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We show explicitly some exciting features of double inflation:~i! it can often lead to strongly correlated
adiabatic and entropy~isocurvature! power spectra;~ii ! the two-field slow-roll consistency relations can be
violated when the correlation is large at the Hubble crossing;~iii ! the spectra of adiabatic and entropy pertur-
bations can be strongly scale dependent and tilted toward either the red or blue. These effects are typically due
to a light or time-dependent entropy mass and a non-negligible angular velocity in field space during inflation.
They are illustrated via a multiparameter numerical search for correlations in two concrete models. The
correlation is found to be particularly strong in a supersymmetric scenario due to the rapid growth of entropy
perturbations in the tachyonic region separating the two inflationary stages. Our analysis suggests that realistic
double-inflation models will provide a rich and fruitful arena for the application of future cosmic data sets and
new approximation schemes which go beyond slow roll.
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I. INTRODUCTION

One of the radical developments in recent inflationary
search has been the realization—implicit in early wo
@1#—that inflationary predictions for the cosmic microwa
background~CMB! and large-scale structure~LSS! can de-
pend sensitively on postinflationary, but pre-photo
decoupling, physics. This is a departure from the single-fi
inflationary paradigm@2# that has been the backbone of hig
energy cosmology over the past 20 years. This rather su
paradigm shift can be primarily attributed to the drivin
force of particle physics inflationary models@3# which nec-
essarily involve more than one dynamically important fie
and often lead to more than one phase of inflation@4#.

The key point about multifield models of inflation for th
paper is that they allow for substantial super-Hubble entr
or isocurvature perturbations@5# ~see also Refs.@6#, @7#!.
This implies a very interesting dynamics since,at linear or-
der, entropy perturbations source adiabatic perturbati
while the converse is not true in the large-scale limit@8#
~although see the counterclaims in@9#!. Further, these en
tropy modes can be partially or completely correlated w
the adiabatic modes, and this correlation1 is both important
for the CMB and sensitive to the way in which reheati
occurs.

Our aim in this paper is to provide the first exhausti
study of adiabatic-entropy correlations in ‘‘realistic’’ doubl
inflation models. Given that the current CMB data actua
favor such a correlated mixture@10#, there exists the exciting
possibility that upcoming data will allow us to significant
constrain realistic inflationary parameter spaces.

Let us briefly recap the areas discovered so far for wh
entropy perturbations can be important.

1This mode-mode correlation is to be contrasted with the tim
dependent correlations of@12#.
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Perturbations in multifield inflationary models@11–34#—
models with two or more phases of inflation typically lead
some correlation due to the curvature of the phase curve
field space. This correlation can be preserved or wiped
depending on the precise details of reheating.

The curvaton@35#—an entropy perturbation can be co
verted into an adiabatic perturbation with a total correlatio

Preheating@36#—the nonperturbative, resonant decay
the inflaton can affect standard inflationary predictions
the CMB in certain special cases where there is an entr
perturbation on large scales that is resonantly amplified
preheating.

The possibility of correlated mixtures of adiabatic a
isocurvature perturbations is both exciting and depressing
phenomenology. Instead of a single~adiabatic! power spec-
trum, one needs a matrix of power spectra@37,38# describing
the full correlation network for the complex cosmic mixtu
of fluids. In addition the evolution of the correlation pow
spectra is very sensitive to the way in which particle dec
occur after inflation. The precise nature of decay chann
and widths during and after reheating can preserve or w
out preexisting correlations, introducing new arbitrary p
rameters but also opening up a new window on parti
physics beyond the inflaton potential. Multifield models m
also lead to significant levels of non-Gaussianity in the CM
transferred from the entropy to adiabatic modes@39#.

There are still unresolved issues in the multifield conte
In particular, the validity of the slow-roll approximation ha
not been fully explored. Indeed, this is one of the aims of o
analysis. In addition, new effects occur in the case when
kinetic terms of the scalar fields are not canonical~e.g., the
nonlinear sigma model! and hence parametrize a curve
manifold, as occurs in the case of scalar-tensor theo
@15,16,32# and string-inspired cosmologies@40#.

An analysis of scalar perturbations in such a general s
ation has been studied@16,20# but only under the assumptio
of the slow roll. Even in the single-field case the slow-ro
-
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approximation can introduce errors in the calculation of
CMB spectrum of up to 15%@41# and going to higher orde
in the slow-roll parameters may be necessary@42#. The situ-
ation in the more general case is clearly more subtle.

Recently Bartoloet al. @31# investigated the spectra o
correlated perturbations and the modification of the stand
consistency relationnT522r T using the slow-roll analysis
in the multifield context.~HerenT is the spectral index of the
gravitational wave andr T is the relative amplitude of tenso
to scalar perturbations.! According to their results, the single
field consistency relation is significantly modified when t
correlationr C between adiabatic and isocurvature pertur
tions is strong, as follows.

The first consistency relation:

r T52
nT

2
~12r C

2 !. ~1.1!

In addition to the standard slow-roll approximation whe
the second-order derivatives of scalar fields are neglec
Bartolo et al. assumed that the adiabatic/entropy mass
the scalar field velocity angle evolve slowly during the m
tiple phases of inflation. While the latter approximation
generally valid in the single-field context, this is not so
models with two stages of inflation because the masse
field perturbations as well as the slow-roll parameters alre
get large around the end of thefirst stage of inflation. Making
use of this approximation, Bartoloet al. derived a second
consistency relation@31#.

The second consistency relation:

~nC2nS!r T52
nT

4
~2nC2nR2nS!, ~1.2!

wherenR , nS , andnC are the spectral indices of curvatu
perturbations, isocurvature perturbations, and their corr
tions, respectively.

More recently, Wandset al. @34# rederived the first of the
consistency relations~the multifield version of the standar
single-field consistency relation!, assuming slow roll onlyat
horizon crossing. On the other hand the slow-roll approxim
tion during the whole stage of inflation is required to obta
the second consistency relation~we will explain this issue in
the next section!.

In this work we shall consider the more general situat
where the slow-roll conditions are not necessarily satis
even at horizon crossing and check the validity of the t
consistency relations numerically in ‘‘realistic’’ double
inflation models. The models we adopt are the double in
tion with two massive scalar fields~both noninteracting
@13,14,24# and interacting@18#! and the two-stage supersym
metric inflation with tachyonic~spinodal! instability @43–45#
where the second derivative of the potential becomes n
tive.

The former model is probably the simplest doub
inflation generalization of the chaotic inflationary scenar
The second model is motivated by supersymmetric theo
@46–51#, in which case the potentials of scalar fields gene
cally have tachyonic instability regions. Since these t
08351
e

rd

-

d,
d

of
y

a-

-

n
d
o

-

a-

-
.
s

i-
o

kinds of model include the basic properties of double infl
tion, it is straightforward to extend our analysis to oth
double-inflationary scenarios.

We organize our paper as follows. In Sec. II we pres
the general framework of our analysis including the mu
field decomposition into adiabatic and entropy field pert
bations and the resulting power spectra of correlated den
perturbations. We also discuss the limitation of the slow-r
approximation in the multifield context. In Sec. III we an
lyze the model with two massive scalar fields. Section IV
devoted to the double inflation with a tachyonic instabil
while the final section concludes.

II. GENERAL FRAMEWORK

Let us consider two-field inflation with minimally couple
scalar fieldsf and x with a potentialV(f,x). In a flat
Friedmann-Lemaitre-Robertson-Walker~FLRW! background
with a scale factora, the background equations are

H2[S ȧ

aD 2

5
k2

3 S 1

2
ḟ21

1

2
ẋ21VD , Ḣ52

k2

2
~ḟ21ẋ2!,

~2.1!

f̈13Hḟ1Vf50, ẍ13Hẋ1Vx50, ~2.2!

whereVf[]V/]f, H is the Hubble expansion rate, andk2

58p/M p
2 with M p being the Planck mass. At linear orde

minimally coupled scalar fields do not induce an anisotro
stress@6,7,52# and hence scalar metric perturbations can
characterized by a single potentialF. The metric in the lon-
gitudinal gauge then becomes

ds252~112F!dt21a2~122F!d i j dxidxj . ~2.3!

The Fourier transformed, linearized Einstein equations
field and metric perturbations in this gauge are

Ḟ1HF5
k2

2
~ḟdf1ẋdx!, ~2.4!

df̈13Hdḟ1S k2

a2 1VffD df522VfF14ḟḞ2Vfxdx,

~2.5!

dẍ13Hdẋ1S k2

a2 1VxxD dx522VxF14ẋḞ2Vfxdf,

~2.6!

wherek is the comoving momentum~wave number!. All first
order quantities in the equations that follow are functions
both k and t ~the k subscript is implicit!.2

We now provide a self-contained review of the decomp
sition of adiabatic and isocurvature scalar field perturbati
@8# and the resulting spectra of correlated perturbations@31#.

2In this paper we will often use the phrase ‘‘horizon crossing
This should be read ‘‘Hubble radius crossing’’ occurring for a mo
with wave numberk whenk5aH.
6-2
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These two papers are our basic references in this section
we will, where possible, follow their notation.

We will then also discuss the limitations of results o
tained using slow-roll analysis.

Let us first introduce the ‘‘adiabatic’’ fields and the ‘‘en-
tropy’’ field s defined by

ds5~cosu!df1~sinu!dx,

ds52~sinu!df1~cosu!dx. ~2.7!

