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ABSTRACT

The IPSO framework allows us to optimally design experiments and surveys. We discuss the utility of IPSO
with a simplified 10-parameter MCMCD-optimization of a dark energy survey. The resulting optimal number
of redshift bins is typically two or three, all situated at . By exploiting optimization we show how thez ! 2
statistical power of the survey is significantly enhanced. Experiment design is aided by the richness of the figure
of merit landscape that shows strong degeneracies, which means one can impose secondary optimization criteria
at little cost. For example, one may choose either to maximally test a single model (e.g.,LCDM) or to get the
best model-independent constraints possible (e.g., on a whole space of dark energy models). Such bifurcations
point to a future where cosmological experiments become increasingly specialized and optimization increasingly
important.

Subject headings:cosmological parameters — large-scale structure of universe — surveys

Online material:color figures

1. INTRODUCTION

We have reached an enviable resonance in which improve-
ments in detector performance and cost are allowing not only
rapid gains in our fundamental knowledge of the cosmos but
also the opportunity for smaller experiments to make critical
contributions to that knowledge. This has resulted in a surge
of interest in next-generation experiment design with over 20
major surveys in planning or construction in observational cos-
mology alone. Experimental cosmology has changed in a few
short years into a crowded and jostling marketplace.

There are several big prizes currently at stake:the detection
of dark energy dynamics, B-mode polarization, and cosmolog-
ical non-Gaussianity. Competition, limited funding, low signal-
to-noise ratio, and extreme competition mean that new surveys
will need to be increasingly optimized to get the most out of
them. The aims of this Letter are to show how this can be
achieved in a cross-disciplinary way and to illustrate some of
the rich aspects of cosmological optimization.

2. IPSO

Integrated Parameter Space Optimization (IPSO; Bassett
2004, hereafter B04) proceeds by first constructing a class of
candidate survey/experiment geometries,S, labeled by survey
parameters, , such as areal and redshift coverage.si

Second, a target parameter space, , is defined, consistingV
of the parameters that we wish to optimally constrain (labeled

). There are also typically nuisance parameters that wevm, n, …

need to marginalize over (labeled ).Ja, b, …

Third, a figure of merit (FoM) is defined that assigns a single
real number to each candidate survey. The candidate with the
extremal FoM is the optimal experiment/survey. The FoM that
we consider is defined by (B04)

FoM(s ) p I(s , v)p(v)dv. (1)i � i
V
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Here is a scalar that depends on the survey geometryI(s , v)i

(through the ) and position in , and is a “windows V p(v)i

function” that weights the different regions of the parameter
space. By integrating over the parameter space, we do not make
assumptions about the underlying model, which is particularly
important when we have very limited knowledge of the un-
derlying physics, as is the case with dark energy.

Most choices for typically invoke either the parameterI(s , v)i

covariance matrix orF, the Fisher matrix, defined by

2� ln L �X �X
�2F p � p e (s). (2)�G HAB i( )�v �v �v �viA B A B i

Here we use to label both fundamentalA p {m, n, … ; a, b, …}
and nuisance parameters, is the likelihood, andL X p

represents the quantity being measured, withi la-C , d , H� L

beling the redshift bin or Fourier mode as appropriate (Tegmark
et al. 1998). The are the error variances onX and depend2ei

explicitly on the survey parameters, , unlike the derivatives,si

. In computing integrals such as equation (1), this allows�X/�vA

for significant CPU gains since the derivatives need only to be
computed once.

Via the Crame´r-Rao bound,F�1 provides the best possible
covariance matrix and hence a lower bound on the achievable
parameter variances. Although there are many choices for

(B04), we focus on only one for simplicity:D-I(s , v )i m

optimality, defined by

I(s, v ) p log det (F � P), (3)m

where “det” denotes matrix determinant andP is the prior
precision matrix, viz., the Fisher matrix of all the relevant prior
data.

Equation (3) is the gain in Shannon information or entropy
over the prior. Maximizing equation (3) provides the best pos-
sible gain in constraints on the parameters over what wasvm

available from just the prior data,P. It is known asD-optimality
in the design literature. IfP p 0, maximizing equation (3) is
equivalent to minimizing the volume of the error ellipses, an
alternative FoM (Huterer & Turner 2001; Frieman et al. 2003;
B04). Via the general equivalence theorem,D-optimal solutions
are also optimal under other figures of merit. For these reasons
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it seems appropriate for cosmological applications, although,
as we will see, secondary optimization criteria can be imposed
at almost no cost to the primary FoM.

