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A blood-based biomarker panel 
indicates IL-10 and IL-12/23p40 are 
jointly associated as predictors of 
β-amyloid load in an AD cohort
Steve Pedrini1,2, Veer B. Gupta1,2, Eugene Hone1,2, James Doecke  3, Sid O’Bryant4, Ian 
James5, Ashley I. Bush  2,6, Christopher C. Rowe7, Victor L. Villemagne7, David Ames8,9,  
Colin L. Masters6, Ralph N. Martins1,2,10,11 & AIBL Research Group*

Alzheimer’s Disease (AD) is the most common form of dementia, characterised by extracellular amyloid 
deposition as plaques and intracellular neurofibrillary tangles of tau protein. As no current clinical test 
can diagnose individuals at risk of developing AD, the aim of this project is to evaluate a blood-based 
biomarker panel to identify individuals who carry this risk. We analysed the levels of 22 biomarkers in 
clinically classified healthy controls (HC), mild cognitive impairment (MCI) and Alzheimer’s participants 
from the well characterised Australian Imaging, Biomarker and Lifestyle (AIBL) study of aging. High 
levels of IL-10 and IL-12/23p40 were significantly associated with amyloid deposition in HC, suggesting 
that these two biomarkers might be used to detect at risk individuals. Additionally, other biomarkers 
(Eotaxin-3, Leptin, PYY) exhibited altered levels in AD participants possessing the APOE ε4 allele. This 
suggests that the physiology of some potential biomarkers may be altered in AD due to the APOE ε4 
allele, a major risk factor for AD. Taken together, these data highlight several potential biomarkers that 
can be used in a blood-based panel to allow earlier identification of individuals at risk of developing AD 
and/or early stage AD for which current therapies may be more beneficial.

Alzheimer’s Disease (AD) is the most common form of dementia in the elderly, characterised by the accumulation 
of extracellular senile plaques and intracellular neurofibrillary tangles in the brain1. Senile plaques are mainly 
composed of amyloid-β (Aβ), which is a product of Amyloid Precursor Protein (APP) that can undergo amy-
loidogenic cleavage to produce Aβ, or non-amyloidogenic cleavage to produce a p3 fragment2,3. Brain functions 
decline with disease progression as consequence of synaptic loss and neuronal death, ultimately reducing the 
brain volume4–7. Currently, there is no cure for AD and current treatments are aimed at reducing the symptoms 
and rate of decline, rather than addressing underlying causes of the disease8,9. It has been proposed that earlier 
interventions for AD may be more effective but it is obvious that the diagnostic process must be improved to 
detect the disease either before its onset or in its early stages. As of today, definitive diagnosis of the disease can 
only be achieved post-mortem by examination of the brain tissue. While other analysis are available, they are 
not suitable for large scale screening. For instance, it is possible to detect amyloid deposition through the use of 
PET scans using Pittsburgh Compound B (PiB) as the radiotracer, which has proven to be effective in identifying 
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individuals who are at risk before AD onset since the technique has demonstrated that Aβ deposition takes place 
years before the clinical onset10. However, this analysis is quite expensive, requires specially trained physicians 
and bulky machinery, which means that it cannot be used to perform large scale testing. An alternative test is 
the analysis of the cerebrospinal fluid (CSF). While this analysis has provided positive results in discriminating 
between healthy controls (HC) and AD with several biomarker panels having been proposed11–15, it also requires 
trained operators and inherently carries more risk. The collection of CSF cannot be performed too often and can-
not be routinely performed to screen a large population. Because of the risks and invasiveness, many individuals 
would refuse to undergo such a procedure, limiting the pool of available samples. Ideally, a blood-based test for 
AD using serum or plasma would be the best choice, as it would be inexpensive, relatively non-invasive, widely 
accessible with low associated risk and sampling could be performed almost anywhere. However, despite current 
efforts, there is no blood test that can diagnose AD. In the recent years several groups have attempted to create 
a biomarker panel that would predict the transition to disease in healthy individuals or to differentiate between 
AD and other forms of dementia. In 2007 Ray and collaborators16 suggested a blood-based biomarker panel of 18 
proteins that was able to predict the conversion to AD 2–6 years later. As this panel was considered a milestone 
in the field, other groups have subsequently attempted to confirm these results using different cohorts. In 2008, 
another report indicated that a panel of 5 proteins from the former 18-protein panel was sufficient to distinguish 
controls from AD with the same accuracy17. In subsequent studies of the former 18-protein panel, only 3 and 5 
proteins were found to be associated with AD, respectively18,19. Our group has recently published an 18-protein 
panel which was able to distinguish between healthy controls and AD20, while others have performed similar 
analysis in their cohorts21–24. Some groups have suggested panels of 3, 4 or 11 proteins that were able to distin-
guish between AD and controls25–27. A common denominator in all these studies is the heterogenetic time-points 
samples were collected with regards to the disease, the biomarkers evaluated and the statistical analysis used to 
validate effective panels. In our analysis we evaluated 22 biomarkers at 2 time points, in order to determine their 
association with the disease both cross-sectionally and longitudinally. This allowed us to examine whether any of 
these biomarkers were predictive of the conversion from healthy controls to MCI or AD and to determine their 
association with Aβ deposition in the cognitively healthy brain. Together, this analysis provides additional data 
which could help in finding a specific biomarker panel to distinguish between healthy and AD participants and/
or identify those at risk of developing AD.

