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We show explicitly some exciting features of double inflatién:it can often lead to strongly correlated
adiabatic and entropyisocurvaturg power spectrafii) the two-field slow-roll consistency relations can be
violated when the correlation is large at the Hubble crosdiiiig;the spectra of adiabatic and entropy pertur-
bations can be strongly scale dependent and tilted toward either the red or blue. These effects are typically due
to a light or time-dependent entropy mass and a non-negligible angular velocity in field space during inflation.
They are illustrated via a multiparameter numerical search for correlations in two concrete models. The
correlation is found to be particularly strong in a supersymmetric scenario due to the rapid growth of entropy
perturbations in the tachyonic region separating the two inflationary stages. Our analysis suggests that realistic
double-inflation models will provide a rich and fruitful arena for the application of future cosmic data sets and
new approximation schemes which go beyond slow roll.
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[. INTRODUCTION Perturbations in multifield inflationary modeJ41—34—
models with two or more phases of inflation typically lead to

One of the radical developments in recent inflationary resome correlation due to the curvature of the phase curves in
search has been the realization—implicit in early workfield space. This correlation can be preserved or wiped out
[1]—that inflationary predictions for the cosmic microwave depending on the precise details of reheating.
background(CMB) and large-scale structuféSS) can de- The curvaton 35]—an entropy perturbation can be con-
pend sensitively on postinflationary, but pre-photon-verted into an adiabatic perturbation with a total correlation.
decoupling, physics. This is a departure from the single-field Preheating[36]—the nonperturbative, resonant decay of
inflationary paradignji2] that has been the backbone of high- the inflaton can affect standard inflationary predictions for
energy cosmology over the past 20 years. This rather subtilhe CMB in certain special cases where there is an entropy
paradigm shift can be primarily attributed to the driving perturbation on large scales that is resonantly amplified at
force of particle physics inflationary moddl3] which nec-  preheating.
essarily involve more than one dynamically important field The possibility of correlated mixtures of adiabatic and
and often lead to more than one phase of inflafibh isocurvature perturbations is both exciting and depressing for

The key point about multifield models of inflation for this phenomenology. Instead of a sindkdiabati¢ power spec-
paper is that they allow for substantial super-Hubble entropyrum, one needs a matrix of power spe¢8@,38 describing
or isocurvature perturbation$] (see also Refs[6], [7]).  the full correlation network for the complex cosmic mixture
This implies a very interesting dynamics sineg¢ Jinear or-  of fluids. In addition the evolution of the correlation power
der, entropy perturbations source adiabatic perturbationspectra is very sensitive to the way in which particle decays
while the converse is not true in the large-scale lif@it  occur after inflation. The precise nature of decay channels
(although see the counterclaims [i8]). Further, these en- and widths during and after reheating can preserve or wash
tropy modes can be partially or completely correlated without preexisting correlations, introducing new arbitrary pa-
the adiabatic modes, and this correlatiis both important  rameters but also opening up a new window on particle
for the CMB and sensitive to the way in which reheating physics beyond the inflaton potential. Multifield models may
occurs. also lead to significant levels of non-Gaussianity in the CMB

Our aim in this paper is to provide the first exhaustivetransferred from the entropy to adiabatic mogeg.
study of adiabatic-entropy correlations in “realistic” double-  There are still unresolved issues in the multifield context.
inflation models. Given that the current CMB data actuallyIn particular, the validity of the slow-roll approximation has
favor such a correlated mixtuf&0], there exists the exciting not been fully explored. Indeed, this is one of the aims of our
possibility that upcoming data will allow us to significantly analysis. In addition, new effects occur in the case when the

constrain realistic inflationary parameter spaces. kinetic terms of the scalar fields are not canoni@ag., the
Let us briefly recap the areas discovered so far for whicmonlinear sigma modgland hence parametrize a curved
entropy perturbations can be important. manifold, as occurs in the case of scalar-tensor theories

[15,16,32 and string-inspired cosmologi¢40].
An analysis of scalar perturbations in such a general situ-
1This mode-mode correlation is to be contrasted with the time-ation has been studi¢d6,2( but only under the assumption
dependent correlations 12]. of the slow roll. Even in the single-field case the slow-roll
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approximation can introduce errors in the calculation of thekinds of model include the basic properties of double infla-
CMB spectrum of up to 15%41] and going to higher order tion, it is straightforward to extend our analysis to other
in the slow-roll parameters may be necesdd3]. The situ-  double-inflationary scenarios.
ation in the more general case is clearly more subtle. We organize our paper as follows. In Sec. Il we present
Recently Bartoloet al. [31] investigated the spectra of the general framework of our analysis including the multi-
correlated perturbations and the modification of the standarfield decomposition into adiabatic and entropy field pertur-
consistency relatiomr= —2r using the slow-roll analysis bations and the resulting power spectra of correlated density
in the multifield context(Hereny is the spectral index of the perturbations. We also discuss the limitation of the slow-roll
gravitational wave andy is the relative amplitude of tensor approximation in the multifield context. In Sec. Ill we ana-
to scalar perturbationsAccording to their results, the single- lyze the model with two massive scalar fields. Section IV is
field consistency relation is significantly modified when thedevoted to the double inflation with a tachyonic instability
correlationr - between adiabatic and isocurvature perturbawhile the final section concludes.
tions is strong, as follows.
The first consistency relation Il. GENERAL FRAMEWORK

nT ) Let us consider two-field inflation with minimally coupled
rr=—-(1-ro). (1.)  scalar fields¢ and y with a potential V(¢,x). In a flat
Friedmann-Lemaitre-Robertson-Walk&LRW) background
with a scale factomn, the background equations are

a\? K2<1

In addition to the standard slow-roll approximation where
the second-order derivatives of scalar fields are neglected,
Bartolo et al. assumed that the adiabatic/entropy mass andH?2=
the scalar field velocity angle evolve slowly during the mul-
tiple phases of inflation. While the latter approximation is
generally valid in the single-field context, this is not so in
models with two stages of inflation because the masses of
field perturbations as well as the slow-roll parameters alread%herev
get large around the end of tfiest stage of inflation. Making
use of this approximation, Bartolet al. derived a second
consistency relatiofi31].

The second consistency relation

2
H= = S (8,
(2.1

-3

o1
§¢2+ §X2+V

d+3HP+V,=0, ¥+3H)x+V,=0, (2.2

=9VI/d¢$, H is the Hubble expansion rate, ard
=8m/My with M, being the Planck mass. At linear order
minimally coupled scalar fields do not induce an anisotropic
stress[6,7,59 and hence scalar metric perturbations can be
characterized by a single potential The metric in the lon-
gitudinal gauge then becomes

Ny
9= — X (2ne—np-ng), 1.2 o
(Ne=ng)fr== 7 (2Nc—Nz—Ng) @2 ds’= — (14 20)dt?+a2(1- 2B)5,dxdx. (2.3

whereny, ng, andnc are the spectral indices of curvature The Fourier transformed, linearized Einstein equations for
perturbations, isocurvature perturbations, and their correldield and metric perturbations in this gauge are
tions, respectively.
More recently, Wandst al. [34] rederived the first of the
consistency relation&he multifield version of the standard
single-field consistency relatipnassuming slow roll onlyt
horizon crossing. On the other hand the slow-roll approxima- . . k? .
tion during the whole stage of inflation is required to obtain 9¢+3Hdé¢+ ?“LVM)) 6¢p=—2V,+4¢4>—V,, 5x,
the second consistency relatiGme will explain this issue in (2.5
the next section
In this work we shall consider the more general situation k2 )
where the slow-roll conditions are not necessarily satisfied dx+3Hdox+ ;JFVXX) ox=—2V,®+4xP—-V,, ¢,
even at horizon crossing and check the validity of the two (2.6)
consistency relations numerically in “realistic” double-
inflation models. The models we adopt are the double inflawherek is the comoving momenturtwave number All first
tion with two massive scalar fieldgboth noninteracting order quantities in the equations that follow are functions of
[13,14,24 and interacting18]) and the two-stage supersym- bothk andt (the k subscript is implicit.2

2
b+HD= %(¢6¢+>’(5x), 2.4

metric inflation with tachyoni¢spinoda] instability [43—45 We now provide a self-contained review of the decompo-
where the second derivative of the potential becomes negaition of adiabatic and isocurvature scalar field perturbations
tive. [8] and the resulting spectra of correlated perturbatj@is

The former model is probably the simplest double-
inflation generalization of the chaotic inflationary scenario.
The second model is motivated by supersymmetric theories?|n this paper we will often use the phrase “horizon crossing.”
[46-51], in which case the potentials of scalar fields generi-This should be read “Hubble radius crossing” occurring for a mode
cally have tachyonic instability regions. Since these twowith wave numbek whenk=aH.
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These two papers are our basic references in this section andless there exists an intermediate noninflationary steee

we will, where possible, follow their notation.

We will then also discuss the limitations of results ob-
tained using slow-roll analysis.

