopy water), except the 

two microenvironments were pooled, so that a single sample represented the water 

column for each meadow and each time point.  

The bacterial and archaeal 16S rRNA genes were amplified and subjected to 

paired-end sequencing using Illumina MiSeq 2500, according to the manufacturer’s 

instructions (Murdoch University, Perth, Western Australia). The V4 hypervariable 

region of the 16S rRNA gene was amplified with the modified versions (Apprill et 

al., 2015) of the 515F 5’– GTGCCAGCMGCCGCGGTAA -3’ and 806R 5’ – 

GGACTACHVGGGTWTCTAAT - 3’primers (Caporaso et al. 2012), following the 

the “16S Metagenomic Sequencing Library Preparation” Part# 15044223 Rev.B 

(http://support.illumina.com/content/dam/illumina-

support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-

library-prep-guide-15044223-b.pdf). Briefly, for each DNA sample, PCR was 

carried out in triplicate, in a 25 μl total volume including 2.5 μl of normalised total 

genomic DNA (5 ng µl-1), 0.2 µM (final concentration) of each forward and reverse 

primer and 12.5 μl of 2x KAPA HiFi HotStart Ready Mix (Kapa Biosystems, USA). 

Extraction blanks and no template controls were always included in all PCR 

amplification. For each sample or control, the PCR products from the three replicates 

were then pooled, checked by gel electrophoresis and purified using AMPure XP 

beads (Beckman Coulter, USA), prior to the index PCR using the Nextera XT Index 

Kit indexes (Illumina, USA). The index PCR was performed as described above; the 

PCR products were purified again using AMPure XP beads (Beckman Coulter, 

USA) and quantified with the Qubit dsDNA HS Assay Kit (Thermo Fisher 

Scientific, USA). For each sample, 1 μl of 1:50 diluted PCR product was run on a 

Bioanalyzer DNA 1000 chip (Agilent 2100) to verify the fragment size (~630 bp). 

All the PCR products were then pooled at equimolar ratio. The pool was then further 

concentrated, purified by a Quiaquick PCR Purification Kit (Qiagen, USA) and 

quantified by using the Qubit dsDNA HS Assay Kit prior to dilution to 4 nM and 

http://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
http://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
http://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
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paired-end sequencing. Sequencing was then performed on a 2 x 300 bp/600 cycle 

V3 kit (Illumina, USA).  

The bacterial and archaeal amoA genes were amplified and subjected to 300 bp 

paired-end sequencing using an Illumina MiSeq 2500 (Molecular Research MrDNA, 

Texas, USA). The primer pairs used for sequencing were: bacamoA1F 5’-

GGGGTTTCTACTGGTGGT-3’, bacamoA2R 5’-

CCCCTCKGSAAAGCCTTCTTC-3’and Arch-amoAF 5’-

STAATGGTCTGGCTTAGACG-3’, Arch-amoAR 5’-

GCGGCCATCCATCTGTATGT-3’.  

3.3.6 Bioinformatics analysis 

An in-house AOA and AOB database was constructed by collecting 

environmental amoA sequences (546 and 528 for bacteria and archaea, respectively) 

from the National Center for Biotechnology Information (NCBI), covering a range of 

marine habitats including seawater, sediment, corals, sponges and macroalgae. The 

database was constructed in MOTHUR (version 1.11.0 for Windows; Department of 

Microbiology and Immunology, The University of Michigan 

[http://www.mothur.org/]) using the Standard Operating Procedure (SOP) (Schloss 

et al., 2013), and sequences failing quality criteria were removed: I excluded any 

sequence with an ambiguous base and/or containing a homopolymer stretch longer 

than eight bases. I also screened sequences for the presence of chimeric reads using 

“chimera uchime” (UCHIME; Edgar et al., 2011). The sequences were then aligned 

in MEGA 6.0 (Tamura et al., 2013), and used as a database against which to assign 

taxonomy to my samples. 

The environmental sequences obtained for this study screened in MOTHUR, 

according to the SOP for MiSeq analyses (Schloss et al., 2013). 16S rRNA gene 

sequences were aligned using against reference sequences from Silva (Yilmaz et al., 

2014). Following alignment, sequences were preclustered for further error reduction 

and ‘chimera uchime’ (Edgar et al., 2011) was used for de novo removal of chimeric 

reads. Screening for contaminant sequences (mitochondria, chloroplasts and 

Eukarya) was performed by using the ‘remove lineage command’. To compare 

bacterial diversity among samples, chimera-free and error-free sequences were used 
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to build a pairwise distance matrix using the ‘dist.seqs’ and ‘cluster’ command. 

Sequences were finally clustered at 97% nucleotide identity. Where possible, 

operational taxonomic units (OTUs) were identified to genus level using the Silva 

reference taxonomy database (Wang et al., 2007). 

For amoA genes, sequences were analysed using the MOTHUR pipeline, as 

described above. Sequences were aligned to the in-house database and screened for 

poor quality and chimeric reads. Cleaned sequences were imported into Geneious 

(v8.0.5; http://www.geneious.com  Kearse et al., 2012) and translated into protein 

amino acids. Sequences presenting stop codons were manually removed, and OTUs 

defined at 97% nucleotide identity.  

For 16S rRNA and both bacterial and archaeal amoA, OTUs were used to 

estimate the depth of sequencing [through cover percentage estimator (Good 1953) 

and rarefaction curves built in MOTHUR), richness (Chao1; Chao, 1984) and 

calculate Simpson (1949) index of diversity. For amoA, representative sequences for 

each OTU were identified as the sequences having the maximum average similarity 

to the other sequences in the same OTU, and were used to construct a phylogenetic 

tree using maximum likelihood and 1000 bootstrap replicates in MEGA6.0. 

Phylogenetic trees were then imported into the website iTOL: Interactive Tree of 

Life (http://itol.embl.de/). 

3.3.7 Statistical Analyses 

Statistical analyses on gene abundances and sequencing data were performed 

in PRIMER 6 (PRIMER-E Ltd, Plymouth, UK; Clarke 1993) and MOTHUR 

(Schloss et al., 2013). Euclidean similarity matrices were calculated from log10-

transformed abundance data to meet the requirements of homogeneity of variance. 

Differences in abundance among genes (16S rRNA, amoA and ureC) related to 

seagrass microenvironments (surface water, canopy water, sediment and leaves), 

within meadows and sampling times (December 2013 and August 2014) were tested 

in PRIMER 6 (PRIMER-E; Clarke 1993). The factors ‘gene’, ‘compartment’ and 

‘sampling time’ were fixed factors, while ‘meadow’ was a random factor nested. 

Sorenson (Bray-Curtis) distance was constructed on square root-transformed MiSeq 

sequencing data and principal coordinates analysis (PCoA) was used to visualise 

http://www.geneious.com/
http://itol.embl.de/
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patterns in microbial community structure (PRIMER-E; Clarke 1993). Similarity 

percentage (SIMPER) analysis was used to identify OTUs that were driving patterns 

of separation between groups (PRIMER-E; Clarke 1993). Venn diagrams were 

created in MOTHUR (Schloss et al., 2013) to visualise patterns in the distribution of 

AOA and AOB between different seagrass meadow microenvironments. For 16S 

rRNA and amoA genes, comparisons of the community structure were performed 

using the weighted and unweighted UniFrac algorithm (Lozupone & Knight, 2005) 

to construct phylogenetic trees. While unweighted UniFrac only infers community 

diversity without accounting for differences in abundance, the weighted UniFrac 

approach is used to also account for changes in relative abundance of individual 

OTUs. Microbial community structure results were analysed by using the ‘thetayc’ 

calculator (Yue & Clayton, 2005) in MOTHUR (Schloss et al., 2013).  

3.4 Results 

3.4.1 Differences in microbial gene abundances among seagrass meadow 

microenvironments 

Regardless of the primer pairs used, no ureC gene associated with archaea was 

found in this study. Consequently, only the results for bacterial and archaeal 16S 

rRNA, amoA and bacterial ureC are described in this chapter. Based on q-PCR 

results, gene abundances differed among gene type, compartment, and meadow 

within compartment but not between sampling times. However, there were 

significant two-way interactions between gene type and compartment, meadow and 

time, and between compartment and time and meadow and time, and a three-way 

interaction among gene type, compartment and time (Table 3.4, p<0.05).   

In general, Bacterial abundance was about one order of magnitude higher than 

archaeal abundance in all the seagrass microenvironments and sampling time (Fig. 

3.2 A & B). The abundances of the target genes were significantly greater within the 

seagrass biofilm compared to sediment and both water microenvironments on both 

sampling times (F=17.9 p<0.001, Fig. 3.2). Moreover, ureC gene abundance was 

between 100 and 500 times greater in the seagrass biofilm than in sediment (during 

December 2013 and August 2014, respectively) (p<0.001), and up to five orders of 
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magnitude higher than in both water microenvironments (p<0.001, Fig. 3.2 C). AOB 

abundance was 40 to 280 times greater in the biofilm than in sediment (in August 

2014 and December 2013, respectively) (p<0.001), and four orders of magnitude 

higher than in both water microenvironments (p<0.001, Fig. 3.2 D). AOA abundance 

within the biofilm was 70 times greater compared to the sediment compartment 

(p<0.001), and four orders of magnitude higher than both water column 

microenvironments (p<0.001, Fig. 3.2 E). Bacterial ureC abundance dominated over 

AOB in all the microenvironments and sampling times. However, a significantly 

greater abundance of bacterial amoA was observed in all the microenvironments and 

time points when compared to AOA (p<0.05) with the only exception for the AOA 

biofilm in the first meadow (Fig. 3.2 E). The abundances of bacterial and archaeal 

16S rRNA and bacterial ureC in each compartment did not show significant 

differences between sampling times (Fig. 3.2 A & C). Bacterial amoA showed an 

increase in abundance within sediment during winter (p<0.05), but no variations for 

the biofilm and water microenvironments (Fig. 3.2 D). The same pattern was 

followed by archaeal amoA abundance for sediment (p<0.05), with no variation 

between sampling occasions for the biofilm compartment, but a decrease in 

abundance in the surface and canopy water at the second sampling time (p<0.05, Fig. 

3.2 E). 
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Table 3.4 PERMANOVA test on gene abundances within four seagrass microenvironments 

(water column, canopy water, sediment and biofilm) in two sampling seasons. Permanova 

test shows variations in the abundance of functional genes between microenvironments (first 

column), meadows and sampling times. For each functional gene there are significant 

differences in the abundance within the different microenvironments, but not among 

meadows. Significant differences in AOB and AOA abundances are also related to different 

time points. Significant values (p < 0.05) are shown in bold. 

Factor df Pseudo-F P 

Gene type (Ge) 4 740.3 0.0001 

Compartment (Co) 3 204.4 0.0001 
    
Sampling Time (Ti) 1 0.81 0.39 

Meadow (Me) in (Co) 8 2.48 0.0081 

Ge x Co 12 27.8 0.0001 

Ge x Ti 4 10.9 0.0001 

Co x Ti 3 11.7 0.0021 

Ge x Me (Co) 32 1.1 0.31 

Ti x Me(Co) 8 3.7 0.0002 

Ge x Co x Ti 12 17.9 0.0001 

Ge x Ti x Me (Co) 32 0.9 0.69 

Total 735   
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Fig. 3.2. - Mean abundances (+1 SE) of bacterial 16S rRNA, archaeal 16S rRNA, 

bacterial ureC, bacterial amoA, and  archaeal amoA  within four microenvironments 

(biofilm, sediment, surface water, canopy water)  and two separate sampling times (solid 

colour for December 2013 and diagonal stripes for August 2014). In order to compare 

abundance patterns between all genes, log10 abundances are plotted on each y axis, varying 

from 103 to 1012 for all functional genes, except AOA (101 to 1012). The four 

microenvironments are plotted on the x axis, whereby each group of three bars represents the 

three replicate seagrass meadows sampled. Error bars indicate standard error, calculated 

from six replicates for biofilm and sediment, and three replicates for surface and canopy 

water. Gene abundances were calculated from standard curves using the r2, y intercept and 

efficiency values given in Table 3.3. 
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3.4.2 Changes in bacterial and archaeal community diversity between different 

seagrass meadow microenvironments and seasons 

For this study, 20,684 bacterial and 20,979 archaeal 16S rRNA high quality 

sequences were retrieved from 18 environmental samples which led to 574 bacterial 

and 579 archaeal 16S rRNA OTUs. Richness estimator (Chao1) revealed that 

sampling effort was sufficient for both the bacterial and archaeal 16S rRNA in all the 

samples analysed (Table 3.5). For bacteria 16S rRNA, the sediment harboured the 

highest number of OTUs (204 OTUs out 574 obtained from 8504 sequences), 

followed by water column (190 OTUs out 574 obtained from 5489 sequences) and 

biofilm (180 OTUs out 574 obtained from 6691 sequences). A similar result was 

found for the archaeal 16S rRNA sequencing, whereby the highest number of OTUs 

were associated with the sediment (252 out 579 retrieved from 8992 sequences), 

followed by biofilm (203 out 579 retrieved from 6728) and water column (171 out 

579 retrieved from 5259). 

To analyse how well each microenvironments was sampled, sequence 

coverage (%) was calculated. The analysed sequence coverage highlighted the depth 

of sequencing by varying from 90% up to 99% for both bacteria and archaea (Table 

3.5) and supported the results obtained from the rarefaction curves (reported in 

Appendix A). Simpson index showed that diversity was well covered within the 

samples analysed, as shown in Table 3.5. A high diversity of the bacterial 

community was detected in almost every sample analysed, varying between 0.02 and 

0.09 among all the seagrass meadow microenvironments and sampling seasons, with 

a lower diversity detected for the biofilm in meadow1 and meadow3 and water 

column meadow3 in summer (0.14, 0.17 and 0.17, respectively). 

For archaeal 16S rRNA, Simpson index indicated that the highest community 

diversity was related to the microorganisms associated with P. sinuosa biofilm 

(varying between 0.02 and 0.11 with the only exception of meadow2 in winter, 

0.71). The archaeal community in the water column revealed the lowest diversity, 

varying between 0.13 to 0.25 and, interestingly, the archaeal sediment community 

revealed a relatively low diversity (0.06 to 0.41), regardless of the high sequencing 

effort (7428 16S rRNA sequences). 

  



54 

 

Table 3.5 Bacterial and archaeal 16S rRNA cover percentage (%), community richness 

(Chao1) and diversity (Simpson) indices. 

 

 

 

Archaeal 16S rRNA 

Biofilm M1_summer 1976 49 96 

96 

52 0.11 

Biofilm M2_summer 480 21 92 

97 

 

25 0.04 

Biofilm M3_summer 880 34 97 48 0.02 

Biofilm M1_winter 1480 35 91 44 0.05 

Biofilm M2_winter 936 29 93 41 0.71 

Biofilm M3_winter 976 31 96 39 0.05 

Sediment M1_summer 2528 52 98 68 0.14 

Sediment M2_summer 944 26 95 35 0.11 

Sediment M3_summer 1136 31 97 44 0.18 

Sediment M1_winter 2944 51 99 83 0.06 

Sediment M2_winter 680 28 93 37 0.41 

Sediment M3_winter 760 37 96 39 0.20 

Water M1_summer 556 21 92 37 0.23 

Water M2_summer 524 25 90 33 0.25 

Water M3_summer 836 27 95 41 0.19 

Water M1_winter 1184 29 96 48 0.17 

Water M2_winter 1197 32 98 57 0.14 

Water M3_winter 962 20 94 39 0.23 

Bacterial 16S rRNA    

Richness  

estimator 

Diversity 

index 

Group 

Nums seqs 

observed  

OTUs 

obtained 

(%) 

Coverage Chao1 Simpson 

Biofilm M1_summer 637 25 90 

 

32 0.14 

Biofilm M2_summer 921 27 98 34 0.09 

Biofilm M3_summer 2139 44 94 52 0.17 

Biofilm M1_winter 1814 39 92 47 0.06 

Biofilm M2_winter 749 17 98 32 0.02 

Biofilm M3_winter 831 28 97 34 0.03 

Sediment M1_summer 606 18 95 32 0.03 

Sediment M2_summer 2717 57 99 58 0.05 

Sediment M3_summer 1053 29 96 38 0.03 

Sediment M1_winter 883 19 92 32 0.07 

Sediment M2_winter 1288 35 94 47 0.04 

Sediment M3_winter 2157 46 97 48 0.03 

Water M1_summer 933 28 95 39 0.08 

Water M2_summer 794 25 98 29 0.05 

Water M3_summer 917 36 93 36 0.17 

Water M1_winter 729 28 95 31 0.04 

Water M2_winter 956 31 94 38 0.05 

Water M3_winter 1160 42 96 44 0.05 
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Bacterial 16S rRNA OTUs fell into six major lineages: Proteobacteria, 

Planctomycetales, Verrucomicrobiales, Bacteroidetes, Firmicutes and Actinobacteria 

(Fig. 3.3 A). Among all of the different microenvironments, most of the sequences 

(241 OTUs, equal to 41.6%) were of proteobacterial origin and, of all the 

proteobacterial sequences, the majority fell into the Betaproteobacteria (43.9%), 

followed by Gammaproteobacteria (26%), Alphaproteobacteria (21.2%), 

Deltaproteobacteria (6.3%) and Epsilonproteobacteria (1.6%). Planctomycetes, 

Bacteroidetes and Verrucomicrobiales were relatively abundant (11.5%, 11.1% and 

8.7%, respectively), while Actinobacteria and Firmicutes were less abundant (6.7% 

and 2.5%, respectively) (Fig. 3.3 A). For the biofilm, the Betaproteobacteria, 

Verrucomicrobiales and Bacteroidetes represented the most abundant bacterial 

lineages, while Deltaproteobacteria and Epsilonproteobacteria were not present on 

the P. sinuosa leaf biofilm during either sampling time. For the water column, 

differences were clear depending on sampling season. In particular, 

Alpaproteobacteria and Deltaproteobacteria were absent in summer but present in 

winter, while Firmicutes were absent in winter but present in summer, and 

Planctomycetes and Verrucomicrobia were absent from the water column during 

both sampling times.  

For archaeal 16S rRNA, sediment samples were clearly dominated by 

Euryarchaeota (58.4%), while the water column harboured a greater abundance of 

Crenarchaeota (60.8%), and the biofilm hosted a higher abundance of 

Thaumarchaeota (42.9%) (Fig. 3.3 B). 
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Fig. 3.3 – Percentage contributions of 16S rRNA sequences for Bacteria and Archaea 

retrieved from water column (WC), sediment and biofilm microenvironments during two 

sampling times (summer, December 2013, and winter, August 2014) from the three P. 

sinuosa meadows in Marmion Marine Park, Western Australia. 
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The 20 most abundant OTUs obtained from bacterial 16S rRNA belonged to 

Proteobacteria, in particular Betaproteobacteria (comprising four OTUs) and 

Gammaproteobacteria (comprising six OTUs): Bacteroidetes (four OTUs), 

Verrucomicrobia (OTU 8) and Actinobacteria (OTU 20), while three OTUs (OTU 

14, OTU 16 and OTU 17) were ‘uncultured bacteria’ (Fig. 3.4). 

Almost every OTU matched with known sequences obtained from studies 

performed in different environments [i.e. marine waters (Flammeovirgaceae, 

Nitrosomonadales and Actinobacteria), environmental biofilm (uncultured marine 

bacterium), plant biofilm/surface (Flavobacteriaceae and Haloferula sp.), associated 

with marine organisms such as sponges (Haliea sp., Vibrio sp., marine sponge 

symbionts), corals (Gammaproteobacteria, Bacteroidetes and OTU 16), mollusc gut 

(Maritimimonas rapanae) and soils (Methylophilus)], with the only exception of 

OTU 12 associated with P. sinuosa biofilm that matched only at 92% with 

Luteolibacter cuticulihirudinis. The archaeal 16S rRNA community was mainly 

composed of Thaumarchaeota, Marine Group II Euryarchaeota and Marine Group I 

Crenarchaeota (Fig. 3.5). Also for the archaea, the 20 most abundant OTUs matched 

with sequences found in studies performed within the marine environment, in 

particular were related to organisms found in the water column form the Gulf of 

Mexico and Adriatic Sea, hydrothermal vents and surface microlayer of corals. Only 

three OTUs were not related to known sequences: two OTUs matched at 96% with 

organisms retrieved from marine sediment (collected from Japan, OTU 20) and 

surface microlayer of tropical corals (OTU 8), the third OTU matched at 92% with 

an archaea retrieved from the water column in South Pacific (OTU 12) (Fig. 3.4). 
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Fig. 3.4 - Heatmap of bacterial and archaeal 16S rRNA (97% sequence identity cutoff) obtained from biofilm (Bf), sediment (Se) and 

water column (WC) of three P. sinuosa meadows (M1, M2, M3) during two sampling occasions (Summer and Winter). The 20 most 

abundant OTUs are represented and labelled with their closest sequence match, determined using BLAST, and its corresponding 

accession number. 
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PCoA comparison of bacterial and archaeal diversity associated with the three 

microenvironments of P. sinuosa meadows revealed clear partitioning of the 

communities belonging to the water, sediment and biofilm (Fig. 3.5), with the first 

two axes explaining 55.2% and 49.6% of bacterial and archaeal variability, 

respectively. Regarding to the biofilm, the bacterial 16S rRNA community structure 

was mainly influenced by OTU 1 (Hydrogenolus hirschii), OTU 3 (Vibrio harveyi), 

OTU 12 (Luteolibacter cuticulihirudinis) and OTU 17 (uncultured marine 

bacterium) (average dissimilarity between biofilm and sediment was 86%, SIMPER 

analysis). OTU 4, OTU 6, OTU 14 (uncultured marine bacterium), OTU 5 (Halelia 

mediterranea) and OTU 16 (Fabibacter p.) determined the cluster of the sediment 

community (average dissimilarity between sediment and water was 94%, SIMPER 

analysis), while the water column bacterial community structure was mainly 

influenced by the presence of Vibrio sp (OTU 13) and uncultured Flammeovirgaceae 

(OTU 18) (average dissimilarity between biofilm and water was 97%, SIMPER 

analysis). Changes in the archaeal community structure relative to different seagrass 

microenvironments were mainly driven by OTU 1 (Nitrosopumilus sp.), OTU 9 

(uncultured archaeon) and OTU 11 (Euryarchaeota) for the biofilm, OTU 2 and 14 

(Euryarchaeota), OTU 18 (Thaumarchaeota), OTU 20 (uncultured archaeon) for the 

sediment and OTU 7 (uncultured archaeon) for the water column.  

For both bacterial and archaeal 16S rRNA, the observed differences in 

community composition among microenvironments were confirmed by the UniFrac 

analysis (Table 3.6). Both the weighted and unweighted UniFrac measures showed 

significant differences (p<0.001 and p<0.05; Table 3.6) in the bacterial community 

composition among the three microenvironments, except for biofilm vs. sediment 

(Table 3.6). Archaeal community composition followed a similar pattern, whereby 

significant differences among the microenvironments were evident using both the 

unweighted and weighted UniFrac measures, except for the biofilm vs. sediment in 

the unweighted UniFrac (Table 3.6). Patterns across microenvironments using 

Weighted UniFrac were similar across sampling times (Table 3.6).  
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Fig. 3.5 – Principal coordinates analysis plot (PCoA) of bacterial and  archaeal 16S 

rRNA OTUs from the water column, sediment and biofilm during two sampling occasions. 

Vectors are overlaid, and represent the OTUs which contributed mostly to the diversity of 

these communities. 
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Table 3.6 Weighted and unweighted UniFrac measures of differences in the bacterial and 

archaeal community composition between different microenvironments of P. sinuosa 

meadows (biofilm, sediment and water column) and two different seasons (summer, 

December 2013, and winter, August 2014). 