Hereu is the angle of the trajectory in field space, satisfyi
tanu5ẋ/ḟ. With an effective potentialV(f,x), the equa-
tions for adiabatic and entropy field perturbations are writ
in the form @8#

ds̈13Hdṡ1S k2

a2 1Vss2 u̇2D ds

522VsF14ṡḞ12~ u̇ds!"2
2Vs

ṡ
u̇ds, ~2.8!

d s̈13Hd ṡ1S k2

a2 1Vss13u̇2D ds5
u̇

ṡ

k2

2pGa2 F,

~2.9!

where

Vss5~cos2 u!Vff1~sin 2u!Vfx1~sin2 u!Vxx ,
~2.10!

Vss5~sin2 u!Vff2~sin 2u!Vfx1~cos2 u!Vxx .
~2.11!

From Eq.~2.4! we have

F5
k2

2a E aṡds dt. ~2.12!

This indicates that the gravitational potential is sourced
the adiabatic field perturbation.

Introducing the Sasaki-Mukhanov variable@53#

Qs[ds1
ṡ

H
F, ~2.13!

the equation for the adiabatic field perturbation can be
written as@8#

Q̈s13HQ̇s1F k2

a2 1Vss2 u̇22
k2

a3 S a3ṡ2

H D "GQs

52~ u̇ds!"22S Vs

ṡ
1

Ḣ

H
D u̇ds. ~2.14!

The slow-roll solutions forQs and ds can be obtained by
neglecting the second-order derivatives (Q̈s andd s̈) in Eqs.
~2.14! and ~2.9!. The evolution of fluctuations using thi
slow-roll approximation shows fairly good agreement w
numerical results except around the end of inflation@32#,
08351
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unless there exists an intermediate noninflationary stage~see
Ref. @13#!. Other kinds of slow-roll approximations dis
cussed later are more problematic, however.

Note, however, that neglecting the second-order der
tives in Eqs.~2.14! and ~2.9! still leads to deviation of the
power spectra at theend of inflation as found in numerica
simulations in Ref.@32#. In this work, we numerically follow
the evolution of perturbations during double inflation a
estimate the spectra right after the end of inflation.

To provide the comparison to our full numerical resu
consider the solutions for Eqs.~2.14! and ~2.9!, found by
neglectingQ̈s and d s̈ @31#. These solutions correspond t
neglecting the decaying modes ofQs andds. Then one has

Qs.A f~ t !1BP~ t !, ds.Bg~ t !. ~2.15!

Here A5A(k) and B5B(k). When f 5g51 and P50 at
horizon crossing (k5aH), the amplitudesA and B are de-
termined by the quantum fluctuations within the Hubble
dius:

A5
Hk

A2k3
eQ~k!, B5

Hk

A2k3
es~k!. ~2.16!

HereeQ(k) andes(k) are classical stochastic Gaussian qua
tities, satisfying ^eQ(k)&5^es(k)&50 and ^ei(k)ej* (k8)&
5d i j d

(3)(k2k8). Note thatHk is the Hubble parameter a
horizon crossing. We caution the reader that in the contex
double inflationP can be nonzero at horizon crossing due
strong correlations. Clearly then the assumption of unco
lated adiabatic and entropy perturbations atk5aH is not
generally justified. In order to make an accurate numer
analysis we choose the Bunch-Davies vacuum state dee
side the horizon (k@aH) so that theu̇ term in the right-hand
side ~RHS! of Eq. ~2.14! is negligible initially.

On super-Hubble scales (k!aH) the slow-roll solution
for ds can be written as

g~ t !5expS 2E
N~ t !

Nk ms
2

3H2 dND .expF2
ms

2

3H2 @Nk2N~ t !#G ,
~2.17!

wherems
2[Vss13u̇2 andN(t)52* t f

t H dt with t f being the

time at the end of inflation. The quantityNk52* t f

tk H dt

corresponds to thee-folding between the horizon crossin
and the end of inflation.

In deriving Eq. ~2.17! the time dependence of th
2ms

2/(3H2) term has been neglected, and this term is pul
out of the integral. In the single-field inflationary scenar
the variation of this term is associated with the end of infl
tion, in which case the error in this approximation is n
significant for cosmologically relevant scales. In the case
double inflation, the situation is quite different. Since t
mass term2ms

2/(3H2) already grows large at the end of th
first stage of inflation, the assumption that the value
2ms

2/(3H2) will not change duringboth stages of inflation
is not generally valid. In fact we shall numerically show lat
6-3
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that this term typically changes significantly during doub
inflation. This casts doubts on results derived using this
proximation and suggests that a more sophisticated app
mation may be needed to handle multiple phases of infla
completely.

The slow-roll expansion for2ms
2/(3H2) is given by@31#

2
ms

2

3H2 52
exhff1efhxx

e t
12

~6Aef!~6Aex!

e t
hfx ,

~2.18!

where the slow-roll parameters are defined by

e I[
1

2k2 S VfI

V D 2

, h IJ[
1

k2

VfIf,I

V
, ~2.19!

with e t[ef1ex . The entropy field perturbation at the end
inflation is approximately expressed as Eq.~2.17! with

g~ t f !5expF S 2
exhff1efhxx

e t

12
~6Aef!~6Aex!

e t
hfxD

k

NkG , ~2.20!

where we setN(t f)50. The slow-roll parameters in this ex
pression are evaluated at horizon crossingk5aH, since the
constancy of the mass term is assumed in Eq.~2.17! @the
subscriptk in Eq. ~2.20! denotes the value at horizon cros
ing#.

The slow-roll solution forQs at the end of inflation can
be obtained by assuming the constancy ofmQ

2 /H2[@Vss

2 u̇22k2a23(a3ṡ2/H) "#/H2 and u̇/H as

f ~ t f !5expF S 2
exhxx1efhff

e t

22
~6Aef!~6Aex!

e t
hfx12e tD

k

NkG ,

P~ t f !52g~ t f !S u̇

H
D

k

ezkNk21

zk
, ~2.21!

where

z[
ms

22mQ
2

3H2

5
~ef2ex!~hxx2hff!

e t
24

~6Aef!~6Aex!

e t
hfx12e t

~2.22!

and

u̇

H
5

ef2ex

e t
hfx1

~6Aef!~6Aex!

e t
~hff2hxx!.

~2.23!
08351
p-
xi-
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In Eq. ~2.21! zk and (u̇/H)k are evaluated at horizon crossin
due to the assumption of time independence during inflat
This assumption is not generally justified in the context
the double inflation, as we already mentioned.

The curvature perturbationR is defined by@8#

R[F1H
ḟdf1ẋdx

ḟ21ẋ2
5

H

ṡ
Qs . ~2.24!

Since the time derivative ofR is given by@53,8#

Ṙ5
H

Ḣ

k2

a2
F1

2H

ṡ
u̇ds, ~2.25!

the curvature perturbation is not conserved even in the la
scale limit (k→0) in the presence of the entropy field pe
turbationds. Therefore the constancy ofR that is typically
assumed in the slow-roll single-field inflationary scenario
not valid in the multifield case. Instead, we need to estim
the power spectrum ofR at the end of inflation from Eq.
~2.15! as

PR5S Hk

2p D 2 H2~ t f !

ṡ2~ t f !
@ u f 2~ t f !u1uP2~ t f !u#

.
1

p S Hk

M p
D 2 1

e t~ t f !
@ u f 2~ t f !u1uP2~ t f !u#. ~2.26!

The isocurvature perturbation of two scalar fieldsx andf
is defined by@6#

Sxf[
drx

rx1px
2

drf

rf1pf
5 ḋxf23Hdxf , ~2.27!

where dxf[dx/ẋ2df/ḟ5ṡ/(ḟẋ)ds. Neglecting the con-
tribution from thed ṡ term, the isocurvature perturbation ca
be written in terms of the entropy field perturbationds as

Sxf5Txfds with Txf.23
A4p

M p

Ae t

~6Aef!~6Aex!
.

~2.28!

We note that when the slow-roll conditions are violated t
d ṡ term may provide a contribution to the isocurvature p
turbation that is not captured by Eq.~2.28!, which can induce
small differences when compared with the definition~2.27!.

Making use of Eq.~2.28!, the power spectrum of the
isocurvature perturbation at the end of inflation is found
be

PS5S Hk

2p D 2

Txf
2 ug2~ t f !u.

9

p S Hk

M p
D 2 e t~ t f !

ef~ t f !ex~ t f !
ug2~ t f !u.

~2.29!

The cross spectrum betweenQs and ds is estimated as
PQds5(Hk/2p)2g(t)P(t) from Eq. ~2.15!. Then we find the
cross spectrum betweenR andS as
6-4
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PC5S Hk

2p D 2 H~ t f !

ṡ~ t f !
Txfg~ t f !P~ t f !

.2
6

p
S u̇

H
D

k
S Hk

M p
D 2

3
ezkNk21

zk

ug2~ t f !u

@6Aef~ t f !#@6Aex~ t f !#
. ~2.30!

The spectral indices for the power spectrumP are defined
by

n21[
d ln P
d ln k

5~11e t!
d ln P
d ln aU

k5aH

~2.31!