Materials and Methods
The AIBL Cohort. The AIBL study was approved by the ethics committees of St. Vincent’s Health, Hollywood 
Private Hospital, Austin Health and Edith Cowan University (Australia). All methods were performed in accord-
ance with the relevant guidelines and regulations. A total of 1176 individuals were enrolled in the AIBL study and 
all volunteers gave written and informed consent before participating in our study. AIBL is a prospective longitu-
dinal study in which healthy controls and patients are evaluated every 18 months. Individuals were evaluated in 
the morning, after an overnight fast. During each assessment, several body parameters, including weight, blood 
pressure and pulse rate were recorded, after which blood was drawn and collected in EDTA tubes for subsequent 
processing and analysis of the plasma28. Cognitive evaluations were then performed29,30. A more detailed descrip-
tion of the recruitment process has been previously described28. The diagnostic classifications were performed in 
accordance with the NINCDS-ARDA criteria31,32. For this study a total of 665 participants whom had their blood 
drawn at 18 and 54 months were included.

Blood collection and APOE genotype. Plasma was isolated from whole blood collected in EDTA tubes 
by centrifugation, aliquot and stored at −80 °C. APOE status was determined by genotyping cells from whole 
blood as previously described33.

Plasma biomarker Assay. 22 analytes (IL-1α, IL-1β, IL-5, IL-6, IL-7, IL-10, IL-12/23p40, IL-13, IL-15, 
IL-17, EGF, EGFR, Eotaxin-3, Leptin, Angiopoietin-2, MCP-1, MMP-2, MIP-1α, PYY, SCF, TARC and TNF-α) 
were measured using custom assays (MesoScale Diagnostics, Maryland, USA). Briefly, these analytes were 
spread across three multiplex assay panels (5-plex: Angiopoietin-2, SCF, EGFR, Leptin and PYY, sample dilution: 
2-fold; 8-plex: EGF, IL-1α, IL-12/23p40, IL-13, IL-15, IL-17, MCP-1 and MMP-2, sample dilution: 2-fold; 9-plex: 
Eotaxin-3, IL-1β, IL-5, IL-6, IL-7, IL-10, MIP-1α, TARC and TNF-α, sample dilution: undiluted) where analytes 
were grouped together based on their dilution, antibody compatibility and optimal assay condition requirements 
as specified by the manufacturer. Blocking the plate (if required) was performed with buffer provided by the man-
ufacturer, samples were diluted according to manufacturer’s instructions and incubated at room temperature for 
2 hours or overnight at 4 °C, depending on the assay panel. After washing the plates 3 times with PBST (pH 7.4), 
the specified detection antibodies were added and plates were incubated for a further 1 hour at room temperature, 
followed by 3 washes with PBST. Read buffer was then added and plates were read on the SECTOR Imager (MSD, 
Maryland, USA).

PET scan. A selected number of individuals of the AIBL cohort (at 18 months HC PiB−, n = 94 and HC PiB+, 
n = 27; at 54 months HC PiB−, n = 67 and HC PiB+, n = 26) volunteered for Positron Emission Tomography with 
the labelled Pittsburgh compound B (11C-PiB−PET) to measure cerebral amyloid load34. PiB score, expressed as 
Standardized Uptake Value Ratio (SUVR), was calculated by normalizing the Standardized Uptake Value (SUV) 
to the cerebellar SUV. The common SUVR threshold of 1.5 was used to demarcate individuals with low amyloid 
deposition (PiB−, SUVR < 1.5) or high amyloid deposition (PiB+, SUVR > 1.5)10.

Statistical analysis. Statistical comparisons of markers at either 18 months or 54 months were carried out 
using linear models correcting for age, site, APOE ε4 allele status and gender. Results were considered signifi-
cant when p < 0.05. The combined analysis over both time points simultaneously was performed using mixed 
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modelling to accommodate correlations between observations on the same individual. Logistic regression analy-
sis was used to determine the joint association between multiple biomarkers and group outcomes. All calculations 
were carried out using TIBCO Spotfire S+ ver 8.2 statistical software (TIBCO Software, Inc., Boston, MA). Note 
that while data in the tables are presented as pg/ml, statistical analysis was performed using the log10 transfor-
mation of the raw data to better approximate normality. For IL-5, IL-6 and IL-17 the log10 transformation was 
performed on the (raw data + 1) in order to accommodate the 0 values in the dataset. ROC analysis for predic-
tion of high or low SUVR values was carried out via logistic regression comparing a base model which included 
age + sex + APOE genotype and an extended model including age + sex + APOE genotype + log(IL-10*IL-12/23).