Let us first introduce the “adiabatic” field- and the “en-
tropy” field s defined by

do=(cosf)d¢+(sinb)dy,
ds=—(sin#)d¢+ (cosh)dy. (2.7

Here 6 is the angle of the trajectory in field space, satisfying
tan6=x/¢. With an effective potentiaV(¢,x), the equa-

tions for adiabatic and entropy field perturbations are written

in the form[8]

k? .
86+3HE0+| 5+ Vg~ 02)50
=2V, O+45D+2(08s) — (2.8
5%+ 3H & < Vet 36%| 5s= 0K @
(2.9
where
Vo= (COS )V 4+ (SiN20)V 4, + (SII? O)V,,,,
(2.10
V= (S )V 44— (SiN20)V 4+ (COF OV, , .
(2.1
From Eq.(2.4) we have
- sz 50 dt 21
~%a acdo dt. (2.12

This indicates that the gravitational potential is sourced by

the adiabatic field perturbation.
Introducing the Sasaki-Mukhanov varialj3]

Q,=do+ %d), 2.13

Ref. [13]). Other kinds of slow-roll approximations dis-
cussed later are more problematic, however.

Note, however, that neglecting the second-order deriva-
tives in Egs.(2.14 and (2.9 still leads to deviation of the
power spectra at thend of inflation as found in numerical
simulations in Ref[32]. In this work, we numerically follow
the evolution of perturbations during double inflation and
estimate the spectra right after the end of inflation.

To provide the comparison to our full numerical results
consider the solutions for Eq$2.14 and (2.9), found by

neglectingQ,, and &% [31]. These solutions correspond to
neglecting the decaying modes @f, and ds. Then one has

(2.15

Here A=A(k) andB=B(k). Whenf=g=1 andP=0 at
horizon crossing K=aH), the amplitudesA andB are de-
termined by the quantum fluctuations within the Hubble ra-
dius:

Q,=Af(t)+BP(t), &s=Bg(t).

Hi _ e
A= @eQ(k) B= Wes(k). (2.1

Hereeg(k) andeg(k) are classical stochastic Gaussian quan-
tities, satisfying (eq(k))=(es(k))=0 and (ej(k)e} (k"))
=5;;68)(k—k’). Note thatH, is the Hubble parameter at
honzon crossing. We caution the reader that in the context of
double inflationP can be nonzero at horizon crossing due to
strong correlations. Clearly then the assumption of uncorre-
lated adiabatic and entropy perturbationskataH is not
generally justified. In order to make an accurate numerical
analysis we choose the Bunch-Davies vacuum state deep in-
side the horizonK>aH) so that thes term in the right-hand
side (RHS) of Eq. (2.149) is negligible initially.

On super-Hubble scalek«aH) the slow-roll solution
for 8s can be written as

_ Ni el ps
g(t)—ex;{ - fN(t)WdN> —ex;{ - W[Nk_ N(t)]|,

(2.17

whereu?=V+36? andN(t) = — Ji, H dtwith t; being the

. . . . t
the equation for the adiabatic field perturbation can be retime at the end of inflation. The quantity,=—f,* H dt

written as[8]

k2 K2 a3(',_2 .
2 _
er+3Her+ 2 +V(r(r a3 H Q(r
. HY .
=2(06s) — _+ﬁ 66s. (2.149

The slow-roll solutions forQ, and §s can be obtained by

neglecting the second-order derivativéy,(and 8%) in Egs.
(2.14 and (2.9. The evolution of fluctuations using this
slow-roll approximation shows fairly good agreement with —
numerical results except around the end of inflatjég],

corresponds to the-folding between the horizon crossing
and the end of inflation.

In deriving Egq. (2.17) the time dependence of the
—,us/(3H2) term has been neglected, and this term is pulled
out of the integral. In the single-field inflationary scenario,
the variation of this term is associated with the end of infla-
tion, in which case the error in this approximation is not
significant for cosmologically relevant scales. In the case of
double inflation, the situation is quite different. Since the
mass ternt— ,us/(3H2) already grows large at the end of the
first stage of inflation, the assumption that the value of

,uS/(SHZ) will not change duringooth stages of inflation
is not generally valid. In fact we shall numerically show later
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that this term typically changes significantly during double|n Eq. (2.21) ¢, and (6/H), are evaluated at horizon crossing
inflation. This casts doubts on results derived using this apdue to the assumption of time independence during inflation.
proximation and suggests that a more sophisticated approxthis assumption is not generally justified in the context of
mation may be needed to handle multiple phases of inflatioghe double inflation, as we already mentioned.

completely. The curvature perturbatioR is defined by{8]
The slow-roll expansion for u2/(3H?) is given by[31]

cpottxox Hey (2.24)
g

_ Mg __ 6)(7]¢¢+E¢77X)(+2(i\/6—¢)(i\/6—)() RECI)
3H? € € Mox: >+ X°
(2.18
Since the time derivative dR is given by[53,8]
where the slow-roll parameters are defined by
2 . HK®>_  2H.

1 V¢|¢,| R=— —2(1)+ — 67s, (2.25

1
= D=2 Ty (2.19 H a o

V¢|
“=22\V

\Y,

with e;=€4+ €, . The entropy field perturbation at the end of the curvature perturbation is not conserved even in the large-

inflation is approximately expressed as 2,17 with scale limit k—0) in the presence of the entropy field per-
turbation 8s. Therefore the constancy ® that is typically
€ Nppt €My assumed in the slow-roll single-field inflationary scenario is
g(t)=expg | — T e not valid in the multifield case. Instead, we need to estimate
the power spectrum oR at the end of inflation from Eq.
(= Vep) (e (219 as
2, N, (220
t ‘ (PR

where we seN(t;)=0. The slow-roll parameters in this ex-
pression are evaluated at horizon crosdirgaH, since the 1 (

constancy of the mass term is assumed in 417 [the =

H® 1 )
Mp) iy Ll +IPAtl]. (226

Ingl. The isocurvature [ [
. . . perturbation of two scalar fieldand ¢
The slow-roll solution forQ,, at the end of inflation can is defined by[6]

be obtained by assuming the constancyug/HZE[Vw

subscriptk in Eq. (2.20 denotes the value at horizon cross-

— 6°— k?a~3(a%o?/H)]/H? and /H as 5 5 .
( )] Sy=—x_ _Pd__ 5 —3HS,. (22D
+ PxTPxy Pyt Py
f(tf):ex;{( _ ST 4 M40
& where 8, ,=8,/,— d¢/ =/ (¢x) 5s. Neglecting the con-
N N tribution from theds term, the isocurvature perturbation can
_ (= ‘/E—zb)(— \/f—x) be written in terms of the entropy field perturbatiés as
2 c Mgyt 26| Nil,
t k
S.,=T. 65 With T,,=—3-o7 Ve
. = S Wi =— .
P(t)=2 (t)<0> e 0y M e
f g(ts H ‘ gk ’ ' (228
where We note that when the slow-roll conditions are violated the
65 term may provide a contribution to the isocurvature per-
Mg_ﬂé turbation that is not captured by E@..28, which can induce
{= 3HZ small differences when compared with the definiti@mR7).
Making use of Eq.(2.28, the power spectrum of the
(4= €)(Myy— Mpp) (= \/e_¢)(i \/f—x) isocurvature perturbation at the end of inflation is found to
= _4 77¢X+ 2€t be
€t €t
(2.22 (Hk)z 2 12 9 ( Hk)z &(ty) )
Ps=|5=| T t)|=—| | ————=19%(tp)].
and S 2 X¢’|g ( f)| - Mp E(/;(tf)fx(tf) |g ( f)|
(2.29
0 _ey—ey N (i\/;ﬁ)(i\/f—x)( C ) The cross spectrum betwedd, and 8s is estimated as
H e Tex € e~ Mex)- Poss=(Hi/2m)2g(t) P(t) from Eq.(2.15. Then we find the

(2.23 cross spectrum betweéR and S as
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H\2H(t;)
c_(_k) (-r((—t:)ng(tf)P(tf)

2w
=2l
m\H K M,
efM—1 |g%(ty)]

(2.30

de [=Ve ()= Ve (1]

The spectral indices for the power spectriare defined
by

dinP dinP

1= gk~ Gna

(2.3)

‘k=aH

Therefore the spectral indices 8% , Ps, andP read[31]

42 6¢7]¢¢+ 6)(77)()( +4(i \@)(i \/G_X)
t € € Tox

S\ 2
6 e &N
_ — e &Nk
(H)k gk (1 © ),

n'R_l: _66

_ 8|f2(ty)|
[£2(t) |+ [P(ty)]

(2.32
€ +e€
Ng— 1= —2¢,+2 -2 ExToe
€t
(=ep) (e,
_4%7]@(' (2.33

€ + € ey (£ e
_2€t+2 & Mxx X77¢¢_4( \/—¢)( \/—X)

Ne—1=
¢ €t €t

{ et
CefMNk—1’

(2.39

where the slow-roll parameters are evaluated at horizon

crossing. The spectrum; and the spectral index; of ten-

PHYSICAL REVIEW D 67, 083516 (2003

P(ts)

with x=——.
f(ts)

X
c=—F——s (2.38
1+ x2

ThereforerZ lies in the range &r2<1. Note that the rela-
tion (2.39 is obtained without assuming that the adiabatic/

entropy masses an@fH are constant after horizon crossing;
namely, the equality= in Egs.(2.26), (2.29, and(2.30 is
not used when we derive E(.38. If the slow-roll solutions
(2.2 are employed, we have

B\ 1-e W
_ (2.39
k

Xzz(ﬁ Lk

The behavior of the term#/H is most important when we
analyze the correlation between adiabatic and isocurvature
perturbations. In Eq(2.39 the “frozen” value of 6/H is
used at horizon crossing. However, since the assumption of
constantd/H is not generally valid during double inflation,
the slow-roll result(2.39 leads to some errors in estimating
rc at the end of double inflation. Whe#fH varies signifi-
cantly, we have to integrate this term from first horizon
crossing to the end of inflation rather than use the “frozen”
value at horizon crossing. Note that #fH is vanishingly
small duringboth phases of inflation the correlation vanishes
(rc=0).