Therefore the spectral indices forPR , PS , andPC read@31#

nR21526e t12
efhff1exhxx

e t
14

~6Aef!~6Aex!

e t
hfx

2
8u f 2~ t f !u

u f 2~ t f !u1uP2~ t f !u
S u̇

H
D

k

2
e2zkNk

zk
~12e2zkNk!,

~2.32!

nS21522e t12
efhxx1exhff

e t

24
~6Aef!~6Aex!

e t
hfx , ~2.33!

nC21522e t12
efhxx1exhff

e t
24

~6Aef!~6Aex!

e t
hfx

2
zke

zkNk

ezkNk21
, ~2.34!

where the slow-roll parameters are evaluated at hori
crossing. The spectrumPT and the spectral indexnT of ten-
sor perturbations are calculated by analyzing the equatio
massless gravitational fields@3#:

PT5S 4

Ap

Hk

M p
D 2

, nT52
8p

M p
2 S ṡ

H D
k

2

. ~2.35!

We introduce two ratiosr C and r T , which are defined as

r C[
PC

APRPS

~2.36!

and

r T[
PT

16PR
. ~2.37!

From Eqs.~2.26!, ~2.29!, and ~2.30! we find that the corre-
lation ratio r C can be expressed as
08351
n

of

r C5
x

A11x2
with x5

P~ t f !

f ~ t f !
. ~2.38!

Thereforer C
2 lies in the range 0<r C

2 <1. Note that the rela-
tion ~2.38! is obtained without assuming that the adiabat
entropy masses andu̇/H are constant after horizon crossin
namely, the equality. in Eqs. ~2.26!, ~2.29!, and ~2.30! is
not used when we derive Eq.~2.38!. If the slow-roll solutions
~2.21! are employed, we have

x.2S u̇

H
D

k

12e2zkNk

zk
. ~2.39!

The behavior of the termu̇/H is most important when we
analyze the correlation between adiabatic and isocurva
perturbations. In Eq.~2.39! the ‘‘frozen’’ value of u̇/H is
used at horizon crossing. However, since the assumptio
constantu̇/H is not generally valid during double inflation
the slow-roll result~2.39! leads to some errors in estimatin
r C at the end of double inflation. Whenu̇/H varies signifi-
cantly, we have to integrate this term from first horizo
crossing to the end of inflation rather than use the ‘‘froze
value at horizon crossing. Note that ifu̇/H is vanishingly
small duringbothphases of inflation the correlation vanish
(r C50).

The tensor to scalar ratior T can be evaluated withou
using the slow-roll equality in Eqs.~2.26! and ~2.35! as

r T5
4p

M p
2 S ṡ~ t f !

H~ t f !
D 2 1

u f 2~ t f !u1uP2~ t f !u
5

4p

M p
2 S ṡ

H D
k

2 1

11x2 .

~2.40!

Here we used the fact that (H/ṡ) f is conserved after horizon
crossing, i.e., (H/ṡ)k5@H(t f)/ṡ(t f)# f (t f) @see Eq.~2.25!
with k!aH andds50]. Making use of Eqs.~2.35!, ~2.38!,
and ~2.40! we get the consistency relation

r T52
nT

2
~12r C

2 !. ~2.41!

This indicates that the correlation between adiabatic
isocurvature perturbations leads to the modification of
consistency relation in the single-field case (r T52nT/2).

In deriving Eq.~2.41!, we did not exploit the assumptio
that the adiabatic/entropy mass andu̇/H are constant after
horizon crossing. Then this consistency relation should
valid as long as the slow-roll conditions are satisfiedat ho-
rizon crossing, in which case the uncorrelated solutions f
Qs and ds can be used atk5aH @34#.3 In the context of
double inflation there are some cases where the slow
conditions can be violated at horizon crossing, implying th

3Note that the decaying mode forR can be important in some
non-slow-roll inflationary scenarios@54,55#. In this case the second
derivatives of Eqs.~2.9! and~2.14! are not necessarily small and th
first term in the RHS of Eq.~2.15! is not negligible. Then we need
to add the decaying mode solutions to Eq.~2.15!. The consistency
relation ~2.41! does not cover this case, although the enhancem
of the decaying mode occurs only in some restricted situati
@54,55#.
6-5
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the consistency relation~2.41! does not hold automatically
when applied to realistic double-inflation models.

The authors in Ref.@31# obtained the following second
consistency relation from the slow-roll results~2.32!, ~2.34!
together with Eqs.~2.35! and ~2.40! as

~nC2nS!r T52
nT

4
~2nC2nR2nS!. ~2.42!

Note that the constancy of the adiabatic/entropy mass
u̇/H is assumed in deriving this relation. Therefore it
likely that the second consistency relation~2.42! is more
strongly affected by the violation of the slow-roll condition
compared to the first consistency relation~2.41!.

While the slow-roll results which include the quantitie
nR , nS , and nC can exhibit strong deviation from the nu
merical results, the spectral indexnT of the gravitational
wave is well described by Eq.~2.35! even in the context of
double inflation. Therefore, provided that the correlation
small at horizon crossing, the first consistency relation~2.41!
is expected to be reliable as long as we usex in Eq. ~2.38!
instead of the slow-roll result in Eq.~2.39!.

In the following section we shall compare the above f
mula with full numerical simulations for concrete models
double inflation~see the Appendix for the numerical metho
to evaluate power spectra and correlations!. We will provide
a detailed analysis of the spectra of perturbations and
validity of the consistency relations derived from the abo
analysis. We will also discuss the parameter ranges where
correlation of adiabatic and isocurvature perturbations
strong.

III. DOUBLE INFLATION WITH TWO MASSIVE
SCALAR FIELDS

Let us first consider a simple model where massive sc
fields f and x are coupled through an interaction ter
1/2g2f2x2:

V~f,x!5
1

2
mf

2 f21
1

2
mx

2x21
1

2
g2f2x2. ~3.1!

There are three parameters associated with this poten
mf , mx , andg. Then there are four free parameters asso
ated with the initial conditions of the fields:f i , x i , ḟ i , and
ẋ i . Making use of the slow-roll approximation,ḟ5
2Vf/3H and ẋ52Vx/3H with H25(8p/3M p

2)V in Eqs.

~2.1! and ~2.2!, the initial conditions ofḟ and ẋ are deter-
mined byf i andx i .4 This assumption cuts down the numb

4Clearly, assuming slow roll to set the initial conditions is n
generally valid. Not assuming this will lead to extra transient v
lations of the slow-roll conditions, but if inflation is successful
initiated the fields should settle to their slow-roll values quickly.
any rate our interest is in correlations and violations of the slow-
approximation in a minimal sense. Inverting CMB and LSS data
give information about the potential and initial conditions will ha
to deal with this possibility in general, however.
08351
nd

s

-

e
e
he
is

ar

al:
i-

of free parameters to two,f i andx i . Therefore we have five
free parameters (mf , mx , g, f i , and x i) for the model
~3.1!. Once these parameters are given, the evolution of
background is determined, with the number ofe-folds N5
2 ln(a/af), with af being the value of the scale factor at th
end of inflation @13#. We shall introduce the number o
e-folds NH , which corresponds to the value ofN when the
scale corresponding to our Hubble radius today crossed
the Hubble radius during inflation. Hereafter we set it to

NH560, ~3.2!

in order to make definite calculations.

A. Noninteracting fields: gÄ0

In the case where the fields are noninteracting (g50), the
slow-roll approximation in Eqs.~2.1! and~2.2! gives the re-
lation f21x254N/k2. The fields lie on a circle of radius
2AN/k. Therefore it is useful to writef andx in parametric
form @13#:

f5
2AN

k
cosa, x5

2AN

k
sina. ~3.3!

This means that the evolution of two scalar fields is char
terized byN and the scalar field position anglea, satisfying
the relation tana5x/f. The field velocity angleu defined by
Eq. ~2.7! is related toa by

tanu.2
2mx

2AN

3Hkṡ
tana. ~3.4!

Making use of the relation~3.3!, we find that the number o
e-folds can be expressed as@13#

N5N0

~sina!2/~R221!

~cosa!2R2/~R221!
, ~3.5!

where

R[mx /mf . ~3.6!

Note that the integration constantN0 roughly corresponds to
the number ofe-folds during the second stage of inflatio
driven by the light scalar field. Hereafter we shall conce
trate on the case where the fieldx is heavier thanf, i.e., R
.1.

In order to know the evolution of the background we ne
to determine four parameters:mf , R, N0 , anda. When the
total number ofe-folds is fixed at aroundNH , the model
parameters are reduced to three (mf , R, andN0). Whether
inflation is dominated by the heavy or light fields when t
scale of cosmological relevance crosses the Hubble ra
depends on the value ofN0 relative toNH560.

Adiabatic perturbations for modes larger than the Hub
radius during the radiation dominant era can be matched w
the curvature perturbation at the end of inflation, which a
given by @24,8#

-
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R.2
k2H~ t* !

2A2k3
@f~ t* !ef~k!1x~ t* !ex~k!#

52
kH~ t* !AN

A2k3
@cosa* ef~k!1sina* ex~k!#,

~3.7!

wherea* is the value ofa at the horizon crossing. Assumin
that the fieldf decays into ordinary matter~baryons, pho-
tons, neutrinos! and x into cold dark matter, super-Hubbl
isocurvature perturbations during the radiation dominant
are expressed as@24,8#

S.
H~ t* !

A2k3 FR2
ef~k!

f~ t* !
2

ex~k!

x~ t* !G
5

kH~ t* !

2ANA2k3 FR2
ef~k!

cosa*
2

ex~k!

sina*
G . ~3.8!