The nuisance parameters, such as , , etc., that we doQ Qk m

not want to optimize with respect to their values, which we do
not know precisely, can be easily dealt with by inverting the
full Fisher matrix , extracting the relevant submatrix cor-FAB

responding to the , reinverting (e.g., Seo & Eisenstein 2003;vm

B04), and then applying equation (3). Furthermore, any rea-
sonable FoM can also be generalized to allow for the inclusion
of competing surveys by simply replacing , whereF r F � F

is the sum of the Fisher matrices expected for the competingF
surveys. In this way IPSO will find the optimal niche with
respect to the other surveys (B04).

3. OPTIMIZING CMB AND WEAK LENSING SURVEYS

When is optimization worth doing? To illustrate this, let us
contrast weak lensing (wl) convergence and cosmic microwave
background (CMB) surveys on the celestial sphere. In both of
these cases, the Fisher matrix is a sum over (Hu & Tegmark�
1999; Knox & Song 2002; Kesden et al. 2002):

X X2� � 1 �C �C� �X �2F p (N ) , (4)�mn �
�1/2 2 �v �v1l fsky m n

where , is the total noise for the survey, andXX p CMB, wl N�

is the fraction of the sky observed. For the CMB, we con-fsky

sider only one spectrum (e.g., theB-mode power spectrum).
In both cases, we assume that the surveys are constrained to
last a given length of time,T, and ask what is the optimal sky
coverage, , given this constraint? For CMB experiments, wefsky

have (Knox 1995)

af 2skyCMB �1/2 CMB � jbN ∝ f C � e , (5)� sky �( )T

where is the length of the survey,a is a propor-T p t Npix pix

tionality constant, and the pixels are each observed forNpix

time using a Gaussian beam with . The firstt FWHM ∝ jpix b

(second) term in equation (5) is the noise from sample variance
(instrument noise).

CMB experiments will benefit from optimization since the
competition between the terms in equation (5) creates a local
minimum in the noise (Jaffe et al. 2000). To apply IPSO to
the CMB, one must first choose . For example, for optimalV
detection of deviations from the inflationary consistency con-
ditions, the key variable is , where is the tensorv { n � r/4.8 nt t

spectral index andr is the ratio of tensor to scalar quadrupole
in the CMB. Single-field inflation predicts this should vanish.
Hence, a high-j detection of would put severe pressurev ( 0
on simple inflationary models. In contrast, an experiment de-
signed to detectB-mode polarization alone would optimize to
detectr only and would lead to a different optimal area.

In contrast, for weak lensing (Kaiser 1992)

2jgwl �1/2 wlN � f C � , (6)� sky � � ¯2 Tn

where is the approximately constant intrinsic ellip-2j ∼ 0.35g

ticity error, and the surface density of detected galaxies scales
roughly as , wheret is the integration time per field of view.�̄n t
The noise terms differ crucially when it comes to optimi-XN�

zation of the areal coverage, . Unlike the CMB noise,wlf Nsky �

has no local minimum; the weak lensing Fisher matrix is a
monotonic function of . Optimizing any of the FoMs simplyfsky

proceeds by using the largest feasible area to minimize the
sample variance.

If, in addition, the intrinsic ellipticity noise dominates the
noise (as it does for the proposedSuperNova/Acceleration
ProbeWide Area Survey), then the FoM becomes essentially
independent of , and the gain of going to the largest area isfsky

minimal, as found by Rhodes et al. (2004).

4. OPTIMAL MEASUREMENTS OF THE HUBBLE CONSTANT

To illustrate some of the issues that one faces in applying
IPSO to realistic surveys, consider the optimization of a redshift
survey designed to measure the Hubble constant through ob-
servation of the radial baryon oscillations (Seo & Eisenstein
2003; Blake & Glazebrook 2003; Linder 2003a, 2003b; Amen-
dola et al. 2004; Yamamoto et al. 2005). For clarity we assume
no nuisance parameters, a flat Friedman-Lemaitre-Robertson-
Walker model with , known exactly, and we ignoreQ p 0.3 Hm 0

the constraints from that a full optimization would include.dA

We consider a model of dark energy based on Taylor ex-
pansion in powers of (Chevallier et al.(1 � a) p z/(1 � z)
2001; Linder 2003a, 2003b; Bassett et al. 2004), withw p