The tensor to scalar ratio; can be evaluated without
using the slow-roll equality in Eq$2.26 and(2.35 as

47T(6‘(tf))2 1 477(& 21

rr= = = T2

M2t ) [+ PRt M2IH/ 1+x
(2.40

Here we used the fact thatl(o) f is conserved after horizon
crossing, i.e., fl/o) =[H(t;)/o(t;)1T(t;) [see Eq.(2.25
with k<aH and §s=0]. Making use of Eqs(2.35, (2.398),
and(2.40 we get the consistency relation

(2.41

Nt
rr=——(1-rd).

This indicates that the correlation between adiabatic and

sor perturbations are calculated by analyzing the equation Q§ocurvature perturbations leads to the modification of the

massless gravitational field8]:

2 877(6')2
, Nr=——>| =] .
Mp H k

4 H,
Va Mp

We introduce two ratiosc andry, which are defined as

Pr= (2.39

P
Fo= —o (2.36
PzPs

.

and

__Pr
= 1ep,

(2.3

From Egs.(2.26), (2.29, and(2.30 we find that the corre-
lation ratior; can be expressed as

consistency relation in the single-field case € —n{/2).
In deriving Eq.(2.41), we did not exploit the assumption

that the adiabatic/entropy mass aftH are constant after
horizon crossing. Then this consistency relation should be
valid as long as the slow-roll conditions are satisfacho-
rizon crossing in which case the uncorrelated solutions for
Q, and s can be used a=aH [34].3 In the context of
double inflation there are some cases where the slow-roll
conditions can be violated at horizon crossing, implying that

SNote that the decaying mode f&® can be important in some
non-slow-roll inflationary scenarid$4,55. In this case the second
derivatives of Eqs(2.9) and(2.14) are not necessarily small and the
first term in the RHS of Eq(2.15 is not negligible. Then we need
to add the decaying mode solutions to E2.15. The consistency
relation (2.41) does not cover this case, although the enhancement
of the decaying mode occurs only in some restricted situations
[54,55.
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the consistency relatiof2.41) does not hold automatically of free parameters to twa@j; andy; . Therefore we have five
when applied to realistic double-inflation models. free parametersnf,, m,, g, ¢;, and x;) for the model

The authors in Ref[31] obtained the following second (3.1). Once these parameters are given, the evolution of the
consistency relation from the slow-roll resu{& 32, (2.34 background is determined, with the nhumberesfolds N=
together with Eqs(2.35 and(2.40 as —In(a/as), with a; being the value of the scale factor at the
end of inflation[13]. We shall introduce the number of
e-folds N, which corresponds to the value Nfwhen the
scale corresponding to our Hubble radius today crossed out
the Hubble radius during inflation. Hereafter we set it to be
Note that the constancy of the adiabatic/entropy mass and
6/H is assumed in deriving this relation. Therefore it is Ny =60, (3.2
likely that the second consistency relatio2.42 is more . )
strongly affected by the violation of the slow-roll conditions in order to make definite calculations.
compared to the first consistency relati@41).

While the slow-roll results which include the quantities A. Noninteracting fields: g=0
Ny, Ng, andng can exhibit strong deviation from the nu-
merical results, the spectral index of the gravitational
wave is well described by E¢2.35 even in the context of
double inflation. Therefore, provided that the correlation is
small at horizon crossing, the first consistency relatiAl)

ny
(nc_ns)rT:_Z(znc_nR_ns)- (2.42

In the case where the fields are noninteractigg 0), the
slow-roll approximation in Eqs(2.1) and(2.2) gives the re-
lation ¢2+ x?>=4N/«?. The fields lie on a circle of radius
2N/ k. Therefore it is useful to writep and y in parametric

is expected to be reliable as long as we xsa Eq. (2.39 form [13];
instead of the slow-roll result in Eq2.39. 2N 2N
In the following section we shall compare the above for- ¢=——c0sa, xy=—Ssina. (3.3
K K

mula with full numerical simulations for concrete models of
double inflation(see the Appendix for the numerical method This means that the evolution of two scalar fields is charac-

to evaluate power spectra and correlatjoige will provide terized byN and the scalar field position angle satisfying

a detailed analysis of the spectra of perturbations and th . - i . )
validity of the consistency relations derived from the above{i‘e relat|(_)n tar=/¢. The field velocity angle defined by
29 (2.7) is related toa by

analysis. We will also discuss the parameter ranges where th
correlation of adiabatic and isocurvature perturbations is 2m)2( JN

strong. tanf=—

3Hro tana. (3.9

IIl. DOUBLE INFLATION WITH TWO MASSIVE

SCALAR FIELDS Making use of the relatiofi3.3), we find that the number of

e-folds can be expressed HE3]
Let us first consider a simple model where massive scalar .
fields ¢ and y are coupled through an interaction term (sina)?R~D

11292 px?: _NO(COSa)ZRZ/(RZ—l)’ 3.9

1 1 1
V(o x)= §m<2,5¢2+ Em)Z(X2+ 592¢2X2- (3.1  where

There are three parameters associated with this potential: R=m,/my. 3.6
my, my, andg. Then there are four free parameters assoCiyge that the integration constal roughly corresponds to
ated with the initial conditions of the fieldsg; , xi, ¢#i, and  the number ofe-folds during the second stage of inflation
Xi- Making use of the slow-roll approximationg= driven by the light scalar field. Hereafter we shall concen-
—V4/3H and xy=—V,/3H with H2=(87r/3MS)V in Egs. trate on the case where the fig{ds heavier thanp, i.e.,R

(2.1) and (2.2), the initial conditions of¢ and y are deter- ~1-

mined byd; andy; . This assumption cuts down the number In order to know the evolution of the background we need
to determine four parametensiy, R, Ny, anda. When the

total number ofe-folds is fixed at aroundNy, the model

“Clearly, assuming slow roll to set the initial conditions is not Parameters are reduced to thres,(, R, andNo). Whether
generally valid. Not assuming this will lead to extra transient vio- INflation is dominated by the heavy or light fields when the
lations of the slow-roll conditions, but if inflation is successfully scale of cosmological relevan_ce crosses the Hubble radius
initiated the fields should settle to their slow-roll values quickly. At depends on the value &f, relative toNy,= 60.
any rate our interest is in correlations and violations of the slow-roll Adiabatic perturbations for modes larger than the Hubble
approximation in a minimal sense. Inverting CMB and LSS data toradius during the radiation dominant era can be matched with
give information about the potential and initial conditions will have the curvature perturbation at the end of inflation, which are
to deal with this possibility in general, however. given by[24,8]
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R M L ey ity ey
- 2\/% [¢( *)e¢( ) X( *)ex( )]

__KHEOWN
E—

[cosa, ey(k)+sina, e (k)]

3.7

whereea, is the value ofx at the horizon crossing. Assuming
that the field¢ decays into ordinary mattgbaryons, pho-
tons, neutringsand y into cold dark matter, super-Hubble

isocurvature perturbations during the radiation dominant ere =+

are expressed 424,98

o Rt
~ W
B kH(t,)

2 0NV23

The expressiornt3.7) indicates that for the adiabatic per-
turbation the heavy fielgy dominates for tam, >1, while
the light field ¢ dominates for tam, <1. From Eq.(3.8) we
find that for the isocurvature perturbation the heavy figld
dominates for tam, <1/R? while the light field ¢ domi-
nates for tamy, >1/R?.

Let us estimate the correlation that is derived from the
slow-roll analysigsee Eq(2.39]. This is not actually com-

) es(k) e(k)

d(te)  x(ty)

, 800 ek
cosa, Sina,

. (3.8

pletely valid as we pointed out in the previous section, but
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FIG. 1. Correlation spectrec for three different cases witR
=5, m,=2.0x 10‘7Mp, andg=0. The cases correspond (a)
tana, =32.0>1, (b) tana,=3.13x10 <R ?, and (c) R 2
<tana, =0.16<1, on the scal&,=65. Casdc) shows strong cor-
relations, while the casdgs) and(c) do not.

power spectra and consistency relations, and check the va-
lidity of the slow-roll analysis.