The expression~3.7! indicates that for the adiabatic pe
turbation the heavy fieldx dominates for tana*.1, while
the light fieldf dominates for tana*,1. From Eq.~3.8! we
find that for the isocurvature perturbation the heavy fieldx
dominates for tana*,1/R2, while the light field f domi-
nates for tana*.1/R2.

Let us estimate the correlationr C that is derived from the
slow-roll analysis@see Eq.~2.39!#. This is not actually com-
pletely valid as we pointed out in the previous section,
useful to make a rough estimation for the correlation.
will check, of course, the validity of the analytic estimates
numerical simulations. By a simple calculation we find thax
defined in Eq.~2.39! is given by

x5
R2~R221!tana* ~11tan2 a* !

~11R2 tan2 a* !~11R4 tan2 a* !

12e2zkNk

zkNk
.

~3.9!

If the conditionuzkuNk!1 is satisfied, this reduces to

x5
R2~R221!tana* ~11tan2 a* !

~11R2 tan2 a* !~11R4 tan2 a* !
. ~3.10!

Note that whenuzkuNk*1 one hasu(12e2zk
Nk)/(zkNk)u

.1/u(zkuNk)u&1. Therefore the value ofx is smaller than in
the case of Eq.~3.10!. Equation~2.38! implies that the cor-
relationr C vanishes forx50 and gets larger for increasingx.
In particular, whenx is larger than of order unity, the corre
lation is strong (r C is close to unity!. From Eq.~3.9! we find
that there is no correlation if the masses of the scalar fie
are equal (R51). We can also make a consistency check
using Eq.~3.9! or Eq. ~3.10!. When the masses of the scal
fields differ significantly (R→0 or R→`), the correlation is
also vanishingly small for fixed tana* .

In order to discuss the correlation precisely, it is usefu
classify model parameters into three cases@24#: ~1! tana*
@1, ~2! tana*!1/R2, and~3! 1/R2,tana*,1. Hereafter we
shall analyze the strength of the correlation as well as
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power spectra and consistency relations, and check the
lidity of the slow-roll analysis.

1. tan a*š1

In this case the fieldx is the main source for adiabati
perturbations, while isocurvature perturbations are do
nated by the fieldf. Therefore both perturbations are r
garded as almost independent, and the correlation is w
~see Fig. 1!. In fact, when tana*@1, Eq. ~3.10! yields

x.
R221

R4

1

tana*
. ~3.11!

Therefore the correlationr C decreases with increasing tana*
and one hasr C→0 for tana*→`. This decreasing rate is
more significant for largerR as can be seen from Eq.~3.11!
and Fig. 2.

The amplitude of isocurvature perturbations is not ty
cally larger than that of adiabatic perturbations unlessa* is
very close top/2, as shown in Fig. 3.5 Since the correlation
term in Eq.~2.32! is neglected andef!ex for tana*@1, one
has a spectral index of the curvature perturbation that is
proximately the same as in the single-field case:

nR21.26ex12hxx52
1

p S M p

x D 2

. ~3.12!

This is a slowly red-tilted spectrum as found in Fig. 3. In F
4 we plot the ratior T defined by Eq.~2.37! and its value
obtained by the two consistency relations~2.41! and ~2.42!.

5Note, however, that the amplitude of isocurvature perturbati
can be high ifa* is very close top/2.

FIG. 1. Correlation spectrar C for three different cases withR
55, mf52.031027M p , and g50. The cases correspond to~a!
tana*532.0@1, ~b! tana*53.1331024!R22, and ~c! R22

,tana*50.16,1, on the scaleNk565. Case~c! shows strong cor-
relations, while the cases~a! and ~c! do not.
6-7
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Except for some discontinuous behavior which accompa
the numerics,6 the consistency relations show fairly goo
agreement with the value of the original definition ofr T . In
this case, sincer C is much less than unity, the consisten
relation ~2.41! is essentially no different from that of th
single-field case,r T52nT/2; namely, it is almost the sam
as the single-field inflation driven by only one scalar fie
Therefore the assumption thatmQ

2 /(3H2), ms
2/(3H2), and

u̇/H do not vary too much during inflation can be justified
this case, thus not giving a strong deviation in the con
tency relations.

2. tan a*™1ÕR2

In this case the fieldf is the main source for adiabati
perturbations, while isocurvature perturbations are do
nated by the fieldx. From Eq.~3.10! one has

6We evaluated the spectral indices numerically using the defini
n511D(ln P)/D(ln k), which leads to some numerical errors a
some spikiness in some of the figures.

FIG. 2. The square of the correlationr C as a function of tana*
for R53 andR57 with mf52.031027M p and g50 on a scale
corresponding toNk560. The solid curve corresponds to the n
merical result, while the dashed~a1! and dotted~a2! curves corre-
spond to the results using Eqs.~3.9! and ~3.10!, respectively.
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x.R2~R221!tana* ~3.13!

for R2 tana*!1. Therefore adiabatic and isocurvature p
turbations are almost independent of each other for sma
tana* , which can be confirmed in Fig. 1. In Fig. 2 we fin
that the prediction~3.10! overestimates the correlation rat
r C when tana* is small, while Eq.~3.9! shows fairly good
agreement with the numerical results. This implies th
uzkuNk could be larger than unity, in which case the (
2e2zk

Nk)/(zkNk) term cannot be neglected in Eq.~3.9!.
When tana*!1/R2 the amplitudes of isocurvature pertu

bations are larger than those of the adiabatic ones as
dicted by Eqs.~3.7! and ~3.8! ~see Fig. 3!. The spectrum of
curvature perturbations is hardly affected by isocurvat

n

FIG. 3. The power spectraPR , PS , and PC with R55, mf

52.031027M p , andg50. The curves correspond to the cases~a!
tana*532.0@1 ~heavy-field dominated!, ~b! tana*53.1331024

!R22 ~light-field dominated!, and~c! R22,tana*50.16,1, on a
scale corresponding toNk565 ~double inflation!.
6-8
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perturbations because the correlation is small (r C!1).
Therefore the consistency relation in the single-field c
should not be significantly modified in this case.

In fact, from Fig. 4 we find that the first consistency r
lation ~2.41! shows good agreement with the original defin
tion of r T , while the second one~2.42! is not so good. In-
deed, we should expect deviations from the predictions
the second consistency relation around the end of infla
because the masses of the adiabatic/entropy fields andu̇/H
are not constant in this case. Even in case 1 the discrep
in the second consistency relation is a bit larger than in
case of the first one.

FIG. 4. The consistency relations withR55, mf52.0
31027M p , and g50. The curves correspond to the cases~a!
tana*532.0@1, ~b! tana*53.1331024!R22, and ~c! R22

,tana*50.16,1, on a scale corresponding toNk565 ~double in-
flation!. The ratiosr T that are derived by using Eq.~2.36!, and the
two consistency relations Eqs.~2.41! and~2.42! are denoted by~i!,
~ii !, and~iii !, respectively. Note that while ther T calculated numeri-
cally, ~i!, typically agrees with~ii !, but it often differs from~iii !.
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3. 1ÕR2Ïtan a*Ï1

In this case both adiabatic and isocurvature perturbati
are sourced by the light fieldf, but the effect of the heavy
field x is also important. From Eq.~3.10! we find

x5
~R221!~R411!

2R2~R211!
for tana* 5

1

R2 ~3.14!

and

x5
2R2~R221!

~R211!~R411!
for tana* 51. ~3.15!

Therefore, when tana*51/R2 andR is not too close to unity,
x is typically larger than unity~for example, one hasx
.1.275 for R.2). In this case the correlation ratior C is
close to 1. The range of this high correlation gets wider
largerR as found in Fig. 2. When tana*.1, x is at a maxi-
mum, xmax.0.3 for R.1.7, with the correlation ratio rang
r C<0.28 in this case. AsR is increased, the maximum cor
relation becomes smaller, as is seen in Fig. 2.

Note that we need to include the correction term
2ezkNk)/(zkNk) in Eq. ~3.9! to accurately estimate th
strength of the correlation. Figure 2 clearly indicates that
correlation is strong around 1/R2<tana*<1. In this case the
correlation termr C

2 is very important in the consistency re
lation ~2.41! becauser C will be close to unity.

As found from Fig. 2 analytic estimates by slow-roll a
proximations typically give larger values ofr C around the
region where the correlation is strong. Whenr C is close to
unity, this difference can affect the consistency relati
~2.41!. In Figs. 5 and 6 we plot the evolution ofmQ

2 /(3H2),

FIG. 5. The evolution ofmQ
2 /(3H2) andms

2/(3H2) with R55,
mx5131026M p , andg50. The initial conditions are chosen to b
x53M p andf51.5M p . When the heavy field drops to the pote
tial valley, a second phase of inflation begins, which is accompan
by an increase ofmQ

2 /(3H2) and ms
2/(3H2) The termms

2/(3H2)
exhibits growth by a factor of 53104 by the end of inflation com-
pared to its initial value.
6-9
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TSUJIKAWA, PARKINSON, AND BASSETT PHYSICAL REVIEW D67, 083516 ~2003!
ms
2/(3H2), and u̇/H for R55, mx5131026M p , andg50

with initial conditionsx53M p and f51.5M p . The heavy
field x leads to the first phase of inflation untilt
[1026M pt.20, which is followed by the second stage
inflation driven byf. All of mQ

2 /(3H2), ms
2/(3H2), andu̇/H

exhibit a rapid increase around the end of the first stage
inflation due to the breakdown of the slow-roll conditions f
x. For example,ms

2/(3H2) continues to grow by the end o
the second stage of inflation, whose growth is abou
3104 times its initial value.