Results
Demographics. The basic demographic of this study are summarized in Table 1. A total of 559 healthy con-
trols (HC), 39 mild cognitive impaired (MCI) and 67 Alzheimer patients (AD) were evaluated. Plasma samples 
were analysed for all biomarkers listed. However, in spite of analysing our biomarker panel in all individuals, the 
difference in available data for each biomarker are due to the difference in CV across duplicates, which lead us to 
eliminate duplicate values with high CV. The elimination rate was different for each biomarker analysed. We used 
a 30% CV cut-off above which the calculated value was considered not suitable for analysis. While this value may 
appear high, it should be noted that cytokines levels were extremely low and often fell in the lowest section of the 
standard curve, where small differences in the raw value resulted in a much larger difference in the calculated 
result. Hence, while a low percent CV of the raw value, which would normally indicate good duplicates in the 
assay may translate into high CV of the calculated result. In order to keep the analysis consistent, when a sample 
at either 18 or 54 months was not available, its counterpart at the other time point was also removed, even if the 
sample fell in the readable range. Of the 22 biomarkers evaluated, IL-13 was excluded as duplicates displayed 
inconsistent reproducibility while IL-1α, IL-1β and MIP-1α levels were below the detectible range for most of 
the samples. In Table 2 we report the valid cases for each individual biomarker at both time points. In order to 
demonstrate that the removal of samples with high CV did not affect the average biomarker values, all samples 
regardless of their CV were tabulated (Supplementary Table 1). As shown, the overall averages of all samples 
(Supplementary Table 1) are similar to the average values of the valid cases (Table 3). Therefore the exclusion of 
these samples did not affect the average values of these biomarkers.

HC MCI AD

Age at baseline 69 ± 6 75 ± 6 76 ± 7

Gender (M/F) at 18 months 234/325 22/17 23/44

Site (Mel/Per) at 18 months 327/232 22/17 47/20

APOE ε4 carrier (y/n) at 18 m 146/413 17/22 47/20

n at 18 months /54 months 559/528 39/51 67/86

Table 1. Demographic data for our cohort. (a) Data are represented as Mean ± S.E or as number of cases 
overall.

HC 18 MCI 18 AD 18 Total 18 HC 54 MCI 54 AD 54 Total 54

EGF 541 38 65 644 512 49 83 644

IL12/23 p40 492 35 60 587 468 42 77 587

IL-15 554 38 66 658 523 51 84 658

IL-17 396 29 47 472 374 37 61 472

MCP-1 529 38 60 627 501 47 79 627

MMP-2 549 38 64 651 519 49 83 651

Eot-3 510 35 61 606 482 45 79 606

IL-5 449 31 57 537 421 45 71 537

IL-6 472 35 58 565 444 45 76 565

IL-7 552 38 66 656 521 51 84 656

IL-10 550 39 67 656 520 50 86 656

TARC 507 34 57 598 479 45 74 598

TNF-a 552 39 56 657 521 51 85 657

Ang-2 535 38 56 639 505 49 85 639

SCF 501 37 64 602 472 47 83 602

EGFR 534 38 66 638 504 49 85 638

Leptin 528 38 66 632 499 48 85 632

PYY 363 28 49 440 338 41 61 440

Table 2. Individual number of cases analysed for each single biomarker in our 3 groups (HC, MCI, AD).

http://1
http://1
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Longitudinal assessment of biomarkers. Table 3 illustrates changes in biomarkers at 2 different time 
points, 18 months and 54 months in non-converters, with p-values corrected for age, gender, site and APOE ε4 
carriage. PYY levels were significantly higher in AD at 18 months (p = 0.02) but not at 54 months (p = 0.09). In 
contrast Eotaxin-3 levels were significantly higher in AD at 54 months (p = 0.03) but not at 18 months (p = 0.39). 
EGF and TARC levels showed increased levels in AD at 54 months (p = 0.08 for both) but not at 18 months 
(p = 0.48 and p = 0.62, respectively). A mixed model analysis combining the two time points (Table 4) found that 
only Eotaxin-3, TARC and PYY levels showed a trend (p = 0.07, p = 0.06 and p = 0.07, respectively). The p-values 
reported for these were for single analyte analysis, and are not significant upon Bonferroni’s correction for multi-
ple comparisons (data not shown).