1. tan a,>1

In this case the fielgy is the main source for adiabatic

useful to make a rough estimation for the correlation. Wd)erturbations, while isocurvature perturbations are domi-
will check, of course, the validity of the analytic estimates bynated by the field$. Therefore both perturbations are re-
numerical simulations. By a simple calculation we find that 9arded as almost independent, and the correlation is weak

defined in Eq(2.39 is given by

_ RA(R*-Dtana, (1+tarfa,) 1-e &M
X (I+R%tarf ay)(1+ R tarf a,) Ny

(3.9

If the condition|{,|N,<1 is satisfied, this reduces to

_ RA(R*-L)tana, (1+tarf a, )
- (1+R’tarf a, )(1+R*tarf a, )

X

(3.10

Note that when|{|N,=1 one has|(l—e‘5ka)/(§ka)|
=1/(£ Ny )|=1. Therefore the value ofis smaller than in
the case of Eq(3.10. Equation(2.38 implies that the cor-
relationr - vanishes fox=0 and gets larger for increasing
In particular, wherx is larger than of order unity, the corre-
lation is strong (¢ is close to unity. From Eq.(3.9) we find

that there is no correlation if the masses of the scalar fields

(see Fig. 1 In fact, when tamy,>1, Eq.(3.10 yields

R2-1 1
R* tana,

X=

(3.11)

Therefore the correlation: decreases with increasing tap
and one has.—0 for tana, —«. This decreasing rate is
more significant for largeR as can be seen from E.11)
and Fig. 2.

The amplitude of isocurvature perturbations is not typi-
cally larger than that of adiabatic perturbations unlegsis
very close ton/2, as shown in Fig. 8.Since the correlation
term in Eq.(2.32 is neglected and,,<¢, for tana, >1, one
has a spectral index of the curvature perturbation that is ap-
proximately the same as in the single-field case:

1(M;)\2
nR—1:_66X+277XX=—; 7 . (3.12

are equal R=1). We can also make a consistency check by
using Eq.(3.9 or Eq.(3.10. When the masses of the scalar This is a slowly red-tilted spectrum as found in Fig. 3. In Fig.

fields differ significantly R—0 or R— ), the correlation is
also vanishingly small for fixed tada, .

4 we plot the ratior defined by Eq.(2.37) and its value
obtained by the two consistency relatiof2s41) and (2.42).

In order to discuss the correlation precisely, it is useful to

classify model parameters into three cag®4]: (1) tana,
>1, (2) tane, <1/R?, and(3) 1/R?<tana, <1. Hereafter we

SNote, however, that the amplitude of isocurvature perturbations

shall analyze the strength of the correlation as well as thean be high ifa, is very close tom/2.
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. R=3 Power Spectra
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FIG. 2. The square of the correlatiop as a function of ta, o L . )
for R=3 andR=7 with m,=2.0x10" M, andg=0 on a scale N
corresponding td\,,=60. The solid curve corresponds to the nu- r P i
merical result, while the dashd&dl) and dotted(a?2 curves corre- F \\ 1
spond to the results using Ed8.9) and(3.10, respectively. '—-I—,—-—-—'—""“:T:\_
0_“ ¢ L 1 1
. . . . . 51 55 59 63
Except for some discontinuous behavior which accompanies N

the numeric$, the consistency relations show fairly good
agreement with the value of the original definitionrgf. In FIG. 3. The power spectr®z, Ps, and Pc with R=5, m,,
this case, sincec is much less than unity, the consistency =2.0x10 'M,, andg=0. The curves correspond to the caéas
relation (2.41) is essentially no different from that of the tana,=32.0>1 (heavy-field dominated (b) tane, =3.13x10 *
single-field casert=—n+/2; namely, it is almost the same <R™? (light-field dominateg, and(c) R-*<tana, =0.16<1, on a
as the single-field inflation driven by only one scalar field.Scale corresponding =65 (double inflation.

Therefore the assumption that3/(3H?), wZ/(3H?), and

6/H do not vary too much during inflation can be justified in

this case, thus not giving a strong deviation in the consis: 2 . . .
tency relations. for R“tana, <1. Therefore adiabatic and isocurvature per-

turbations are almost independent of each other for smaller
tana, , which can be confirmed in Fig. 1. In Fig. 2 we find
2. tan @, <UR? that the prediction(3.10 overestimates the correlation ratio
In this case the fields is the main source for adiabatic "c When tam, is small, while Eq.(3.9) shows fairly good
perturbations, while isocurvature perturbations are domi&greement with the numerical results. This implies that
nated by the fielgy. From Eq.(3.10 one has |§k|Nch0uId be larger than unity, in which case the (1
—e % /(£N,) term cannot be neglected in E®.9).
When tane, <1/R? the amplitudes of isocurvature pertur-
®We evaluated the spectral indices numerically using the definitiofPations are larger than those of the adiabatic ones as pre-
n=1+A(In P)/A(Ink), which leads to some numerical errors and dicted by Eqs(3.7) and(3.8) (see Fig. 3. The spectrum of
some spikiness in some of the figures. curvature perturbations is hardly affected by isocurvature

x=R?(R?>-1)tana, (3.13
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Consistency Relations 15 — —
1 (a) tan o, = 32

L@ ) (@)

10 J‘

ST — K ———
l0_3 N 1 s 1 s
51 55 59 63
Nk
o (b tan o, =3.13%10"
E -5 1 1 1 1
()] (Y) (iii) 1 0 10 20 30 40 50
I T
2 ’
10 3 FIG. 5. The evolution ofu?/(3H?) and u?(3H?) with R=5,
_____________ l e ] m,=1X 10" %M p» andg=0. The initial conditions are chosen to be
x=3M, and¢$=1.5M,. When the heavy field drops to the poten-
tial valley, a second phase of inflation begins, which is accompanied
= , , by an increase ofud/(3H?) and u/(3H?) The termu2/(3H?)

51 55 59 63 exhibits growth by a factor of 5 10* by the end of inflation com-
pared to its initial value.

lO_l E (C) tgn OL*I= 0-1,6 . . E 3. ]./sttan a*sl

] In this case both adiabatic and isocurvature perturbations
@ ) () are sourced by the light fielgh, but the effect of the heavy
field y is also important. From Ed3.10 we find

[0 -3
____________ T (R-1)(R*+1) O tane. o 31
] X="r R+ 1) ortana, = (3.19
o . _ . . . . - and
51 55 N 59 63 - 2R2(R2—1) f L, -
k X—m or tana, =1. (3.15

FIG. 4. The consistency relations witiR=5, m,=2.0
X10 'M,, and g=0. The curves correspond to the cages  Therefore, when tan, =1/R? andR is not too close to unity,
tana, =32.0>1, (b) tana,=3.13x10 “<R 2, and (¢) R™?2 X is typically larger than unity(for example, one hasx
<tane, =0.16<1, on a scale corresponding =65 (double in- ~ >1.275 forR>2). In this case the correlation ratig. is
flation). The ratiosr; that are derived by using E.36), and the  close to 1. The range of this high correlation gets wider for
two consistency relations EqR2.41) and(2.42 are denoted byi),  largerR as found in Fig. 2. When tam, =1, x is at a maxi-
(it), and(iii), respectively. Note that while the calculated numeri-  mum), x,,,,,=0.3 for R=1.7, with the correlation ratio range
cally, (i), typically agrees witH(ii), but it often differs from(iii ). rc=0.28 in this case. AR is increased, the maximum cor-

perturbations because the correlation is smal<1). relation becomes smaller, as is seen in Fig. 2.

Therefore the consistency relation in the single-field case l}l(’)\‘te that we need to include the correction term (1

should not be significantly modified in this case. —e/ (N in Eg. (3.9 to accurately estimate the
In fact, from Fig. 4 we find that the first consistency re- strength of the correlation. Figure 2 clearly indicates that the

lation (2.41) shows good agreement with the original defini- correlation is strong around R?<tana, <1. In this case the

tion of ry, while the second oné.42 is not so good. In- correlation terrrr(z; is very important in the consistency re-

deed, we should expect deviations from the predictions ofation (2.41) because ¢ will be close to unity.

the second consistency relation around the end of inflation As found from Fig. 2 analytic estimates by slow-roll ap-

because the masses of the adiabatic/entropy fields#iidd  proximations typically give larger values ot around the

are not constant in this case. Even in case 1 the discrepaneggion where the correlation is strong. Whesis close to

in the second consistency relation is a bit larger than in theinity, this difference can affect the consistency relation

case of the first one. (2.41). In Figs. 5 and 6 we plot the evolution @%/(SHZ),

083516-9
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30k ' : ' : spectral indicesi;, ng, andnc. Numerical analysis is re-
\ quired as well in order to fully understand the strength of the

26 X i correlation and the final power spectra of adiabatic and
o | Y | isocurvature perturbations.
’ \\ In Fig. 1 we find that the correlation is high arouhg
18 | \\ | =60, and decreases toward smaller scales. This corresponds
0 \ to the “light” inflationary phase withd<1/R where the per-
14 [ ] turbations are mainly sourced by the fiell around N,
\\ .................. ) =60. In this case the correlation gets weaker toward smaller
Lol T T scales due to the decrease @flf the scaleN, =60 corre-
e sponds to the “heavy” inflationary phase with=1/R, the
06r N J\oH T i correlationr ¢ is nearly constant as shown in RE24]. This
""""" means thai varies slowly during the heavy field inflation,
02 | which makes# unsuppressed. The slow variation ref can
02 . . . . actually be found in cas@) of Fig. 1. Note that if we choose
10 20 30 40 50 a value ofa not much greater thanR/the correlation can be
T higher as claimed in Ref24].