In this case the assumption of the constancy of the m
terms is no longer justified in Eqs.~2.17! and~2.21!, thereby
leading to errors in the correlationr C if we use the estima-
tion in Eq. ~2.39!. In addition, the peak value ofu̇/H typi-
cally provides a larger contribution than its value at horiz
crossing in Eq.~2.39!. Therefore we need to evaluate th
values ofx and r C numerically in order to estimate the co
relation accurately.

In the case where the correlation is strong at horiz
crossing, we expect to find some deviations even from
predictions of the first consistency relation. In fact the n
merical result in Fig. 4~c! does not completely agree with th
slow-roll results, although the deviation is not significa
This case corresponds to the one where the slow-roll co
tions are violated at horizon crossing. We have numeric
checked that the first consistency relation holds well as l
as the slow-roll conditions are satisfied at horizon cross
which agrees with the claim by Wandset al. @34#. The sec-
ond consistency relation is more strongly affected by
violation of the slow-roll conditions during double inflation
especially when the correlation is strong. The slow-r
analysis shows some limitations to correctly estimate th

FIG. 6. The evolution ofu̇/H with the same initial conditions a
in Fig. 5. When the heavy field drops to the potential valley
second phase of inflation begins, which is accompanied by an

crease ofu̇/H from the initial value 1.4431023 to its peak value

u̇/H50.8 around the end of the first stage of inflation.
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spectral indicesnR , nS , andnC . Numerical analysis is re-
quired as well in order to fully understand the strength of
correlation and the final power spectra of adiabatic a
isocurvature perturbations.

In Fig. 1 we find that the correlation is high aroundNk

*60, and decreases toward smaller scales. This corresp
to the ‘‘light’’ inflationary phase withu&1/R where the per-
turbations are mainly sourced by the fieldf around Nk

.60. In this case the correlation gets weaker toward sma

scales due to the decrease ofu̇. If the scaleNk560 corre-
sponds to the ‘‘heavy’’ inflationary phase witha*1/R, the
correlationr C is nearly constant as shown in Ref.@24#. This
means thata varies slowly during the heavy field inflation

which makesu̇ unsuppressed. The slow variation ofr C can
actually be found in case~a! of Fig. 1. Note that if we choose
a value ofa not much greater than 1/R the correlation can be
higher as claimed in Ref.@24#.

Two important quantities to determine the strength of
correlation areR and tana* aroundNH.60 as seen from Eq
~3.9!. The e-folding of the second stage of inflation,N0 ,
determines whether inflation is dominated by a heavy or li
scalar field aroundNH.60 and also the strength of the co
relation on smaller scales. Either of the scalar field mas
mf or mx can be determined by the Cosmic Backgrou
Explorer~COBE! normalization. The ratioR5mx /mf is im-
portant when we discuss the correlationr C . The correlation
is strong around 1/R2<tana*<1, whose lower bound is also
determined byR. If precise observations in the future reve
the strength of the correlation around 50&Nk&63, we will
be able to constrain two massesmf andmx ~alternativelyR
andmf) together with the values of tana* andN0 .

B. The interacting case: gÅ0

Let us next consider the case where the couplingg is
taken into account. It was suggested by Linde and Mukha
@18# that inclusion of the couplingg can lead to a blue spec
trum of isocurvature perturbations. Here we shall make
detailed analysis of the correlation of adiabatic and isocur
ture perturbations.

Let us first estimate the spectrum of isocurvature per
bations using the analytic estimates of Sec. II. Although
has some errors due to the breakdown of the slow-roll
proximation, it is still useful to make rough estimates for t
power spectrum. The spectral index in Eq.~2.33! is estimated
as

nS21522e t1
2ms

2

3H2 . ~3.16!

Therefore it is important to consider the mass of the entro
field perturbationms relative to the Hubble rateH. Note that
the term22e t in the RHS of Eq.~3.16! provides the slowly
red-tilted spectrum. If the mass squarems

2 is larger than of
order H2, isocurvature perturbations are blue tilted withnS
.1. Making use of the slow-roll result~2.18!, we find

n-
6-10
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2ms
2

3H2 5
4~mx

21g2f2!~mf
2 1g2x2!~mf

2 f21mx
2x222g2f2x2!

k2~mf
2 f21mx

2x21g2f2x2!$~mf
2 1g2x2!2f21~mx

21g2f2!2x2%
. ~3.17!
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Let us first consider the case wherems
2 is positive during

the whole stage of double inflation, which corresponds to
conditionmf

2 f21mx
2x2.2g2f2x2. When the heavy fieldx

rolls down to the valleyx50 at the first stage of inflation
we havems

2.mx
21g2f2 and 3H2.4pmf

2 f2/M p
2. Then the

mass square ofds is given by

ms
2.mx

21bH2 with b5
3g2

4p S M p

mf
D 2

. ~3.18!

Note that in this case the entropy field perturbationds is
almost the same as the heavy field perturbationdx. If x is
quickly suppressed, we need to consider onlydx, as in Ref.
@18#, in order to discuss the spectrum of isocurvature per
bations. WhenbH2 is larger thanmx

2 during double inflation,
we havems

2.bH2 and

nS21.22e t1
2

3
b. ~3.19!

When b is much larger than unity, this yields the blu
tilted spectrum,nS.1.7 Making use of this scenario, it is
possible to obtain isocurvature perturbations that tend
grow toward smaller scales while adiabatic perturbations
main small on present horizon scales@18#. If ms

2@H2, thenx
rolls down very rapidly to the local minimum of the potenti
valley (x→0), andu̇ in Eq. ~2.30! exponentially decrease
on smaller scales. In this case the correlation between a
batic and isocurvature perturbations tends to be very w
except for the scales wherex is not very small compared to
f. Whenu̇ is negligible, the spectrum of curvature perturb
tions is essentially no different from the single-field resu
nR21526ef12hff @see Eq.~2.32!#. In this case adia-
batic perturbations can be nearly scale invariant, wh
isocurvature perturbations are blue tilted.

From Eq.~3.18! we find that the spectrum of isocurvatu
perturbations can be blue tilted for the couplingg with g
*mf /M p . In Fig. 7 we plot the spectra ofPR , PS , andPC
for two cases withb50.01 and 0.95. Note that in these cas
the model parameters are chosen so thatms

2 is positive during
the whole of double inflation. Whenb50.01, the spectrum
of isocurvature perturbations is slightly blue tilted, while f
b50.95 it is highly blue tilted.

The two spectraPR andPC are not significantly modified
by the presence of the coupling termg. It can be understood

7Whenb@1 the spectrum of isocurvature perturbations is hig
blue tilted. This is actually the case for the preheating scen
where large-scale entropy field perturbations are strongly s
pressed for the couplingg required for strong preheating~see Refs.
@36#!.
08351
e

r-

to
-

ia-
k

-
,

e

s

that the correlation of adiabatic and isocurvature pertur
tions gets smaller asx approaches the potential valley wit
decreasingu̇. As shown in Fig. 8 the correlationr C tends to
decrease more on smaller scales as we choose larger v
of b. When b*1 we find that r C decreases rapidly on
smaller scales, which is associated with the highly blue-til
spectrum of isocurvature perturbations. This is confirmed
the definition ofr C in Eq. ~2.36! where onlyPS increases
toward smaller scales.

From Fig. 8 we find that the first consistency relatio
~2.41! exhibits fairly good agreement withr T obtained by
Eq. ~2.37! except for larger scales, while the second o
~2.41! does not. This is caused by the violation of the slo
roll conditions at horizon crossing and also by the change
mQ

2 /(3H2), ms
2/(3H2), and u̇/H during inflation. Since the

correlation decreases toward smaller scales, the devia
from the numerical results tends to be weaker for smallerNk
in the case of the first consistency relation. Since the sec
consistency relation is affected by the change of the m
terms after horizon crossing, it does not agree well with
numerical results even on smaller scales.

Note that in Fig. 8 the strength of the correlationr C in-
creases for largerb around the scaleNH560. Since the in-
clusion of the couplingg provides the additional source term

io
p- FIG. 7. The power spectraPR , PS , and PC are shown forb
50.01 and 0.95. The model parameters are chosen to beR53,
mf55.031027M p , andf53.2M p , x50.3M p at Nk565.
6-11
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TSUJIKAWA, PARKINSON, AND BASSETT PHYSICAL REVIEW D67, 083516 ~2003!
for u̇ @see thehfx term in Eq.~2.23!#, this works to induce a
larger correlation as long asx is not strongly suppressed
Making use of Eq.~2.23!, we can easily show that the co
relation is nonzero even forR51.8 Figure 9 indicates that the
values ofr C are increased around the region where the c
relation is strong by including the couplingg.

If the condition mf
2 f21mx

2x2,2g2f2x2 is satisfied at
horizon crossing, the mass ofds is negative. So the spectrum
of isocurvature perturbations produced is red tilted with
steeper slope than in the case ofg50. Figure 10 correspond
to the case where the spectrumPS is red tilted for 57&Nk
&63 but begins to be blue tilted forNk&57. The negative
mass ofds leads to a red-tilted spectrum on large scales
expected. Whenf and x are of the same order on thes
scales, the correlationr C can be close to unity~see the right
panel of Fig. 10!. When the mass ofds becomes positive and
x begins to decrease towardx50, the situation is almost the
same as discussed previously. In this case we have a h
blue-tilted spectrum for isocurvature perturbations with s
pressed correlations (r C!1).