Eotaxin-3, Leptin and PYY show altered levels in a subset of AD patients (APOE ε4 carrier). In 
Tables 5 and 6 we evaluated 5 biomarkers (IL-12/23p40, Eotaxin-3, Angiopoietin-2, Leptin and PYY) that had 
shown differences based on their APOE genotype by subdividing the non-converters group into APOE ε4− and 

HC 18 AD 18 p HC 54 AD 54 p

EGF 27.33 ± 1.69 28.81 ± 6.52 0.48 16.41 ± 0.57 22.46 ± 2.48 0.08

IL12/23 p40 114.47 ± 2.88 119.81 ± 9.39 0.20 122.01 ± 3.59 143.64 ± 11.45 0.60

IL-15 1.96 ± 0.02 2.14 ± 0.07 0.11 2.26 ± 0.03 2.52 ± 0.08 0.21

IL-17 1.59 ± 0.10 1.82 ± 0.22 0.29 2.15 ± 0.46 2.20 ± 0.27 0.37

MCP-1 62.46 ± 0.88 70.99 ± 5.85 0.44 67.96 ± 1.06 76.37 ± 3.79 0.44

MMP-2 83561 ± 794 86564 ± 2690 0.78 89516 ± 894 94120 ± 3072 0.67

Eot-3 4.80 ± 0.67 8.47 ± 3.20 0.39 6.81 ± 2.84 7.72 ± 2.51 0.03

IL-5 0.74 ± 0.08 0.48 ± 0.05 0.26 0.67 ± 0.05 0.54 ± 0.06 0.61

IL-6 1.38 ± 0.30 1.39 ± 0.20 0.32 1.84 ± 0.42 1.59 ± 0.19 0.21

IL-7 0.99 ± 0.06 0.90 ± 0.11 0.76 0.64 ± 0.03 0.77 ± 0.06 0.16

IL-10 1.30 ± 0.14 1.05 ± 0.05 0.49 1.26 ± 0.11 1.44 ± 0.34 0.78

TARC 72.15 ± 5.26 77.68 ± 11.09 0.62 54.92 ± 2.94 68.64 ± 7.21 0.08

TNF-a 1.62 ± 0.03 1.86 ± 0.09 0.54 1.70 ± 0.03 2.11 ± 0.12 0.13

Ang-2 8031 ± 188 8553 ± 493 0.83 8897 ± 210 9592 ± 594 0.60

SCF 92.70 ± 1.24 92.63 ± 3.60 0.50 97.82 ± 1.42 101.21 ± 4.23 0.96

EGFR 34396 ± 311 33559 ± 785 0.43 34625 ± 301 32745 ± 809 0.71

Leptin 27930 ± 1787 29764 ± 4993 0.59 31358 ± 2131 43674 ± 7188 0.42

PYY 79.65 ± 1.98 103.06 ± 8.97 0.02 85.94 ± 2.34 106.69 ± 9.91 0.09

Table 3. General Linear Model analysis of the biomarkers in HC and AD at 18 and 54 month time points in 
non-converters only. Data are presented as Mean ± S.E., although statistical analysis was performed on the log10 
value to better approximate a normal distribution. For IL-5, IL-6 and IL-17 the log10 conversion was performed 
on the (raw data + 1) in order to accommodate 0 values.

Combined analysis p value

EGF 0.39

IL12/23p40 0.54

IL-15 0.47

IL-17 0.28

MCP-1 0.81

MMP-2 0.25

Eot-3 0.07

IL-5 0.33

IL-6 0.22

IL-7 0.23

IL-10 0.74

TARC 0.06

TNF-a 0.35

Ang-2 0.19

SCF 0.23

EGFR 0.69

Leptin 0.71

PYY 0.07

Table 4. Combined analysis of the biomarkers with longitudinal assessment between HC and AD.
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APOE ε4+. In the APOE ε4− group (Table 5) IL-12/23p40 is slightly lower in AD at 18 months only (p = 0.08), 
while Leptin levels tend to be lower, although not significantly, in AD versus HC at both time points (p = 0.13 
and p = 0.17, respectively). However, when evaluating the same biomarkers in the APOE ε4+ group (Table 6), 
Eotaxin-3, Leptin and PYY levels are higher in AD patients at both assessments. Although the mixed model 
analysis did not show any statistical significance overall (Table 7), both Leptin and PYY levels are significantly 
higher in AD/APOE ε4+ at 54 months compared to the other groups (Leptin p = 0.035, PYY p = 0.0013). We also 
performed the General Linear Model analysis in the AD group only comparing Leptin and PYY in APOE ε4− vs 
APOE ε4+ at both time points. The analysis did not show significance for Leptin (p = 0.18 and p = 0.13 at 18 and 
54 months, respectively), neither for PYY (p = 0.77 and p = 0.33 at 18 and 54 months, respectively). However, the 
analysis itself may have been affected by the low number of cases (PYY: n = 16 and 33 for APOE ε4− and APOE 
ε4+, respectively and Leptin: n = 19 and 47 for APOE ε4− and APOE ε4+, respectively). Although it would have 
been interesting to examine the effect of participants being heterozygous or homozygous for the APOE ε4 allele, 
due to the very small sample size of APOE ε4 homozygous participants (for PYY n = 26 of APOE ε4 heterozygous 
and n = 7 of APOE ε4 homozygous; for Leptin n = 36 of APOE ε4 heterozygous and n = 11 of APOE ε4 homozy-
gous) in the AD group, undertaking such an analysis was not feasible.