FIG. 6. The evolution o#/H with the same initial conditions as Two !mportant quantities to determine the strength of the
in Fig. 5. When the heavy field drops to the potential valley, acorrelat'on ar ‘?nd tarw, aroundNy; =60 as S?en from Eq.
second phase of inflation begins, which is accompanied by an in(3-9- The e-folding of the second stage of inflatiolo,
determines whether inflation is dominated by a heavy or light
scalar field aroundNy =60 and also the strength of the cor-
relation on smaller scales. Either of the scalar field masses
my or m, can be determined by the Cosmic Background
. Explorer(COBE) normalization. The rati®=m, /m,, is im-
M§/(3H2), and6/H for R=5,m =1X 10‘6Mp, andg=0 portant when we discuss the correlation. The correlation
with initial conditions y=3M, and #=1.5M,. The heavy is strong around R?<tana, <1, whose lower bound is also
field xy leads to the first phase of inflation untit  determined byR. If precise observations in the future reveal
510‘6Mpt:20, which is followed by the second stage of the strength of the correlation around=5N, <63, we will

inflation driven byd. All of Mé/(3H2), Mi/(3H2), and8/H be able to constrair] two masses, andm, (alternativelyR
exhibit a rapid increase around the end of the first stage dt1dMs) together with the values of tag, andNo.
inflation due to the breakdown of the slow-roll conditions for
x- For example,uﬁ/(SHz) continues to grow by the end of
the second stage of inflation, whose growth is about 5
X 10* times its initial value. Let us next consider the case where the coupling

In this case the assumption of the constancy of the mag@ken into account. It was suggested by Linde and Mukhanov
terms is no longer justified in Eq&2.17 and(2.21), thereby  [18] that inclusion of the coupling can lead to a blue spec-
leading to errors in the correlatiars if we use the estima- trum of isocurvature perturbations. Here we shall make a
tion in Eq. (2.39. In addition, the peak value af/H typi- detailed analysis of the correlation of adiabatic and isocurva-

cally provides a larger contribution than its value at horizontUré perturbations. ,

crossing in Eq.(2.39. Therefore we need to evaluate the Let us first estimate the spectrum of isocurvature pertur-

values ofx andr numerically in order to estimate the cor- bations using the analytic estimates of Sec. Il. Although it

relation accurately. has some errors due to the breakdown of the slow-roll ap-
In the case where the correlation is strong at horizorProximation, it is still useful to make rough estimates for the

crossing, we expect to find some deviations even from th@0Wer spectrum. The spectral index in E2.33) is estimated

predictions of the first consistency relation. In fact the nu-2S

crease off/H from the initial value 1.4% 1073 to its peak value
6/H=0.8 around the end of the first stage of inflation.

B. The interacting case: g#0

merical result in Fig. &) does not completely agree with the 2,2
slow-roll results, although the deviation is not significant. ns_1:_26t+i; (3.16
This case corresponds to the one where the slow-roll condi- 3H

tions are violated at horizon crossing. We have numerically

checked that the first consistency relation holds well as long

as the slow-roll conditions are satisfied at horizon crossing]herefore it is important to consider the mass of the entropy
which agrees with the claim by Wanes al. [34]. The sec- field perturbationus relative to the Hubble ratel. Note that
ond consistency relation is more strongly affected by thehe term—2e; in the RHS of Eq(3.16 provides the slowly
violation of the slow-roll conditions during double inflation, red-tilted spectrum. If the mass squard is larger than of
especially when the correlation is strong. The slow-rollorder H?, isocurvature perturbations are blue tilted witl
analysis shows some limitations to correctly estimate three>1. Making use of the slow-roll resu(2.18), we find
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Let us first consider the case wheié is positive during

(3.17

that the correlation of adiabatic and isocurvature perturba-

the whole stage of double inflation, which corresponds to théions gets smaller ag approaches the potential valley with

conditionm? ¢p?+ m> x?>2g?¢?x?. When the heavy fielgy
rolls down to the valleyy=0 at the first stage of inflation,
we haveuZ=m;+g?¢? and H?=47m;¢?/M2. Then the
mass square ofs is given by

392 (M2
2 m2 2 Wi S i
ms=m +BH" with g 4w(m¢> . (3.18

Note that in this case the entropy field perturbati@ is
almost the same as the heavy field perturbatgnlIf y is
quickly suppressed, we need to consider of)y as in Ref.

decreasing. As shown in Fig. 8 the correlation- tends to
decrease more on smaller scales as we choose larger values
of B. When B=1 we find thatr. decreases rapidly on
smaller scales, which is associated with the highly blue-tilted
spectrum of isocurvature perturbations. This is confirmed by
the definition ofrc in Eq. (2.36 where onlyPg increases
toward smaller scales.

From Fig. 8 we find that the first consistency relation
(2.4 exhibits fairly good agreement with; obtained by
Eq. (2.37 except for larger scales, while the second one
(2.41) does not. This is caused by the violation of the slow-

[18], in order to discuss the spectrum of isocurvature perturtoll conditions at horizon crossing and also by the change of

bations. WherBH? is larger tharm)z( during double inflation,
we haveu’=gH? and

p&l(3H?), uZ/(3H?), and ¢/H during inflation. Since the
correlation decreases toward smaller scales, the deviation

from the numerical results tends to be weaker for smaller

in the case of the first consistency relation. Since the second
consistency relation is affected by the change of the mass
terms after horizon crossing, it does not agree well with the

When 8 is much larger than unity, this yields the blue- Numerical results even on smaller scales.
tilted spectrum,ng>1.” Making use of this scenario, it is ~ Note that in Fig. 8 the strength of the correlatiog in-
possible to obtain isocurvature perturbations that tend t&reases for largeg around the scalély=60. Since the in-
grow toward smaller scales while adiabatic perturbations reclusion of the coupling provides the additional source term
main small on present horizon scalas]. If u2>H?, theny
rolls down very rapidly to the local minimum of the potential 10

valley (y—0), and@ in Eq. (2.30 exponentially decreases

on smaller scales. In this case the correlation between adia-
batic and isocurvature perturbations tends to be very weak 10 L 4
except for the scales whejgeis not very small compared to : ]

¢. When# is negligible, the spectrum of curvature perturba- e L =
tions is essentially no different from the single-field result, 10 3
Ng—1=—6e4+27,4 [see EQ.(2.32]. In this case adia- g ¥
batic perturbations can be nearly scale invariant, while [
isocurvature perturbations are blue tilted. 1072 ! L
From Eq.(3.18 we find that the spectrum of isocurvature 51 55 & 59 63
perturbations can be blue tilted for the coupliggwith g )
=m,/M,. In Fig. 7 we plot the spectra ¢, Ps, andP¢ <
for two cases with3=0.01 and 0.95. Note that in these cases L p.
the model parameters are chosen soﬂfais positive during N
the whole of double inflation. Wheg=0.01, the spectrum =
of isocurvature perturbations is slightly blue tilted, while for I RN
B=0.95 it is highly blue tilted. S
The two spectr&z andP¢ are not significantly modified
by the presence of the coupling tegnlt can be understood

2
Ng—1=—2e-+ 3B (3.19

_9 B=0. 01

. . - 1
"When 851 the spectrum of isocurvature perturbations is highly B 5 N 22 ®

blue tilted. This is actually the case for the preheating scenario

where large-scale entropy field perturbations are strongly sup- FIG. 7. The power spectrBy, Ps, andP¢ are shown forg

pressed for the coupling required for strong preheatirigee Refs.
[36]).

=0.01 and 0.95. The model parameters are chosen t®-b8,
m4=5.0x10"'M,, and$=3.2M,, xy=0.3M, at N,=65.
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51 55 59 63

larger correlation as long ag is not strongly suppressed.
Making use of Eq(2.23), we can easily show that the cor-
relation is nonzero even f&®= 1.2 Figure 9 indicates that the
values ofr are increased around the region where the cor-
relation is strong by including the couplirg

If the condition m3¢?+m’y?<2g?¢?x? is satisfied at
horizon crossing, the mass 6§ is negative So the spectrum
of isocurvature perturbations produced is red tilted with a
steeper slope than in the casegef 0. Figure 10 corresponds
to the case where the spectrumg is red tilted for 5& N,
<63 but begins to be blue tilted fo¥,<57. The negative
mass ofés leads to a red-tilted spectrum on large scales as
expected. Whenp and y are of the same order on these
scales, the correlation. can be close to unitysee the right
panel of Fig. 10. When the mass afs becomes positive and
x begins to decrease towaxd= 0, the situation is almost the
same as discussed previously. In this case we have a highly
blue-tilted spectrum for isocurvature perturbations with sup-
pressed correlations §<1).

Unlessg is extremely smallg<m, /M), then it is natu-
ral to have a stage of negative§ during double inflation.
For example, wheg=m, /M, itis easy to satisfy the con-
dition ,u§<0 if x is larger than the order of the Planck mass.
For the double-inflationary scenario where inflation starts out
with large initial values of¢ and y much greater than the

PHYSICAL REVIEW D67, 083516 (2003

FIG. 9. The correlationrc as a function ofy, /¢, for B
=0.01,0.47,0.95 on a scale corresponding\ic=60. The model
parameters are the same as in Fig. 7.