:p /rDE DE

2z z
w(z) p w � w � w ,0 1 2 21 � z (1 � z)

3(1�w �w �w )0 1 2r ∝ (1 � z)DE

�3z[2w (1 � z) � w (2 � 3z)]1 2# exp , (7){ }22(1� z)

where is the dark energy density.r (z)DE

Comparing with equation (2), . Rather thanX p E { H/H0

the optimal area, , we want to know the optimal number offsky

redshift bins,N, what redshifts they should be centered on,
, and how long we should observe in each bin, . Again, wez ti i

assume a fixed total survey time (T), so we need to optimize
given the constraint .

N� t p Tii

We assume that the error bars scale as , where�2 ge p e ti i

gives the efficiency with which galaxies are�be ∝ (1 � z )i i

detected and parameterize our ignorance. These could beg, b
treated as nuisance parameters to be marginalized over, but we
find that our main results are insensitive to both over the range
b p 1–2,g p 1–2 we consider. Note that implies thatg p 1
the FoM is maximized on the boundary of the allowed redshift
region (just as was the case with the weak lensing survey
earlier). We focus on the case here for illustrative pur-g p 2
poses. The real constraint will be significantly more complex,
and we leave this issue to future work.

We restrict the bin redshifts to be in the range 0.5! z !i

, which is feasible for future baryon oscillation surveys such4.5
as the Kilo-Aperture Optical Spectrograph (KAOS), and set

for clarity. We performed a Monte Carlo Markov Chainw p 02

(MCMC; Christensen & Meyer 2000) optimization with the
D-optimal FoM (eq. [3]) with 10 free survey parameters:

giving the integration time and redshifts of the five bins.{t , z}i i

The effective number of bins varies dynamically because the
MCMC could (and typically did) assign negligible amounts of
observing time to some of the bins.

We ran multiple chains (up to 5000) with random starting
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Fig. 1.—Typical D-optimality improvements on error ellipses at the two
base points (w0, w1) p (�1.3,�0.2) and (�0.7, 0.2). The unoptimized survey
(outer dark ellipses) has errors between 1.5 and 3 times larger in both andw0

than theD-optimal survey (inner light ellipse) that was optimized aroundw1

LCDM. Note the particularly significant gains in the phantom regionw !0

. [See the electronic edition of the Journal for a color version of this figure.]�1

Fig. 2.—Error on ( ) vs. area of the error ellipse. Note the wide rangew j0 w0

of at an almost constant minimum area; effectively measures the el-j jw w0 0

lipticity of the error ellipse. At a nearly constant FoM, one can optimize to
obtain circular or very thin ellipses, depending on one’s aims. The size of the
points is proportional to the error in . [See the electronic edition of thew1

Journal for a color version of this figure.]

Fig. 3.—Choices in optimization. At a constant FoM, one can optimize to
achieve thin error ellipses with tiny transverse errors (diagonal dark “strip”)
or to achieve the best joint constraints on all parameters (light ellipse). All
ellipses are computed at , and reduce the total unoptimizedw p �1 w p 00 1

ellipse area (dark ellipse) by about 600%. [See the electronic edition of the
Journal for a color version of this figure.]

configurations for the survey and used a standard Hastings-
Metropolis algorithm for jump acceptance. Instead of di-
rectly performing the integral in equation (1), we used the
definition , where the are

N
FoM(s) p (1/N) � I(s, v ) va aip1

drawn randomly from a probability distribution based on
in equation (1). We chosep to be a bivariate Gaussianp(v )i

centered on theLCDM point , , so our op-w p �1 w p 00 1

timization was chosen to detect slowly varying dark energy
dynamics close to a cosmological constant.