 

3.4.3 Differences in the diversity of the ammonia-oxidising community between 

different seagrass meadow microenvironments and seasons 

A total of 173 archaeal and 178 bacterial OTUs were retrieved from 18 

samples. Richness estimator (Chao1) and Good’s sequence coverage (together with 

the rarefaction curves reported in Appendix A) revealed that sampling effort was 

sufficient for both the bacterial and archaeal amoA sequenced in all the samples 

analysed (Table 3.7), however based on the Simpson index, the AOB community 

exhibited a higher diversity than the AOA community (Table 3.7). Moreover, 

Simpson measure showed a higher diversity associated with marine sediments than 

both biofilm and water (Table 3.7).  

UniFrac Test Groups Compared Score P 

Bacterial 16S rRNA  

Weighted  

biofilm-sediment 0.92 <0.001 

sediment-water 1 <0.001 

biofilm-water 1 <0.001 

Bacterial 16S rRNA  

Unweighted 

biofilm-sediment 1   0.044 

sediment-water 1   0.043 

biofilm-water 1   0.021 

Bacterial 16S rRNA  

Weighted 

biofilm_summer-biofilm_winter 0.90 0.001 

sediment_summer-sediment_winter 0.70   0.014 

water_summer-water_winter 0.90 <0.001 

Archaeal 16S rRNA  

Weighted 

biofilm-sediment 0.86 <0.001 

sediment-water 1 <0.001 

Biofilm-water 0.92 <0.001 

Archaeal 16S rRNA  

Unweighted 

biofilm-sediment 0.99   0.096 

sediment-water 1   0.043 

biofilm-water 1 <0.001 

Archaeal 16S rRNA  

Weighted 

biofilm_summer-biofilm_winter 0.81   0.001 

sediment_summer-sediment_winter 0.83   0.014 

water_summer-water_winter 0.90 <0.001 
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Seagrass sediments harboured the greatest number of AOB OTUs, with a total 

of 62 OTUs; 55 OTUs were found in the biofilm, and 61 OTUs were present in 

water (Fig. 3.6). During both sampling occasions, there was a high degree of 

specificity of AOB communities in the different seagrass meadow 

microenvironments, with ≤16 OTUs shared among the three microenvironments 

during each season (Fig. 3.6, A & B). Observed differences at the OTU level were 

confirmed by UniFrac analysis (Table 3.8). However, while the weighted UniFrac 

detected significant differences when comparing all microenvironments (p<0.001), 

the unweighted UniFrac did not detect any significant differences (Table 3.8). The 

Weighted UniFrac also indicated significant differences when comparing AOB 

communities between the two times (p<0.001).  

Similar to AOB, seagrass sediments harboured the greatest number of AOA 

OTUs (88), while biofilm and water hosted 54 and 31 OTUs, respectively. These 

values were consistent with the values of Chao1 and Simpson indices reported in 

Table 3.6, with a higher diversity detected for sediment samples (varying between 

0.05 and 0.14).AOA showed a high degree of “compartment specificity” among 

OTUs, with only 3 OTUs shared between the different seagrass meadow 

microenvironments during summer (Fig. 3.6 C), and none during winter (Fig. 3.6 D). 

The biofilm and sediment microenvironments shared a greater number of OTUs than 

either compartment shared with the water column, during both seasons (Fig. 3.6 C & 

D).   

The observed differences in community composition among different 

microenvironments were confirmed by UniFrac analysis, comparing the AOA 

community between the three microenvironments (Table 3.8). The weighted UniFrac 

measure indicated significant differences (p<0.001) in AOA community structure 

between the three microenvironments. The unweighted UniFrac, which does not 

account for OTU abundances, showed a significant difference in biofilm vs. water 

and sediment vs. water (p<0.05), but no difference in biofilm vs. sediment. Temporal 

variations in AOA community structure were also evident, whereby the two 

sampling times shared 8 OTUs for biofilm, 23 OTUs for sediment, but only one 

OTU for water (p<0.001, Table 3.8).   
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Table 3.7 Bacterial and archaeal amoA cover percentage (%), community richness (Chao1) 

and diversity (Simpson) indices. 

 

Archaeal amoA 

Biofilm M1_summer 213 6 90 

9 

12 0.22 

Biofilm M2_summer 338 6 91 15 0.24 

Biofilm M3_summer 113 4 90 7 0.42 

Biofilm M1_winter 362 12 92 17 0.17 

Biofilm M2_winter 334 11 94 16 0.22 

Biofilm M3_winter 523 17 96 27 0.16 

Sediment M1_summer 334 15 94 17 0.07 

Sediment M2_summer 141 13 88 13 0.14 

Sediment M3_summer 435 20 96 24 0.05 

Sediment M1_winter 156 10 93 11 0.08 

Sediment M2_winter 312 16 90 16 0.09 

Sediment M3_winter 278 12 94 12 0.12 

Water M1_summer 157 5 88 12 0.08 

Water M2_summer 345 6 91 18 0.21 

Water M3_summer 214 6 93 14 0.27 

Water M1_winter 113 6 91 8 0.09 

Water M2_winter 88 4 89 6 0.42 

Water M3_winter 192 7 93 11 0.41 

 

Bacterial amoA 

 

   

Richness  

estimator 

Diversity 

index 

Group 

Num. seqs 

observed 

OTUs 

obtained 

(%) 

Coverage  Chao1 Simpson 

Biofilm M1_summer 213 7 89 

9 

16 0.22 

Biofilm M2_summer  338 11 92 15 0.11 

Biofilm M3_summer 143 9 90 10 0.12 

Biofilm M1_winter 362 12 92 18 0.06 

Biofilm M2_winter 229 6 88 11 0.11 

Biofilm M3_winter 317 8 89 13 0.21 

Sediment M1_summer 334 13 94 17 0.05 

Sediment M2_summer 141 7 88 9 0.03 

Sediment M3_summer 156 8 87 10 0.07 

Sediment M1_winter 312 11 93 16 0.05 

Sediment M2_winter 223 9 89 12 0.11 

Sediment M3_winter 440 15 94 20 0.03 

Water M1_summer 227 9 89 14 0.08 

Water M2_summer 345 12 91 18 0.21 

Water M3_summer 432 15 96 18 0.11 

Water M1_winter 215 11 91 13 0.09 

Water M2_winter 165 8 89 9 0.22 

Water M3_winter 192 7 88 11 0.18 
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Fig. 3.6 - Venn Diagram of AOB (A, B) and AOA (C, D) OTUs shared among the three 

habitats in summer (A, C), and winter (B, D). The different colours refer to the diffetrent 

seagrass microenvironments (green for biofilm, blue for water and brown for the sediment). 
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Table 3.8 Weighted and Unweighted UniFrac Test on the bacterial and archaeal community 

composition among different microenvironments of P. sinuosa meadows (biofilm, sediment 

and water) and the two sampling seasons (summer, December 2013, and winter, August 

2014). 

 

3.4.4 Phylogeny of bacterial and archaeal ammonia oxidisers 

Bacterial phylogenetic data for the amoA gene showed that four of the 20 most 

abundant OTUs belonged to Betaproteobacteria, which corroborated my previous 

results on the bacterial 16S rRNA phylogenetic data that showed a high abundance 

of Betaproteobacteria within the sample analysed (Fig. 3.7). However, despite all the 

OTUs matching sequences retrieved from other environmental studies (except for 

OTU 16, 96% match with an uncultured ammonia-oxidising bacterium), many were 

UniFrac Test Groups Compared Score P 

AOB 

Weighted  

biofilm-sediment 0.97 0.001 

sediment-water 0.98 <0.001 

biofilm-water 0.99 <0.001 

AOB 

Unweighted 

biofilm-sediment 0.99 0.44 

sediment-water 0.99 0.88 

biofilm-water 0.99 0.74 

AOB 

Weighted 

biofilm_summer-biofilm_winter 0.99 <0.002 

sediment_summer-sediment_winter  0.96 <0.001 

water_summer-water_winter 0.93 0.001 

AOA  

Weighted 

biofilm-sediment 0.98 <0.001 

sediment-water 0.93 <0.001 

Biofilm-water 0.93 <0.001 

AOA 

Unweighted 

biofilm-sediment 1 0.055 

sediment-water 0.99 0.002 

biofilm-water 1 0.048 

AOA  

Weighted 

biofilm_summer-biofilm_winter 0.94 0.002 

sediment_summer-sediment_winter  0.97 0.001 

water_ summer-water_winter 0.93 <0.001 
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identified as ‘uncultured bacterium’ or ‘uncultured ammonia-oxidizing bacterium’ 

(Fig. 3.7). For archaea, the 20 most abundant amoA OTUs were mainly related to 

Thaumarchaeota or uncultured crerchaeota/archaeaon. Similar to bacteria, almost all 

OTUs matched sequences retrieved from other environmental studies, except OTU 9, 

10 and 18 (95%, 96% and 92% match with known organisms) (Fig. 3.7).   
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Fig. 3.7 Heatmap of bacterial and archaeal 16S rRNA (97% sequence identity cutoff) obtained from biofilm (Bf), sediment (Se) and water column (WC) 
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Fig. 3.7 Heatmap of bacterial and archaeal 16S rRNA (97% sequence identity cutoff) obtained from biofilm (Bf), sediment (Se) and water column (WC) 

Fig. 3.7 - Heatmap of bacterial and archaeal amoA (97% sequence identity cutoff) obtained from biofilm (Bf), sediment (Se) and water 

column (WC) of three P. sinuosa meadows (M1, M2, M3) in two sampling occasions (Summer and Winter). The 20 most abundant OTUs 

are represented with their closest sequence match determined from Genebank BLAST and its corresponding accession number. 
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Phylogenetic tree construction showed that the all the AOB OTUs retrieved from 

this study belonged to the class Betaproteobacteria. Cluster 1 comprised only 4 

sequences, all retrieved from sediment, and were related to the Nitrosomonas ureae 

cluster identified from previous studies (Francis et al., 2003). The remaining OTUs 

formed two further clusters (Cluster 2 and Cluster 3), which were Nitrosomonas sp. 

related (Fig. 3.8). Cluster 2 comprised two Subclusters, whereby OTUs from 

Subcluster 1 were related to an AOB OTU retrieved from marine sponges (Mohamed 

et al., 2009), while Subcluster 2 comprised 10 unknown OTUs, all belonging to the 

water column compartment. Finally, Cluster 3 OTUs represented all of the seagrass 

meadow microenvironments. 13 out of 28 OTUs belonging to the water column 

compartment were unknown, 8 out of 24 biofilm OTUs were unknown, and 9 out of 

30 sediment OTUs were unknown. Most of the known sequences from Clusters 2 

and 3 were closely related to Nitrosomonas sp.-like OTUs previously identified on 

macroalgae (Osmundaria volubilis, Phyllophora crispa, and Laminaria rodriguezii) 

from the Mediterranean Sea (Trias et al., 2012), sediment from South China Sea 

(Cao et al., 2011), and the water column from San Francisco Bay (Francis et al., 

2003; Beman & Francis 2006).  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035804/#CR14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035804/#CR3
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Fig. 3.8 AOB Phylogenetic Tree. The black dots represents nodes with bootstrap values >50. Smaller dots have lower bootstrap values, while 

bigger dots have values >70 and >90 as shown in the figure. Cluster1 is represented by sequences retrieved from sediment. Cluster2 comprises two 

subclusters, Subcluster1 host 10 OTUs all retrieved from water column, while the 94 OTUs of Subcluster2 are representative of all the 

microenvironments.  OTUs from Cluster3 belonged to all the microenvironments. All the OTUs were related to the Betaproteobacteria, 

Nitrosomonas sp.-like organisms. 
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Compared with the AOB tree, the phylogeny of achaeal amoA OTUs was more 

complex (Fig. 3.9). Phylogenetic tree construction showed that the archaeal amoA 

OTUs were divided into 5 distinct clusters, two of which clearly separated according 

to seagrass meadow compartment (Fig. 3.9). Cluster 1 fell into a phylogenetic group 

comprising only 11 sequences, all retrieved from biofilm samples and related to 

Nitrosotalea sp. Only 4 OTUs were closely related to OTUs retrieved from other 

marine systems, globally, including: Indian Ocean water column (Kuma et al., 2011, 

unpublished), estuarine sediment (Bano et al., 2008, unpublished), freshwater 

aquarium biofilters (Sauder et al., 2011) and Red Sea cold seeps (Cao et al., 2014, 

unpublished). All the remaining biofilm OTUs were unknown. The highest number 

of OTUs (Cluster 2; 97 out of 173) were related to the Thaumarchaeal Group 1.a, 

which included the cultured species Nitrosopumilus maritimus and Crenarchaeum 

symbiosum. This cluster contained OTUs belonging to all seagrass meadow 

microenvironments, as well as OTUs retrieved from previous studies, including: 

coastal/estuarine (i.e. San Francisco Bay Estuary, Pacific Ocean; Mosier & Francis, 

2008), as well as coastal sediment from the South China Sea, Japan (Cao et al., 

2011) and seagrass (Zostera marina) meadow (Ando et al., 2009). Cluster 3 

comprised 16 OTUs, all related to biofilm and sediment. Of these OTUs, 7 were 

related to OTUs previously associated with macroalgae (O. volubilis, P. crispa, and 

L. rodriguezii) and biofilm (collected near the Balearic Islands, in the Mediterranean 

Sea; Trias et al., 2012), sediment from the East China Sea (He et al., 2016), and 

aquarium biofilters (Sauder et al., 2011). The remaining 9 did not have any match 

with known OTUs. 41 OTUs fell into Cluster 4, representating biofilm and sediment. 

Of the OTUs belonging to the sediment compartment, 11 out of 26 OTUs were 

unknown, while 10 out of 13 OTUs belonging to the biofilm compartment were 

unknown. The remaining OTUs were related to OTUs identified in sediment samples 

from the South China Sea (Cao et al., 2011), surface sediment from the Western 

Pacific (Cao et al., 2011), and biofilm (Trias et al., 2012) and sponge (Mycale 

laxissima) tissue from the Western Mediterranean Sea (Zhang et al., 2014). Finally, 

all of the 9 OTUs comprising cluster 5 were from samples belonging to the water 

column compartment and hey did not match any previously identified amoA OTUs.  

.
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Fig. 3.9 AOA Phylogenetic Tree. The black dots represents nodes with bootstrap values >50. Smaller dots have lower bootstrap values, while 

bigger dots have values >70 and >90 as shown in the figure. Cluster1 is represented by sequences retrieved from biofilm and sequences from 

Cluster5 belonged to water. Cluster 3 and 4 hosted sequences belonging to biofilm and sediment, while OTUs from Cluster2 were representative of 

all the seagrass environment. All the sequences belonged to the Thaumarchaeota group I.Ia and Thaumarchaeota group I.Ia associated cluster. 
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3.5 Discussion 

In this study, I investigated the abundance and diversity of the microbial (bacterial 

and archaeal) community associated with the biofilm attached to the leaves of the 

seagrass P. sinuosa and the surrounding environment (sediment and water). 

Specifically, I investigated the abundance and diversity of microorganisms 

potentially involved in N-cycling processes within P. sinuosa meadows: ammonia-

oxidising microorganisms and ureolytic bacteria, which could link the consumption 

of DON to the production of DIN in the seagrass meadow ecosystem.  

16S rRNA gene abundances clearly indicate that P. sinuosa leaf surface 

represents a suitable habitat for the settlement of both bacteria and archaea. The 

abundance of microorganisms associated with the P. sinuosa biofilm was always 

higher than abundances in the surrounding environment during both seasons 

(summer and winter) These results are in agreement with Wahbeh and Mahasneh 

(1984), who found the highest number of bacteria associated with leaves of three 

species of seagrass (Halophila ovalis, Halophila stipulacea and Halodule universis), 

compared to various other vegetation microenvironments (stem, root, rhizome).  

Furthermore, 16S rRNA gene phylogenetic analyses suggest that the microbial 

community associated with the P. sinuosa leaf surface strongly differs from the 

communities present in the surrounding environment. As previously shown for 

several other marine plants (Halophila stipulacea, Potamogeton perfoliatus, 

Vallisneria americana, Zostera marina and Spartia. pectinata pectinata; Weidner et 

al., 2000; Crump & Koch, 2008), it seems likely that marine plants harbour a “core 

epiphytic microbiome”, probably due to the strong influence exerted by seagrasses 

on their leaf surfaces, with respect to the release of oxygen, nutrients and antibiotics 

(Kirchman et al.,  1984; Engel et al., 2006; Newby et al., 2006). In fact, one of the 20 

most abundant bacteria isolated form P. sinuosa biofilm is related to 

Hydrogenophilus hirschii, a chemolithoautotrophic bacterium that grows using 

hydrogen as electron donor and oxygen as electron acceptor (Stohr et al., 2001). 

Based on its metabolism, H. hirschii seems suited for living an endophytic life 

associated with an autotroph organism. Additionally, two abundant bacteria 

associated with P. sinuosa biofilm belong to the Bacteroidetes (Flavobacteriaceae) 

and Verrucomicrobiaceae (Luteolibacter cuticulihirudinis), which have been found 
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associated with the biofilm of another seagrass (Halodule beaduettei) from the 

Upper Laguna Madre, Gulf of Mexico (Chilton & Cammarata, unpublished) and the 

surface of the medicinal leech Hirudo medicinalis, respectively (Zhang et al., 2017). 

This is interesting, because it implies that these bacteria favour an epiphytic lifestyle, 

and may therefore be common members of the “seagrass microbiome”. The water 

column population seems dominated by organisms related to Vibrio sp. Sediment 

and water also host organisms related to Halelia sp. and Halelia mediterranea 

(isolated from the Western Mediterranean Sea) which are capable of degrading 

amino acids. Regarding the community structure of the archaeal population, it is 

clear that there is a strong affiliation between P. sinuosa and Nitrosopumilus-like 

Thaumarchaeotes in the leaf biofilm, although the majority of archaea were 

represented by ‘unknown’ uncultured microorganisms. 

Since N is considered a key element for seagrass growth and productivity, and is 

usually limited within the marine environment, it seems likely that P. sinuosa would 

preferentially host epiphytic microorganisms that would be involved in N 

transformations. Using q-PCR I showed that, within three P. sinuosa meadows and 

four seagrass microenvironments (surface water, canopy water, sediment and 

biofilm), ureolytic bacteria and ammonia-oxidising bacteria (AOB) and archaea 

(AOA) were significantly (up to 6 orders of magnitude) more abundant in the leaf 

biofilm than the surrounding environment. However, since this is the first study to 

investigate the presence and abundance of ureolytic microorganisms on marine 

plants, I was unable to compare my results to previous studies. This highlights the 

significant, and important, work yet to be done in marine microbiome research. 

The abundances of ureolytic bacteria were between 5 and 50 times greater than 

AOB abundances in all seagrass meadow microenvironments. The primer pair 

chosen for targeting the bacterial ureC in the present study should only match with 

the AOB community; consequently, ureC and AOB should have shown similar 

abundances. Possible explanations for discrepancies between bacterial ureC and 

amoA gene abundances in all meadow microenvironments may be: (i) the ureC gene 

is present in higher copy numbers than bacterial amoA (Koper et al., 2004), or (ii) 

there exists either unspecificity or bias in the primer sets used here. Additionally, 

several studies have shown that AOA retrieved from the Arctic Ocean and 

Mediterranean Sea possess the ability to hydrolyse urea (Yakimov et al., 2011), yet I 
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was unable to detect the ureC gene in my samples, using previous designed primer 

pairs. In the current study, I tried two different primer pairs for targeting ureC within 

the AOA community: one primer pair designed using OTUs retrieved from Arctic 

Ocean samples (Alonso-Saez et al., 2012), and one primer pair designed using OTUs 

identified in AOA populations from the Mediterranean Sea (Yakimov et al., 2011). 

However, neither of the Thaumarchaeal ammonia oxidisers Nitrosopumilus 

maritimus (Walker et al., 2010) or Nitrosoarchaeum limnia (Blainey et al., 2011; 

Mosier et al., 2012) contain ureases, indicating that the potential to degrade urea is 

not ubiquitous among marine Thaumarchaeotes. Indeed, ureases are rare in the 

Archaea domain (Solomon et al., 2010). According to my results I can therefore 

hypothesise that: (i) ammonia-oxidising archaea of Western Australian coastal 

environments do not possess the ability of hydrolyse urea, or (ii) a divergence exists 

between previously designed primer pairs and the ureC gene present among the 

Western Australian coastal AOA community. A further step to confirm this would be 

to design my own primer pairs; however, in the absence of any archaeal ureC 

sequences from my environment of interest, this would require significantly more 

sequencing effort than was possible during this current study.  

In the case of ammonia oxidising microorganisms, my results suggest that P. 

sinuosa leaves could be important and selective habitats for AOB. In previously 

studied marine environments, such as sponges (Radax et al., 2011) and open waters 

(Santoro et al., 2011), the abundance of AOA is higher in comparison to AOB. 

These results show the opposite for AOB/AOA abundances in the P. sinuosa 

biofilm, agreeing with previous observations for three macroalgae (O. volubilis, P. 

crispa, and L. rodriguezii) from the temperate waters of Western Mediterranean Sea 

(Trias et al., 2012). In the current study, epiphytic AOB were 1 to 2 orders of 

magnitude more abundant than epiphytic AOA. Possible explanations for AOB 

outnumbering AOA may be: (i) AOB outcompete AOA in the presence of 

advantageous/stable physicochemical conditions, such as high levels of oxygen on 

the plant surface (Trias et al., 2012), (ii) marine plants selectively “choose” AOB 

rather than AOA, through a combination of epiphyte-host interactions, or (iii) a 

combination of both (i) and (ii). It has been suggested that the high abundance of 

AOA over AOB within sponges and corals may be a consequence of unstable 

environmental conditions, such as nitrogen and oxygen fluctuations within these 
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animals (Siboni et al., 2008, Radax et al., 2011, Han et al., 2013). During phases of 

low sponge ventilation and at night time, when zooxanthellae release CO2 within 

corals as a consequence of respiration, a temporal accumulation of ammonium 

(NH4
+) and fluctuations of oxygen (O2) level can occur (Hoffmann et al., 2009; 

Siboni et al., 2008). The few cultivated AOA strains are adapted to survive and grow 

at low NH4
+ and O2 concentrations, while AOB are generally active only at higher 

concentrations (Hatzenpichler et al., 2008; Martens-Habbena et al., 2009). Assuming 

that the ecopyhsiology of AOA and AOB in sponges and corals is similar to that of 

cultivated strains, high NH4
+ concentrations in sponge tissues and coral mucus 

should favour AOB growth; however, because of the concurrently low O2 

concentrations, AOA could outcompete AOB (Santoro et al., 2011). In contrast to 

the sponge and coral biofilm environments, on seagrass leaf surfaces O2 levels are 

relatively stable, due to the exudation of photosynthetic O2 from the leaf surface 

(Borum et al., 2007). Oxygen, however, can also be used by seaweeds and marine 

plants as a defence against bacterial attack, through the production of harmful 

reactive oxygen species (ROS), such as superoxide ions and hydrogen peroxides 

(Weinberger, 2007); to protect themselves, resident bacteria can express different 

oxidases that degrade ROS and reduce the oxidative cell damage (Egan et al., 2012). 

The importance of these seagrass/macroalgal defences can be indirectly gleaned 

from the genomes of several macroalgal-associated bacteria, which contain genes 

related to the oxidative stress response (Thomas et al., 2008; Burke et al., 2011b; 

Fernandes et al., 2011). In addition to O2 release, seagrasses are able to influence the 

physiochemical properties of the rhizosphere and leaf surfaces by exuding small 

organic (carbon-containing) molecules (Larkum et al., 2007; Kirchman et al., 1984). 

This mechanism has been proposed to be the key process driving plant surface 

colonisation, through acting selectively on the epiphytic microbial community 

(Harlin, 1971; Kirchman., 1984). 