Unlessg is extremely small (g!mf /M p), then it is natu-
ral to have a stage of negativems

2 during double inflation.
For example, wheng*mf /M p , it is easy to satisfy the con
dition ms

2,0 if x is larger than the order of the Planck mas
For the double-inflationary scenario where inflation starts
with large initial values off and x much greater than the

8We haver C50 for R51 andf5x.

FIG. 8. The correlationr C for b50.01, 0.47, 0.95 and the rati
r T which is derived by Eqs.~2.37!, ~2.41!, and ~2.42!, denoted by
~i!, ~ii !, and~iii !, respectively. The model parameters are chose
be the same as in Fig. 7.
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Planck mass, the spectrumPS is highly red tilted. Neverthe-
less, wheng is large andb@1, x decreases very rapidly
toward x50. Therefore the blue-tilted spectrum ofPS ap-
pears immediately once the mass ofds becomes positive.

We have found that a variety of power spectra and co
lations can be obtained, depending on the initial values of
scalar fields and the parameters of the model. In particu
the inclusion of the couplingg leads to an interesting powe

FIG. 9. The correlationr C as a function ofx* /f* for b
50.01,0.47,0.95 on a scale corresponding toNk560. The model
parameters are the same as in Fig. 7.

FIG. 10. The power spectraPR , PS , PC ~top! and the correla-
tion r C ~bottom! for R53, mf52.031027M p , andg52.031026

~corresponding tob523.9).

to
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spectrum of isocurvature perturbations that tend to incre
toward large scales~corresponding toms

2,0) and also grow
again toward smaller scales~corresponding toms

2.0). If
such a spectrum is supported by observations, it should
possible to constrain the strength of the couplingg and other
model parameters by taking into account the information
the correlationr C as well.

There exist other models of double inflation which pr
vide thebH2 correction as in Eq.~3.18!. One such model is
a nonminimally coupledx field with a minimally coupled
field f @18#:

V5
1

2
mf

2 f21
1

2
mx

2x21
1

2
jRx2, ~3.20!

wherej is a nonminimal coupling between the scalar curv
ture R and the fieldx. In this model the spectrum of th
isocurvature perturbations is red tilted due to the amplifi
tion of dx for negativej @28,32#, while it is blue tilted for
positive j. Although the decomposition into adiabatic an
entropy ‘‘fields’’ is not as simple as in the case of minima
coupled fields discussed in Sec. II, it would be of interes
extend our analysis to this case.

IV. DOUBLE INFLATION MOTIVATED
BY SUPERSYMMETRY

We now come to perhaps the most interesting of the m
els we have studied. In hybrid and supernatural inflation
models@43–45#, the symmetry breaking transition occurs
the presence of the second scalar fieldx. The effective po-
tential of the original hybrid inflation model is given by@43#

V5
l

4 S x22
M2

l D 2

1
1

2
g2f2x21

1

2
m2f2. ~4.1!

This potential is closely related to those obtained in
persymmetric theories@45–51#. For example, consider th
supersymmetric theory with a superpotential

W5S~k0ww̄2m2!, ~4.2!

which includes two superfieldsS,w together with a conjugate
pair w̄. In the global supersymmetric limit (M p→`), one
obtains the following effective potential for two superfieldsS
andw:

V5uk0ww̄2m2u21k0
2uSu2~ uwu21uw̄u2!1D terms.

~4.3!

Note that this has a potential minimum atuSu50, ^w&^w̄&
5m2/k0 , u^w&u5u^w̄&u. Making gauge andR transforma-
tions in theD-flat directionu^w&u5u^w̄&u, the complex super-
fieldsS,w,w̄ can be replaced by real scalar fieldsf andx as

S5f/&, w5w̄5x/2. ~4.4!

Then the potential~4.3! yields

V5
k0

2

16 S x22
4m2

k0
D 2

1
1

4
k0

2f2x2, ~4.5!
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where we neglected theD terms. The absolute minimum
appears atf50, x52m/Ak0. The potential~4.5! is exactly
flat at the local minimumx50. Adding a mass term
1/2m2f2 in Eq. ~4.5! results in the effective potential~4.1!
with the replacementsk0

2/25g252l and m25M2/(2Al).
Therefore the supersymmetric version of the hybrid
double inflation corresponds to the case withg2/l52.

Taking into account the supergravity correction gives r
to a slowly varying effective potential, whose form is a
proximately given byV.m4@11f4/(8M p

4)# @50#. If one-
loop radiative corrections are included, the total effect
potential forf.&m/Ak0 involves a logarithmic term lnf,
as well as thef4 term @51#. The correction termsf4 or lnf
can lead to an inflationary expansion of the universe forf
.&m/Ak0.

Although these are different from the mass term 1/2m2f2

in Eq. ~4.1!, the basic structures of the models motivated
supersymmetric theories are well described by the poten
~4.1!. In particular, when we discuss the correlation betwe
adiabatic and isocurvature perturbations, the crucial poin
the evolution of scalar fieldsafter the symmetry breaking
phase rather than the early evolution atf.&m/Ak0. There-
fore we shall consider the model~4.1! in order to understand
the basic properties of the correlations. We are particula
interested in the supersymmetric case withg2/l52.

A. The condition for double inflation
and the background evolution

We shall first consider the evolution of the backgrou
and the condition for double inflation to take place~rather
than just a single phase of inflation! for the model~4.1!.
Whenf is larger thanfc[M /g, inflation takes place due to
the slow-roll evolution off. Since the mass ofx is positive
for f.fc , the fieldx rolls down to the potential valley a
x50. Therefore the potential is approximately described
V.M4/4l1(1/2)m2f2. If the condition m2fc

2!M4/l is
satisfied, the Hubble constant atf5fc is given byH.H0

[A2p/(3l)M2/M p . Let us denote the masses of the tw
fields f andx relative toH0

2 asg andd:

g[
m2

H0
2 5

3lm2M p
2

2pM4 ,

d[
g2f22M2

H0
2 5

3l

2p S M p

M D 2

~c221!, ~4.6!

where we setf5cfc . g is required to be smaller tha
unity in order to lead to the first stage of inflation forf
.fc , thereby yielding

M2*mMpAl. ~4.7!

Whether the second stage of inflation occurs or not aftef
drops belowfc depends on the model parameters. If t
‘‘waterfall’’ condition

M3!lmMp
2 ~4.8!
6-13
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is satisfied, inflation soon comes to an end after the sym
try breaking. This corresponds to the original version of
hybrid inflationary scenario where inflation ends due to
rapid rolling of the fieldx @43#.

Combining Eqs.~4.7! and ~4.8!, one hasM@m and

d@
M

m
~c221!@c221. ~4.9!

This means that the classical fieldx is strongly suppresse
for f.fc (x}a23/2). Since inflation typically starts when
the value ofc221 is of order unity or much larger tha
unity, it is inevitable to avoid the suppression ofx when the
waterfall condition is satisfied. Note thatd changes sign afte
the symmetry breaking. The fieldx and its large-scale fluc
tuations are amplified by the tachyonic instability associa
with negativex mass@56–59#.

Although the growth is strong for large-scale modesk
→0), the size of these fluctuations is vanishingly small
the beginning of the tachyonic instability due to their exp
nential suppression forf.fc . Therefore the small-scal
modes that are not significantly suppressed forf.fc pro-
vide the larger contribution to the total variance^x2& of x
rather than the large-scale modes.

The condition for the second stage of inflation to occur
characterized byudu!1, namely,

M2@lM p
2. ~4.10!

In this case the fieldx and its large-scale perturbation a
free from the inflationary suppression forf.fc , unless in-
flation starts out with very large values off satisfying c
@1. Note that one hasm2/M2!g2/l under the condition
that the first stage of inflation is driven by the Hubble co
stantH0 ~namely,m2fc

2!M4/l).
Therefore one hasM@m for g2/l5O(1). Combining

this relation with Eq.~4.10! givesM3@lmMp
2, which means

that the waterfall condition~4.8! is violated. In this case the
evolution of the fieldx is sufficiently slow so that the secon
stage of inflation occurs after the symmetry breaking.

Let us consider the evolution of the background
g2/l5O(1). Thenumber ofe-folds during the first stage o
inflation is described as

N1.k2E
fc

f i V

V8
df.

2pM2

lm2M p
2 ln

f i

fc
, ~4.11!

where we usedV.M4/4l1(1/2)m2f2 for f.fc . Heref i
is the value off at the beginning of double inflation. Not
that we haveN1@1 under the condition of Eq.~4.7! ~i.e.,
g!1). Similarly, the number ofe-folds after the symmetry
breaking is approximately expressed as

N2.k2E
x0

xc V

V8
dx.

2pM2

lM p
2 ln

x0

xc
, ~4.12!

where we usedV.(l/4)(x22M2/l)2. Here x05M /Al
andxc is the value ofx at f5fc . Again N2@1 is satisfied
under the condition of Eq.~4.10!. We are interested in the
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double-inflationary scenario where the total number
e-folds, NT5N11N2 , exceedsNH560.