IL-10 and IL-12/23p40 are jointly associated as predictors of β–amyloid load. In order to deter-
mine whether these biomarkers can be useful diagnostically or predictively for development of AD, we analysed 
the biomarker levels in all HC (non-converters and converters) who had undergone amyloid imagining and 
stratified them into PiB− (SUVR < 1.5) or PiB+ (SUVR > 1.5). The results in Table 8 illustrate that only IL-12/23 
p40 levels at 54 months were significantly higher in HC PiB+ versus HC PiB− (p = 0.023), while their increase at 
18 months was not (p = 0.11). Similarly, IL-10 also showed a trend for increased levels in HC PiB+ at both time 
points (p = 0.13 and p = 0.15). No altered levels of any other biomarkers were associated with HC in which amy-
loid deposition is present (PiB+). The p-values reported here are performed for single analyte analysis and they 
are not significant upon Bonferroni’s correction for multiple comparisons (data not shown). Logistic regression 
analysis of the two markers jointly with PiB+ level as the outcome indicated that they were jointly significant 
with the effect restricted to the (log) product of the two markers (Table 9, p = 0.039 at 18 months and p = 0.017 
at 54 months). ROC analysis performed at 54 months indicated an increased area under curve (AUC = 0.805) 

HC 18 AD 18 p HC 54 AD 54 p

IL12/23 p40 115.26 ± 3.44 105.81 ± 15.31 0.08 123.30 ± 4.40 126.74 ± 15.32 0.85

Eot-3 5.31 ± 0.89 3.16 ± 0.22 0.84 8.00 ± 3.79 4.03 ± 0.56 0.36

Ang-2 8135 ± 214 8481 ± 1082 0.69 8998 ± 242 8729 ± 1304 0.22

Leptin 28524 ± 2082 15472 ± 4401 0.13 33456 ± 2652 16863 ± 4490 0.17

PYY 80.36 ± 2.30 86.36 ± 7.60 0.45 86.26 ± 2.58 79.68 ± 6.15 0.53

Table 5. General Linear Model analysis of 5 biomarkers in HC and AD at 18 and 54 month time points 
in APOE ε4− in non-converters only. Data are presented as Mean ± S.E., although statistical analysis was 
performed on the log10 value to better approximate a normal distribution.

HC 18 AD 18 p HC 54 AD 54 p

IL12/23 p40 112.08 ± 5.08 126.29 ± 11.76 0.84 118.09 ± 5.56 151.47 ± 15.13 0.36

Eot-3 3.28 ± 0.15 10.88 ± 4.61 0.41 3.26 ± 0.13 9.39 ± 3.62 0.06

Ang-2 7710 ± 387 8582 ± 544 0.71 8587 ± 428 9941 ± 649 0.80

Leptin 26110 ± 3474 35542 ± 6624 0.66 24928 ± 2935 54513 ± 9511 0.10

PYY 77.13 ± 3.83 111.15 ± 12.65 0.15 84.82 ± 5.44 119.78 ± 13.91 0.06

Table 6. General Linear Model analysis of 5 biomarkers in HC and AD at 18 and 54 month time points 
in APOE ε4+ in non-converters only. Data are presented as Mean ± S.E., although statistical analysis was 
performed on the log10 value to better approximate a normal distribution.

Combined analysis 
APOE ε4− p value

Combined analysis 
APOE ε4+ p value

AD/APOE ε4+ at 54 
months vs the field p value

IL12/23 p40 0.28 0.99

Eot-3 0.65 0.12

Ang-2 0.24 0.55

Leptin 0.09 0.60 0.035

PYY 0.93 0.17 0.0013

Table 7. Combined analysis of the 5 biomarkers with longitudinal assessment between HC and AD according 
to the APOE genotype.
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when including the IL-10*IL-12/23p40 to the base model (age + sex + APOE ε4) for which the AUC = 0.779 
(Fig. 1). Similar results were obtained when evaluating our HC at 18 months (Base model AUC = 0.787; Base 
model + log(IL-10*IL-12/23p40) AUC = 0.802, data not shown).