10°
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FIG. 10. The power spectfy;, Ps, P (top) and the correla-
tion r¢ (bottom for R=3, m,=2.0x10 M, andg=2.0x 10 °

10

-2

—1

10 10° 10

X0

Planck mass, the spectrupy is highly red tilted. Neverthe-

less, wheng is large andB>1, y decreases very rapidly
FIG. 8. The correlatiom¢ for 8=0.01, 0.47, 0.95 and the ratio toward x=0. Therefore the blue-tilted spectrum Bf; ap-

rr which is derived by Eqsi2.37), (2.41), and(2.42, denoted by  pears immediately once the massasfbecomes positive.

(), (i), and(iii), r_espgctively. The model parameters are chosen t0  \yie have found that a variety of power spectra and corre-

be the same as in Fig. 7. lations can be obtained, depending on the initial values of the

scalar fields and the parameters of the model. In particular,

for 0 [see then,,,, term in Eq.(2.23], this works to induce a the inclusion of the coupling leads to an interesting power

55 59 63
Nk

8We haver.=0 for R=1 and¢=y. (corresponding tg3=23.9).
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spectrum of isocurvature perturbations that tend to increasehere we neglected th® terms. The absolute minimum

toward large scale&orresponding tm§< 0) and also grow
again toward smaller scalgsorresponding tou2>0). If

appears atp=0, y=2u//ko. The potential4.5) is exactly
flat at the local minimumy=0. Adding a mass term

such a spectrum is supported by observations, it should b/2m?¢? in Eq. (4.5) results in the effective potentiék.1)

possible to constrain the strength of the couplinand other

with the replacements3/2=g?=2\ and u?=M?/(2\\).

model parameters by taking into account the information orTherefore the supersymmetric version of the hybrid or

the correlatiorr - as well.
There exist other models of double inflation which pro-

double inflation corresponds to the case wgtix =2.
Taking into account the supergravity correction gives rise

vide the8H? correction as in Eq(3.18. One such model is to a slowly varying effective potential, whose form is ap-
a nonminimally coupledy field with a minimally coupled proximately given byV=u*[1+ ¢*(8M3})] [50]. If one-

field ¢ [18]: loop radiative corrections are included, the total effective
1 1 1 potential for¢>v2u/+\ kg involves a logarithmic term lg,
_t 2,2, T 2o L. o as well as thep* term[51]. The correction termg* or In ¢
V=omigt+ Smixt+ 5 Ry, (3.20

can lead to an inflationary expansion of the universedor

: - . >v2 ul ko
where¢ is a nonminimal coupling between the scalar curva- Although these are different from the mass termm#a2

el E6 (4.1, he basic tctures of the modeis mtvate by
tion of &y for negative& [28,32, while it is blue tilted for supersymmetric theories are well described by the potential

ositive £ Althouah the decomposition into adiabatic and (4.1). In particular, when we discuss the correlation between
gntropy %ields” isgnot as simple 2\5 in the case of minimally adiabatic and isocurvature perturbations, the crucial point is
coupled fields discussed in Sec. Il, it would be of interest t the evolution of scalar fieldafter the symmetry breaking

0 .
extend our analysis to this case. phase rather than the early evolutionfat v2 u/\'xo. There-

fore we shall consider the modgl.1) in order to understand
the basic properties of the correlations. We are particularly

IV. DOUBLE INFLATION MOTIVATED interested in the supersymmetric case vgtfix = 2.

BY SUPERSYMMETRY

We now come to perhaps the most interesting of the mod-
els we have studied. In hybrid and supernatural inflationary
models[43-45, the symmetry breaking transition occurs in
the presence of the second scalar figldThe effective po-
tential of the original hybrid inflation model is given (3]

A. The condition for double inflation
and the background evolution

We shall first consider the evolution of the background
and the condition for double inflation to take plagather
than just a single phase of inflatiofior the model(4.1).
When ¢ is larger thanp.=M/qg, inflation takes place due to
the slow-roll evolution of¢. Since the mass of is positive
for ¢>¢., the field y rolls down to the potential valley at

This potential is closely related to those obtained in su-X=0. Therefore the potential is appr_oximatezly described as
persymmetric theorie§45-51. For example, consider the V=M¥4\+(1/2)m*¢?. If the condition m?¢c<M?*/\ is
supersymmetric theory with a superpotential satisfied, the Hubble constant &t= ¢ is given byH=Hj

= \/277/(3)\)M2/Mp. Let us denote the masses of the two
W=S(kopp—p?),

fields ¢ and y relative toH3 as y and &:
which includes two superfields ¢ together with a conjugate
pair ¢. In the global supersymmetric limitM,— ), one
obtains the following effective potential for two superfielsls
and ¢:

M2 2

A

N 1
= | 42— T2 42
Vv 71X 2m¢. 4.1

4.2

-m? 3)\m2Mr2J
YTRZT 2aMT

M,

M

5 92¢2_M2 _ 3_)\
N HO2 2

(4.6)

|

where we setp=ce¢.. v is required to be smaller than
unity in order to lead to the first stage of inflation far
> ¢, thereby yielding

2
— 2_
V=l kogg— w7+ ISP (gl +[¢]%) +D terms. ) R

4.3

Note that this has a potential minimum |8 =0, (¢){¢)
=u?lky, {@)|=|(¢)|. Making gauge ancR transforma-
tions in theD-flat direction|(¢)|=|(¢)|, the complex super-
fields S, ¢, ¢ can be replaced by real scalar fieldland y as

M2=mM,\. 4.7
S=o¢IV2, ¢=¢=x/2. (4.9 . .
Whether the second stage of inflation occurs or not after
Then the potential4.3) yields 9rops fb(ﬁ!gg\cl)ﬁait(?gﬁends on the model parameters. If the
_K?, 2 4202 1 o waterfa
V—E(X _K_> + KX (4.5 M3<AmM? (4.9
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is satisfied, inflation soon comes to an end after the symme 15 - -
try breaking. This corresponds to the original version of the
hybrid inflationary scenario where inflation ends due to the
rapid rolling of the fieldy [43].

Combining Egs(4.7) and(4.8), one hasv>m and Lo r i

M
5> —(c?>—1)>c?—1. (4.9
m 05

/0,

This means that the classical fieldis strongly suppressed
for ¢> ¢, (y>xa *?). Since inflation typically starts when
the value ofc?—1 is of order unity or much larger than 00 |
unity, it is inevitable to avoid the suppression yfvhen the
waterfall condition is satisfied. Note thatchanges sign after
the symmetry breaking. The field and its large-scale fluc-
tuations are amplified by the tachyonic instability associated =03 5 00 05 10 15
with negativey mass[56—59. o

Although the growth is strong for large-scale modés (
—0), the size of these fluctuations is vanishingly small at FIG. 11. The trajectory of two scalar fields in the plane
the beginning of the tachyonic instability due to their expo-(#/¢c.x/xo). The model parameters are chosen toNie=7.0
nential suppression foty>¢.. Therefore the small-scale X1077Mp-_2“:2-0>< 107"M,, with initial scalar fieldsg; = 1.5
modes that are not significantly suppresseddor ¢, pro-  and Xi> 10""xo. We show two cases of/A=1 and 2 withA
vide the larger contribution to the total varian(:;e2> of y =10 "% The trajectories are curved in field space, which means

rather than the large-scale modes. that 6+0.
The condition for the second stage of inflation to occur isdouble-inflationary scenario where the total number of
characterized bys| <1, namely, e-folds, Ny=N,+ N,, exceeddN, = 60.

When g?/A=0O(1), thecritical value ¢.=M/g and the
potential minimumy,=M/\/\ are of the same order. The
two fundamental masses around the potential minimum are
characterized byn,=(g/\A\)M and m,=v2M. Therefore
these masses are also comparable vg)%én= O(1). In par-

M?>\M3. (4.10

In this case the fieldy and its large-scale perturbation are
free from the inflationary suppression fér> ¢, unless in-
flation starts out with very large values @f satisfyingc ; : ; : _
>1. Note that one ham?/M?<g?/\ under the condition #::slzgslgr?ioﬁggse%ygigf case Wigi/\=2, the two
that the first stage of inflation is driven by the Hubble con- |, this case the trajectory of the two scalar fields after the
stantH, (namely,m?¢2<M*/)). symmetry breaking is close to a straight line in the
Therefore one hasM>m for g?/A\=0(1). Combining  (¢/¢.,x/xo) plane if the velocities ofp and y are suffi-
this relation with Eq(4.10 givesM3>xm Mﬁ, which means ciently small at the bifurcation poinp= ¢. [60]. However,
that the waterfall conditiort4.8) is violated. In this case the sinceé;b is nonzero because of the non-slow-roll evolution
evolution of the fieldy is sufficiently slow so that the second around¢= ¢, the trajectory is not strictly described by a
stage of inflation occurs after the symmetry breaking. straight line after the symmetry breaking. In fact this behav-
Let us consider the evolution of the background forior can be found in our numerical simulation in Fig. 11.
g2/x=0(1). Thenumber ofe-folds during the first stage of Wheng?/\=0(1) andg?/\ # 2 the two scalar fields exhibit

inflation is described as chaotic behavior as shown in Ref60-62. The trajectory
in the g?/A=1 case is illustrated in Fig. P1Since the tra-