Similar to Mediterranean macroalgae (Trias et al., 2012), I observed that the P. 

sinuosa epiphytic AOB represented approximately 1 to 4% of the total bacterial 

population of the biofilm. However, the total abundances were notably different, 

with the seagrass epiphytic AOB being ≤40 times more abundant than reported for 

macroalgae (Trias et al., 2012). AOA comprised approximately 1% of the entire 

epiphytic seagrass archaeal community. Total AOA abundance was 1 to 13 times 
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greater in the P. sinuosa biofilm than previously reported for macroalgae (Trias et 

al., 2012). During sample collection and biofilm sampling, which involved carefully 

scraping the biofilm from the leaf surface, I observed a complex 3-dimensional 

structure on the seagrass leaf surface, including epiphytic micro- and macroalgae. I 

propose that these other members of the epiphytic microbiome could facilitate high 

bacterial and archaeal abundances on seagrass leaf surfaces, by increasing the 3-

dimensional surface available for microbial colonisation.  

I also detected changes in the amoA gene abundances between the two 

sampling points, but not for either 16S rRNA or ureC genes. During winter (August 

2014), in comparison to summer (December 2013), I observed an increase in the 

amoA community within the biofilm for both bacteria and archaea, an increase in 

AOB abundance in the sediment, and a decrease of AOA abundance in both 

microenvironments of the water column (surface and seagrass canopy). Additionally, 

the AOM community structure varied significantly between summer and winter, for 

all seagrass meadow microenvironments. While it has been demonstrated that 

variability in the abundances of AOB and AOA can be related to changes in 

environmental conditions (e.g. temperature, nutrient availability, pH and oxygen 

level) (Groeneweg et al., 1994; Sahrawat et al., 2008; Erguder et al., 2009), there is 

growing evidence that these functional gene abundances can be related to plant 

activity, whereby the microbial community is strongly influenced by the plant itself. 

For example, the ammonia-oxidising community associated with mangrove sediment 

in Mai Po Nature Reserve (Hong Kong) is strongly influenced by plant root activity 

(Li et al., 2011): in summer, when the plant is active and growing, the roots uptake 

most of the NH4
+ available, thus outcompeting ammonia-oxidisers for substrate. In 

contrast, during winter, low levels of NH4
+ in the sediment are instead due to strong 

AOA activity, and ammonia-oxidising gene abundances are higher (Li et al., 2011). 

P. sinuosa is also affected by seasonal growth, with higher biomass accumulation in 

summer than in winter (Collier et al., 2007). In the current study, the lower 

abundances of epiphytic and sediment AOB and AOA during summer may be due to 

competition with the plant for NH4
+ uptake, while during winter, low seagrass 

activity and nutrient uptake may favour a higher abundance of ammonia-oxidisers on 

the plant surface.  
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Interestingly, weighted UniFrac analyses revealed that both AOA and AOB 

epiphytes were significantly different from those belonging to sediment and water 

samples. This constitutes further evidence for plant-epiphyte interactions, and 

indicates that marine plants host specific epiphytic bacterial communities, similar to 

sponges and corals (Bourne et al., 2005; Siboni et al., 2008; Mohamed et al, 2010). 

In agreement with the current study, others have shown that a core epiphytic 

bacterial community can be defined at the algal/animal species level, indicating a 

specific selection for particular microbial epiphytes (Radax et al., 2011; Trias et al., 

2012; Zhang et al., 2014). However, the unweighted UniFrac algorithm, which does 

not account for differences in OTU abundance, but only for differences in 

community composition among microenvironments, indicated that epiphytic 

biofilms shared a similar AOA community with the sediment, while the community 

inhabiting the water column was separate from both biofilm and sediment 

microenvironments. In contrast, the unweighted UniFrac algorithm for the AOB 

community detected no significant differences among the AOB community from the 

biofilm, sediment and water column, indicating that abundances, rather than the 

presence of specific OTUs, are responsible for any differences among these habitats. 

It therefore appears that, even if AOA are less abundant than AOB, they present a 

greater degree of partitioning between the different seagrass meadow 

microenvironments, and epiphytic AOA could be recruited from the sediment, rather 

than the water. My results also suggest a temporal variability within the epiphytic 

core microbiome, as well as for AOM present in the sediment and overlying water, 

which may be driven by changes in environmental conditions and/or plant 

physiology (Li et al., 2011; Wang et al., 2013). The archaeal and bacterial amoA 

sequences I obtained here were closely related to sequences retrieved from corals 

and sponges, and from sediment from eelgrass and mangroves, indicating that 

similarities exist among microbial communities associated with macrofauna and –

flora, across global spatial scales. However, for both AOA and AOB, some of the 

sequences belonging to the water column did not match with any known sequences, 

suggesting unique ammonia-oxidising communities occurring within the 

bacterioplankton populations of coastal southwestern Australia.  
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3.6 Summary and conclusions 

In summary, I have shown that the abundant Australian seagrass, Posidonia 

sinuosa, harbours on its surface specific communities of bacteria and archaea that 

differ from the communities inhabiting the surrounding environment. My work 

suggests that the P. sinuosa leaf surface may provide a specific ecological niche for 

AOB in the marine environment, which is, in general, considered to be dominated by 

AOA. Here, I have shown that abundances of epiphytic AOB can be up to 40 times 

greater than AOA. However, AOA appeared to have a higher host specificity than 

AOB, and were potentially recruited from the surrounding sediment, rather than the 

overlying water. I can therefore conclude that the P. sinuosa leaf microbiome 

supports abundant and unique communities of ammonia oxidising bacteria and 

archaea, which are temporally variable; either in response to plant or epiphyte 

dynamics, or changes to the surrounding environment, or both. Within the AOB 

community, ureolytic genes were detected in high abundances, suggesting a possible 

link between the degradation of organic matter, consumption of DON, and 

transformation of DIN in seagrass meadow environments; and particularly within the 

leaf biofilm. In conclusion, P. sinuosa hosts a core epiphytic microbiome that 

includes host-specific communities of important N-cycling bacteria and archaea. I 

suggest that important functional plant-microorganism relationships exist, which 

may facilitate plant N uptake, and thus support seagrass growth and productivity.  
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CHAPTER FOUR: MICROORGANISMS FACILITATE THE UPTAKE OF 

DISSOLVED ORGANIC NITROGEN BY SEAGRASS LEAVES 
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4.1 Abstract 

Microorganisms play a critical role in nitrogen cycling by mineralising 

dissolved organic nitrogen (DON) into bioavailable inorganic forms (DIN). 

Although DIN is crucial for seagrass growth, the hypothesis that seagrass leaf 

associated-microorganisms could convert DON to forms available for plant uptake 

has never been tested. We carried out a laboratory-based experiment in which 

seagrass (Posidonia sinuosa) leaves were incubated with 15N-enriched amino acids, 

with and without associated microorganisms. Samples were collected after 0.5, 2, 6 

and 12hours. Both bulk stable isotope and nanoscale secondary ion mass 

spectrometry (NanoSIMS) analysis showed high accumulation of 15N within 

seagrass leaf tissues with an associated microbiota, but not in plants devoid of 

microorganisms. These results significantly change our understanding of the 

mechanisms of seagrass nitrogen use and provide evidence that seagrass microbiota 

increase nitrogen availability for uptake by seagrass leaves by mineralising DON 

compounds, thus enhancing growth and productivity of these important coastal 

ecosystems. 
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4.2 Introduction 

Nitrogen (N) is an essential element for maintaining seagrass growth and 

productivity (Zimmerman et al., 1987; Williams et al., 1990), yet seagrasses are 

often abundant in N limited systems (Pedersen et al., 1993; Touchette & Burkholder, 

2000; Gobert et al., 2002). High productivity of seagrasses, therefore, lies in their 

ability to maximise N sequestration from the surrounding environment (Stapel et al., 

1996, Touchette & Burkholder, 2000), with leaves contributing up to 74% to their 

total N requirement (Alexandre et al., 2015). Canopy leaves have a preference for 

inorganic forms of N (dissolved inorganic N, DIN), especially ammonium (NH4
+), 

whose uptake affinity can be twice that of nitrate (NO3
-) (Touchette & Burkholder, 

2000). However, the coastal marine environment is usually characterised by scarce 

DIN availability and high concentrations of dissolved organic nitrogen (DON), due 

to autochthonous organic nitrogen production and allochthonous inputs (e.g. 

terrestrial inputs; Berman & Bronk 2003).  

Despite its long-standing recognition as a potential nutrient source, the 

utilisation of DON by primary producers is not well understood (Bronk et al., 2007). 

Although the possibility that small DON compounds could serve as a direct N source 

for aquatic plants was never considered (Romero et al., 2006), the uptake of DON 

has relatively recently been demonstrated for a variety of macroalgae (Bird et al., 

1998, Tyler et al., 2003). Uptake of DON by different algae in axenic cultures has 

been reported (Bird et al., 1998, Tarutani et al., 2004), implying the existence of a 

process for the direct utilisation of DON by seaweeds. However, it is not yet known 

to what extent seagrasses share this capability. Recent studies suggest that seagrasses 

may possess the ability to take up small DON compounds (e.g. amino acids and urea; 

Vonk et al., 2008; Van Engeland et al., 2011; La Nafie et al., 2014; Alexandre et al., 

2015) by both roots and leaves. Although these studies provide indirect evidence of 

utilisation of DON by seagrasses, it remains unresolved whether marine plants have 

the physiological capacity to take up DON intact or whether plant-associated 

microorganisms and/or epiphytes mediate foliar DON absorption.  

Microorganisms can be highly abundant on the surface of macrophytes (Trias 

et al., 2012; Thompson et al., 2014; Flemming et al., 2016), forming functional 

partnerships with organisms belonging to different domains, which often play a 
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critical role in nutrient acquisition from oligotrophic waters (Wahl et al., 2012). For 

seagrasses, the leaf environment, or phyllosphere, provides a physical substratum for 

a rich epiphytic community of both heterotrophic and autotrophic microorganisms 

(Borowitzka et al., 1990; Weidner et al., 2000; Uku & Björk 2001; Borowitzka et al., 

2007; Uku et al., 2007; Crump & Koch, 2008a; Hamsi et al., 2013). As I have shown 

in Chapter 3, a significant proportion of this epiphytic microbiome possesses the 

genetic capacity to transform organic (urea) and inorganic (NH4
+) forms of N. 

Surprisingly, while the contribution of the autotrophic microbiota (e.g. N-fixing 

bacteria) to enhancing N availability to seagrasses has been extensively reported 

(Welsh, 2000; Pereg-Gerk et al., 2002; Cole & McGlathery, 2012; Agawin et al., 

2016), the significance of heterotrophic microorganisms on seagrass leaves has been 

largely overlooked. Obvious advantages obtained by the heterotrophic microbial 

community inhabiting seagrass leaves include favourable microhabitat for 

settlement, and exudation of O2 and organic compounds (e.g. organic carbon and 

vitamins) (Brylinski, 1971; Harlin, 1971; Kirchmanl 1984). Yet, much remains to be 

learned of the advantages that seagrasses obtain from this partnership. Since 

microorganisms are able to cleave DON by extracellular enzymes to produce DIN 

(Chrost, 1991; Romaní et al., 2012; Flemming et al., 2016), they could support 

seagrass N demand by mineralising DON to more bioavailable forms, such as NH4
+ 

and NO3
- (Flemming & Wingender, 2010).  

The seagrass phyllosphere also represents a suitable habitat for the settlement 

of a variety of epiphytic algae. Filamentous and crustose rhodophytes (i.e. ceramium, 

fosliella, chondria, centroceras, polysiphonia, etc.), chlorophytes (i.e. cladophora), 

phaephyceae (such as polycera sp.) and diatoms cohabit and share the surface of 

seagrass leaves with microorganisms (Sullivan 1979; Trautman & Borowitzka, 

1999). In addition to seagrasses, epiphytic algae may benefit from their close 

proximity to microorganisms, which could enhance N availability to the algae, as 

well as the plant. For example, exchange of N has been reported to occur between 

some species of diatoms and their epiphytic N-fixing bacteria (Foster et al., 2011), 

and in these studies, microorganisms provided N to the algae, while diatoms exuded 

organic carbon consumed by associated microorganisms (Amin et al., 2012). Many 

algal taxa can also use DON directly, through processing mechanisms such as urease 

activity and amino acid oxidation (Palenik & Morel, 1991; Mulholland et al., 2002, 
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Stoecker & Gustafson 2003, Solomon & Glibert, 2008). Although the relationship 

between seagrasses and their epiphytic algae has always been controversial, since 

algae are considered to compete with marine plants for light and nutrient uptake 

(Wetzel, 1993; Williams & Ruckelshaus, 1993; Coleman & Burkholder, 1994, 

1995), extracellular mineralisation of DON by epiphytic algae may increase DIN 

availability at the seagrass-biofilm interface (Pohlon et al., 2009).  

To test the role of microorganisms and epiphytes in competing with or 

facilitating the uptake of DON into seagrass leaves, I experimentally examined the 

uptake of 15N-enriched amino acids into the leaves of the seagrass Posidonia sinuosa 

with and without epiphytic organisms. Accumulation of 15N into seagrass leaves and 

epiphytic algae was firstly measured by isotope ratio mass spectrometry (IRMS), 

after which, a subset of samples was analysed by nanoscale secondary ion mass 

spectrometry (NanoSIMS) to measure 15N accumulation in microorganisms and 

algae on the seagrass leaf surface, and in discrete sub-cellular seagrass components 

(cell wall, cytosol, vacuole and chloroplasts). NanoSIMS maps enriched stable 

isotope (e.g. 13C, 15N, etc.) tracers at the cellular scale, providing an important tool 

for imaging and co-quantifying the process of organic 15N flow and uptake at a 

subcellular level. NanoSIMS technology, together with IRMS, has already been used 

to show the incorporation and translocation of labelled ammonium (15NH4
+) from 

microorganisms associated with plant roots into belowground plant tissue, within a 

few hours of 15N incubations (Jones et al., 2013). Here, I applied this approach to 

examine the potential uptake of organic nitrogen by seagrasses and their epiphytes. 

4.3 Materials and Methods 

An enrichment experiment was performed by incubating seagrass shoots, with 

and without microorganisms and epiphytic algae, with a 15N-enriched algal amino 

acid mixture. Samples were collected at different incubation times (0.5, 2, 6 and 12 

hours) and were analysed through IRMS and NanoSIMS to examine the uptake of 

15N in the bulk tissue and in the microorganisms and algae on seagrass leaf surface 

and discrete sub-cellular seagrass components (cell wall, cytosol, vacuole and 

chloroplasts). In addition, samples from the different incubation times were analysed 

for microbial presence/absence using the LIVE/DEAD® BacLightTM . Based on the 
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evidence that, after 3 hours from seagrass incubation with DO15N, the enriched 

substrate was already detectable within seagrass tissue (Van Engeland et al., 2011), 

collection times were chosen to follow potential significant changes before and after 

this time. 

4.3.1 Field collection and DO15N Experiment  

48 Posidonia sinuosa shoots (2.4 to 2.9 g) were collected from Marmion Marine 

Park (31°48.240' S 115°44.123' E) located offshore Perth (South-Western Australia) 

, and transported in aerated water at ambient seawater temperature (22 ºC) in the 

shade, before being placed in 30 L aquaria under natural illumination for 24 h to 

acclimatise. Light intensity (130 µmol m-2 s-1) was measured using a 

Photosynthetically Active Radiance (PAR) sensor for underwater applications 

(Micro PAR, In-Situ Marine Optics, Perth) to ensure seagrasses photosynthesised. 

Prior to the experiment, the photosynthetic efficiency (dark yield adaptation) of six 

random seagrass shoots was measured with the pulse-amplitude modulater (PAM) 

chlorophyll fluorometer to ensure seagrasses did not show any sign of stress. After 

the acclimation time, 24 seagrass shoots were gently ‘scraped’ with a sterile razor 

blade to remove obvious epiphytic organisms, washed in artificial filtered (0.2 µm) 

seawater (Red Sea Marine Salt, ASF), and placed into individual incubation 

cylinders containing 1 L ASF. To further remove any residual microorganisms, 

scraped leaves were incubated in 5 ml L-1 of antibiotic mixture (comprising 10,000 

units penicillin, 10 mg mL-1 streptomycin and 25 μg ml-1amphotericin B; Sigma 

Aldrich; Kritzinger et al., 1997), acetazolamide (0.22 mg l-1, Sigma Aldrich; 

Zimmerman et al., 2004; Khelaifia & Drancourt, 2012) and imidazole (1 mg L-1, 

Sigma Aldrich; Dridi et al., 2011; Khelaifia & Drancourt, 2012) for 24 h prior to the 

addition of the DO15N. The effectiveness of epiphyte removal and antibiotic 

incubation was monitored for each leaf at the end of the experiment using the 

LIVE/DEAD® BacLightTM  kit with fluorescent imaging using confocal microscopy 

(described in detail in Appendix 4 ‘LIVE/DEAD® BacLightTM  and antibiotic 

treatment’). Briefly, the LIVE/DEAD® BacLightTM kit (ThermoFisher) allowed to 

infer whether for the treatment ‘seagrass without microorganisms’ the chosen 

antibiotic mixture targeted epiphytic microorganisms and, whether it was possible to 

use the kit to reveal the efficacy of antibiotic incubation. The remaining 24 shoots 
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were left with epiphytes and placed into individual incubation cylinders containing 1 

L ASF.  

All 48 cylinders were maintained at 22 ºC under continuous aeration and 

natural light for 12 h during substrate incubation and sampling period. Twelve 

seagrass leaves with and 12 leaves without microorganisms were randomly selected 

to be incubated in 50 µM DO15N (99% 15N) of algal-derived amino acid mixture 

(NLM-2161-0, Cambridge Isotope Laboratories, USA). The remaining 24 P. sinuosa 

leaves (12 with microorganisms and 12 without) were used as controls and incubated 

with 50 µM DO14N (ULM-2314-1, Cambridge Isotope Laboratories). Before the end 

of every incubation time interval and shoot collection, I assessed seagrass 

photosynthetic activity (as a proxy for stress) using PAM fluorometry. 

4.3.2 Sample collection for IRMS and NanoSIMS  

For each time point (0.5, 2, 6 and 12 hours), 3 seagrass leaves were removed 

from cylinders and washed briefly in ASF to remove any residual 15N. Three ~1 cm2 

sections were cut 6 cm from the growing tip, using a sterile scalpel. The sections 

were fixed in 2.5% glutaraldehyde (Sigma-Aldich) in 0.1 M PBS and stored at 4 °C. 

Cutting and fixation of samples for NanoSIMS analyses took place within a few 

seconds, in order to minimise DO15N leaching from the plant tissue. Leaf tissue (~1 

cm2), adjacent to areas used for NanoSIMS analysis was collected and immediately 

stained and fixed with the LIVE/DEAD® BacLightTM  kit in order to verify the 

antibiotic effect for the treatment, as described above. All remaining leaf material 

(for treatments and controls) was stored at -20 °C and processed for IRMS analyses.  

4.3.3 Isotope ratio mass spectrometry analysis 

Frozen leaves were oven-dried at 58º C for 48 h before being ground (ball-mill 

grinder; Retsch, Haan, Germany) to fine powder, and weighed (~1.5 mg) into 6 x 

4mm tin capsules (Elemental Microanalysis, UK), which were crimped manually. 

Prior to drying, seagrass leaves covered with epiphytic organisms (treatment ‘with 

microorganisms’) were subjected to scraping using a razor blade in order to remove 

obvious epiphytes and obtain a clean isotopic signal of the seagrass material and 

epiphytic algae. Samples were analysed for nitrogen elemental composition (%) and 
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isotope ratios (δ15N) by continuous flow isotope ratio mass spectrometry, using an 

Automated Nitrogen Carbon Analyser-Mass Spectrometer system (20/20 Europa 

Scientific Ltd., Crewe, UK). Measures of δ15N of the 15N enriched plant samples 

were compared against reference samples incubated with DO14N, which had been 

previously calibrated against standard International Atomic Energy Agency (IAEA, 

Vienna) reference materials with uncertainty of 0.0005 15N atom% (Skrzypek, 2013).  

4.3.4 NanoSIMS sample preparation and analysis 

Samples were dehydrated in a graded series of ethanol (50%, 70%, 90%, 

100%, anhydrous 100%) and anhydrous acetone (100%). After dehydration, samples 

were gradually infiltrated in anhydrous acetone: araldite resin mixtures until total 

resin embedding (100% araldite concentration) and cured at 60 °C for 24 h. Resin 

blocks with intact samples were sectioned (200 nm) using a Leica EM UC6 

Ultramicrotome (Leica Microsystems, Wetzlar, Germany) and a 45 degree diamond 

knife. Wet cut sections were mounted either on a Silicon wafer for NanoSIMS 

analysis or a glass slide for optical imaging to map sample ultrastructure. Silicon 

wafers with adhered (air-dried) samples were coated with 5 nm gold for subsequent 

analysis in a CAMECA NanoSIMS-50 ion microprobe (CAMECA, France) at the 

Centre for Microscopy Characterisation and Analysis (CMCA), The University of 

Western Australia.  

4.3.5 Image Sample analysis  

For the analysis of images of seagrass tissues processed with the 

LIVE/DEAD® BacLightTM  kit, the confocal microscope was tuned to detect 

emission at 500 nm and 630 nm after excitation at 480 nm and 500 nm for the green-

fluorescent and the red-fluorescent nucleic acid stains, respectively. 

For the pilot studies, images obtained under confocal microscopy of seagrass 

sections with and without microorganisms were analysed using an imaging software 

NIS-Elements viewer (4.20 - Nikon, 

https://www.nikoninstruments.com/Products/Software/NIS-Elements-Advanced-

Research/NIS-Elements-Viewer). For each image obtained with the NIS-Elements 

viewer (e.g. E. coli cells incubated with and without ethanol and seagrass sections 

https://www.nikoninstruments.com/Products/Software/NIS-Elements-Advanced-Research/NIS-Elements-Viewer
https://www.nikoninstruments.com/Products/Software/NIS-Elements-Advanced-Research/NIS-Elements-Viewer
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with and without microorganisms), microbial cells present within the images were 

highlighted using the OpenMIMS data analysis software plugin in ImageJ 

(http://www.nrims.hms.harvard.edu/software.php). The percent coverage of 

microorganisms (comprising the few remaining microbial cells for the treatment 

seagrass ‘without microorganisms’) was estimated by measuring the total area 

(pixel) of the seagrass sections compared to the area covered by microorganisms. 

Values were then used for statistical analyses, to evaluate the effectiveness of 

antibiotic incubation at 24 h versus 48 h. 

The NanoSIMS-50 was calibrated to measure 12C−, 13C12C−, 12C14N–, 12C15N, 

32S-. This allowed determination of 15N/14N ratios along with 13C/12C ratios, 32S and 

secondary electron imaging (for identification of cellular and sub-cellular structures). 

Prior to analysis, selected areas of interest were sputtered (Cs+ implanted) by 

rastering a defocused primary ion beam (current density 2.5 × 1015 ions cm−2) over a 

slightly larger area to allow samples to reach sputtering equilibrium (60 ms/pixel). 

Generally, analysis was performed in a chained method to allow ‘stitching together’ 

of many smaller images to create an image of a larger sample area (Fig. 4.5). This 

approach is useful for minimising sample spot bias and analysing co-occurring 

organisms.  A correction factor was applied to all NanoSIMS data to make it directly 

comparable to IRMS data. The correction factor was based on analysis of a yeast 

(Saccharomyces cerevisiae) standard with known 15N/14N abundance. Briefly, 

representative samples of the yeast were analysed by IRMS with data further 

standardised against internationally recognised standards (see ‘Isotope ratio mass 

spectrometry analysis’ section). A portion of yeast from the same source was dried 

onto a silicon wafer (gold coated 10 nm) and analysed by NanoSIMS in the same 

manner described for seagrass samples. A correction factor was calculated daily and 

applied to all data collected on that day. Images were processed and analysed using 

the OpenMIMS data analysis software plugin in ImageJ. Enrichment of the 15N 

isotope in ratio images is expressed as colour on a Hue Saturation and Intensity 

(HSI) scale, where the minimum (blue) was set to natural isotopic abundance of 

nitrogen (37), and the maximum (magenta) was set to an arbitrary ratio value of 100. 