We also evaluated the levels of the same biomarkers in all HC at 18 months based on their classification at 54 
months, comparing the non-converter participants, who did not develop AD at 54 months, versus those who did 

HC PiB− 18 HC PiB+ 18 p HC PiB− 54 HC PiB+ 54 p

EGF 30.46 ± 3.38 25.37 ± 3.57 0.54 19.78 ± 2.00 18.10 ± 1.89 0.93

IL12/23 p40 104.81 ± 6.54 130.15 ± 24.06 0.11 105.67 ± 7.35 151.73 ± 24.61 0.023

IL-15 1.91 ± 0.06 1.97 ± 0.11 0.98 2.29 ± 0.08 2.34 ± 0.17 0.46

IL-17 1.44 ± 0.17 1.55 ± 0.32 0.91 1.80 ± 0.27 2.38 ± 1.02 0.90

MCP-1 66.24 ± 2.75 71.37 ± 4.47 0.16 70.27 ± 2.30 76.42 ± 4.03 0.33

MMP-2 81457 ± 1661 82594 ± 3356 0.54 87571 ± 2339 91574 ± 3226 0.57

Eot-3 5.08 ± 1.48 3.58 ± 0.47 0.46 5.36 ± 1.89 3.79 ± 0.44 0.93

IL-5 0.90 ± 0.22 0.65 ± 0.12 0.53 0.67 ± 0.12 0.67 ± 0.11 0.85

IL-6 1.11 ± 0.13 3.10 ± 1.90 0.48 1.06 ± 0.12 4.22 ± 2.45 0.29

IL-7 1.17 ± 0.12 0.94 ± 0.12 0.45 0.85 ± 0.12 0.74 ± 0.07 0.77

IL-10 1.20 ± 0.19 3.70 ± 2.40 0.13 1.01 ± 0.07 2.98 ± 1.78 0.15

TARC 69.29 ± 5.99 69.90 ± 6.93 0.72 57.89 ± 5.46 58.62 ± 6.98 0.72

TNF-a 1.60 ± 0.07 1.73 ± 0.13 0.81 1.59 ± 0.06 1.83 ± 0.13 0.57

Ang-2 7966 ± 461 8741 ± 660 0.64 7944 ± 374 8711 ± 614 0.74

SCF 94.56 ± 3.10 107.14 ± 5.04 0.26 101.14 ± 3.66 110.52 ± 5.53 0.99

EGFR 35064 ± 723 31726 ± 1285 0.18 36222 ± 773 33255 ± 1467 0.32

Leptin 34551 ± 6605 17707 ± 4844 0.24 34021 ± 6551 28271 ± 8892 0.35

PYY 76.69 ± 4.80 69.00 ± 5.98 0.55 85.58 ± 4.60 76.74 ± 8.81 0.54

Table 8. General Linear Model analysis of the biomarkers in HC according to brain amyloid deposition (PiB−, 
SUVR < 1.5 and PiB+, SUVR > 1.5) at 18 and 54 month time points. Data are presented as Mean ± S.E., 
although statistical analysis was performed on the log10 value to better approximate a normal distribution. 
For IL-5, IL-6 and IL-17 the log10 conversion was performed on the (raw data + 1) in order to accommodate 0 
values.

18 months 54 months

IL-10*IL-12/23p40 (logistic regression) 0.039 0.017

Table 9. Logistic regression analysis for IL-10 and IL-12/23p40 in PiB+ and PiB− HC.

Figure 1. ROC analysis performed at 54 months. The black line represent the base model (age + sex + APOE 
ε4), while the red line represents the base model + log(IL-10*IL-12/23p40).
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convert to MCI or AD (data not shown). Here, at 18 months IL-12/23p40 and IL-10 levels tended to be higher in 
the converter group versus the non-converters. However, the low sample size of converters may be a constraint 
to the statistical analysis.

Discussion
AD is the leading cause of dementia in the elderly, but current methods of ante-mortem diagnosis lack accuracy 
and specificity. Developing a biomarker panel that can provide early diagnosis of AD or indicate level of risk in 
healthy individuals remains a considerable challenge. Many studies have reported biomarker panels of 10 or more 
biomarkers but tended to be cross-sectional. Our study is longitudinal with 22 biomarkers. It was performed on 
the well characterised AIBL cohort, using biomarkers that have previously been associated with AD in previous 
studies. In order to provide a more detailed evaluation, we have assessed biomarkers at 2 different time points 
to determine whether biomarker changes were consistent over time, or specific to the early or late stages of the 
disease.

We evaluated biomarkers in non-converters, individuals whose cognition was unchanged at both time points. 
As shown in Table 3, only 4 biomarkers displayed altered levels between HC and AD. We found that PYY was sig-
nificantly higher in AD individuals at 18 months and follows a similar trend at 54 months. PYY is a molecule that 
belongs to the pancreatic polypeptide family and has been linked to aluminium metabolism in AD35. Previous 
work did not show any differences in blood levels of PYY between controls and AD36.