N 2j¢i \% d 27M? | o} a1 jectory of the two scalar fields is generally curved, this leads
1=K ¢CV ¢= )\mzl\/lzp nﬁ’ (4.1 to a variation ofé in field space §+0), thereby generating

a correlation of perturbations fap<¢.. Note that in the
where we use/=M*/4\ + (1/2)m?$? for ¢>¢.. Hereg;  case ofg?/\<1 org?/A>1, m, andm, as well as¢ and
is the value of¢ at the beginning of double inflation. Note y, take quite different values. We will not consider such
that we haveN;>1 under the condition of Eq4.7) (i.e., cases in this work, since we are interested in the double
y<1). Similarly, the number oé-folds after the symmetry inflation motivated by supersymmetric theories.

breaking is approximately expressed as
B. Perturbations

2
N,= Kzf’“l dy= 2mM In@ (4.12 Let us next analyze the perturbations and correlations in
xo V' AMS T xe the double inflation model with the potenti@.1). When the
where we usedV=(\/4)(x>*—M?/\)2. Here yo=M/\J\

and . is the value ofy at ¢= ¢, . Again N,>1 is satisfied Note that the amplitude of the two scalar fields can be higher, as
under the condition of Eq4.10. We are interested in the in Refs.[62,60 by changing the model parameters.
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FIG. 12. The evolution oR, @, &, andQ for a mode that left FIG. 13. The evolution ofi) |3/(3H?)], (ii) |x2/(3H?)|, and

the horizon before 6@-foldings from the end of the double infla- jii) |9/H| for g2/A=2, g=1.5x1071° M=5.0x10"%, and m
tion. Note that we showeR = /P, etc. The model parameters are =0.2 M with initial conditions ¢=1.34¢, and y=10 3y,. Al-
g?/A=2,g=1.5x10""°, M=5.0x 10 °, andm=0.2M with initial  though we showed the absolute values of these quantities, it hap-
conditions¢=1.34¢, andN=10"°y,. R and® are amplified due pens that these take negative values in the tachyonic instability
to the tachyonic growth obs and Q during the second stage of region.
inflation.

through the relatior{2.12). This behavior is clearly seen in
field ¢ evolves slowly along the potential valley wig=0  the numerical simulation of Fig. 12.
before the symmetry breaking, the spectral index of the cur- Let us consider the spectra of perturbations at the end of
vature perturbation generated in the first stage of double indouble inflation. In Fig. 14 we show the spec®g, Ps,
flation can be estimated by E(.32 as and P around the scal®,,=60 for three different cases.
The casga) corresponds to the one with=0.08<1 andé$
=¢?—1=1 aroundN,~ 60, in which case from Eqg4.13
and(4.14) one has a slight blue tilt foP, and a rather steep
blue tilt for Pg at the end of thdirst stage of the double
where vy is defined by Eq(4.6). When the conditiorm?¢? inflation.
<V=M?%/(4)), holds as is the case with the original hybrid  In fact we have numerically checked that such spectra are
inflation scenarid43], one has the blue-tilted spectrum with generated before symmetry breaking. However, these are dif-
ng—1=(2/3)y>0. Similarly, the spectral index of the ferent from the final spectra obtained at the end of double

2 3m?¢?

isocurvature perturbation generated ¥ ¢, is given by inflation. Since the strong conversion between adiabatic and
isocurvature perturbations occurs during the tachyonic insta-

m2? bility region, the final spectrum of curvature perturbations is

Ns—1=-2e,+27m,=30-7v—3,» (414 affected by the steep blue-tilted spectrum of isocurvature

perturbations. Therefore the finBl, exhibits a steeper blue-

- tilted spectrum than predicted by E@.13.
where we used Eq2.33. Therefore, when the condition . . . .
(2/3)5> ym2 213V is satisfied, the isocurvature perturbation . This tells us that the correlation between adiabatic and

is also blue tilted. Note that the spectral index of the Corre_ISOCUFVB.tUI’e perturbations is important to correctly estimate

lation P is similar to that ofPg except for the last term in E:ZEIBI fmsilo?/[/aeli?; ri?ét-irohness\l\?r\g -rr10t"hreeig(rt?éll;zigr?ciis(4§tlr2nwpll-\lote
EqQ. (2.34), which is of order 1N, <1 when| N,/ <1. y 9.

- . that in Fig. 14 all spectr&®,, Ps, andP¢ in the casega)
The spectral indices in Eq$4.13 and (4.14) can be L L
modified in the presence of the tachyonic instability regionexhlblt aImost_the same blue spectral indices due to the
With = ;. Aiter the symmetry breaking, the field pertur- stroAr;t%chj) rLeltitéogéséa) corresponds to the one with rather
bation sy begins to be amplified due to the negatjvenass 9 P

. . . ) . steep blue-tilted spectra, one can obtain nearly scale-
n Eq_._(4.(_5) with c<1. This growth IS accqmpamed by the invariant spectra by choosing small valuesyatnd 6 relative
amghﬂcatlrc])nhof the (lantrop%/ f|eldhperturbat|oi$ flor smallkI to unity. For example, the casb) in Fig. 14 corresponds to
modes, which stimulates the enhancement of large-scale cuy-  With e ’< _ 2 1y—

vature perturbations by the relatié®.25 (see Fig. 12 e one with y=0.04<1 and 6=0.6(c"~1)=0.2 for Ny

. )  =63.
As shown in Fig. 13,/6/H| decreases during the first In this case both the adiabatic and isocurvature spectra

stage of inflation, but begins to increase after the Symmetryenerated foh> ¢, are slightly blue tilted, as predicted by
breaking. This can lead to the strong correlation betweerEqs_(4_13) and (4.14). The conversion of perturbations oc-

a_diabatic and isocurvature perturbations. In fact obe@and s after the symmetry breaking as well, but the spectral
|6/H| grow sufficiently, they work as source terms fQrin  indices are mostly inherited by the end of double inflation
the RHS of Eq/(2.14), thereby stimulating the growth @  because botlP; and P5 have similar small spectral indices
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L, (o) However, if the duration in the first stage of inflation is
10 73 short, it is possible to obtain the red-tilted spectrum on
10° i ] smaller scales. For example, in the cé&sellustrated in Fig.

14, the e-folds during the first stage of inflation amd;
107 ~7.5 (the totale-folds areN~65). The modes correspond-
ing to N, =58 crossed the horizon before the field reaches
107 the point¢p= ¢.. For these modes the spectra of perturba-

& tions are blue tilted as are the caseqafand(b).
10° E In contrast, the smaller-scale modes Witlp=58 crossed
10° E , ] the horizon after the symmetry breaking, in which case one

51 55 59 63 has a red-tilted spectrum due to the negajimass(see Fig.
N, 14). The case(c) corresponds to slightly red-tilted spectra
(b) with |8|<1. If the values of|§ are increased, we have
107 ¢ - . ; . — 3 steeper negative tilts than shown in Fig. 14. It is very inter-

L, f P ] esting that such a variety of spectra can be obtained by dif-

107 f * 3 ferent choices of model parameters and initial conditions.
10 b ] In Fig. 13 we find that the absolute values of the mass

P, T w?/(3H?) and6/H change during double inflation, while the

107" 3 3 variation of ,ué/(?»HZ) is small. In addition, although the

I T ] massu2/(3H?) is positive initially, it changes sign after the
10 _P s ' symmetry breaking. Therefore, to use the “frozen” positive

10" L . ! . ! ] mass in Eq(2.20 is not typically valid, thereby leading to
51 55 59 63 errors in the final consistency relations. And while the corre-

N, lation is suppressed fap> ¢, the tachyonic growth of the

. (c) fluctuation Sy yields strong correlation after the symmetry
10 - - 3 breaking.

L fp ] Numerically we found that the correlation ratig is very
10° 3 close to unity at the end of double inflatideee Fig. 14
10 __ _________________ __ This is associated with the enhancemenRoand ® shown

: P, in Fig. 12. In Fig. 15 the first consistency relation shows
10° L ] good agreement with the numerical results in the cdaes
: E and(c), while the caséb) is not so good. In the casés and
107° :;) """""""""" 1 (c) we chose the initial valug; =10 3y,, while the caséb)
. P ] corresponds tgy; =0.04y,. In the former cases one hasH
L of order 0.001 around the scalg~ 60, buté/H is larger by

more than one order of magnitude in the latter case. The
correlation is negligible at horizon crossing in the ca&®s
FIG. 14. The power spectiRe , Ps, andP¢ for g/A=2. Each  and(c), but in casgb) it is not. This is the main reason for
case corresponds te) M=7.0x10"'M,, A=1.0x10 ¥ m  the deviation from the first consistency relation in the case
=2.0¢ 107"My, $i=147pc, Xi:1-0>f71073X0v (b) M=85 (b In fact, we have numerically checked that the first con-
X10 My, A=9.0x<107%, m=2.0x10 "My, =122, xi  sistency relation tends to agree with the numerical results as
=5.0<10 2y, and () M=8.1x10"'M,, A=1.0<x10"*2 m N .
=2.0x10° "M, =111, x;=1.0x 10 3x,. we decrease the |n|t|aak (l_.e., smaller6/H). Note thatrc _
P grows close to unity during the second stage of inflation,
whose behavior is almost independent of the valueoht
at ¢= . As shown in Fig. 14 all ofP;, Ps, andPc  horizon crossing.
exhibit slightly blue-tilted spectra at the end of double infla- ~ Our numerical simulations show that the second consis-
tion. tency relation does not agree with the one obtained by the
One may consider that the tachyonic growth of large-scalélefinition (2.37) (see Fig. 1k In particular, althoughry is
perturbations may lead to red-tilted spectra. In the cémes Positive definite in Eq(2.37), negative values ofr appear
and (b) all modes shown in Fig. 14corresponding to 51 When we use Eq2.42), implying strong deviations from the
<N,=63) are already left far outside the horizon when theS€cond consistency relatiénote that in Fig. 15 we showed
field reachesp=¢.. Since the physical momenta satisfy the absolute values af;). Again, this is mainly due to the
k/a<H for all these modes, the tachyonic growth rate ofviolation of the assumption of the constant masses @it
perturbations is practically the same for modes correspondiuring the tachyonic instability region.