The Fisher matrix derivatives based on equation (7) are sim-
ple to compute; e.g.,

�rDE p 3r ln (1 � z),DE
�w0

�r zDE p 3r ln (1 � z) � . (8)DE [ ]�w 1 � z1

Our unoptimized fiducial survey had five redshift bins located
at , 0.8, 1, 1.2, and 3, as in Seo & Eisenstein (2003)z p 0.6i

and Amendola et al. (2004), with an equal integration time
( ) assigned to each bin.T/5

Figure 1 shows typical gains over the unoptimized survey
for a near-optimal survey chosen randomly from the 5000
MCMCs, while Figure 2 shows the area of the error ellipse
versus the corresponding error on for each of the 5000w0

locally optimal solutions. It is very clear that at an almost
identical area (and FoM), there is a very wide range of error
ellipse ellipticity (controlled by ). In other words, there arejw0

many local maxima that come very close to matching the global
maximum.

The implications of this FoM “degeneracy” for ruling out
dark energy models are clarified in Figure 3, where we show
the thinnest error ellipse (the diagonal “strip”), the unoptimized
error ellipse, and the error ellipse with the maximal FoM, all
computed at theLCDM point (the thinnest ellipse is shifted
down for clarity).

This degeneracy offers us the chance for secondary opti-
mization (the primary one in this case being based on theD-
optimal FoM). For example, one could choose geometries that
deliver the best constraints on a particular linear combination
of the parameters adapted to the degeneracy structure of thevm

observations while sacrificing the orthogonal direction(s). This

amounts to minimizing the smallest eigenvalue of the covari-
ance matrix that may be preferable for testing dark energy
dynamics in the short term.

The redshifts, , and integration times, , for each bin ofz ti i

some optimal and near-optimal surveys are shown in Figure 4
along with corresponding error bars on the Hubble rate, .H(z)
Typically the locally optimal geometries in our 5000 chains
had only two (51% of all chains) or three redshift bins (39%
of all chains) with more than 5% of the total survey time.
Optimal geometries with either one or five bins were extremely
rare, forming less than 1% of all the locally optimal geometries
(although single-bin geometries deliver the thinnest error el-
lipses). The preference for only a few bins arises because the
dark energy models that we consider vary rather slowly with
redshift; hence, it is statistically preferable to constrainw rather
than . This conclusion may change somewhat if one al-dw/dz
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Fig. 4.—Redshifts and integration times for the optimal surveys shown in
Fig. 2 and the resulting error bars on .Top left: D-optimal maximum FoMH(z)
(which also has the minimum error ellipse area). It splits the total survey
equally between and .Top right: Thinnest possible ellipsez p 0.5 z p 1.15
with all measurements at a single redshift, . The bottom two panelsz p 0.5
show the geometries for the second (left) and 2000th (right) largest figures of
merit (only 0.005% and 6% smaller than the maximum, respectively). This
shows the diversity of geometries with nearly degenerate figures of merit. [See
the electronic edition of the Journal for a color version of this figure.]

lows very rapid evolution in , which actually provides aw(z)
very good fit to current Type Ia supernova data (Bassett et al.
2004). We found that the redshifts of the two bins with the
most integration time were typically located at .z ! 2

5. CONCLUSIONS

We have considered optimization of two-dimensional sur-
veys, such as CMB and weak lensing experiments, and of three-
dimensional redshift surveys. In a simplified optimization of a
baryon oscillation survey, we have shown how IPSO-allowed
significant gains in the statistical power of a survey can be
achieved through optimization, in this case a reduction by a
factor of 6 in the error ellipse area over the unoptimized survey.
We found that there are many diverse surveys with nearly
degenerate figures of merit, as shown in Figures 2 and 4. This
is good news since it allows survey designers to pick a near-
optimal survey structure that is most compatible with real-
world intangibles that cannot easily be included explicitly in
the optimization.

The MCMC search was repeated thousands of times with
randomly chosen initial survey configurations. Most of the re-
sulting locally optimal surveys divided190% of the survey
time between only two or three redshift bins. A single bin leads
to the thinnest possible error ellipse and may be appropriate
for some experiments, particularly if the resulting ellipse is
orthogonal to those coming from other observations. Alter-
natively, at almost the same FoM, one can choose a survey
configuration that gives the best joint constraints on all the
parameters simultaneously. At least for measurements of the
Hubble constant alone, we found that typically the two dom-
inant redshift bins should be located at low redshift, , asz ! 2
shown in Figure 4. This is good news for upcoming baryon
oscillation surveys such as KAOS that will be able to probe
the optical region with high precision from Earth.z ! 1.3

We thank Chris Blake, Eric Linder, and Takahiro Tanaka for
useful comments on the draft.
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