Similarly, Eotaxin-3 significantly increased in AD at 54 months but not at 18 months. Other studies have 
reported that higher levels of Eotaxin-3 in plasma and CSF were observed and were associated with prodromal 
AD11,24,37. In our biomarker panel, 2 more analytes (EGF and TARC) appeared to be associated with AD. For 
instance, a decrease in EGF levels has previously been associated with AD in a study with a biomarker panel of 
18 proteins to predict the conversion from MCI to AD16. However, subsequent studies using the same 18-protein 
panel failed to validate it as only 3 and 5 of those proteins were significantly associated with AD18,19. While EGF 
was significantly associated with AD in both studies, its levels in the AD participants were increased rather than 
decreased. These data corroborates with another study that also showed increased EGF levels in AD27. Our data 
indicated a trend towards increased EGF at 54 months but not at 18 months. However, this difference was mostly 
due to a more severe drop of EGF levels in the HC, rather than an increase in the AD group (Table 3).

TARC, also known as CCL17, is a chemokine constitutively expressed in thymus whose natural ligand is 
CCR438. Similar to EGF, our data indicated a significant increase of TARC at 54 month but not at 18 months. 
While it can be argued that these biomarkers are likely more related to later stage AD, we have also observed 
that age and site were affecting biomarker levels. However, all our analysis were corrected for age, gender, APOE 
genotype and site. The combined mixed model analysis (Table 4), which also accounted for longitudinal changes 
showed that Eotaxin-3, TARC and PYY may represent a suitable stable biomarker for differentiating between HC 
and AD (p = 0.07, p = 0.06 and p = 0.07, respectively). While the overall analysis provides a broad picture that can 
be used to find a biomarker panel with stable analytes over time for the detection of AD, it is always important to 
remember that APOE genotype is currently a major risk factor for AD, therefore the presence of the ε4 allele must 
always be considered when evaluating biomarkers.

We have therefore evaluated 5 biomarkers that demonstrated clear differences according to APOE ε4 status. 
The data show consistent increases in plasma Eotaxin-3 levels in AD individuals carrying APOE ε4 at both time 
points. However, a large variability was also observed amongst these individuals, suggesting that the presence of 
the ε4 allele could increase Eotaxin-3, but was not sufficient by itself to cause this increase. Other factors that may 
be involved in some but not all of the AD/APOE ε4+ participants might also play a role in altering Eotaxin-3 
levels. In parallel, two other biomarkers, Leptin and PYY, have shown increased levels in the AD/APOE ε4+ 
subgroup at both time points, strongly suggesting that in the AD/APOE ε4+ subgroup, these analytes may rep-
resent a stable biomarker alternative in the APOE ε4− carrier individuals, while seeking for a biomarker panel 
sufficient for AD detection. It is interesting to note that both Leptin and PYY perform similar functions as they 
affect the metabolism by reducing appetite after a meal. A study in APOE ε4 knock-in mice has shown that Leptin 
receptors are specifically reduced in the hippocampal neurons, similar to the levels observed in Tg2576 mice, 
but not in APOE ε3 knock-in mice39. This suggests that APOE ε4 carriers may develop some resistance to Leptin 
signalling and that increased levels of Leptin could be a consequence of this altered metabolism. Similarly, NPY 
receptor levels (the receptor for PYY) were reportedly lower in the cortex and in the hippocampus of AD brains40, 
although it is not known whether their levels are affected by APOE genotype.

While finding a biomarker panel that can differentiate between HC and AD remains a primary target, another 
important goal is to predict the development of AD. This would allow interventions before onset of the disease. 
In order to determine if this can be achieved with our approach, we evaluated our biomarkers with respect to the 
Aβ deposition in the brains of HC participants. Our analysis therefore tested the association of biomarker levels 
with the neocortical SUVR score rather than specific areas. Since the neocortical regions are the most commonly 
affected by Aβ deposition in AD41, the detection of Aβ using this approach should be more consistent.

Because it is understood that this deposition starts years before the clinical manifestation of the disease and it 
is accepted that HC with high amyloid load are more likely to progress to AD in the future10, we subdivided this 
group into PiB− (SUVR < 1.5, low amyloid deposition) and PiB+ (SUVR > 1.5, high amyloid deposition). When 
the biomarker levels were analysed with this stratification we found that at 54 months, IL-12/23p40 levels were 
significantly higher in PiB+ HC than the PiB−, while the earlier 18 month assessment only exhibited a trend. 
IL-10 levels also followed this trend at both time points in PiB+ compared to PiB−, while all other biomarkers 
did not display any association with amyloid load.