Individual images were first processed using a pixel-by-pixel detector dead time 

correction (44 ns), and data were extracted from pixels within manually drawn 

http://www.nrims.hms.harvard.edu/software.php
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regions-of-interest (ROI) encircling enriched microorganisms, algae and seagrass 

sub-cellular structures for quantification of 12C15N /12C14N ratios (total number of 

ROIs =1754 comprising controls). 

ROI (Table 4.2) were selected based on ultrastructural information from 

secondary electron imaging, optical, charged coupled device (CCD) and individual 

ion images. 15N/14N data corrected using yeast standard correction factor was further 

transformed to delta notation (δ15N) for consistency with IRMS data. The use of 

these two element ratio images (14N/14C and 15N/14N with increased scale) was 

applied to the analyses of all NanoSIMS images of seagrass cells to identify the 

different sub-cellular components and the epiphytic community where present (Fig. 

4.1). Although it was not possible to infer the taxonomy of the epiphytic algae found 

in this study, analysis of the secondary electron imaging and 14N/14C images 

highlighted visible differences between algae and other epiphytic organisms, which 

were used for the identification of algal ROIs (Fig. 4.1). NanoSIMS analysis of 

seagrass leaves with intact microorganisms clearly distinguished the epiphytic 

microbial community from epiphytic algae and seagrass cells, with resolution 

sufficient to distinguish the sub-cellular components of the seagrass leaf (Fig. 4.1). 

NanoSIMS image analysis was repeated three times to obtain a reliable method for 

the identification of the epiphytic community and seagrass sub-cellular components. 
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Fig. 4.1 - NanoSIMS image analysis description. The images represent two (A, B & C) or 

one (D, E & F) seagrass cells from shoots collected at 0.5 and 2 h from DO15N spike, 

respectively. In figures A, B, D & E, 15N-enrichment is expressed as hue saturation intensity, 

where blue represents the natural isotopic abundance of nitrogen (δ15N‰= 28) and 

enrichment is shown as a shift towards magenta (colour scale label in δ15N‰). In A & D, 

maximum 15N enrichment is represented by the value of 100 % enrichment set to 2000 

(δ15N‰); in B & E 15N/14N ratio is reported with increased (3X) scale (6000 δ15N‰). The 

increased scale together with images with natural isotopic element abundances 14N/14C (C & 

F) was used to better discriminate between different seagrass sub-cellular components and 

the epiphytic community, where present. C & F images reveal several clear seagrass sub-

cellular components, highlighted in different colours (correlating with the colours in the box 

plot graphs (Fig. 4.4), except for the cell wall in white), which were used to draw our regions 

of interest (ROIs). Epiphytes and sub-cellular components are additionally labelled: 

epiphytic microbial community (M), epiphytic microalgae (Ep), cell wall (C), vacuole (Va), 

cytosol (Cy), and chloroplast (Ch). From the image analysis of the epiphytic community (C 

& F), epiphytic algae were clearly differentiated from other P. sinuosa epiphytes (e.g. 

bacteria and archaea), and these visible differences were used to drawn the algal and 

microbial ROIs. Scale bar represents 5μm. 
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Table 4.1 The number of regions of interest (ROIs) drawn for each image analysis 

component (microorganisms, cell wall, cytosol, vacuole and chloroplast) is reported for all 

time points and treatment (with and without microorganisms) and indicated with an asterisk. 

Only the first ten 15N data (reported in δ15N‰) extracted from ROIs are shown; the complete 

dataset was used to draw box plot graphs (Fig. 4.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time  Cell wall Cytosol Vacuole Chloroplast Microorganisms 

  points 

  With   Without  With  Without  With  Without  With  Without  

  micro. micro. micro. micro. micro. micro. micro. micro. 

  24* 28* 21* 20* 55* 19* 32* 34* 74* 

0.5h  1454,2 45,8 109,6 54 196,3 116,5 78,4 29,3 2284,3 

  1204,7 30,5 83,9 82 156,5 152,2 77,1 28,9 1514,5 

  2274,8 14,8 64,5 32,4 193,2 88,5 75,4 61 1410,5 

  1067,4 48,4 113,6 55,7 205,7 77,6 61,4 40,1 2200,9 

  1359,2 34,6 114,7 34,8 190,3 25,4 67,5 30,1 2235,6 

  2232,6 36 196,7 60,8 207 26,5 61,9 42,5 2257,2 

  1217,9 35 209 42,8 142,1 57 64,7 48,5 1565,4 

  1391,8 29,5 256,8 32,4 112,5 47,3 71,1 38,4 2301,7 

  999,4 31 236,3 26,8 232 64,9 73,8 20,6 2745,5 

  1278,9 60,1 80,6 46 85,1 60 73,2 64,6 3365,4 

  41* 26* 18* 47* 59* 53* 83* 44* 104* 

2h 112,7 68,3 191,6 157,5 348 139,4 128,2 135,2 2198,2 

  96,9 73,3 197,7 185,9 244,2 297,3 156,6 212,2 2648,4 

  197,6 75,2 115,3 139,2 236,3 161,6 112,3 148,6 6291,4 

  229,2 79,6 265,8 195,8 251,1 95,6 113,3 93,6 3513,7 

  88,4 89,2 134,3 295,8 183,5 54,1 136,2 111,5 3745,6 

  96,2 97,6 172,8 285,9 168,6 86,4 138,2 117,5 2888,5 

  100,7 66,9 224,4 162,7 194,1 60,1 141,5 110,1 3630,2 

  116,2 69,4 306,3 165,8 110,4 142,3 161,6 91,9 2550,9 

  92,9 62,6 289 160,8 172,8 139,6 119,3 150,9 5651,2 

  93,3 67,5 253,9 89,8 182,2 83,8 132,5 92,3 5191,5 

  26* 25* 48* 24* 67* 48* 28 21* 104* 

6h 143,2 247,5 471,9 394,7 624,4 178,3 128,2 190,5 4999,7 

  113,3 344,5 500,1 363,9 632,8 204,6 183,9 98,1 5729,6 

  116,9 84,1 508,5 153,6 404,3 130,2 198,6 80,1 6391,5 

  113,1 94,7 551,2 167 427,9 231,1 188,5 80 7896,4 

  140,7 186 571,8 222,3 452,2 178,1 189,4 98,1 4452,7 

  117,1 214,9 577,5 66,9 535,0 219,6 184,8 80,1 6657,2 

  109,1 43,6 585,2 146,4 596,5 104,1 214 138,1 5440,7 

  64,6 78,8 596 104,8 630,1 123,7 247,8 80 6015 

  108,3 74,3 613,9 74,3 705,9 90,1 232,2 98,1 5181,7 

  149,4 87,6 642,8 19,9 488,8 46,3 189,3 80,1 8345,3 

  29* 53* 80* 19* 40* 63* 58* 19* 105* 

12h 400,1 84 1500,5 25,6 485,3 170,6 1167,3 21,5 14976,1 

  284,2 48,8 1658,6 118,9 510,6 32,3 1130,2 27,9 10050,1 

  298,1 70,3 1162,6 30,4 577 63,6 1243,3 30,2 10020,6 

  346,5 40,9 1138,8 13,9 625,7 60,5 1069,1 98,4 9397,9 

  284 100,8 1781,5 27,8 700,4 52,9 1293,9 78,1 7073,9 

  273,7 87,3 2090,5 82,9 627,3 47,3 1169,6 29,9 11072,5 

  223,8 94,6 1480,4 26,7 499 55,4 1079,2 21,5 13354,7 

  378,2 75,3 1426 29,6 636,2 104,1 1400,2 90,2 12312,4 

  341,5 49,6 1496,6 26,6 477,9 123,7 1087 58,4 12856,6 

  424,7 74 1476,6 34,6 486,1 90,1 1118,8 48,1 18204,7 
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Statistical analyses.  

For image analysis of microbial cell percentage cover for seagrass leaves 

incubated in antibiotics at 24 and 48 h, and seagrass leaves with and without 

microorganisms at the end of the DO15N incubation experiment, One-Way ANOVA 

was performed in SPSS (Appendix 4). 

For isotope ratio mass spectrometry analyses, differences in 15N/14N 

abundances between samples collected at different times were tested using a 2-WAY 

ANOVA in SPSS. The factors were represented by plant type (i.e. seagrass with and 

without microorganisms and epiphytic algae) and collection time (0.5, 2, 6 and 12 h). 

Prior to analysis, data were natural log-transformed to meet the homogeneity 

requirement using Levene’s test. 

4.3 Results and Discussion 

Evidence that microorganisms associated with P. sinuosa leaves facilitate 

seagrass uptake of DON (in this case, 15N derived from amino acids) was provided 

by isotope mass spectometry analyses of bulk tissue (IRMS) of seagrass leaves with 

and without intact microorganisms (Fig. 4.2, Table 4.3). After 12 h, 15N 

accumulation was 4.5 times greater in leaves with intact microorganisms, compared 

to those where microorganisms had been removed (p=0.001). Samples from 

preceding collection times also had greater 15N accumulation in leaves with intact 

microbial communities, compared to those without (Fig. 4.2). Considering that in 

different studies where seagrass leaves incubated with DO15N showed a lower 

enrichment in the presence of epiphytic algae (Cunningham et al., 2002; Hyndes et 

al., 2012), the higher seagrass enrichment I detected in the ‘seagrass with 

microorganisms’ treatment compared to the ‘seagrass without microorganisms’ 

(p=0.001) highlights the pivotal role that microorganisms play in enhancing N 

availability for seagrass uptake regardless of the presence of epiphytic algae. IRMS 

results also showed that for the treatment ‘seagrass with microorganisms’, epiphytic 

algae presented a higher 15N enrichment compared to seagrass tissue with associated 

microorganisms at all collection times (p=0.001; Fig. 4.2). These results suggest that 

epiphytic algae possibly compete with seagrass leaves for uptake of N.  
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Differences in N uptake between seagrass leaves and the epiphytic community 

members were expected, since microorganisms, and some species of 

algae/phytoplankton, possess different paths for the internalisation of N from the 

environment. Traditionally, DON uptake by phytoplankton, and algae in general, has 

not been considered a significant process in the marine environment (Mulholland & 

Lee 2009; Moschonas et al., 2017). Rather, bacteria were thought to be the primary 

consumers of DON (Zehr & Ward 2002; Bronk et al., 2007). However, genomes of 

marine diatoms, such as Thalassiosira pseudonana, has revealed the presence of 

amino acid transporters in the plasma membrane (Armbrust et al., 2004). In fact, 

small organic N molecules, such as some amino acids and urea, can be taken up 

intact through active transport driven by a sodium ion pump, or through facilitated 

diffusion if the concentrations outside the cell are high enough to create a 

concentration gradient (Mulholland & Lomas, 2008). For larger DON compounds 

(>1kD, e.g. proteins and polypeptides), DON mineralisation can occur within or 

outside the algal cell, through the activity of intracellular and extracellular enzymes, 

such as amino-peptidases, hydrolases, oxidases and deaminases, that break down 

DON to produce DIN (Mulholland et al., 2002; Bronk et al., 2007).  
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Fig. 4.2 - Mean (±SE) δ15N values for (A,B) bulk tissue of seagrass leaves (n=3 per 

treatment and collection time), after DO15N enrichment (A) without,  and (B) with epiphytic 

microorganisms, and (C) δ15N values for epiphytic algae scraped from seagrass leaves, at 

different time points of incubation (0.5 h, 2 h, 6 h and 12 h). Control material (Ctl) bars 

represent values obtained incubation with DO14N for seagrass leaves (n=3) (A) and (B), and 

for the epiphytic community scraped from seagrass leaves (C), taken at the first (Ctl 0.5 h) 

and last time point (Ctl 12 h). 
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Table 4.2 2-WAY ANOVA test results of seagrass leaves incubated with and without 

microorganisms collected at different times. Pl refers to plant type (seagrass with 

microorganisms, seagrass without microorganisms and epiphytic algae) and, Ti refers to the 

collection time (0.5, 2, 6 and 12 h). Data were natural log-transformed prior to analysis to 

meet requirements of homogeneity using Levene’s test (F=2.764, p= 0.131). 

Source   df MS Pseudo-F    P(perm)  
Plant type (Pl)   2 3283  112.59  0.001  

Time (Ti)    3 7224  119.78  0.001  

Pl x Ti   6 854  12.235  0.001  

Res   24 13    

Total   35      

 

Although P. sinuosa leaves ‘without microorganisms’ had significantly lower 

15N enrichment compared to the tissue where microorganisms were present 

(p=0.001), they were still characterised by a slight elevation of 15N enrichment 

during the experiment (Fig. 4.2 A). Bulk isotope measures alone are unable to 

discern specific isotope tracer accumulation points or the source of slight 15N 

enrichment detected in leaves removed of microorganisms. Subsequently, nanoscale 

secondary ion mass spectrometry (NanoSIMS) was performed on representative 

samples to resolve 15N accumulation in the finer structures of the seagrass leaves and 

the flow of 15N through the epiphytic community.  

In general, NanoSIMS image analysis showed that seagrass leaves ‘without 

microorganisms’ were characterised by the absence of 15N-enrichment within their 

tissue (Fig. 4.3). Differences between 15N-enriched sub-cellular microenvironments 

versus non-enriched samples, obtained from the ‘without microorganisms’ treatment, 

appear even more evident when observing seagrass cell images after 12 h following 

DO15N enrichment (Fig. 4.3 D & I). However, for a few samples of the seagrass 

leaves ‘without microorganisms’, I detected a slight enrichment of seagrass sub-

cellular microenvironments (Fig. 4.4), and the possible explanations regarding these 

samples are discussed later. NanoSIMS images showed that, after 0.5 h incubation in 

DO15N, microorganisms (bacteria/archaea) on the surface of the seagrass leaf were 

highly enriched compared to the surrounding seagrass cells (Figs 4.3 and 4.4). The 

microorganisms remained more 15N-enriched than adjacent sub-cellular components 

of the seagrass leaf at each time point of the experiment, and their enrichment was 
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characterised by an exponential 15N accumulation over time (Fig. 4.4). By 12h, 

microorganisms were ~200 times more enriched (~10000 15N per mil) than 

unlabelled reference (control) samples. These results, combined with the rapid ability 

of microbes to mineralise DON (Chrost, 1991; Flemming et al., 2016), indicate that 

epiphytic microorganisms strongly influence the accumulation of 15N into different 

components of the seagrass tissue over the timescale of the experiment (Figs. 4.3 and 

4.4). Within 0.5 h of incubation, 15N was 26 times higher in the outer cell wall of 

epidermal cells of seagrass leaves with microorganisms present than those with 

microorganisms removed (Fig. 4.4). While the mechanisms of absorption of solutes 

through the cuticle are not fully characterised (Riederer & Schreiber, 1995; Khayet 

& Fernández, 2012), the enhanced enrichment of 15N in the cell wall, followed by a 

decrease in enrichment (Figs. 4.3 – A & C and 4.4) suggests that: (i) the movement 

of N across the seagrass cuticle is a rapid process (Riederer & Schreiber, 1995; 

Khayet & Fernández, 2012), and (ii) the plant is able to limit N uptake once it has 

reached substrate saturation (Touchette & Burkholder, 2000). Slight 15N 

accumulation was first observed in cytosol and vacuole after 0.5 h, followed by an 

exponential accumulation over proceeding sampling times (Fig. 4.4). The very large 

and obvious chloroplasts that proliferate at the outer edge of the seagrass epidermal 

cells accumulated 15N more slowly than other sub-components of seagrass leaves 

and values were still rising at the final 12 h sampling time.  

Based on the 15N accumulation dynamics of the different seagrass sub-cellular 

structures observed, my results suggest that DIN, in the form of nitrate (NO3
-), is the 

primary form of N available for seagrass uptake, for the following reasons. Seagrass 

leaves can acquire DIN as either NO3
- and/or ammonium (NH4

+), though they tend to 

have a greater affinity for the former (Touchette & Burkholder, 2000). Assimilated 

NO3
- is stored in the vacuole or reduced to nitrite (NO2

-) within the cytosol and then 

transported into the chloroplasts for further reduction to NH4
+ (Touchette & 

Burkholder, 2000), a pattern consistent with my findings. The slight elevation of 15N 

within leaf chloroplasts at 2 h and 6 h, appearing not to have reached a maximum 

after 12 h (Fig. 4.4), indicates the deliberate transport of 15N through the seagrass 

sub-cellular components towards the chloroplasts; thus implicating the role of the 

chloroplast in the reduction of NO3
- to NH4

+. The preferential uptake of NO3
- by 

seagrass tissues, even in the presence of excess concentrations of DON, highlights 
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the potentially vital functional role of ureolytic and ammonia-oxidising 

microorganisms that I identified in Chapter 3. Since these microbial groups connect 

the degradation of organic matter (DON production) with the transformation of DON 

to DIN, they could be key components of the processes shown in the current study. 

Further work, aimed at identifying these microbial groups using additional 

microscopic techniques, would confirm this hypothesis. 

A lack of knowledge on the interactions that regulate seagrass–epiphyte 

relationships has thus far limited our ability to understand the N dynamics between 

marine plants and members of the epiphytic community. For example, several 

studies have documented a detrimental effect of excessive epiphytic algal growth on 

seagrass viability, particularly in areas with increasing anthropogenic nutrient inputs 

to coastal waters (Silberstein et al., 1986, Hauxwell et al., 2001, McGlathery, 2001). 

However, it has also been shown that, in oligotrophic waters (such as those in the 

current study region), epiphytic algae can play an important role in ecosystem 

functioning by contributing to the capture of scarce N resources from the water 

column, and thus promoting nutrient cycling (McGlathery, 2001). Indeed, seagrass 

leaves are able to modify the microenvironment of their phyllosphere to create a 

habitat suitable for specific epiphytic organisms, and it has been shown that the 

dominant microalgal groups in the epiphytes on the leaves of the seagrasses Zostera 

marina and Halodule wrightii were cyanobacteria and diatoms (Pinckney & Micheli; 

1998), which may directly benefit seagrasses. In fact, the biofilm is not as inert as 

previously assumed. The extracellular polymeric substances (termed matrix) 

excreted by microbial cells has a characteristic sponge-like nature, which plays a 

pivotal role in the absorption of nutrients from the environment and increase of the 

retention time of molecules within the matrix (Flemming et al., 2016). A variety of 

extracellular enzymes (e.g. microbial- or algal-derived) that degrade organic matter 

have been described within biofilms (Brukmeier et al., 2005; Romani et al., 2008; 

Pohlon et al., 2009), and it seems likely that the secreted enzymes retained within the 

matrix provide nutrients (N in this case) for all the members of both the epiphytic 

and the host community.  

  



97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 

 

Fig. 4.3 – 15N concentration images of seagrass (P. sinuosa) leaf cells after incubation in 

enriched DO15N (amino acid mix) (A-D) with or (E-H) without microorganisms. Seagrass 

leaves were incubated for (A,E) 0.5 h,  (B,F) 2 h, (C,G) 6 h, and (D,H) 12 h. Seagrass sub-

cellular components are indicated (CW=Cell wall, Ch=Chloroplast, Va=Vacuole, 

Cy=Cytosol), as well as microorganisms (M) and epiphytic algae (EP). Enrichment is 

expressed as hue saturation intensity, where blue represents the natural isotopic abundance 

of nitrogen (δ15N‰= 28) and enrichment is shown as a shift towards magenta (color scale 

label in δ15N‰). The images show a 15N enrichment of seagrass cell wall after (A) 0.5h, and 

the appearance of enriched substrate within the (B) cytosol, (C) vacuole, and (D) 

chloroplasts over the incubation time. Where microorganisms are absent (E-H), a clear 

enrichment is absent. In every image the scale bar represents 5μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 

 

Fig. 4.4 – Box-Whisker plots (median, interquartile range = box, extremes = whiskers) of 
15N enrichment of identifiable microorganisms, epiphytic algae and sub-cellular seagrass 

components: cell wall, cytosol, vacuole, and chloroplast, from NanoSIMS analysis of 

seagrass leaves incubated (left) with, or (right) or without leaf-associated microorganisms, 

for each incubation time (0.5, 2, 6 and 12 h). Control values (Ctl), representing δ15N natural 

abundance for microorganisms, epiphytic algae and seagrass sub-cellular microenvironments 

obtained from incubation with non-enriched DO14N, are displayed for each graph by the 

horizontal line. Note the difference in y-axis scales between microorganisms, epiphytic algae 

and plant sub-cellular components. 
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For seagrass leaves where microorganisms were removed, I observed only the 

slightest 15N accumulation in the various cellular structures (Fig. 4.5). I postulate that 

this elevation in 15N may be due to: (i) persistence of some epiphytic 

microorganisms that presented antibiotic resistance and converted DO15N to 

inorganic forms over time, (ii) antibiotics altering the bacterial cell wall and causing 

leaching of enzymes from dead bacterial cells, with subsequent DO15N degradation 

(Hałemejko & Chrost, 1986; Kiersztyn et al., 2011), or (iii) seagrass leaves taking up 

small amounts of 15N-labelled amino acids over time. However, I argue that the first 

of these options is the likely cause, since NanoSIMS analysis and corresponding 

LIVE/DEAD® BacLightTM  kit cell counts revealed very few examples where 

microorganisms were not entirely removed (<1% leaf surface; Fig. 4.5). In these 

specific areas, microorganisms appeared to be protected from antibiotic penetration 

by the remaining epiphytic algae. The few remaining microorganisms were 20 times 

more 15N-enriched than those of unlabelled reference samples, and only seagrass 

cells directly adjacent to the remaining microbiome exhibited significant 15N 

enrichment (Fig. 4.5). Overall, these results cast doubts over the ability of seagrasses 

to directly utilise amino acids directly as a source of essential N (Vonk et al., 2008; 

Van Engeland et al., 2013; La Nefie et al., 2014; Alexander et al., 2015). In other 

studies that have investigated seagrass ability to utilise DON (Vonk et al., 2008; Van 

Engeland et al., 2013; La Nefie et al., 2014; Alexander et al., 2015), microbial 

epiphytes were never completely removed and, based on our findings, even small 

numbers of microorganisms on seagrass leaves do influence the uptake of N derived 

from DON. 
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Fig. 4.5 - Images of seagrass (P. sinuosa) leaf cells after incubation in enriched DO15N (amino acid mix) for the ‘without microorganisms’ 

treatment, where there was evidence of the presence of residual epiphytic microorganisms. (A) Optical image of the seagrass leaf (transverse 

section) for treatment ‘without microorganisms’ after 2 h of incubation in DO15N, (B) NanoSIMS image of the section void of microbes, (C) 

NanoSIMS image of a different section of the same leaf, where algae have not been entirely removed, thereby protecting the microorganisms 

beneath from antibiotic penetration and effect. Enrichment is expressed as a hue saturation intensity image, where blue represents the natural 

isotopic abundance of nitrogen (δ15N‰= 28) and enrichment is shown as a shift towards magenta (color scale label in δ15N‰). (D) Box-Whisker 

plots of 15N enrichment of identifiable epiphytic microorganisms and sub-cellular (vacuole and chloroplast) seagrass components against reference 

values. δ15N values are reported on the y axes. 
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4.5 Summary and conclusions 

The results presented in this study, show for the first time, that epiphytic 

microorganisms inhabiting the seagrass leaf biofilm facilitate the uptake of nitrogen 

(derived from DON) in seagrasses. By mineralising DON generated within seagrass 

meadows (Wahl et al., 2012), or DON imported from other coastal ecosystems 

(Säwström et al., 2016), epiphytic microorganisms on P. sinuosa leaves link the 

organic and inorganic components of the elemental N cycle in seagrass meadows, 

and are likely to contribute significantly to the high productivity of these important 

coastal ecosystems. Additionally, seagrass algal epiphytes include a variety of micro- 

and macroalgae, which represent a substantial component of the seagrass ecosystem 

(Sullivan 1979; Trautman & Borowitzka, 1999; Smit et al., 2006). Like 

microorganisms, some algae are capable of utilising DON directly, while others may 

benefit from microbial mineralisation of organic-N, as I have concluded is the case 

for the seagrass P. sinuosa. In Chapter 3, I identified important N-cycling members 

of the epiphytic microbiome of P. sinuosa: ureolytic bacteria, and ammonia-

oxidising bacteria and archaea. The results presented in this current chapter 

furthermore suggest that these specific functional groups could play a key role in 

transforming DON into DIN for uptake by seagrass leaves.  