When g2/l5O(1), the critical valuefc5M /g and the
potential minimumx05M /Al are of the same order. Th
two fundamental masses around the potential minimum
characterized bymf[(g/Al)M and mx[&M . Therefore
these masses are also comparable wheng2/l5O(1). In par-
ticular, in the supersymmetric case withg2/l52, the two
masses are completely equal.

In this case the trajectory of the two scalar fields after
symmetry breaking is close to a straight line in t
(f/fc ,x/x0) plane if the velocities off and x are suffi-
ciently small at the bifurcation pointf5fc @60#. However,
since ḟ is nonzero because of the non-slow-roll evoluti
aroundf5fc , the trajectory is not strictly described by
straight line after the symmetry breaking. In fact this beha
ior can be found in our numerical simulation in Fig. 1
Wheng2/l5O(1) andg2/lÞ2 the two scalar fields exhibi
chaotic behavior as shown in Refs.@60–62#. The trajectory
in the g2/l51 case is illustrated in Fig. 11.9 Since the tra-
jectory of the two scalar fields is generally curved, this lea
to a variation ofu in field space (u̇Þ0), thereby generating
a correlation of perturbations forf,fc . Note that in the
case ofg2/l!1 or g2/l@1, mf andmx as well asfc and
x0 take quite different values. We will not consider su
cases in this work, since we are interested in the dou
inflation motivated by supersymmetric theories.

B. Perturbations

Let us next analyze the perturbations and correlations
the double inflation model with the potential~4.1!. When the

9Note that the amplitude of the two scalar fields can be higher
in Refs.@62,60# by changing the model parameters.

FIG. 11. The trajectory of two scalar fields in the plan
(f/fc ,x/x0). The model parameters are chosen to beM57.0
31027M p , m52.031027M p with initial scalar fieldsf i51.5fc

and x i51023x0 . We show two cases ofg2/l51 and 2 withl
510212. The trajectories are curved in field space, which me

that u̇Þ0.
6-14
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field f evolves slowly along the potential valley withx50
before the symmetry breaking, the spectral index of the c
vature perturbation generated in the first stage of double
flation can be estimated by Eq.~2.32! as

nR21.26ef12hff.
2

3
gS 12

3m2f2

V D , ~4.13!

whereg is defined by Eq.~4.6!. When the conditionm2f2

!V.M4/(4l), holds as is the case with the original hybr
inflation scenario@43#, one has the blue-tilted spectrum wi
nR21.(2/3)g.0. Similarly, the spectral index of th
isocurvature perturbation generated forf.fc is given by

nS21.22ef12hxx.
2

3
d2g

m2f2

3V
, ~4.14!

where we used Eq.~2.33!. Therefore, when the conditio
(2/3)d.gm2f2/3V is satisfied, the isocurvature perturbatio
is also blue tilted. Note that the spectral index of the cor
lation PC is similar to that ofPS except for the last term in
Eq. ~2.34!, which is of order 1/Nk!1 whenuzkNku!1.

The spectral indices in Eqs.~4.13! and ~4.14! can be
modified in the presence of the tachyonic instability reg
with f,fc . After the symmetry breaking, the field pertu
bationdx begins to be amplified due to the negativex mass
in Eq. ~4.6! with c,1. This growth is accompanied by th
amplification of the entropy field perturbationds for smallk
modes, which stimulates the enhancement of large-scale
vature perturbations by the relation~2.25! ~see Fig. 12!.

As shown in Fig. 13,uu̇/Hu decreases during the firs
stage of inflation, but begins to increase after the symm
breaking. This can lead to the strong correlation betw
adiabatic and isocurvature perturbations. In fact onceds and
uu̇/Hu grow sufficiently, they work as source terms forQ in
the RHS of Eq.~2.14!, thereby stimulating the growth ofF

FIG. 12. The evolution ofR, F, ḋs , andQ for a mode that left
the horizon before 60e-foldings from the end of the double infla
tion. Note that we showedR5APR, etc. The model parameters a
g2/l52, g51.5310210, M55.031026, andm50.2M with initial
conditionsf51.34fc andN51023x0 . R andF are amplified due
to the tachyonic growth ofds and Q during the second stage o
inflation.
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through the relation~2.12!. This behavior is clearly seen in
the numerical simulation of Fig. 12.

Let us consider the spectra of perturbations at the en
double inflation. In Fig. 14 we show the spectraPR , PS ,
and PC around the scaleNH560 for three different cases
The case~a! corresponds to the one withg.0.08!1 andd
.c221.1 aroundNk;60, in which case from Eqs.~4.13!
and~4.14! one has a slight blue tilt forPR and a rather steep
blue tilt for PS at the end of thefirst stage of the double
inflation.

In fact we have numerically checked that such spectra
generated before symmetry breaking. However, these are
ferent from the final spectra obtained at the end of dou
inflation. Since the strong conversion between adiabatic
isocurvature perturbations occurs during the tachyonic in
bility region, the final spectrum of curvature perturbations
affected by the steep blue-tilted spectrum of isocurvat
perturbations. Therefore the finalPR exhibits a steeper blue
tilted spectrum than predicted by Eq.~4.13!.

This tells us that the correlation between adiabatic a
isocurvature perturbations is important to correctly estim
the final spectra. The slow-roll results~4.13! and~4.14! typi-
cally show limitations when the correlation is strong. No
that in Fig. 14 all spectraPR , PS , and PC in the case~a!
exhibit almost the same blue spectral indices due to
strong correlation.

Although the case~a! corresponds to the one with rathe
steep blue-tilted spectra, one can obtain nearly sc
invariant spectra by choosing small values ofg andd relative
to unity. For example, the case~b! in Fig. 14 corresponds to
the one withg.0.04!1 and d.0.6(c221)&0.2 for Nk
&63.

In this case both the adiabatic and isocurvature spe
generated forf.fc are slightly blue tilted, as predicted b
Eqs. ~4.13! and ~4.14!. The conversion of perturbations oc
curs after the symmetry breaking as well, but the spec
indices are mostly inherited by the end of double inflati
because bothPR andPS have similar small spectral indice

FIG. 13. The evolution of~i! umQ
2 /(3H2)u, ~ii ! ums

2/(3H2)u, and

~iii ! uu̇/Hu for g2/l52, g51.5310210, M55.031026, and m
50.2 M with initial conditionsf51.34fc and x51023x0 . Al-
though we showed the absolute values of these quantities, it
pens that these take negative values in the tachyonic instab
region.
6-15
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at f5fc . As shown in Fig. 14 all ofPR , PS , and PC

exhibit slightly blue-tilted spectra at the end of double infl
tion.

One may consider that the tachyonic growth of large-sc
perturbations may lead to red-tilted spectra. In the cases~a!
and ~b! all modes shown in Fig. 14~corresponding to 51
&Nk&63) are already left far outside the horizon when t
field reachesf5fc . Since the physical momenta satis
k/a!H for all these modes, the tachyonic growth rate
perturbations is practically the same for modes correspo
ing to 51&Nk&63. Therefore in the cases~a! and ~b! the
presence of the tachyonic region does not yield red-til
spectra.

FIG. 14. The power spectraPR , PS , andPC for g2/l52. Each
case corresponds to~a! M57.031027M p , l51.0310212, m
52.031027M p , f i51.47fc , x i51.031023x0 , ~b! M58.5
31027M p , l59.0310213, m52.031027M p , f i51.22fc , x i

55.031022x0 , and ~c! M58.131027M p , l51.0310212, m
52.031027M p , f i51.11xc , x i51.031023x0 .
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However, if the duration in the first stage of inflation
short, it is possible to obtain the red-tilted spectrum
smaller scales. For example, in the case~c! illustrated in Fig.
14, the e-folds during the first stage of inflation areN1

;7.5 ~the totale-folds areN;65). The modes correspond
ing to Nk*58 crossed the horizon before the field reach
the pointf5fc . For these modes the spectra of perturb
tions are blue tilted as are the cases of~a! and ~b!.

In contrast, the smaller-scale modes withNk&58 crossed
the horizon after the symmetry breaking, in which case o
has a red-tilted spectrum due to the negativex mass~see Fig.
14!. The case~c! corresponds to slightly red-tilted spect
with udu!1. If the values of udu are increased, we hav
steeper negative tilts than shown in Fig. 14. It is very int
esting that such a variety of spectra can be obtained by
ferent choices of model parameters and initial conditions

In Fig. 13 we find that the absolute values of the ma

ms
2/(3H2) andu̇/H change during double inflation, while th

variation of mQ
2 /(3H2) is small. In addition, although the

massms
2/(3H2) is positive initially, it changes sign after th

symmetry breaking. Therefore, to use the ‘‘frozen’’ positi
mass in Eq.~2.20! is not typically valid, thereby leading to
errors in the final consistency relations. And while the cor
lation is suppressed forf.fc , the tachyonic growth of the
fluctuation dx yields strong correlation after the symmet
breaking.