ing to 51=N,=<63. Therefore in the casds) and (b) the Notice also that if we use the slow-roll expressionxan
presence of the tachyonic region does not yield red-tilted=q. (2.39 this does not provide the correct value of the cor-
spectra. relationrc . In the casda) of Fig. 15, for example, we have
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@ unity. The correlation is also expected to be strong in other
e models of double inflation with a tachyonic instability.
' F .
0° ; R e V. CONCLUSIONS
N R ) ! In this paper we studied the correlation of adiabatic and
0~ F (@ (@) (i) . isocurvature perturbations generated in inflationary scenarios
LF s with two phases of inflatioidouble inflation. We made a
10 :—__/ detailed multiparameter numerical analysis of the power
0 : , , spectra relevant for the cosmic microwave background and
51 55 59 63 large-scale structure. We also studied the validity of the in-
N, flationary consistency relations derived from slow-roll analy-
(b) sis for two different models of double inflation—the two
' : ' ' ' noninteracting/interacting massive scalar fields and the su-
10° e - persymmetric model with a tachyonispinoda)l instability
I ) separating the two phases of inflation.
> _ @ (i) (i) _ In_ sin_gle-_ﬁeld _inﬂationf’;\ry scenarios, the slow-roll_ ap-
10 proximation is typically reliable except near the end of infla-
: L PO tion. In the case of multiple scalar fields, however, we need
0™ :— |/ =7 ] to be more careful in the use of the slow-roll approximation.
= \\l T 7 If one of the scalar field is quickly suppressed and another
; g scalar field leads to inflation with more than &@olds, per-
10° 51 : 5'5 : 5'9 : 3 turbations relevant for large-scale structure are effectively
described by the single-field inflationary scenario. However,
(c) N when both scalar fields are of the same order around 60
— e-folds before the end of double inflation, we are faced with
10° e ] limitations in the use of slow-roll results. In this case the
| . slow-roll parameter of the heavy scalar field is already large
10 b E around the end of the first stage of inflation.
L - o The assumption of the slow variation of the effective
wt B ‘\\/’ E masses of “adiabatic” and “entropy” fields, which is used to
L () (i) (ifi) | obt_alr_1 the spectra of perturbatlons analytlcally, is (_)ften not
10° l f ] valid in the context of the double-inflationary scenarios. This
[ == g is reflected in our results where we found that the slow-roll
107 . ! . ! . derived correlatiom and three spectral indices; , ng, and
51 55 59 63 nc do not agree well with the full numerical simulations,
N, especially when the correlation is strong. If the correlation is

negligibly smallat horizon crossingthe first consistency re-
FIG. 15. The correlatiom and the ratia that are derived by lation (241) shows good agreement with our numerical re-
using Eq.(2.36) and the two consistency relatiof&41) and(2.42), sults[see the casgs) and(b) in Fig. 4 and the casds) and
which are denoted bii), (i), and(iii), respectively. We show the (¢) in Fig. 15). This is consistent with the result of Wands
cases(i), (i), and (iii) by solid curves, dashed curves, and dot- g g that the first consistency relation was obtained only by
dashed curves, respectively. Note that in the da@sé2 we have o ming a vanishingly small correlation at horizon crossing
stzns t;‘; ?Ezoslzt;evzls“?noéi' T;]z initial conditions for the three 131 1y the case where slow-roll conditions are violated at
g- 24 horizon crossing, which can occur in double-inflationary sce-

) narios, we find that numerical results exhibit some deviation
(6/H),~0.001 andZ,~0.37 around\,=60. Therefore Eq. from the first consistency relatioi2.41) [see the casé) in
(2.39 leads tox~0.005 andrc~0.005<1. This is signifi-  Fig. 4 and the caséb) in Fig. 15].
cantly different from the numerical value of close to unity. The second consistency relatio®.42 is more strongly
We have to integrate thé/H term from the horizon crossing affected by the change of the entropy/adiabatic mass and the
to the end of inflation in order to correctly estimate the finalscalar field velocity angl® during double inflation, thereby
value ofre. Note that when we evaluate in Eq. (2.39 showing stronger deviations especially when the correlation
numerically the first consistency relation shows excellenis large. These results suggest the necessity of numerical
agreement with the numerical resyl&s in the case@) and  analysis—or a refined analytical treatment—in order to cor-
(c) in Fig. 15], as long as the correlation is not large atrectly estimate the final power spectra, spectral indices, and
horizon crossing. correlations of perturbations.

When they mass is light [§|=1) and the second phase = We also found that a wide variety of power spectra and
of inflation takes place, we find that the correlatiop is  correlations can be obtained, depending on the parameters of
close to 1, even changing the valuesgdf\ to be of order the models considered. In the case of noninteracting massive
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scalar fields, two important quantities determine the strength It is really encouraging that double-inflation models lead

of the correlation: the ratio of the two scalar fields (g1 to strong correlations over wide ranges of their parameter

and the ratio of the two masséR). We made a complete spaces. This suggests that searches for correlations in the

classification for several different cases to understand th&MB may yield interesting information and constraints on

correlation appropriately. such models and motivates the development of enhanced
When the interaction between two scalar fieldé¢2y?) slow-roll a_pproximations which can accurately predict the

is introduced, this can lead to a blue spectrum of isocurvaturill numerical results.

perturbations if the mass of the entropy field perturbation is

larger than the Hubble rate. However, the heavy figlt ACKNOWLEDGMENTS
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symmetric theories, the correlation is found to be very large

(re=1). This is associated with a tachyonic growth of the APPENDIX: NUMERICAL METHODS TO EVALUATE

entropy field perturbation during the second stage of double POWER SPECTRA AND CORRELATIONS

inflation. This strong correlation also yields a mixture of , i

adiabatic and isocurvature perturbations after the symmetry L€t us explain the general numerical method used to cal-

breaking, thereby modifying the spectra of perturbationé?tflate. power spectra and correlaﬂon; in the context of mul-

generated during the first stage of inflation. We found that difield inflation. We treaQ,, and és as independent stochas-

variety of power spectra can be obtained by making use olic variables for the modes degp |nS|de.the Hubble radius.

this conversion mechanism. Then we have to do two numerical runs in order to evaluate
In the original version of the hybrid inflation with poten- P=. Ps. andPc. One run corresponds to the Bunch-Davies

tial (4.1) [43], the field y is strongly suppressed because ofvacuum state foQ, and 6s=0 for the entropy field pertur-

its large effective mass before the symmetry breaking. Inflabation, in which case we get the solutioRs=R, and S

tion ends by a rapid rolling of the fielg after the symmetry =Si. Another corresponds to the Bunch-Davies vacuum

breaking atép= ¢ . Since the fieldy has essentially no ho- State forss andQ, =0 for the adiabatic field perturbation, in

mogeneous component &= ¢., the decomposition of ~ Which case we hav& =R, andS=S5,. _

between the homogeneous fieldt) and the perturbative Then each power spectrum can be expressed in terms of

part Sy(x,t) is not necessarily valid. Wheg is negligibly ~ R1, R2, S1, andS;, as

small at = ¢., we need to go beyond the perturbation

theory using the spatial distribution of the fieldx,t) as in K3

Ref. [59]. _ o Pr= 2—2(|R1|2+|R2|2), (A1)
Note, however, that in the case of double inflation the m

field y is hardly suppressed fap> ¢, due to the lighty

mass [§|=<1). Then we are free from the problem of the ’

— 2 2
decomposition ofy, in which case our linear analysis can be Ps= 212 (IS +1S:l%), (A2)
reliable. We also made some simulations including the back-
reaction effect of field fluctuations as the Hartree approxima- K3
tion and obtained similar results as found in this work. Po=52|R1Si1+RoSy|. (A3)

In our work we analyzed two models of double inflation
given by the potential§3.1) and(4.1). Since these potentials
include most of the basic properties of the double inflation, itFrom this it is easy to show that the correlatiog
should be fairly easy to extend our analysis to other double=Pc/VPzPs is in the range c<1.
inflation models motivated by particle physiSs. If we run the numerical code only once by using the ini-
tial conditions where botl . and §; are in the vacuum state,
we then geR=TR;+R,. In this case the power spectrum of
19 some models of two-field inflation considered as in Refs.R Yields Pr=(k3/27?)|R,+R,|?, which is different from
[15,28,33, the second stage of inflation is absent. In this case thé=d. (Al). As long as the perturbations are stochastic random
first consistency relatiofi2.41) is expected to be valid, while the variables initially, it is required to adopt the method de-
second oné2.42 may be model dependefi4]. scribed in Eqs(A1)—(A3).
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