Seagrasses and seagrass epiphytes are responsible for the high primary 

productivity of many benthic coastal systems (Borrowitzka & Lethbridge, 1989; 

Moncreiff et al., 1992; Larkum et al., 2007). From this current study, I conclude that 

microbial mineralisation of DON within the seagrass leaf biofilm could support this 

high productivity, by processing DON into DIN, which is more readily bioavailable 

for uptake by seagrasses and their epiphytes. This is likely to be the case for other 

macrophytes and their epiphytic algae in aquatic systems, which also have an 

association with heterotrophic epiphytic microorganisms. The present work therefore 

represents a significant advance in our understanding of the functional relationship 

between macrophytes (P. sinuosa) and their associated epiphytic microbiome and 
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encourage the exploration of different seagrass species and their associated 

microbiomes.  
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CHAPTER FIVE: COMPLEX CYCLING OF NITROGEN ASSOCIATED WITH 

SEAGRASS (POSIDONIA SINUOSA) LEAF MICROBIAL COMMUNITY 
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5.1 Abstract 

Within the marine ecosystem, boundaries between different habitats are 

permeable and allow for passive and active movement of organisms and nutrients. 

Traditionally, seagrass ecology has focused on seagrass habitats independent of their 

surroundings, however, some studies have shown that a relative high biomass of 

allochthonous material (i.e. seston and kelp) is trapped within seagrass beds 

contributing to seagrass nitrogen (N) demand. Seagrasses can host a high abundance 

of ammonia-oxidising microorganisms (AOM) on leaf surface, providing a pathway 

for recycling N at biofilm-leaf interface. The aims of this study were: i) to evaluate 

the potential role of P. sinuosa epiphytic microorganisms in enhancing inorganic N 

(DIN) availability for uptake by seagrasses by processing allochthonous sources of 

organic N (DON); and ii) clarify the relationship between the seagrass P. sinuosa 

and AOM in terms of competing for or enhancing N availability. Hence, I performed 

a series of experiments using enriched (15N) algal and kelp-amino acids in order to 

mimic the two potential N allochthonous sources for seagrass meadows of Western 

Australia. I used allylthiourea (ATU), a common inhibitor for nitrification, to 

discriminate AOM competition/contribution to the plant N demand to the other 

microorganisms present on seagrass surface., 

Epiphytic microorganisms were able to efficiently mineralise, not only simple 

amino acids, but more complex DON molecules (such as kelp leachate), increasing 

DIN availability for seagrass uptake. ATU addition resulted in greater 15N 

enrichment of both seagrass leaves and their epiphytic algae, showing that a 

proportion of DON is consumed by AOM. These results suggest the possibility that 

competition between seagrass leaves, seagrass epiphytes, and their associated AOM 

could occur on the seagrass leaf surface. However, several studies have documented 

a detrimental effect of excessive epiphytic algal growth on seagrass viability, 

particularly in areas with increasing nutrient inputs to coastal waters. Competition 

for NH4
+ uptake between epiphytes and their seagrass host may be used by seagrass 

leaves as a form of ‘biocontrol’ over the growth of excess algae.   
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5.2 Introduction 

Within the marine ecosystem, boundaries between different habitats are 

permeable and allow for movement of resources, including the active movement of 

organisms and the passive flow of nutrients (Polis et al., 1997). These cross-

ecosystem transfers of energy and nutrients are called ‘spatial subsidies’ and play a 

key role in linking habitats, and can dramatically affect productivity and trophic and 

community dynamics in ‘recipient’ systems (Polis et al., 1997; Suchaneket et 

al.,1985; Polis & Hurd, 1996; Duarte, 2002; Heck et al., 2008). Understanding 

trophic interactions among habitats and the direction and magnitude of material flow 

through food webs are fundamental to our basic comprehension of ecosystem 

function and management.  

In terms of nutrient transfer, seagrass ecology has mainly focused on the 

export of nutrients from the seagrass meadow canopy to ‘recipient ecosystems’ (e.g. 

offshore reefs), and this has mainly focused on particulate material (Mateo et al., 

2003; Mateo et al., 2006; Romero et al., 2006; Heck al., 2008). Seagrass meadow 

productivity in Western Australia has been estimated at 500 g C m-² y-¹ (Hyndes et 

al., 2013), of which approximately 74% is exported to adjacent recipient habitats 

(Wolff, 1980; Suchanek et al.,1985; Duarte, 2002; Heck et al., 2008), where seagrass 

nutrients can enhance food web structure and productivity (Vetter, 1994; Vetter, 

1998; Heck et al., 2008; Hyndes et al., 2014). However, the large export (up to 70%) 

of leaves and sources from seagrass systems (Mateo et al., 2006, Heck et al., 2008) 

suggests that external nutrient subsidies into seagrass systems are necessary to 

balance the loss of nitrogen (N) through organic matter export (Cambridge & 

Hocking, 1997; Heck et al., 2008). Thus, the import of nutrients into seagrass 

meadows from ‘donor’ habitats could be particularly important for seagrass survival. 

Seagrass meadows can receive nutrients in the form of particulate and 

dissolved organic matter (POM/DOM) or dissolved inorganic matter (DIM) from a 

range of donor sources, including macrophytes and seston (non-living particulate 

matter). For example, in South Western Australia, rocky reef communities are 
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dominated by kelps – large brown algae in the order Laminariales (Kirkman & 

Kendrick, 1997; Steneck et al., 2002; Wernberg et al., 2003) – which often occur 

close to seagrass meadows (Sanderson, 1997). Kelp biomass can be lost through 

detachment or erosion of the thalli (Wernberg et al., 2006, de Bettignies et al., 2013), 

and detached thalli from kelp reefs, where primary production can exceed 1 kg C m-2 

y-1, can accumulate in seagrass meadows (Hyndes et al., 2014). Kelp reefs therefore 

act as ‘donor habitats’, providing a source of nutrients, including N, to seagrass 

meadows (Hyndes et al., 2012). There is growing evidence that seston represents 

another important contributor to the POM/DOM pool in seagrass sediments, with 

inputs estimated between 0.1 and 0.3 Kg C m-² yr-1 (Mann, 1979; Kenworthy & 

Thayer, 1984) providing approximately 7 to 45 g N m-² yr-1 for seagrass uptake 

(Hemminga et al., 1991). Import of allochthonous material could provide seagrasses 

with a supplemental source of N that could be especially important in South Western 

Australia due to the constantly low environmental N concentration (Thompson 1984; 

Holloway & Nye, 1985) that results from the low-rainfall climate and the influence 

of the Leeuwin Current (Thompson 1984; Holloway & Nye, 1985).  

Once allochthonous material has been trapped within a seagrass meadow, the 

regeneration of nutrients through the activities of heterotrophic microorganisms 

enhances the availability of N for seagrass uptake (Evrard et al., 2005). The 

degradation of POM (e.g. kelp thalli) releases DOM through leaching, providing a 

substrate for residential microorganisms of recipient habitats (Blum, & Mills, 1991; 

Shilla et al., 2006 Lavery et al., 2013). It appears that DOM lost as leachate from 

macroalgae represents a readily available nutrient source, subject to subsequent 

microbial mineralisation (Fankboner & De Burgh, 1977). Yet, despite the emphasis 

placed on transported organic material as a vector for spatial subsidies across a range 

of coastal habitats (Hyndes et al., 2014), relatively little is known about the role of 

microbial mineralisation of organic material in facilitating coastal connectivity 

(Säwström et al., 2016) and even less for microbial mineralisation of organic N.  
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Under oxic conditions, the mineralisation of organic N is linked to ammonia 

oxidation, the first and rate-limiting step of nitrification, whereby ammonium (NH4
+) 

is oxidised to nitrite (NO2
-) (Kowalchuk & Stephen, 2001; Francis et al., 2005; 

Francis et al., 2007). The second step of the nitrification pathway is the oxidation of 

NO2
- to nitrate (NO3

-), with both NO2
- and NO3

- being released by microbial cells 

during nitrification (Rotthauwe et al., 1997; Kowalchuk & Stephen, 2001). In 

Chapter 3, I showed that the surface of P. sinuosa leaves hosts an abundant and 

diverse community of epiphytic ammonia-oxidising microorganisms (AOMs). 

Following the mineralisation of DON by heterotrophic microorganisms, DIN 

released into the immediate seagrass environment (e.g. the leaf, or phyllosphere) 

could be taken up by the plant itself (Chapeter 4) and/or remineralised further by 

different microbial functional groups. Surprisingly, very little is known of the 

relationship between AOM and seagrass leaves in terms of competition for or 

provision of N, including the N ‘donated’ from adjacent habitats. In other words, 

while studies of the seagrass microbiome are in their infancy, we know little of the 

contribution of seagrass epiphytes to spatial subsidies and N transport in seagrass 

systems. 

Based on the evidence that seagrass leaves are incapable of uptake of DON 

directly (Chapter 4), the aim of the present study was to: (i) determine the role of 

leaf-associated microorganisms in providing N to seagrasses via mineralisation of 

the DON made available from allochthonous material, and (ii) define the seagrass-

AOM relationship in terms of DIN uptake. Hence, I performed a series of 

experiments using a mixture of simple 15N-algal amino acids and more complex 

organic 15N-compounds derived from kelp exudates, in order to mimic two common, 

indirect, allochthonous N sources for seagrass meadows of southwestern Australia. 

To help determine the significance of N cycled by microorganisms hosted by P. 

sinuosa meadows, I have measured nitrification rates associated with AOMs 

inhabiting the P. sinuosa leaf biofilm and tested whether these AOMs may enhance, 

or compete with, seagrass DIN uptake.  
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5.3 Materials and Methods 

In this study, I performed two linked experiments. Firstly, I determined the 

ammonia oxidation rates of microorganisms associated with P. sinuosa leaves. This 

experiment also provided the concentration of allylthiourea (ATU) that was capable 

of inhibiting ammonia oxidation by those microorganisms to be used in the second 

experiment. Secondly, I used ATU as an ammonia oxidation inhibitor, to measure 

the uptake of enriched 15N derived from a mixture of simple 15N-algal amino acids 

and more complex organic 15N-compounds derived from kelp, in order to determine 

the relationship between seagrasses and their epiphytic ammonia-oxidising 

microorganisms.  

5.3.1 Ammonia oxidation experimental design 

Allylthiourea (ATU) is a common inhibitor of ammonia oxidation, which 

represents the first and limiting step of nitrification, and it has been extensively used 

in experiments to exclude the ammonia oxidation process (Bedard & Knowles, 

1989). However, recent studies have shown that some ammonia-oxidising archaea 

(AOA) remain uninhibited by ATU concentrations up to 1 µM (Santoro & Casciotti, 

2011). In this experiment, I examined: (i) the ammonia oxidation rates of AOM 

associated with P. sinuosa shoots in southwestern Australia, and (ii) the ATU 

(Sigma Aldrich, USA) concentration that was capable of inhibiting ammonia 

oxdation of epiphytic AOM, and which could therefore be used for the second series 

of experiments. To achieve these aims, I used microorganisms collected from the P. 

sinuosa leaf biofilm, which were incubated without ATU (CTL; to obtain the 

ammonia oxidation rates) and with two ATU concentrations (100 mg L-1 and 200 mg 

L-1 equal to 0.9 and 1.75 mM). Every control and treatment experiment was 

measured in triplicate. 
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5.3.2 Nitrification experiment  

Twenty P. sinuosa shoots were collected from a meadow (31°48'12.8" S 

115°43'07.2" E) in Marmion Marine Park, offshore from Perth, Western Australia. 

Seagrass shoots were collected with rhizomes and roots attached to minimise plant 

stress, and transported in aerated seawater to aquarium facilities at Edith Cowan 

University (ECU). At ECU, seagrasses were placed in 30 L aquaria under ambient 

seawater temperature (18 °C) with natural light cycle. After 24 h acclimatisation, a 

total of 18 healthy-looking seagrass shoots were chosen for the experiment and 

placed in artificial filtered (0.2 µm) seawater (ASF).  

Epiphytic organisms were detached from leaves by placing seagrass shoots in 

ASF and gently scraping the leaves with a razor blade. The epiphytic microbes 

needed to be incubated in isolation from seagrass due to the inability to avoid 

seagrass uptake of inorganic nitrogen if it was present, thus affecting the nitrogen 

concentration in the medium and consequent  nitrification measurements. The 

resulting ‘solution’ (1.8 L final volume) of microorganisms and epiphytic algae was 

then placed into a sterile glass bottle. The glass bottle was placed in the dark to 

minimise algal growth, and placed on a shaker (MaxQ 3000 Benchtop Orbital 

Shaker, Thermofisher) at low ramp speed (100 rpm) overnight (approximately 12 h) 

to detach microorganisms from epiphytic algae present within the solution. The 

slurry was filtered through 25 µm, 7 µm and 5 µm mesh nets, in order to separate the 

epiphytic algae from microorganisms, and then mixed using a magnet stirrer to 

create a homogeneous solution. For the treatments (TRT) and control (CTL), an 

inoculum of 25 ml was removed from the slurry and placed into 9 autoclaved glass 

bottles, containing 225 ml of ASF (250 mL final volume). 3 replicates per treatment 

and control were set up with: (i) no ATU addition (CTL); (ii) incubation with 100 

mg ATU L-1 (0.9 mM final concentration) (TRT1); and (iii) incubation with 200 mg 

ATU L-1 (1.75 mM final concentration) (TRT2) (Santoro & Casciotti, 2011). Shortly 

after the introduction of ATU, NH4
+ (10 µM final concentration) was added to each 

bottle of treatments and controls (obtained by dissolving NH4Cl in 2 ml sterile, 
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ultrapure water). Bottles were incubated with air bubblers and magnetic stirrers at 18 

°C in a temperature-controlled room in the dark. 20 mL of water samples were taken 

from each bottle at each time point (time 0, 8 and 24 h), and immediately frozen at -

80 °C until analysis. 20 ml of water samples were also collected from the 1.8 L 

slurry, filtered through a 0.2 μm filter (Millipore) and frozen at -80 °C, to detect DIN 

background values. DIN analyses were performed at the Commonwealth Scientific 

and Industrial Research Organisation (CSIRO) in Perth (Floreat). Concentrations of 

NO2
- and NO3

- were detected using a Lachat FIA QickChem 8000 series, whereas 

NH4
+ concentrations were determined with gas diffusion into orthophthaldiadehyde 

(OPA) with fluorescent detection (Aminot et al., 2001). Biofilm wet weight scraped 

from the older and/or medium P. sinuosa leaf can vary from ca 0.8g to 2.5 g (wet wt) 

of an entire shoot. For ammonia oxidation measurements, 25 ml of microbial 

inoculum (corresponding to ca 3 g. of biofilm, equal to the amount of biofilm we 

would expect to find on an entire shoot) were used to estimate ammonia oxidation 

rates associated with a P. sinuosa shoot. For both CTL and treatments, net 

nitrification rates were calculated by measuring NO2
- and NO3

- concentration over 

the time course of the laboratory incubation experiments, (with background N values 

subtracted) following the method of Radax et al.,2012. Average NO2
- and NO3

- 

(NOx) concentrations were plotted for each time point and the slopes of the linear 

trend in NOx concentration over time were used to calculate net nitrification rates. 

The R2 values for the linear relationships used to calculate net nitrification were 0.88 

for CTL, 0.36 for TRT1 and 0.28 for TRT2. 

 An upscaling calculation was performed based on the daily ammonia oxidation 

rate associated with a single P. sinuosa shoot and the average density of P. sinuosa 

shoots related to the surface covered (information obtained from the Australian 

Department of Parks and Wildlife, DPAW, for Marmion Marine Park) to calculate 

nitrification rates that could occur within seagrass meadows in the Perth region. 

At the beginning of the ammonia oxidation experiment, prior to the incubation 

with NH4
+, 1.8 ml of water was collected from treatment and control flasks to 
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evaluate differences in microbial abundances between the treatments. Water samples 

were fixed in glutaraldheyde (Sigma-Aldrich, USA) 2.5% final concentration and 

used for bacterial count. 

5.3.3 Microbial counts 

 For the enumeration of bacteria, I followed the method of Chen and colleagues 

(2001): 1.8 ml of sampled was fixed using 25% 0.2 μm-filtered glutaraldheyde (final 

concentration 2.5%), before being vacuum filtered through 0.2 μm black 

polycarbonate filters (Isopore Membrane Filters, Millipore), using vacuum pressure 

no greater than 20 kPa. Immediately after this, filters were mounted on a microscope 

slide (Lom Scientific Pty Ltd) and stained with 10μl SYBR Gold (X10000 original 

dilution, Invitrogen, USA) diluted 1:1000 in ultrapure, 0.2 μm-filtered water. Filters 

were incubated with SYBR Gold for 10 minutes in the dark. A drop of anti-fade 

mounting reagent (Slow Fade Light, Invitrogen, USA) was placed on the stained 

filters after they were completely dry, and coverslips were applied. One drop of 

immersion oil was added to the top of the cover slip, and analysis for microbial 

abundances was undertaken using epifluorescence microscopy under blue-green light 

excitation (Fitch filter, excitation at 480-495nm). Two replicate preparations were 

counted for each sample and for each replicate, 5 fields of view were counted. 

5.3.4 15N experimental design 

I designed this experiment to determine the relationship between seagrasses 

and their associated ammonia-oxidising microorganisms (AOM), with respect to the 

competition for or provision of N under natural conditions. Since the majority of the 

N pool in coastal waters is usually in the form of DON (Sharp, 1983; Hasegawa et 

al., 2000), this was tested through two experiments using different donor sources of 

enriched N: (i) a 15N-enriched algal amino acid mixture, and (ii) leachate from kelp 

that had been previously enriched with 15N. Each experiment comprised two 
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treatment categories: plant type (3 levels, fixed), and ammonia oxidation (2 levels, 

fixed). Five replicates were established for each level of each treatment. The ‘plant 

type’ category consisted of 3 treatments: (i) seagrass leaves ‘without epiphytes’, to 

test for the uptake of N by seagrasses in the absence of competition with epiphytic 

algae, but with attached bacteria left undisturbed, and (ii) seagrass shoots ‘with 

epiphytes’ to test for uptake by seagrasses in presence of epiphytic algae. From the 

treatment seagrass ‘with epiphytes’ I obtained the third ‘plant type’ treatment: (iii) 

‘epiphytic algal 15N-enrichment’. The experiment was performed twice: in the 

presence and absence of ATU, to test for the uptake of N by seagrass leaves with and 

without microbial ammonia oxidation (‘ammonia oxidation’ treatment). Five 

seagrass leaves were kept within the glass cylinders without DO15N spike for the 

duration of experiment to be used as reference samples. 

5.3.5 Environmental parameters and nitrogen concentration 

To determine the concentration of algal and Ecklonia radiata-DO15N to be 

added for seagrass shoot incubation experiments, I determined physical parameters 

and collected water samples for inorganic and organic nitrogen concentrations in 3 

P. sinuosa (31°48'12.8" S 115°43'07.2" E) meadows located in the Marmion Marine 

Park, on two different sampling occasions (December 2013 and August 2014). 

Dissolved oxygen, temperature, salinity and pH were measured using a YEO-KAL 

water quality analyser. For N analyses, triplicate 1 L water samples from surface 

(SW; 0.5 m) and canopy water (CW; 4 m) were collected in acid-washed PVPP 

bottles. All samples were kept on ice in a shaded enclosure until arrival at ECU 

facilities, where they were immediately placed in a -80 °C freezer. Total nitrogen 

(TN), total dissolved nitrogen (TDN), ammonium (NH4
+), and nitrite and nitrate 

(NO2
- and NO3

- as NOx) concentrations were analysed using a Lachat QuikCem 

flow injection analyser at ECU and used as reference for DO15N concentration 

during seagrass incubation experiments.  
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5.3.6 Preparation of enriched nitrogen sources 

 Two sporophytes of the kelp Ecklonia radiata (about 200 g wet weight), 

including the stipe and holdfast to minimise stress, were detached from the reef 

immediately adjacent to the 3 seagrass meadows, and transported in aerated seawater 

to ECU facilities. At ECU, the kelp sporophytes were placed in 45 L of artificial 

seawater (Red Sea)under natural light conditions and ambient temperature for 24 h. 

Light intensity (130 µmol m-2 s-1) was measured by using a Photosynthetically 

Active Radiance (PAR) sensor for underwater applications (Micro PAR, In-Situ 

Marine Optics, Perth) to ensure the kelp photosynthesised.  The thallus from one 

sporophyte was used as a reference, while the other was enriched with 15N.  

Reference thallus. After acclimatisation, about 2.5 g of fresh blades (wet wt) 

were taken from the non-enriched kelp to be used as reference (natural 15N/14N 

abundance composition), and processed for stable isotope analysis. 100 g (wet wt) of 

blades were placed in 1 L of ASF (previously sterilised under UV light for 30 

minutes) and left for 48 h to allow organic matter to leach from the thallus, this was 

then compared against the enriched leachate.  

Enriched thallus. For the enriched kelp, prior to and during the enrichment 

period, the kelp photosynthetic efficiency (dark yield adaptation) was measured with 

the pulse-amplitude modulater (PAM) chlorophyll fluorometer to ensure the kelp did 

not show any sign of stress. The 15N enrichment of the thallus was carried out using 

ammonium nitrate (15NH4
15NO3, enriched at 98%, Sigma Aldrich), following 

methods adapted from Boschker et al., (2000). I added 2 g of 15NH4
15NO3 dissolved 

in ultrapure, sterile water to the aquarium over a time period of 10 days (200 mg 

15NH4
15NO3 dissolved in 10 ml water d-1). At the end of the incubation, 15N-enriched 

Ecklonia radiata was transferred to a different aquarium filled with 45 L ASF for 

about 30 minutes, in order to remove excess 15N from the plant surface. The kelp 

surface was cleaned from algal epiphytes by gentle scraping using a razor blade, and 

sterilised by wiping it with 70% ethylic alcohol, in order to preserve kelp leachate 
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from microbial degradation (Mazure et al., 1980; Corre et al., al., 1990; Vollmers et 

al., 2017). As for the reference thallus, 2.5 g (wet wt) 15N-enriched thallus was 

processed for stable isotope analysis and 100 g of 15N-enriched thallus were placed 

in 1 L ASF for 48 h, to collect DO15N leachate.  

 Both the enriched and non-enriched leachate were filtered, firstly through 0.45 

μm filter membrane (Whatman), followed by 0.2 μm filtration (Millipore), to 

eliminate all particulate organic nitrogen present within the solution. 20 ml of 

leachate samples were taken from the 0.20 μm solutions to measure total dissolved 

nitrogen (TDN), and both inorganic (ammonium, nitrate and nitrite) and organic N 

(DON). N was measured using a Lachat QuikCem flow injection analyser at ECU. In 

order to eliminate any DIN potentially present within E. radiata 0.2 μm leachate, the 

solution was treated following the method of Van Engeland et al., (2011): 50 mg of 

Devadarda alloy and 25 mg of MgCl dissolved in 100 mL ultrapure water were 

added to 1 L of kelp leachate, shakenfor 48 h at room temperature in order to convert 

NH4
+ to NO3

-, and then NO3- to the gas form, allowing it to evaporate off the 

sample. 

 A further step was performed to separate and concentrate more complex kelp 

leachate molecules from peptides and simple amino acids using tangential flow 

filtration (TFF) with a Pellicon tangential flow device (Millipore) equipped with a 

fluorocarbon membrane 0.11 m2 Ultracell 30 kDa (Merck, Germany). The cassette 

size used for the present study concentrated N compounds characterised by a 

molecular weight higher than 30 kDa, and eliminated smaller compounds such as 

remaining DIN and small peptides. About 10 ml of the concentrated kelp leachate 

was firstly frozen at -80 °C for 48 h and then freeze-dried to be analysed for stable 

isotope analyses at The University of Western Australia. The remaining leachate was 

frozen at -80 °C and kept for the seagrass enrichment experiment. The 

concentrations of DIN and DON within the concentrated leachate were measured 

using a Lachat QuikCem flow injection analyser at ECU. The final concentration of 

N added to the seagrass cylinders was 50 µM for both substrates (amino acids and 
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more complex kelp DON). By knowing the DON concentration of the kelp leachate 

and its level of enrichment through stable isotope analysis, I calculated the 15N 

concentration within the added leachate to be 7.2 µM final concentration. 