Numerically we found that the correlation ratior C is very
close to unity at the end of double inflation~see Fig. 14!.
This is associated with the enhancement ofR andF shown
in Fig. 12. In Fig. 15 the first consistency relation show
good agreement with the numerical results in the cases~a!
and~c!, while the case~b! is not so good. In the cases~a! and
~c! we chose the initial valuex i51023x0 , while the case~b!

corresponds tox i50.04x0 . In the former cases one hasu̇/H
of order 0.001 around the scaleNk;60, butu̇/H is larger by
more than one order of magnitude in the latter case. T
correlation is negligible at horizon crossing in the cases~a!
and ~c!, but in case~b! it is not. This is the main reason fo
the deviation from the first consistency relation in the ca
~b!. In fact, we have numerically checked that the first co
sistency relation tends to agree with the numerical result
we decrease the initialx ~i.e., smalleru̇/H). Note thatr C
grows close to unity during the second stage of inflatio
whose behavior is almost independent of the value ofr C at
horizon crossing.

Our numerical simulations show that the second con
tency relation does not agree with the one obtained by
definition ~2.37! ~see Fig. 15!. In particular, althoughr T is
positive definite in Eq.~2.37!, negative values ofr T appear
when we use Eq.~2.42!, implying strong deviations from the
second consistency relation~note that in Fig. 15 we showed
the absolute values ofr T). Again, this is mainly due to the
violation of the assumption of the constant masses andu̇/H
during the tachyonic instability region.

Notice also that if we use the slow-roll expression forx in
Eq. ~2.39! this does not provide the correct value of the co
relationr C . In the case~a! of Fig. 15, for example, we have
6-16
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( u̇/H)k;0.001 andzk;0.37 aroundNk560. Therefore Eq.
~2.39! leads tox;0.005 andr C;0.005!1. This is signifi-
cantly different from the numerical value ofr C close to unity.
We have to integrate theu̇/H term from the horizon crossing
to the end of inflation in order to correctly estimate the fin
value of r C . Note that when we evaluatex in Eq. ~2.38!
numerically the first consistency relation shows excell
agreement with the numerical results@as in the cases~a! and
~c! in Fig. 15#, as long as the correlation is not large
horizon crossing.

When thex mass is light (udu&1) and the second phas
of inflation takes place, we find that the correlationr C is
close to 1, even changing the values ofg2/l to be of order

FIG. 15. The correlationr C and the ratior T that are derived by
using Eq.~2.36! and the two consistency relations~2.41! and~2.42!,
which are denoted by~i!, ~ii !, and ~iii !, respectively. We show the
cases~i!, ~ii !, and ~iii ! by solid curves, dashed curves, and d
dashed curves, respectively. Note that in the case~2.42! we have
taken the absolute value ofr T . The initial conditions for the three
cases are the same as in Fig. 14.
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unity. The correlation is also expected to be strong in ot
models of double inflation with a tachyonic instability.

V. CONCLUSIONS

In this paper we studied the correlation of adiabatic a
isocurvature perturbations generated in inflationary scena
with two phases of inflation~double inflation!. We made a
detailed multiparameter numerical analysis of the pow
spectra relevant for the cosmic microwave background
large-scale structure. We also studied the validity of the
flationary consistency relations derived from slow-roll ana
sis for two different models of double inflation—the tw
noninteracting/interacting massive scalar fields and the
persymmetric model with a tachyonic~spinodal! instability
separating the two phases of inflation.

In single-field inflationary scenarios, the slow-roll a
proximation is typically reliable except near the end of infl
tion. In the case of multiple scalar fields, however, we ne
to be more careful in the use of the slow-roll approximatio
If one of the scalar field is quickly suppressed and anot
scalar field leads to inflation with more than 60e-folds, per-
turbations relevant for large-scale structure are effectiv
described by the single-field inflationary scenario. Howev
when both scalar fields are of the same order around
e-folds before the end of double inflation, we are faced w
limitations in the use of slow-roll results. In this case t
slow-roll parameter of the heavy scalar field is already la
around the end of the first stage of inflation.

The assumption of the slow variation of the effecti
masses of ‘‘adiabatic’’ and ‘‘entropy’’ fields, which is used t
obtain the spectra of perturbations analytically, is often
valid in the context of the double-inflationary scenarios. T
is reflected in our results where we found that the slow-r
derived correlationr C and three spectral indicesnR , nS , and
nC do not agree well with the full numerical simulation
especially when the correlation is strong. If the correlation
negligibly smallat horizon crossing, the first consistency re
lation ~2.41! shows good agreement with our numerical r
sults@see the cases~a! and~b! in Fig. 4 and the cases~a! and
~c! in Fig. 15#. This is consistent with the result of Wand
et al. that the first consistency relation was obtained only
assuming a vanishingly small correlation at horizon cross
@34#. In the case where slow-roll conditions are violated
horizon crossing, which can occur in double-inflationary s
narios, we find that numerical results exhibit some deviat
from the first consistency relation~2.41! @see the case~c! in
Fig. 4 and the case~b! in Fig. 15#.

The second consistency relation~2.42! is more strongly
affected by the change of the entropy/adiabatic mass and
scalar field velocity angleu̇ during double inflation, thereby
showing stronger deviations especially when the correla
is large. These results suggest the necessity of nume
analysis—or a refined analytical treatment—in order to c
rectly estimate the final power spectra, spectral indices,
correlations of perturbations.

We also found that a wide variety of power spectra a
correlations can be obtained, depending on the paramete
the models considered. In the case of noninteracting mas
6-17
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scalar fields, two important quantities determine the stren
of the correlation: the ratio of the two scalar fields (tana* )
and the ratio of the two masses~R!. We made a complete
classification for several different cases to understand
correlation appropriately.

When the interaction between two scalar fields (g2f2x2)
is introduced, this can lead to a blue spectrum of isocurva
perturbations if the mass of the entropy field perturbation
larger than the Hubble rate. However, the heavy fieldx is
soon suppressed toward the potential valley atx50, in
which case the correlation between adiabatic and isocu
ture perturbations is weak.

Therefore the spectrum of the adiabatic perturbation
typically slightly red tilted as in the case withg50. In this
model we also found an interesting parameter range wh
large values ofg andx lead to rather steeply red-tilted spe
tra of strong correlated adiabatic and isocurvature pertu
tions toward large scales. This comes from the negative m
of the entropy field perturbation with comparable values
two scalar fields.

In the double-inflationary scenario motivated by sup
symmetric theories, the correlation is found to be very la
(r C.1). This is associated with a tachyonic growth of t
entropy field perturbation during the second stage of dou
inflation. This strong correlation also yields a mixture
adiabatic and isocurvature perturbations after the symm
breaking, thereby modifying the spectra of perturbatio
generated during the first stage of inflation. We found tha
variety of power spectra can be obtained by making use
this conversion mechanism.

In the original version of the hybrid inflation with poten
tial ~4.1! @43#, the fieldx is strongly suppressed because
its large effective mass before the symmetry breaking. In
tion ends by a rapid rolling of the fieldx after the symmetry
breaking atf5fc . Since the fieldx has essentially no ho
mogeneous component atf5fc , the decomposition ofx
between the homogeneous fieldx(t) and the perturbative
part dx(x,t) is not necessarily valid. Whenx is negligibly
small at f5fc , we need to go beyond the perturbatio
theory using the spatial distribution of the fieldx(x,t) as in
Ref. @59#.

Note, however, that in the case of double inflation t
field x is hardly suppressed forf.fc due to the lightx
mass (udu&1). Then we are free from the problem of th
decomposition ofx, in which case our linear analysis can b
reliable. We also made some simulations including the ba
reaction effect of field fluctuations as the Hartree approxim
tion and obtained similar results as found in this work.

In our work we analyzed two models of double inflatio
given by the potentials~3.1! and~4.1!. Since these potential
include most of the basic properties of the double inflation
should be fairly easy to extend our analysis to other dou
inflation models motivated by particle physics.10

10In some models of two-field inflation considered as in Re
@15,28,32#, the second stage of inflation is absent. In this case
first consistency relation~2.41! is expected to be valid, while the
second one~2.42! may be model dependent@34#.
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It is really encouraging that double-inflation models le
to strong correlations over wide ranges of their parame
spaces. This suggests that searches for correlations in
CMB may yield interesting information and constraints
such models and motivates the development of enhan
slow-roll approximations which can accurately predict t
full numerical results.
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APPENDIX: NUMERICAL METHODS TO EVALUATE
POWER SPECTRA AND CORRELATIONS

Let us explain the general numerical method used to
culate power spectra and correlations in the context of m
tifield inflation. We treatQs andds as independent stochas
tic variables for the modes deep inside the Hubble rad
Then we have to do two numerical runs in order to evalu
PR , PS , andPC . One run corresponds to the Bunch-Davi
vacuum state forQs andds50 for the entropy field pertur-
bation, in which case we get the solutionsR5R1 and S
5S1 . Another corresponds to the Bunch-Davies vacu
state fords andQs50 for the adiabatic field perturbation, i
which case we haveR5R2 andS5S2 .

Then each power spectrum can be expressed in term
R1 , R2 , S1 , andS2 , as

PR5
k3

2p2 ~ uR1u21uR2u2!, ~A1!

PS5
k3

2p2 ~ uS1u21uS2u2!, ~A2!

PC5
k3

2p2 uR1S11R2S2u. ~A3!

From this it is easy to show that the correlationr C

5PC /APRPS is in the ranger C<1.
If we run the numerical code only once by using the in

tial conditions where bothQs andds are in the vacuum state
we then getR5R11R2 . In this case the power spectrum o
R yields PR5(k3/2p2)uR11R2u2, which is different from
Eq. ~A1!. As long as the perturbations are stochastic rand
variables initially, it is required to adopt the method d
scribed in Eqs.~A1!–~A3!.

.
e
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