Consistent with studies in mice, we found that IL-10 and IL-12/23p40 are jointly associated with the amyloid 
deposition in the brain, indicating that several factors are involved in this process42,43. IL-12 is a heterodimeric 
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cytokine produced by a number of cells associated with the immune system with a broad range of activities and 
acts on T- and natural killer cells. It shares the p40 subunit which is also common to IL-2344 and has been previ-
ously associated with AD. IL-12 is expressed by activated macrophages which serves as an inducer for T-helper 
cell (Th1) development45, which have important roles in the adaptability of the immune system and its regulation. 
At present, the connection of the IL-12/23p40 subunit with AD is not well understood. However, polymorphisms 
of the gene encoding it have been associated with autoimmune diseases46–48 and susceptibility for multiple sclero-
sis49–54, particularly those that increase its production55.

Reduced levels seems to lower the inflammatory response, as seen with mice deficient in the p40 subunit 
which developed less severe forms of autoimmune diseases56. It is not known if this is consistent in the brain, 
but it was demonstrated in other mouse models that inhibition of IL-12/23 p40 was associated with reduced Aβ 
levels57,58. This seems to agree with a recent small scale study using CSF from human participants that showed a 
positive correlation of IL-12/23 p40 with CSF Aβ1-4259, and our own current work here. This evidence strength-
ens the connection between brain amyloid load and the immune system.

While there is still clearly much to learn about this link, a clue may lie with the cytokines sharing the p40 
subunit. IL-12 production from whole blood after mitogen stimulation was found to be lower in cells from AD 
patients compared to healthy controls60. Another study showed IL-12 levels were initially elevated in mild AD 
and decreased as the disease progressed61. These findings indicate that while IL-12 and other cytokines may play 
an early role in development of AD, the capacity of cells to produce these cytokines is diminished with disease 
progression, indicating a reduced immune response in AD62. This reduction of IL-12 during disease progression 
appears to be generalised and not confined to the blood and periphery, since IL-12 levels were also found to be 
lower in the CSF of AD patients63.

IL-23, the other heterodimeric cytokine which shares the p40 subunit is important in the inflammatory 
response during infection, affecting both innate and adaptive immune system functions64,65. Inflammation is 
considered a feature of AD pathology and this cytokine is known to promote inflammatory responses, such as 
upregulation of the matrix metalloprotease MMP956. It was even considered to be a primary cytokine for autoim-
mune inflammation in the brain66.

Like IL-12, not much is actually known about its primary role in the brain. However, many studies have 
reported associations with AD. IL-23 levels appeared to be increased in AD67, which may be a direct conse-
quence of the increased numbers of IL-23-producing cells in AD68,69. As IL-12 and IL-23 displayed different 
modulation in AD, it brings into question the roles of the other subunits of these two interleukins, namely p35 
and p19 for IL-12 and IL-23, respectively. Regardless, both IL-10 and IL-12/23p40 may be considered as viable 
biomarkers in a broader panel to help identify individuals at risk of developing AD, where early therapeutic inter-
vention may delay the onset of the disease. Overall, IL-12 and IL-23 are considered pro-inflammatory cytokines 
mainly secreted by antigen-presenting cells, such as dendritic cells and macrophages, with extensive roles in in 
the immune response and the differentiation of Th1 and Th17 subset of T-helper cells44,66,70–73. Conversely, IL-10 
is one of the more potent anti-inflammatory cytokines which inhibits the secretion of Th1 cytokines from stim-
ulated cells74–77.

A problem that may arise from this kind of analysis is the extreme heterogeneity of the studies. Various bio-
marker panels have given different results based on the different proteins and methods used in the evaluation. 
Even when the same proteins were examined in different studies, their involvement in AD was inconsistent. 
Furthermore, the sources of these analytes is important, i.e. whether it is CSF or blood-derived specimens. 
Inconsistencies across different studies may be due to a combination of factors, including different assay plat-
forms but particularly the stage of the disease, as several proteins may be affected during early or late stages in AD. 
Although blood was typically drawn from fasting individuals, the time of the day is another factor that should 
be considered as many proteins have a day-night cycle that severely affects their levels over the daily cycle. The 
statistical analysis used to determine the significance of the biomarker can play a role in determining which ana-
lytes are significant and which are not. Finally, the number of times blood is drawn and examined can be a very 
important factor as it would provide a more detailed and regular analysis, eliminating the risk of false positive/
false negative results that can easily occur during a single time point analysis.

However, in our study we tried to address these issues and detected two biomarkers that are jointly associated 
with brain amyloid deposition in the HC that can be used in a broader biomarker panel for the detection of indi-
viduals at higher risk of developing AD. As it is increasingly necessary to identify individuals at risk for AD, such 
findings would allow for early treatments with the ultimate goal to stop or delay the onset of the disease.
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