5.3.7 Experimental procedures  

80 seagrass shoots were collected from the selected P. sinuosa meadow in 

Marmion Marine Park and treated in the same way as described for the ammonia 

oxidation experiment, above. For the ‘seagrass without’ treatments, seagrass shoots 

containing minimal epiphytic growth were selected and gently scraped with a razor 

blade to remove obvious epiphytes, whereas seagrass shoots with relatively high 

levels of epiphytic cover were selected for the other treatments and references. 

Approximately 3 g (wet wt) of seagrass shoot with epiphytes and approximately 2.2 

g (wet wt) of seagrass shoot without epiphytes were placed in 500 ml glass cylinders 

in aerated artificial seawater. All the glass cylinders had been sterilised previously by 

acid-washing and autoclaving, and ASF had been previously sterilised under UV 

light for 30 minutes  

 From the ammonia oxidation experiment described above, inhibition of 

ammonia oxidation was detected from 8 to 24 h at a concentration of 200 mg ATU 

L-1. Thus, 8 h before the introduction of any labelled substrate into the experiments, 

200 mg ATU L-1 were placed within the cylinders designed for ammonia oxidation 

inhibition (+ATU). For each experiment, after 8 h incubation with ATU, either 50 

µM of algal 15N-amino acids or 7.2 µM of 15N-kelp leachate were added to the 

cylinders containing seagrass for the two ammonia oxidation treatments (+ATU, -

ATU). Photosynthetic yield of seagrass shoots used for the experiments were 

measured at the beginning and at the end of the experiment using PAM fluorometry 

as a proxy for plant stress. Seagrass shoots with and without epiphytes were removed 

after 6 h incubation with DO15N (Vonk et al., 2008). Samples were rinsed in filtered 
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seawater to remove excess 15N and frozen at -20 °C until they were processed for 

δ15N determination (see ‘Stable isotope analyses’ below). 

5.3.8 Stable isotope analyses  

Prior to the experiments, 15N enrichment of the kelp blade and leachate was 

determined. Freeze-dried kelp 15N leachate was mixed with non-enriched 14N-

leachate powder in 1:10 ratio, due to the high 15N atom% enrichment we were 

expecting. Kelp blades were oven-dried for 48 h at 58 °C and ground (ball-mill 

grinder; Retsch, Haan, Germany) to fine powder. Similar to the leachate procedure, 

the enriched thallus powder was mixed with the non-enriched powder in the same 

ratio. The mixed leachate and thallus powder were weighed (approximately 1.5 mg) 

into 6 x 4 mm tin capsules (Elemental Microanalysis, UK) and crimped manually.  

For both seagrass samples incubated in DO15N and reference material, frozen 

leaves covered with epiphytic organisms were gently scraped using a razor blade in 

order to detach and collect epiphytic algal material and obtain a clean isotopic signal 

for both the seagrass material and epiphytes. Seagrass and algal samples were oven-

dried for 48 h at 58 °C, ground (ball-mill grinder; Retsch, Haan, Germany) to fine 

powder and weighed (approximately 1.5 mg) into 6 x 4 mm tin capsules (Elemental 

Microanalysis, UK) that were crimped manually. Samples were analysed for 

nitrogen elemental composition (%) and isotope ratios (δ15N) by continuous flow 

isotope ratio mass spectrometry using an Automated Nitrogen Carbon Analyser 

system, consisting of a Sercon 20-22 mass spectrometer and an elemental analyser 

(SERCON, UK), and were compared against reference samples that had been 

previously calibrated against standard International Atomic Energy Agency (IAEA, 

Vienna) reference materials with a precision and accuracy of <0.0005‰ (Skrzypek 

et al., 2013). Kelp enrichment level and the concentration of DO15N in the leachate 

were used to calculate the DON concentration that was added to the seagrass shoots 

during the incubation experiment. While for the algal ammino acid mixture I simply 
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added 50µM of “amino acid mixture” (NLM-2161-0, Cambridge Isotope 

Laboratories), I calculcated the kelp leachate that nedded to be added for seagrass 

incubation experiment.  By knowing the final kelp DON concentration L-1 within the 

kelp DO15N leachate, I calculated the concentration related to ml-1, then I simply 

calculated the amount (in ml) to be added to the seagrass cylinders (final volume of 

0.5 L) to have a final N concentration of 50 µM (350 µg N 0.5 L-1, equal to 0.7 µg N 

ml-1). By knowing the isotopic enrichment (15N‰) of the kelp DO15N I retrieved the 

molarity of 15N added into the cylinders as part of the 50 µM N pool (350 µg N 0.5 

L-1): 

14% 15N of 350 µg N (0.5 L-1) is equal to 49 µg 15N 0.5 L-1.  

49 µg 15N is equal to 7 µM of 15N 

5.3.9 Statistical analyses   

A one-way ANOVA was performed on the data for bacterial abundance for the 

two ATU treatments at the beginning of the ammonia oxidation experiment, to test 

for similar microbial abundances among samples. For the seagrass 15N incubation 

experiment, a 2-way ANOVA was used to test for differences in δ15N among plant 

type categories (seagrass P. sinuosa leaf and epiphytic algae) and with and without 

ammonia oxidation. Data were natural log-transformed prior to analysis, to meet the 

requirements of homogeneity of variance and normality according to the Levene’s 

and Kolmogorov-Smirnov tests (SPSS).  

5.3 Results 

5.3.1 Environmental parameters 

Environmental concentrations of inorganic and organic nitrogen were detected 

from the selected P. sinuosa meadow in Marmion Marine Park. Concentration of 

total dissolved nitrogen (TDN), ammonia (NH4
+), nitrite and nitrate (NOx) were 
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directly measured while values of dissolved organic nitrogen (DON) were obtained 

by subtracting the total inorganic nitrogen (NH4
+ + NOx) content to the total 

nitrogen. In Table 5.1 nitrogen values are reported for water surface (WS; 50cm 

depth) and canopy water (CW; 4m depth) in two sampling occasions (summer and 

winter). Temperature, salinity, DO and pH were also registered and used for 

controlling the water characteristics during the seagrass incubations.  

Table 5.1 Environmental concentrations of organic and inorganic nitrogen from above and 

within the canopy meadow reported as µg N L-1 (±SE) 

 Water 

Type 

NH4
+ NOx DON TDN 

Summer WS 6.9 ± 4.8 2.8 ± 2.1 38.9 ± 18.5 48.8 ± 11.5 

 CW 4.3 ± 1.1 2.7 ± 1.4 64.6 ± 18.8 72.3 ± 14.3 

Winter WS 5.2 ± 3.3 2.6 ± 1.7 49.0 ± 14.6 57.8 ± 5.4 

 CW 3.8 ± 1.6 3.1 ± 1.3 41.5 ± 5.6 48.8 ± 3.8 

5.3.2 Ammonia oxidation rates in seagrass meadows  

Ammonia oxidation rates associated with P. sinuosa shoots were estimated 

during the ammonia oxidation experiment, by following the production of NO2
- and 

NO3
- detected in the control ‘No ATU’ over a time course of 12 hours, in 

comparison to the two treatments with ATU (Fig. 5.1). The amount of ATU chosen 

for the seagrass shoot incubation experiment was, conversely, determined by 

following the decrease of NO2
- during the time course of the experiment in the 

samples incubated with 100 and 200 mg ATU L-1, respectively. That is, the treatment 

resulting in no NO2
- accumulation over time was deemed to have successfully 

inhibited ammonia oxidation activity. The DIN values presented in Fig. 5.1 are 

reported with the initial nitrogen background values subtracted to the final values. 
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For the control (No ATU) and both the treatments (TRT1, 100 mg ATU L-1, 

and TRT2, 200 mg ATU L-1) NH4
+ concentration increased over the time course of 

the experiment (Fig. 5.1). For the control ‘No ATU’, NH4
+ varied between 12 ± 1.01 

µmol L-1 at T0 and 25.91 ± 0.63 µmol L-1 at T24 (Fig. 5.1), NO2
- concentration 

increased from 0.27 ± 0.11 µmol L-1 (T0) to 4.43 ± 0.41 µmol L-1 (T24) (Fig. 5.1), 

and NO3
- concentration increased from 0.84 ± 0.27 µmol L-1 at T0 to 16.71 ± 3.37 

µmol L-1 after 24 h incubation (Fig. 5.1).  

For TRT1 and TRT2, NH4
+ concentration increased from 13.01 ± 0.86 µmol L-

1 up to 24.87 ± 0.56 µmol L-1 and from 13.30 ± 3.6 µmol L-1 to 24.53 ± 0.77 µmol L-

1, respectively (Fig. 5.1). For both ATU treatments, NO3
- concentrations increased 

within the first 8 h, followed by a decrease at 24 h. NO3
- decreased from 7.70 ± 0.14 

µmol L-1 (T8) to 7.1 ± 0.05 µmol L-1 (T24) and from 6.94 ± 0.12 µmol L-1 (T8) to 

5.83 ± 0.07 µmol L-1 (T24), for TRT1 and TRT2, respectively. For TRT1, NO2
- 

remained constant between T8 and T24, at 1.5 ± 0.7 µmole L-1, while for TRT2, 

NO2
- decreased from 1.14 ± 0.7 µmol L-1 at T8 to 0.43 ± 0.03 µmol L-1 at T24. After 

24 h, the drop in NO2
- concentration was significantly greater in samples incubated 

with 200 mg L-1 ATU. This experiment therefore suggested that 200 mg L-1 

incubation was needed to inhibit ammonia oxidation. 

Net nitrification rates are reported for the nitrification experiment for both the 

control and treatments expressed as nmol L-1 day-1 P. sinuosa shoot-1. 
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Table 5.2 NH4
+, NO3

-, and NO2
- (µM) production and net nitrification rates (± SE) (nmol L-1 

d-1 shoot-1) associated with microorganisms collected from P. sinuosa shoots without 

nitrification inhibitor (-ATU) and the two treatments (100 mg and 200 mg ATU L-1). 

Samples NH4
+ (µM)   NO2

- (µM)   NO3
-(µM)   Net nitrification 

Rates (nmol L-1 d-1 

shoot-1) 
0 mg L-1ATU 25.91 ± 0.98 4.43 ± 0.41 16.71 ± 3.37 13291 

100mg L-1ATU 24.87 ± 0.56 1.47 ± 0.70 7.1 ± 0.05 5741 

200mg L-1 ATU 24.53 ± 0.77 0.43 ± 0.03 5.83 ± 0.07 3556 
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Fig. 5.1 - Change in the nutrient concentration (NH4
+, NO3

= and NO2
=) associated with 

P. sinuosa epiphytic microorganisms, in the absence of an ammonia oxidation inhibitor 

(CTL, open circles), and with 100 mg L-1 or 200 mg L-1 added to inhibit ammonia oxidation 

activity (TRT1, grey squares, and TRT2, black triangles, respectively). DIN concentrations 

are reported as µmole N L-1 shoot-1 reported at time zero (T0), after 8 h (T8) and 12 h (T12), 

obtained as an average from triplicate samples, each with the background DIN values 

subtracted. 

 

Subtracting the net nitrification values for TRT2 (with ATU) from the control 

values (without ATU) (Table 5.2), I calculated that the average ammonia oxidation 

rate for a single P. sinuosa shoot (N(shoot)) in Marmion Lagoon, was 13291 nmol L-1 

d-1. Based on an average density (D) of 55 shoots m-2 and the area covered by P. 

sinuosa meadows in the Marmion Marine Park (366 ha, Department of Parks and 

Wildlife, Australia), I calculated the total daily nitrification rate (TotN(nitr)) 
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performed by epiphytic AOM associated with the shoots of P. sinuosa in Marmion 

Marine Park: 

TotN(nitr) = N(shoot) x D = 0.3 mol N d-1 

5.3.3 Kelp leachate concentration and enrichment 

48 h following kelp blade immersion into 1 L ASF, an average (± SE) 

concentration of 1674.7 ± 337.6 μg N 100 g-1 kelp was present in the water in the 

form of DON, compared to 16.8 ± 2.7 μgN 100 g-1 kelp as NH4
+, and 5.33 ± 1.4 μg 

N 100 g-1 kelp−1 as NOx. Through tangential flow filtration we were able to 

concentrate high molecular weight DON compounds up to 10286 ± 872.3 µgL-1 

(about 6.2 times more concentrated) while NH4
+ and NOx-N were below the 

detection limit. Kelp stable isotopic composition was evaluated both within blades 

and leachate for natural control and enrichment treatments. Additionally, a high level 

of 15N-enrichment was detected for both the kelp blade and leachate, varying from 

29.2 to 30.2 atm% (on average 112291.4 ± 2704.5 15N‰) and between 12 and 15 

atm% (on average 37624.9 ± 652.9 15N‰) for blade and leachate, respectively (Fig 

5.2; p<0.05, Table 5.3) 

Table 5.3. Ecklonia radiata. Results of 2-way ANOVA testing for differences in the 

nitrogen stable isotope (δ15N) values of different kelp type (blade and leachate) analysed in 

different treatments (unenriched or 15N-enriched blade and 15N-enriched leachate) in aquaria 

experiments. Data were natural log transformed prior to analysis to meet requirements of 

homogeneity using the Levene’s test. 

Factor  df MS P 

Kelp Type  

Treatment  

Kelp Type × Treatment 

Error 

2 

1 

1 

8 

53341 

37328 

37181 

128 

<0.001 

<0.001 

<0.001 
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Fig. 5.2 - Kelp DO15N enrichment level of Ecklonia radiata thallus obtained by 

analysing blades (dark brown) and leachate (green) by using IRMS. Enriched samples (dots 

fill) were compared to natural 15N/14N concentration in kelp tissue (solid fill) and values are 

reported as mean of three measurements with standard errors. Variations of 15N/14N ratio on 

the y axes are reported in delta N (δ15N ‰). 

 

5.3.3 Laboratory experiment 

In the laboratory experiment, seagrass shoots and epiphytes incubated with 

both DO15N sources (simple amino acids and complex kelp-derived DO15N) showed 

a high 15N-enrichment within their tissue compared to references (varying between 

1193 and 2230 15N‰ and 124 and 318 15N‰, for seagrass enriched with algal and 

kelp DO15N, respectively and, between 3214 and 373615N‰ and 412 and 56815N‰ 

for epiphytic algae enriched with algal and kelp DO15N, respectively). Uptake of 

DON derived from the two DO15N sources were different, and seagrass leaves with 

and without 15N-enriched epiphytes showed a higher 15N concentration compared to 

the kelp 15N-leachate, whether ATU was present or not. I took into consideration that 

Ref Ref 
15

N-enriched 
15

N-enriched 
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the final DO15N concentration of the kelp leachate added to the seagrass shoots was 

7 µM (approximately 6.9 times lower than the concentration of algal amino acids); 

however, at the end of the incubation, uptake of algal amino acids by seagrass shoots 

resulted on average 8 times higher than kelp leachate. A difference related to 

substrate DO15N source was also detected between epiphytic algae, which were 8-

fold more 15N-enriched when incubated with algal-derived DO15N-amino acids, 

compared to the kelp DO15N enrichment. In general, the presence of epiphytic algae 

negatively affected seagrass N uptake: for both treatments with and without the 

addition of ATU, and for both types of DO15N source, seagrass shoots showed a 

significantly higher enrichment in the treatment ‘without epiphytes’, compared to 

leaves where epiphytic algae were present (p>0.001). Additionally, 15N enrichment 

into epiphytic algae was significantly higher than enrichment in seagrass shoots after 

every incubation, resulting in a ‘plant type’ effect (p<0.001), whereby epiphytic 

algae appear to be more efficient at taking up DON over the timeframe of this 

experiment. 

For both seagrass treatments ‘with epiphytes’ and ‘without epiphytes’, 

differences in 15N-enrichment of seagrass leaves were significant between samples 

incubated with and without ATU (p<0.05), with a greater 15N-enrichment detected 

within seagrass tissue that had been incubated with ATU, for both DON sources 

(+ATU, Fig. 5.2)(1.3 and 1.4 times more enriched when incubated with amino acid 

and kelp DO15N, with and without epiphytic algae, respectively). Similarly, for both 

of the enriched DON substrates used, epiphytic algae incubated with ATU had 

higher 15N-enrichment compared to algae incubated without ATU. That is, or the ‘-

ATU’ treatment, epiphytic algal 15N enrichment was 1.2 and 1.3 times higher when 

incubated with 15N-amino acids and kelp 15N –leachate, respectively (3214 and 

373615N‰ for amino acid incubation and 412 and 56815N‰ for kelp incubation ).  
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Table 5.4 - Results of 2-WAY ANOVA testing for differences in the nitrogen stable isotope 

(δ15N) values of different combinations of primary producers (plant types: Posidonia sinuosa 

leaves with and without epiphytes and epiphytic algae) with and without ATU, in aquaria 

experiments. Data were natural log-transformed prior to analysis. 

Factor  df MS P 

Plant Type  

ATU  

Plant Type x ATU 

Error 

2 

1 

2 

12 

5137.2 

265.9 

19.9 

258 

<0.0003 

<0.022 

<0.99 
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Fig. 5.3 – Seagrass shoot 15N enrichment after incubation with 15N-enriched (A) amino 

acids, and (B) kelp leachate. Reference (no enrichment) values are reported for seagrass (Ref 

Sg) and epiphytic algae (Ref Ep). 15N enrichment is shown for seagrass shoots (‘Sg’) with 

and without epiphytes (‘with Ep’ and ‘no Ep’), as well as with and without ATU addition 

(‘+ATU’ and ‘-ATU’). 15N enrichment is also shown for epiphytic algae (‘Ep’) with and 

without ATU addition (‘+ATU’ and ‘-ATU’). On the y axes, 15N enrichment is expressed as 

15N per mil. Note the differences in the scale between the graphs for the two types of DO15N. 

B Kelp leachate DO15N 

A Amino acid DO15N 
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5.4 Discussion 

Nitrogen is an important constituent of amino acids and proteins, including 

DNA (Young & Pellet, 1994). Within coastal systems, the majority of the N pool is 

represented by DON rather than DIN, due to both authocthnous production and 

allochthonous import of material from ‘donor’ habitats (Heck et al., 2008). In fact, 

marine environments are characterised by a continuous flow of organisms, nutrients, 

and non-living seston, which can subsidise primary production in recipient habitats 

(Polis et al., 1997; Suchaneket et al., 1985; Polis & Hurd, 1996; Duarte, 2002; Heck 

et al., 2008). The coastline of southerwestern Australia is characterised by high 

biomass of benthic habitats, and the common brown kelp, Ecklonia radiata, 

participates in forming the highest benthic biomass for the rocky reef communities. 

It has been estimated that a considerable proportion of the detached biomass 

produced in the region per year (1270 to 7800 t dry wt km−2) would subsequently 

pass through seagrass meadows (Kirkman & Kendrick’s 1997), resulting in a 

significant increase of nutrients being released into the recipient seagrass meadows. 

Levels of DIN can be low in this area (McGlathery et al., 2001), and the DON and 

DIN concentrations measured during different sampling occasions for this current 

study (Table 5.1) highlight the oligotrophic nature of these waters (on average 5.05 ± 

1.3 NH4
+ and 2.7 ± 0.1 NOx µg L-1). However, while kelp thalli and seston may 

constitute a considerable amount of donor material, measurements of the DIN 

leached from kelp in my experiment suggests that it contributes little to the DIN pool 

available for uptake by P. sinuosa. The predominant form of N lost through leaching 

by the kelp in my experiment was DON (on average 98.7% of the N leachate pool). 

My results are therefore in accordance with the study by Hyndes et al., (2012), which 

showed very low NH4
+ and undetectable NOx concentrations being released from 

kelp thalli during leaching. Other previous experiments have shown that a similar 

situation may occur, with DON being the predominant form of N released from 

seston (Becker et al., 2014). 
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Recently, short-term (≤3 h) DON uptake via both aboveground and 

belowground tissues has been demonstrated for seagrass species (Zostera noltii, 

Cymodocea nodosa, and Caulerpa prolifera) in an oligotrophic system (Van 

Engeland et al., 2011). In these experiments, the relative short time of incubation 

with enriched substrates led the authors to conclude that seagrasses could have taken 

up DON-derived nutrients immediately, while microbial mineralisation would have 

required more time to take place. However, while seagrass incubation was performed 

with dual-labelled (13C and 15N) compounds, no 13C enrichment was detected within 

seagrass tissue. Van Engeland et al., (2011) hypothesised that the absence of clear 

13C enrichment was due to the sole uptake of N or that the C was lost after 

breakdown of the substrates in the plant. In my previous study (Chapter 4), I have 

shown that labile DOM can be efficiently recycled by microorganisms within 30 

minutes. Since algae and seston are generally more nutritious and more easily 

assimilated than seagrass detritus (Klumpp & Polunin, 1989), bacterial nutrient 

demand during mineralisation is reduced by the presence of these allocthonous DOM 

sources, and external materials are quickly degraded within seagrass ecosystems 

(Holmer et al., 2004; Williams et al., 2009; Williams et al., 2009). Hyndes et al., 

(2012) hypopthesised that microorganisms associated with seagrass meadows may 

provide an important link between the leaching of kelp/algal-derived organic matter 

and seagrass N uptake; however, the ecological significance of the nutrients provided 

by kelp remained unknown.  

Since seagrass leaves do not share with other macrophytes the capability to 

uptake DON directly (Chapter 4), DON mineralisation mediated by epiphytic 

microorganisms is essential for enhancing allochthonous N availability within 

seagrass meadows. In this experiment, simple algal-derived 15N-labelled amino acids 

were 1.1 times more readily taken up by seagrass shoots (both with and without 

epiphytes), compared to complex kelp leachate-derived DON, while epiphytic algae 

were 1.2 times more enriched when incubated with algal amino acids as their source 

of DO15N. However, even small amounts of complex kelp leachate could still 
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represent a substantial input of N for seagrass uptake, as indicated by seagrass tissue 

15N-enrichment in the kelp leachate treatments, compared to reference material (on 

average 8 times more enriched). The higher 15N enrichment in epiphytic algae, 

compared to that observed in seagrass shoots, suggests that epiphytic algae are able 

to take up N more rapidly than their seagrass hosts. These results are expected, since 

some microalgae (e.g. diatoms) can directly access the DON pool, in contrast to 

seagrass leaves (see Chapter 4).  

Seagrass shoots with no algal epiphytic cover, and with the addition of the 

ammonia oxidation inhibitor, allylthiourea (ATU), showed the highest 15N 

enrichment compared to shoots with epiphytes, suggesting competition between 

seagrasses and their algal epiphytes for the uptake of DIN derived from ammonia 

oxidation. Thus, seagrass 15N-enrichment indicated that when P. sinuosa shoots 

(with and without epiphytes) were incubated with ATU, they had a greater 

concentration of 15N in their tissue compared to the treatments without ATU, 

irrespective of the DO15N substrate type. Similarly, epiphytic algae were 

significantly, positively affected by the addition of ATU. Thus, I am able to 

speculate that: (i) ammonia-oxidising microorganisms compete with both the 

epiphytic algae and seagrass for NH4
+ uptake, and (ii) when ammonia-oxidising 

microorganisms are inhibited, the competitive relationship is restricted to seagrasses 

and epiphytes. However, this data is presented with the caveat that, even in the 

absence of an algal epiphytic community, and when nitrification rates were inhibited 

by the addition of ATU, 15N enrichment was still observed within seagrass tissues. 

The reason for this discrepancy could be: (i) other epiphytic microorganisms were 

present, that were able to transform DON to DIN sources, available for uptake by the 

seagrass, (ii) the concentrations of ATU used here did not entirely inhibit ammonia 

oxidation, so the seagrass tissue could still be enriched through DIN uptake, or (iii) a 

combination of both. Future work should therefore explore these mechanisms more 

closely. 
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With respect to nitrification rates, Trias et al., (2012) already hypothesised that 

macroalgae may represent a “hotspot” for nitrification, fueled by the continuous 

release of photosyntetically produced oxygen, and the epiphytic ammonia-oxidising 

microbial community of P. sinuosa may similarly benefit from the release of O2 

from seagrass leaves (Oremland & Taylor, 1976; Roberts and Moriarty, 1987; 

Larkum et al., 1989; Borum et., 2007). During the ammonia oxidation experiment 

performed here, NH4
+ increased in all treatments, suggesting that NH4

+ 

concentrations were not limiting ammonia oxidation in this study. By following the 

increase of nitrite in the control treatment, I was able to detect ammonia oxidation 

activity associated with P. sinuosa shoots. The net nitrification rates obtained in this 

study (13291 nmol N L-1 d-1 shoot-1) are lower than those found for sponges, such as 

Geodia barrette, which support nitrification rates of 560 nmol N d-1 cm-2 sponge 

tissue (Radax et al., 2011). However, nitrification rates associated with seagrass 

shoots are much higher than the rates associated with bare sediment (18.3 nmol L–1 

day–1; Beman et al., 2012). Moreover, while the main benefit of ammonia oxidation 

for sponges is related to the efficient removal of the eukaryotic host’s waste 

products, such as NH3, the ecological significance of ammonia-oxidisers on P. 

sinuosa leaves is less clear, and AOM may even compete with the seagrass for DIN 

uptake under certain conditions. Indeed, seagrasses may still benefit from the 

presence of AOMs on their leaf surface as they may still increase DIN availability 

(in the form of NO3
-) at leaf – biofilm interface. 

5.5 Summary and conclusions 

From the results obtained in this study, it appears clear that the epiphytic 

microbial transformation of allocthonous DON could play an important role in 

seagrass health and productivity, by increasing DIN availability to the plant. 

Moreover, not only simple amino acids but more complex organic N pools, such as 

kelp leachate, can be efficiently mineralised by seagrass leaf microorganisms, 

resulting in enhanced N uptake by P. sinuosa in the presence of the lead microbiome. 
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More generally, microorganisms present within ‘recipient’ habitats, in this case 

seagrass meadows, play a key role in linking the DON leached from allochthonous 

substrates to the regeneration of nitrogen in situ. The seagrass microbiome could 

therefore enhance total ecosystem productivity, by acting as a ‘spatial subsidy’, and 

providing regenerated nutrients for their eukaryotic host and other members of the 

meadow community. 

 Additionally, this study indicates that P. sinuosa meadows in South Western 

Australia could represent important sites for ammonia oxidation (nitrification) 

activity. When I performed upscaling calculations to understand the implications for 

epiphytic ammonia oxidation rates the entire seagrass ecosystem, I found that a high 

amount of the total NH4
+ (13291 mM N d-1 shoot-1) could be recycled by AOM 

within the P. sinuosa microbiome. The specific ecological significance of epiphytic 

AOM for the wider function of the seagrass meadow ecosystem is yet to be 

determined. However, my experiment suggests that the leaf microbiome of P. 

sinuosa could have important implications for the regeneration of N in the coastal 

waters of Western Australia.  
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CHAPTER SIX: GENERAL DISCUSSION AND FUTURE DIRECTIONS 
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6.1 Summary  

The present thesis represents a significant advance in our understanding of the 

seagrass leaf-microbiome relationship and transformations of N within seagrass 

meadows (summarised in Fig. 6.1). Seagrass ecosystems are biologically diverse and 

valuable marine systems, providing a range of services including primary 

production, nutrient cycling, carbon burial, sediment stabilisation, and food and 

shelter for economically valuable biota (Thresher et al., 1992; De Lestang et al., 

2006; Valentine & Duffy 2006; Barbier et al., 2011; Lavery et al., 2013; Heck et al., 

2015). Nitrogen (N) is one of the most important elements required for the success of 

all living organisms, including seagrasses, as it is a constituent of amino acids, 

proteins and a variety of other organic compounds (Young & Pellet, 1994). 

However, despite their importance, very little is known about the N transformations 

within seagrass meadows and, in particular, N cycled by seagrass leaf-associated 

(epiphytic) microorganisms. It is widely acknowledged that the microorganisms 

associated with seagrass roots and leaves are a vital component of the seagrass 

‘holobiont’: a term that incorporates all members of the microbiome, as well as the 

seagrass host.It has been demonstrated that microorganisms are responsible for a 

variety of processes within marine holobionts, including recycling of nutrients, 

which increase their eukaryotic host ‘fitness’ (health and productivity) (Steger et al., 

2008; Foster et al., 2011; Amin et al., 2012; Rädecker et al., 2015). While the 

majority of studies have investigated the diversity and role of rhizosphere 

microorganisms (Jørgensen, 1982; Shieh & Yang 1997; Krutz et al., 2003; Jensen et 

al., 2007), little is known about the ecological significance of microorganisms in leaf 

biofilms and interactions between seagrass leaf microorganisms and their host plants. 

My research significantly supports the seagrass holobiont concept, by showing 

a marked difference between the P. sinuosa microbial assemblage and the 

environmental one (Chapter 3), which agrees with the hypothesis that specific plant-

microbial interactions occur during the establishment of the epiphytic community 

(Loucks et al., 2013; Costa et al., 2015; Zidorn, 2016). Microbial communities 
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associated with P. sinuosa meadows include microorganisms involved in different 

steps of N cycling (e.g. mineralisation of DON and nitrification; Fig. 6.1) that may 

influence the rate and efficiency of N transformations within seagrass meadows and 

have profound effects on plant fitness (Chapter 3, Chapter 4, Chapter 5). In 

particular, my research shows that seagrass epiphytic microorganisms are intimately 

involved in the functioning of marine plants, by enhancing canopy inorganic N 

uptake through DON mineralisation (Chapters 4 and 5), thus supporting seagrass 

growth and productivity. Moreover, my work clearly points to the importance of 

considering the epiphytic algal community as part of the microbiome (Chapters 4 

and 5), to interpret some of the interactions that occur on the canopy leaf surface. 

Indeed, I have demonstrated that, while some microorganisms mediate seagrass N 

uptake by mineralising DON, seagrass and ammonia-oxidising microorganisms 

could compete for ammonium uptake (Chapter 5). However, I speculated that the 

strong competition that AOMs exert on epiphytic algal N uptake may, in turn, 

control algal growth and favour seagrasses in times of nutrient surplus, similar to the 

coral holobiont (Yellowlees, et al., 2008; Rädecker et al., 2015; Fig. 6.1). 

Chapter 4 provides new insights into the use of imagining techniques, such the 

NanoSIMS, for the study of N flow among different members of the microbiome 

community, and may be used to resolve questions regarding seagrass organic against 

inorganic nutrient uptake. My results represent an important baseline for further 

research aimed at clarifying the interaction between seagrass leaves, microorganisms 

involved in N cycling, and other members of the seagrass microbiome, such as 

epiphytic algae. Moreover, my results are not only relevant for seagrasses as hosts, 

but other macrophytes in aquatic systems that may benefit from the presence of 

specific N-cycling microorganisms, providing an important starting point for future 

work in this important research area. 
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Fig. 6.1 - Key N transformations within the seagrass microbiome. On the leaf: 

epiphytic growth of algae, N-fixing and heterotrophic microorganisms, resulting in increased 

concentrations of dissolved inorganic nitrogen (DIN) at the leaf-biofilm interface; N-fixing 

cyanobacteria facilitating N uptake through the leaves from atmospheric N; heterotrophic 

microorganisms enhancing DIN availability from dissolved organic nitrogen (DON) through 

extracellular enzymes; heterotrophic and ammonia-oxidising microorganisms (AOM), 

epiphytic algae and even seagrass may compete for NH4
+ uptake, however, the production of 

nitrate (NO3
-) by AOM enables DIN uptake by seagrass leaves. Within the sediment: 

heterotrophic microorganisms recycle DON by producing NH4
+, which can be utilised by 

seagrass, AOM or other members of the rhizosphere microbiome. Since nitrification is an 

oxygenic-dependent process, seagrass regulation of O2 exuded from the roots could 

represent a mechanism of biocontrol over AOM activity. Nitrification can be coupled with 

denitrification across the oxic-anoxic interface surrounding the root-rhizosphere, and at the 

sediment surface. O2 and dissolved organic carbon (DOC) released from the above- and 

belowground plant tissue drive microbial processes, including sulphur cycling and N 

fixation in the rhizosphere; thus providing a further mechanism for the recycle of N in the 

rhizosphere in the rhizosphere.  
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6.2 Discussion  

Very few studies have described the abundance and diversity of 

microorganisms attached to the surface of aquatic macrophytes, however, those 

studies indicate that seagrasses host a high number of microorganisms on both 

above- and belowground tissue (Peduzzi & Herndl, 1994; Moriarty et al., 1985; 

Kirchman et al., 1984), and that microorganisms associated with the surface of 

macrophytes are different from the microbes present in the surrounding 

environments (e.g. sediments and water column) (Weidner et al., 2000; Krutz et al., 

2003; Egan et al., 2012). Table 6.1 provides published data on the abundances of 

bacteria and archaea associated with seagrasses and macrophytes, including P. 

sinuosa leaves from this study. 

Table 6.1 Microbial 16S rRNA or total cell abundances associated with seagrasses and 

macroalgae. Current study in bold; 1 Novak, 1984; 2 Peduzzi & Herndl, 1994; 3 Moriarty et 

al., 1985; 4 Kirchman et al., 1984; 5 Trias et al., 2012; 6 Mazure & Field, 1980; - no data 

available. 

Host organism Species Bacteria  

Log (g-1/cm-2) 

Archaea  

Log (g-1/cm-2) 

Technique 

Seagrass Posidonia sinuosa 10 10 16S rRNA 

 Posidonia oceanica1 6 - Cell counts 

 Cymodocea nodosa2 7 - Cell counts 

 Zostera capricrorni3  8 - Cell counts 

 Zostera marina4 7-8 - Cell counts 

Macroalga Phyllophora crispa5 9-10 6 16S rRNA 

 Osmundaria volubilis5 8-9.5 5-7 16S rRNA 

 Laminaria rodriguezii5 9-10 5-7 16S rRNA 

 Laminaria pallida6 3-7 - Plate counts 

 Ecklonia maximata6 3-7 - Plate counts 

 

The inconsistency in techniques used in previous studies (Table 6.1) does not 

allow for a direct comparison among all different habitats or host species; however, 

important information can be deduced. Firstly, seagrass leaves represent a hotspot 
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for microbial abundance (Chapter 3), and can support greater abundances than those 

found on macroalgal surfaces (Trias et al., 2012). Secondly, there is a paucity of 

information regarding archaeal abundance and diversity. Archaea are 

microorganisms with peculiar features, including the ability to grow at extremely 

high temperatures and to produce methane as a metabolic product; a trait that is 

exclusive to this domain). Archaea have been largely overlooked in previous decades 

and only relatively recently their potential involvement in nutrient transformations 

and marine biogeochemical cycles has been recognised. Evidence that archaea, as 

well as bacteria, are important players in the N cycle are provided by a number of 

studies, and seems that archaea are involved in every step of N cycling, except for 

nitrite oxidation (Offre et al., 2013). Archaeal diazotrophs (class Methanobacteria, 

Methanococci and Methanomicrobia) have been isolated from a variety of 

environments (Leight, 2000; Cabello et al., 2004; Offre et al., 2013), and cultivation 

experiments have shown that methanotrophic diazotrophs not only fix N but share it 

with bacterial partners in anaerobic consortia (Dekas et al., 2009). Also, archaea 

capable of nitrification (belonging to the Thaumarchaeota) (Könneke et al., 2005; 

Treusch et al., 2005; Stahl et al, 2012) and denitrification (Völkl et al., 1993) have 

been described, and appear to be a key component of the N-cycling epiphyte 

microbiome (Chapter 3). 

 

6.2.1 Diversity of microorganisms associated with Posidonia sinuosa and 

functional genes   

Microbial diversity associated with seagrasses, and macrophytes in general, 

seems to be influenced by the release of nutrients, oxygen and antibiotics from the 

plant surface (Zapata & McMillan, 1979; Engel et al., 2006; Kannan et al., 2010). 

Crump and Koch (2008) and Weidner et al., (2000) showed that different seagrass 

species host different bacterial communities, and associations with Gamma-, Beta- 

and Alphaproteobacteria are common on temperate seagrass leaves. A similar 

association between epiphytic bacteria and the seagrass host was found and 
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presented in this study for the P. sinuosa microbiome, characterised by a high 

abundance of Proteobacteria, with the only exception being Deltaproteobacteria, 

which was found exclusively in the sediment, and the presence of Verrucomobia and 

Firmicutes, which were bothabsent from the water column (Chapter 3). Futhermore, 

Chapter 3 showed that Euryarchaeota and Thaumarchaeota dominated the archaeal 

community of the P. sinuosa microbiome, and that the leaf-associated archaeal 

community differed from that in the surrounding environment; highlighting the close 

association between the seagrass and the archaeal component of its microbiome. 

Given the absence of information regarding the archaeal community associated with 

seagrasses, it is difficult to compare the present results with a similar habitat, but my 

results provide a reference point for future studies.  

In addition to the information on the total microbial community structure 

obtained through 16S rRNA sequencing, the study of functional genes assists in 

providing a better understanding of the functional role of microbiomes in marine 

systems. By studying functional genes (e.g. ammonia-oxidising genes, amoA), we 

can obtain information on the diversity and environmental drivers of 

microorganisms, which could be missed when studying at bacterial species diversity 

or abundance alone.  

Within the marine environment, the main processes of N regeneration are N 

fixation and mineralisation, the latter being linked to ammonia oxidation (Carpenter 

& Capone, 2016). Ammonia-oxidising microorganisms (AOM) have been found 

associated with a variety of marine habitats, including sediment (Ando et al., 2009; 

Matsutani et al., 2011), water column (Santoro & Casciotti., 2011; Qin et al., 2014), 

the surface of different substrates (e.g. macroalgae; Trias et al., 2012), and the tissues 

of different animals (i.e. sponge and corals; Mohamed et al., 2010; Siboni et al., 

2012; Yang et al., 2013; Feng et al., 2006). Data on the bacterial (AOB) and archaeal 

(AOA) amoA abundances, collected from a variety of representative marine habitats 

(e.g. unvegetated and vegetated sediments, and macroalgal and animal surfaces) 

(Table 6.2), show that the AOM abundances observed in the current study, within the 
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sediment and water column of seagrass meadows, fall within the range of other 

aquatic habitats, including mangrove and salt marsh sediments. However, the 

seagrass biofilm from my study represents a hotspot for microorganisms capable of 

nitrification, with AOM abundance on P. sinuosa leaf surface being orders of 

magnitude higher in comparison to surrounding environments, and even greater than 

those found on, for example, macroalgal surfaces (Trias et al., 2012) (Table 6.2). 

Moreover, seagrasses, and marine autotrophs in general, present an opposite pattern 

of AOM abundances than those observed for marine animals (Radax et al., 2011), 

with AOB outnumbering AOA on their surface (Chapter 3). Indeed, abundances of 

AOA on the seagrass leaf surface are between 2 and 4 orders of magnitude less 

abundant than within marine sponges, whereas abundances of AOB on seagrass 

leaves are between 4 and 8 orders of magnitude higher than AOB abundances in 

marine sponges (Table 6.2; Radax et al., 2011). The reasons for this inverted trend 

could be explained by the differences of physico-chemical parameters encountered 

within animal tissue (fluctuating  O2 levels, temperature and NH4
+ concentration; 

Hoffmann et al., 2009) in comparison to the surface of marine macrophytes, which 

are characterised by the release of photosynthetic O2  (Larkum et al., 2006; Trias et 

al., 2012). 
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Table 6.2 Ammonia-oxidising gene abundances in microbiomes from different habitats and 

organisms. Current study in bold; 1. Mosier et al., 2008; 2. Beman et al., 2012; 3. Cao et al., 

2011; 4. Li et al., 2010; 5. Moin et al., 2009; 6. Radax et al., 2011; 7. Trias et al., 2012. 

 

 

Despite differences in the relative abundance of the AOM members, there is 

some similarity between AOA and AOB community composition found on P. 

sinuosa leaves in this current study (Chapter 3), and the OTUs identified in sponges 

(Mohamed et al., 2009) and macroalgae (Trias et al., 2012), pointing to the 

possibility that specific AOM taxa may be adapted to live in association with 

eukaryotic hosts. AOM sequences retrieved from the sediment and water column in 

my study (Chapter 3) were also related to OTUs identified in previous studies 

Habitat AOA 
Log (g-

1/ml-1) 

AOB 
Log (g-

1/ml-1) 

Location 

Water column Seagrass  

P. sinuosa 

2 4 Temperate, 

Western Australia 

Sediment Coastal1 6.5 5.5 Gulf of Mexico 

 Coastal2 5-7 4-8 California 

 Offshore1 6 3 Gulf of Mexico 

 

 Continental 

shelf3 

5-6 4-6 China Sea 

 Mangrove4 6-7 6-8 Hong Kong 

 Salt marsh5 6-9 3-8 Barn Island, 

Connecticut 

 Seagrass  

P. sinuosa 

7 7 Temperate, 

Western Australia 

Sponge Geodia 

barretta6 

11 <0 Cold water 

 Phakelia 

ventilabrum6 

10 5 Cold water 

Macroalgal 

thallus surface 

Phyllophora 

crispa7 

5.5 7.5 Mediterranean Sea 

 Osmundaria 

vulibis7 

 

7 8 Mediterranean Sea 

 Laminaria 

rodriguezii7 

6 8 Mediterranean Sea 

Leaf surface Seagrass  

P. sinuosa 

7.5 8.5 Temperate, 

Western Australia 
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performed in the Western Pacific (Cao et al., 2011), California (Francis et al., 2003; 

Beman & Francis, 2006), South and East China (Cao et al., 2011; He et al., 2016), 

and sediment from an eelgrass meadow along the coast of Japan (Zhang et al., 2014). 

However, the high proportion of unknown AOM sequences in my study highlights 

the fact that seagrass meadows may represent a habitat for uncharacterised 

populations of ammonia-oxidising microorganisms.  

Interestingly, part of the AOM community may also be able of using urea as a 

source of N through the urease enzyme, thus directly linking N mineralisation to 

ammonia-oxidation (Alonso-Sáez et al., 2012; Lu et al., 2012). Urea is an important 

component of the marine organic N pool, and is rapidly turned over within coastal 

waters (e.g. for Chesapeake Bay, McCarthy et al., 1977; Lomas et al., 2002). Until 

relatively recently, the pathway for urea hydrolysis was thought to be mediated by 

two microorganisms: one organism capable of hydrolysing urea (identified using the 

ureC gene) through the production of CO2 and NH4
+, whereby the resulting NH4

+ 

becomes available for a different chemolithotrophic bacterium or archaeum to 

perform ammonia oxidation (identified by the amoA gene). The possibility that some 

microorganisms are able to perform both reactions represents a short cut in the 

recycling of N, and a link between organic matter breakdown, DON consumption 

and DIN transofmrations (Alonso-Sáez et al., 2012). NH4
+ released from urea 

hydrolysis can be incorporated into microbial biomass (Koper et al., 2004), and/or 

used for the reaction of ammonia-oxidation, with a subsequent release of NO2
-; thus 

increasing DIN concentrations on the seagrass leaf surface (Fig. 6.2). 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035804/#CR14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035804/#CR3
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Fig. 6.2 - Hydrolysis of urea mediated by a seagrass epiphytic ammonia-oxidising 

microorganism. Urea is hydrolysed by the urease enzyme (gene ureC) into CO2, which is 

fixed by the microbial cell, and NH4
+, which can be further incorporated into cell 

constituents, or oxidised into NO2
- by the ammonia monoxygenase enzyme (gene amoA). 

NH4
+ and/or NO2

- released from the microbial cell enhances DIN concentration at the 

seagrass leaf-biofilm interface.  

Alonso-Sáez et al., (2012) hypothesised that AOA were able to shortener the 

recycle of N by hydrolysing urea and performing nitrification directly within their 

own cells. They found both of the relevant genes (ureC and amoA) associated with 

archaeal populations in the Arctic Sea. Interestingly, while I found a high abundance 

of ureolytic AOB in all the seagrass meadow microenvironments (Chapter 3), I was 

unable to detect archaeal ureC. However, since most of the AOA sequences in my 

study, especially the ones retrieved from the water column, did not match with 

known organisms, there is a strong possibility that a divergent or novel population of 

AOA taxa associated with seagrasses of Western Australia exists. Thus, different 

primer pairs for the detection of the ureC gene of Western Australian AOA 

population should be designed for future studies. 

 

6.2.2 The importance of seagrass leaf microbiome 

Seagrasses are extraordinarily productive, yet they occur in nutrient poor and 

nitrogen-limited environments (Kenworthy & Fonseca, 1992; Burkholder et al., 

1994; Agawin et al., 1996; Gobert et al., 2002). The results presented in my thesis 
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show, for the first time, that microorganisms in the biofilm of seagrasses directly 

facilitate the uptake of organic nitrogen – a key nutrient for these highly valuable, 

and yet highly threatened, marine plants  (Chapters 4 and 5). Here, I showed that 

leaf-associated microorganisms fulfil a nutrient-supply role for seagrasses, by 

processing DON into inorganic forms (NH4
+, NO2

-, NO3
-) more readily available for 

uptake by the plant (Fig. 6.3). My research significantly changes our understanding 

of the mechanisms of seagrass N use, and makes a significant contribution to 

ourknowledge of the functional role of the seagrass epiphytic microbiome. 

Seagrasses preferentially take up DIN (Izumi & Hattori, 1982; Short & McRoy, 

1984; Pedersen & Borum, 1992, 1993; Lee & Dunton, 1999), which accounts for 

less than half of the N pool in coastal systems (Voss et al., 2013). Recent work has 

suggested that seagrasses are also able to use the DON pool, primarily via uptake 

through their roots (Vonk et al., 2008; Van Engeland et al., 2011; Alexandre et al., 

2015). However, my findings indicate that it is the leaf-associated microorganisms 

that provide the mechanism for this uptake through seagrass leaves, thus highlighting 

the important role of the seagrass epiphytic microbiome in supporting plant health 

and productivity.   

 The prevailing paradigm of seagrass-microbiome interactions focuses on the 

role of epiphytic and rhizome-associated N-fixing bacteria (Welsh, 2000; Pereg-Gerk 

et al., 2002; Cole & McGlathery, 2012; Agawin et al., 2016), which contribute to the 

exchange of N between the bacteria and the plant. Further to this, work clearly shows 

that seagrass leaves also host microbial consortia that transform DON into DIN, 

thereby increasing the pool of N readily available for uptake by the plant. Indeed, 

even the presence of a small number of microorganisms capable of DON 

mineralisation is able to significantly increase seagrass N uptake (Chapter 4).  
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Fig. 6.3 – Chain image of seagrass cells after 12h form the DO15N spike for the treatment 

‘with microorganisms ’(Chapter 4). The epiphytic community (purple) is highly enriched; 

however, seagrass chloroplasts and cytosol also show a high level of 15N-enrichment. 

 

NanoSIMS image analysis of the seagrass cell components suggested that 

seagrass leaves were taking up NO3
-, rather than NH4

+, following microbial DON 

mineralisation on the leaf surface (Chapter 4). In fact, by following the path of 15N-

enrichment within different seagrass sub-cellular microenvironments (cell wall, 

cytosol, vacuole and chloroplasts) over 12 hours (Fig. 6.3), I was able to propose that 

N in the form of NH4
+ is directly transported into seagrass chloroplasts, where it is 

used to produce amino acids, while NO3
- is either stored within the vacuole or 

reduced to NO2
- within the cytosol, prior to entering the chloroplast. Thus, microbial 

transformations represent a vital pathway by which the seagrass can increase the 

efficiency of its N uptake, by preferentially taking up the NO3
- produced by 

nitrification (Fig. 6.4). 

 

 

 

 

 

37 2000 
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Fig. 6.4 - Dynamics of N cycling and seagrass N uptake. On the left, a heterotrophic 

bacterium on the seagrass leaf surface is mineralising DON into DIN through the use of 

extracellular enzymes. Additionally, AOM also transform NH4
+ into DIN forms that are 

readily taken up by the plant (NO2
- and NO3

-). On the right, the path of N uptake within 

seagrass cells. NH4
+ is directly transported to the chloroplasts, where it enters the 

GS/GOGAT cycle whereby glutamate is aminated by the enzyme glutamine synthetase (GS) 

to synthesise glutamine. The addition of carbon skeletons (a-ketoglutarate) allows 

transamination by glutamate synthase (GOGAT) to produce two glutamate molecules. One 

glutamate can be used to start the cycle, the other one is used to build amino acids. Once 

NO3
- enters the cell, it can be stored within the vacuole or reduced to NO2

- within the cytosol 

by the enzyme nitrate reductase (NR). NO2
- can enter the chloroplast, where is further 

reduced to NH4
+ by the enzyme nitrite reductase (Nir) (Touchette & Burkholder, 2000). 

 

6.2.3 Complex relationship between seagrass leaves and epiphtyc microbiome 

Further indirect evidence for the uptake of NO3
-, rather than NH4

+, by seagrass 

leaves is provided by my research using an ammonia oxidation inhibitor, 

allylthiourea (ATU), to investigate how AOM facilitate or compete with the plant’s 

N uptake (Chapter 5). ATU addition resulted in greater 15N enrichment of both 
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seagrass leaves and their epiphytic algae, showing that a proportion of DON (here 

provided as either algae-derived or kelp-derived DON) is consumed by ammonia-

oxidation on the leaf surface. Since AOM use NH4
+ as a substrate to fuel the first 

step reaction in the nitrification pathway, my results suggest the possibility that 

competition between seagrass leaves, seagrass epiphytes, and their associated AOM 

could occur on the seagrass leaf surface. However, if we consider the high AOM 

abundance found associated with the P. sinuosa biofilm (Chapter 3), and the 

capability of seagrasses to influence the physico-chemical environment on their leaf 

surface to influence the epiphytic microbial community, this hypothesis appears 

controversial. Nonetheless, my work has also shown that also epiphytic algae can 

also compete with its seagrass host for DON uptake (Chapter 5). Although some 

species of epiphytic algae may increase DIN availability at the seagrass-biofilm 

interface by mineralising DON (Tuchman et al., 2006; Cochlan et al., 2008; Wawrik 

et al., 2009), excessive algal growth may also become detrimental to the plant 

(Cambridge et al., 1986). For example, the dominant group of epiphytic algae on the 

leaves of the seagrasses Zostera marina and Halodule wrightii was diatoms 

(Pinckney & Micheli; 1998), which may benefit seagrasses since molecular evidence 

suggests that diatoms can mineralise DON into DIN (Armbrust et al., 2004). It has 

also been shown that, in oligotrophic waters, such as those of Western Australia, 

epiphytic algae can play an important role in and nutrient cycling and ecosystem 

functioning by contributing to the capture of scarce N resources from the water 

column (McGlathery, 2001). However, several studies have documented a 

detrimental effect of excessive epiphytic algal growth on seagrass viability, 

particularly in areas with increasing nutrient inputs to coastal waters (Silberstein et 

al., 1986, Hauxwell et al., 2001, McGlathery, 2001). Related to this, I postulated that 

competition for NH4
+ uptake between epiphytes and their seagrass host may be used 

by seagrass leaves as a form of‘biocontrol’ over the growth of excess algae. A 

similar mechanism has been proven to exist for the coral holobiont, where control of 

N availability by coral-associated AOM may stabilise the functioning of the 

holobiont under eutrophic conditions and control the proliferation of fast-growing 



149 

 

Symbiodinium (Yellowlees, et al., 2008; Rädecker et al., 2015). Clearly, further 

studies are needed to fully characterise the relationship between seagrasses, AOM 

and epiphytic algae, and therefore to confirm this intriguing hypothesis. 

My research has shown that seagrasses in N-limited areas are strongly 

supported by their associated microbiome. Even a small amount of complex DON 

molecules (such as the kelp-leachate DON used in Chapter 5) may be taken up by 

seagrasses follow microbial DON mineralisation (Fig. 6.5). However, regardless of 

the DON source, I have shown that the role of the seagrass leaf microbiome in 

sustaining host fitness may be even more vital than previously thought, through the 

provision of a mechanism for DIN uptake following DON mineralisation. Thus 

leached DON of either allochthonous or autochthonous origin is transformed to DIN 

by both heterotrophic and chemotrophic (ammonia-oxidising) epiphytic 

microorganisms, allowing increased plant N uptake (Fig. 6.5). 

 

 

 

 

 

 

 

 

Fig. 6.5 - Conceptual diagram showing the import of autochthonous nutrient sources 

from ‘donor’ habitats, to seagrass meadows in southwestern Australia, and the role that the 

seagrass epiphytic microbiome plays in transforming DON and DIN, leading to enhanced 

DIN uptake by the host plant. 
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6.3 Future research directions and methodological developments in the study of 

the seagrass microbiome 

While this work adds to the growing evidence for the importance of marine 

eukaryotic microbiomes, especially in supporting vital ecosystem services, much 

remains to be learned regarding the seagrass microbiome and its interactions with the 

plant host.  Specifically, most studies of N transformations carried out by the 

seagrass epiphytic microbiome have focused on N-fixation performed by 

cyanobacteria (Welsh, 2000). However, my thesis highlights the presence of 

complex N cycling in seagrass meadows, performed by leaf-associated 

microorganisms that transform DON to forms of DIN that are more readily available 

for uptake by the seagrass leaf.  

An important outcome of my research is the demonstration that the use of 

specific, innovative techniques, such as NanoSIMS, could help to elucidate specific 

plant-microbe interactions and the flow of nutrients between different members of 

the holobiont. NanoSIMS has been used previously to show bacterial N-fixation and 

NH4
+ uptake by Symbiodinium (Pernice et al., 2012; Ceh et al., 2013; Pernice et al., 

2014). Other recent studies (e.g. Lema et al., 2016) indicate that the combination of 

two imagining techniques, combining a taxon-specific probe (e.g. using fluorescence 

in-situ hybridisation (FISH) with an elemental tracing technique (e.g. NanoSIMS), 

would represent a more powerful tool for the identification of the functional role of 

specific microorganisms, their ‘position’ within the biofilm, and their interaction 

with other members of the seagrass holobiont.  

The phylogenetic identification of microbial functional groups (Chapter 3) 

does not always imply their activity within the environment, and this activity may be 

best targeted in future using metatranscriptomic studies. In the last few years, 

metatranscriptomics has become a valuable tool for identifying active members of a 

microbial community and studying their functional response of microorganisms 

under changing environmental conditions (Poretsky et al., 2005; Bailly et al., 2007; 



151 

 

Frias- Lopez et al., 2008; Gilbert et al.,  2008; Shi et al.,  2009; Stewart et al., 2010). 

Combining ‘omics’ techniques, such as metagenomics and metatranscriptomics, with 

the more targeted functional approaches discussed above, will enable the rapid 

advancement of the new and exciting field of marine microbiome research.  
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Fig. A1 - Rarefaction curves obtained from Illumina paired end sequencing of bacterial and archaeal 16S rRNA and amoA genes. 

Curves are reported for each gene (B16S rRNA, A16S rRNA, AOB and AOA), microenvironment, meadow and time point analysed. 
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9 Appendix B 

LIVE/DEAD® BacLightTM and antibiotic treatment  

The LIVE/DEAD® BacLightTM kit (ThermoFisher) is used to infer cell viability 

of microorganisms cultured in laboratories. The LIVE/DEAD® BacLightTM viability 

kit utilises mixtures of SYTO 9 green-fluorescent nucleic acid stain and the red-

fluorescent nucleic acid stain, propidium iodide. In order to discriminate (i) whether 

for the treatment ‘seagrass without microorganisms’ the chosen antibiotic mixture 

targeted epiphytic microorganisms, and (ii) whether it was possible to use the 

LIVE/DEAD® BacLightTM kit to reveal the efficacy of antibiotic incubation, I tested 

for: (i) LIVE/DEAD® BacLightTM kit reliability on Escherichia coli colonies, (ii) 

reliability of the kit on environmental seagrass biofilm, and (iii) efficacy of the 

scraping, together with antibiotic incubation, to eliminate epiphytic algae and 

microorganisms. Thus, during the 15N-experiment, I applied this technique (iv) on 

samples of seagrass leaves for the treatment ‘without microorganisms’ collected at 

every incubation time. 

(i) In order to test the reliability of the LIVE/DEAD® BacLightTM, 100 μl of E. 

coli cells (JM109; Promega), >108 cfu/μg, were incubated for 2 hours in 1.9 ml of 

pre-warmed (37 ºC) SOC medium [2% tryptone, 0.5% yeast extract, 10 mM NaCl, 

2.5 mM KCl, 10 mM MgCl2, 10mM MgSO4, and 20mM glucose] (ThermoFisher) 

with shaking at 250 rpm (Hanahan, 1983). At the end of the incubation, 200 μl of the 

medium containing cells was plated on agar plates containing Luria Bertani broth 

[15g agar, 10g tryptone, 5g yeast extract, and 5g NaClL-1] (Sigma Aldrich) and left 

overnight at 37 oC. Following incubation, small samples (approximately 1 cm2) of 

the medium presenting E. coli colonies on the surface were cut using a sterile 

scalpel, and placed within 8-well chambers (Nunc Lab-Tek USA Scientific, USA). 

200 µL of 70% ethylic alcohol were added within 4 of the 8 chambers in order to 

target E. coli cells, and the remaining 4 samples were left with live microbial cells. 2 
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hours after the incubation, a series of washing steps and kit incubation were 

performed. Ethylic alcohol was removed by gentle pipetting, and all the wells were 

washed twice with 0.1 M phosphate-buffered saline solution (PBS). 200 µL of 

LIVE/DEAD® BacLightTM  reagents, mixed according to the manufacturer’s 

instructions, was added to each well, and kept in the dark at room temperature for 15 

minutes. After incubation, sections were rinsed twice with PBS to remove the excess 

reagents, and fixed in 200 µL of 10% natural buffered formalin for 45 minutes at 

room temperature in the dark. Sections were then rinsed twice with 0.1 M PBS, walls 

were removed from the slide and a coverslip was applied (Jurcisek et al, 2011).  

Bacterial cells were then observed using confocal scanning laser microscopic 

imaging (Nikon Ti-E inverted motorised microscope with Nikon A1Si spectral 

detector confocal system running NIS-C Elements software) to discriminate whether 

the SYTO 9 green-fluorescent nucleic acid stain and the red-fluorescent nucleic acid 

stain were reliable (confocal microscope settings are described in the ‘Image Sample 

analysis’ paragraph).  

(ii) Fluorescence imaging in plants has unique challenges and methodologies. 

Plant staining is complicated by endogenous autofluorescence of plant tissues 

(Fricker & White, 1992), therefore the main problem for the applicability of the 

LIVE/DEAD® BacLightTM kit was the interference of plant background 

fluorescence during the analysis of stained biofilm. In order to prove the reliability of 

the kit on environmental biofilm, I collected two P. sinuosa leaves and kept them in 

oxygenated seawater until analysis. I then cut 8 samples of about 1 cm2 from each 

leaf; 2 sections were randomly retrieved from the tip (older brown part) and 2 from 

the younger green part of the leaf. I removed the biofilm from two of the older and 

younger sections of P. sinuosa leaves by gentle scarping with a razor blade, and the 

remaining 4 samples were kept with biofilm intact. Leaf samples were placed within 

8-well chambers and treated with the LIVE/DEAD® BacLightTM  kit, as described 

above. P. sinuosa sections with and without epiphytic organisms were observed 

using confocal microscopy. 
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(iii) Biofilms are organised communities of mixed microorganisms attached to 

a surface (Davey et al., 2000). Biofilms are not only bacteria-specific; there is 

growing evidence that bacteria co-occur with archaea, and that both may possess 

some resistance to oxidative stress/antibiotics produced by the plant (Dridi et al., 

2011). Different antibiotics are classified based on their mechanism of action, which 

can be: (i) inhibition of bacterial cell wall synthesis (e.g. penicillins and 

cephalosporins), (ii) inhibition of protein synthesis (e.g. tetracyclines, macrolides 

and clindamycin), (iii) blocking of important metabolic steps (e.g. sulfonamides and 

trimethoprim), or (iv) interference with nucleic acid synthesis (e.g. metronidazole 

and quinolones). Both bacteria and archaea commonly present forms of resistance to 

antibiotics, which can be intrinsic or acquired through horizontal transfer of 

antibiotic resistance genes from other microorganisms (Martínez, 2008; Khelaifia & 

Drancourt, 2012). Also, many of the agents commonly used against bacteria appear 

to be ineffective in targeting archaea. From the study performed in Chapter 3, I know 

that archaea (including ammonia-oxidising archaea) can be highly abundant on P. 

sinuosa leaf surface. In the study of Tourna and colleagues (2011), the ammonia-

oxidising archaea Nitrososphaera viennensis was not affected by the antibiotics 

streptomycin, kanamycin, ampicillin, and carbenicillin. The half-maximal effective 

concentration of the antibiotic sulfathiazole to the ammonia-oxidising bacterium 

Nitrosospira multiformis was 7.70 μM, while the same measure for ammonia-

oxidising archaea (N. viennensis EN76) was over 1500 μM (Shen et al., 2013).  
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Table B1 Classification of antimicrobial agents according to their mode of action from the 

study of Khelaifia & Drancourt, 2012. (−), no anti-archaeal activity observed; (+), anti-

archaeal activity observed. In bold are reported the antimicrobial and antifungal agents used 

for the present study. 

 

In order to maximise the inhibition of bacterial and archaeal cells present in the 

biofilm of P. sinuosa leaves, I chose for the present study a mixture of antibiotics 

with different mechanisms of action. For bacteria, I chose an antibiotics mixture 

comprising 10,000 units penicillin, 10 mg ml-1 streptomycin and 25 μg m-1 

amphotericin B. Penicillin (family beta-lactams) (Sigma Aldrich), which acts by 

inhibiting bacterial cell-wall synthesis. Streptomycin (aminoglycosides) inhibits 

prokaryotic protein synthesis by preventing the transition from initiation complex to 

chain-elongating ribosome, thus causing miscoding. Amphotericin B interferes also 

with fungal membrane permeability by forming channels in the membranes and 

causing small molecules to leak out which lead to dead. However, as shown in Table 

4.1, there is evidence for the ineffectiveness of these antibiotics on archaeal cells. β-

Lactams are so called because they interfere with β-lactamase activity, which lead to 

the formation of peptidoglycans: essential proteins of the bacterial cell wall. Archaea 

possess a different cell wall devoid of peptidoglycan (Albers & Meyer, 2011), so that 

β-Lactams are ineffective for archaea, due to a lack of β-lactamase activity (Martin 

& König, 1996; Khelaifia & Drancourt, 2012). Susceptibility of some archaea has 

been reported for aminoglycosides, however, resistance for gentamicin and 

streptomycin, with minimal inhibitory concentrations of >100 mgL-1 has been 

(−) β-Lactams –

Penicillin 

(−) Ansamycins (−) Tetracyclines (−) Polymyxins 

(−) Glycopeptide and 

lipoglycopeptide 

(+) Quinolones (−) Macrolides (−) Amphotericin B 

(−) Fosfomycin (+) Novobiocin (−) Lincosamides (+) Squalamine 

 (+) Imidazole (−) Erythromycin  

 (+) Nitrofurans (−) Phenicols  

 (+) Sulphonamides -

Acetazolamide 

(+) Aminoglycosides - 

Streptomycin 

 

 (+) Benzylpyrimidines (+) Fusidic acid  



198 

 

reported (Dridi et al., 2011). Thus, in order to target archaea, two different antibiotics 

were chosen: 0.22 mg L-1 acetazolamide (Sigma Aldrich; Khelaifia & Drancourt, 

2012; Zimmerman et al., 2004) and 1mg L-1 imidazole (Sigma Aldrich; Dridi et al., 

2011; Khelaifia & Drancourt, 2012). Acetazolamide belongs to the sulphonamides 

family and inhibits the synthesis of folic acid, a key cofactor in the synthesis of 

purine and pyrimidine bases in prokaryotes. Imidazole binds to DNA regions rich in 

adenine and thymine and cause oxidative cleavage of DNA stretches. Such DNA 

lesions are followed by the death of the microorganism. 

In order to discriminate whether the chosen antibiotic mixture was effective 

against the seagrass epiphytic microbial community, I performed a study using 9 

seagrass shoots. Three seagrass shoots were used as control and the remaining 6 as 

treatment. The 9 seagrass shoots were collected from a meadow in Marmion Marine 

Park (31°48.240' S 115°44.123' E) and kept in oxygenated seawater until analysis. 

They were then placed in aquarium filled with oxygenated seawater (10 L), kept at 

ambient seawater temperature and overnight. Nine glass cylinders (previously acid 

washed and autoclaved) were filled with 1 L ASF and placed for 30 minutes under 

UV light to ensure sterility. Both the control and treatment leaves were carefully 

scraped using a razor blade to remove bigger epiphytes, rinsed in ASF and placed 

within the cylinders. For the controls, I did not add the antibiotic mixture, and for the 

treatments, antibiotics were added to the cylinders just before the seagrass leaves 

were placed into the ASF. For all the shoots, stress status was analysed using the 

PAM fluorometer at the beginning and end of the experiment. For the treatments, 3 

seagrass shoots were taken at 24 h and 3 at 48 h of antibiotic incubation, while 

controls were taken only after 48 h. After collection, shoots were rinsed in ASF and 

processed for cell viability assay. A small sample of approximately 1 cm2 was taken 

from tip and the bottom part of each seagrass leaf using a sterile scalpel, and placed 

within the 8-well chamber. Samples were processed with the LIVE/DEAD® 

BacLightTM kit, as described above, and analysed under confocal microscopy in 

order to check for: (i) the effectiveness of the antibiotic action on microbial viability, 
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and (ii) choice of the correct timeframe (i.e. 24 h vs. 48 h) for antibiotic incubation 

prior to subsequent DO15N incubation (Appendix A).  

(iv) For the enriched experiment, at each incubation time interval and shoot 

collection (0.5, 2, 6 and 12 hours) seagrass sections for the treatment ‘without 

microorganisms’ were collected for cell viability assay from parts of the seagrass 

leaf immediately adjacent to the areas used for NanoSIMS analysis. Seagrass 

sections were placed within 8-well chambers and processed using the LIVE/DEAD® 

BacLightTM  kit, as described above. Once the tissue was fixed, slides were stored in 

the dark at 4 ºC and analysed using confocal scanning laser microscopic imaging 

within 48 h from the end of the experiment.  

To date, the use of the kit to assess microbial viability has always been 

confined to the study of microbial biofilms cultured in laboratories. This is the first 

study, to our knowledge, which tested for the application of LIVE/DEAD® 

BacLightTM kit in the analysis of complex environmental biofilm samples. As shown 

in Fig. 4.1 – A & B, I was able to easily discriminate between alive (green 

fluorescent) and dead (red fluorescent) E. coli cells, thus inferring the reliability of 

LIVE/DEAD® BacLighTM reagents. Fig.4.1– C & D represent images of seagrass 

leaf sections analysed for the pilot study ‘without microorganisms’ at 24h (C) and 

48h (D) of incubation with antibiotic mixture. Based on the cover percentage of 

residual microorganisms, no significative difference was found between the two 

incubation times (p=0.142) with incubation at 24h presenting a microbial cover 

average of 0.31 ± 0.13 and, 0.40 ± 0.26 at 48h. Thus, I chose to incubate seagrass 

leaves with the antibiotic mixture for 24h prior 15N amino acid spike during the 

experiment.  

For the enriched 15N experiment, the images acquired under confocal microscopy 

showed the efficacy of scraping to eliminate bigger epiphytic organisms together 

with the use of the antibiotic mixture to target a variety of microorganisms, including 

bacteria gram+ and gram-, archaea and fungi (Fig. 4.1 - E). Where epiphytes were 
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present, microbial cells and epiphytic algae were visualised clearly and images were 

not influenced by plant background epifluorescence (Fig. 4.1- F). Moreover, I was 

also able to visualise a high number of microbial cells harbored by epiphyticalgae 

(Fig. 4.1 - G) present on seagrass leaf surface. A clear difference was detected 

between the percentage cover of microorganisms on seagrasses incubated with and 

without antibiotics (p<0001). While for seagrass treated with antibiotics the 

microbial cover percentage was less than 1% (on average 0.24 ± 0.09) of the leaf 

surface analysed, for seagrass with epiphytic organisms the average cover percentage 

was estimated at 6.3 ± 1.3. 
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Fig. B1 - Scraping and antibiotic incubation efficiency visualised using the 

LIVE/DEAD® BacLighTM kit under confocal microscopy. E. coli alive (green) and dead 

cells (red; A & B) proved the kit reagents were working. Antibiotic incubation at 24h (C) 

and 48h (D) were not significant different. On the contrary, a clear difference is visible 

between images of seagrass leaves deprived of epiphytic algae and microorganisms (E), and 

seagrasses covered with epiphytes (F). High number of microbial cells are present not only 

on P. sinuosa leaf surface but also as epiphytes of algae inhabiting seagrass leaves (G). 

A B 

C D 

E F 

G 
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Table B2 Pulse-amplitude modulater (PAM) chlorophyll fluorometer values for seagrass 

leaves at the beginning and the end of experiment (dark yields adaptation). Optimal values 

are expected to be over 0.60 yields (Y) (Westphalen et al., 2005). 

Incubation Time (h) Samples PAM (Y) 

0 R1 0.79 

 R2 0.78 

 R3 0.70 

 R4 0.79 

 R5 0.81 

 R6 0.79 

0.5 TRT+BF R1 0.80 

TRT+BF R2 0.78 

TRT+BF R3 0.70 

TRT-BF R1 0.79 

TRT-BF R2 0.71 

TRT-BF R3 0.60 

CTL+BF 0.78 

CTL+BF 0.78 

CTL+BF 0.79 

CTL-BF 0.69 

CTL-BF 0.75 

CTL-BF 0.76 

2 TRT+BF R1 0.87 

TRT+BF R2 0.64 

TRT+BF R3 0.80 

TRT-BF R1 0.65 

TRT-BF R2 0.81 

TRT-BF R3 0.82 

CTL+BF 0.69 

CTL+BF 0.73 

CTL+BF 0.77 

CTL-BF 0.78 

CTL-BF 0.80 

CTL-BF 0.68 

6 TRT+BF R1 0.70 

TRT+BF R2 0.75 

TRT+BF R3 0.76 

TRT-BF R1 0.91 

TRT-BF R2 0.86 

TRT-BF R3 0.65 

CTL+BF 0.85 

CTL+BF 0.75 

 CTL+BF 0.76 

 CTL-BF 0.81 

 CTL-BF 0.69 

 CTL-BF 0.73 

12 TRT+BF R1 0.74 

TRT+BF R2  0.66 

TRT+BF R3 0.82 

TRT-BF R1 0.80 

TRT-BF R2 0.74 

TRT-BF R3 0.71 

CTL+BF 0.80 

CTL+BF 0.65 

CTL+BF 0.77 

 CTL-B 0.78 

 CTL-B 0.82  

 CTL-B 0.72 
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Fig. B2 - Chain image of seagrass cells after 12h form the DO15N spike for the treatment 

‘without microorganisms’ (Chapter4). The image is obtained by ‘stiching together’ 36 single 

images together. On the right side, two images were few remaining bacteria are highlighted. 

On the left side, two seagrass cells which present enrichment are highlighted. The remaining 

cells are characterised by the absence of 15N-enrichment  
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