

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague December 23, 2016

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER'S THESIS
 Title: Data Stewardship Portal: Client-side Web Frontend
 Student: Bc. Jan Slifka
 Supervisor: Ing. Robert Pergl, Ph.D.
 Study Programme: Informatics
 Study Branch: Web and Software Engineering
 Department: Department of Software Engineering
 Validity: Until the end of summer semester 2017/18

Instructions

- Acquaint yourself with the Data Stewardship Portal (DSP) project
- Perform a brief review of state-of-the art Haskell-based solutions for web frontend development and select
one for your task
- Design and implement a web frontend architecture of DSP.
- Design and implement a web UI for the Knowledge Model Editor and Migration Module.
- Elaborate a technical documentation of your solution in the form of descriptive text and generated API
docs.
- Test your solution appropriately and document your results.

References

Will be provided by the supervisor.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Library of the Czech Technical University in Prague

https://core.ac.uk/display/151072528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Master’s thesis

Data Stewardship Portal: Client-side Web
Frontend

Bc. Jan Slifka

Department of Software Engineering
Supervisor: Ing. Robert Pergl, Ph.D.

January 7, 2018

Acknowledgements

I would like to thank to my supervisor Ing. Robert Pergl, Ph.D. for his
guidance and enthusiasm for the project that motivated me greatly. I would
also like to thank to the whole Faculty of Information Technology at CTU for
everything I could learn there. I am profoundly grateful to my parents who
supported me all the time throughout my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on January 7, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Jan Slifka. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Slifka, Jan. Data Stewardship Portal: Client-side Web Frontend. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2018.

Abstrakt

Práce popisuje proces návrhu, vývoje, testováńı a nasazeńı webového fron-
tendu pro Data Stewardship Portal, který je součást́ı Interoperability plat-
formy v ELIXIR CZ projektu. Portál zahrnuje rozsáhlý editor knowledge
model̊u a modul pro migrace. Pro webový vývoj je použito řešeńı založené na
Haskellu.

Kĺıčová slova ELIXIR, Data Stewardship, Elm, The Elm Architecture, We-
bový vývoj, Webový klient, webpack, Haskell, PureScript, Docker

Abstract

The thesis goes through the process of design, development, testing and de-
ployment of the client-side web frontend for the Data Stewardship Portal
which is part of the Interoperability platform at ELIXIR CZ project. The
portal includes extensive Knowledge Model Editor and Migration Module.
Haskell-based solution is used for the web development.

Keywords ELIXIR, Data Stewardship, Elm, The Elm Architecture, Web
Development, Web Client, webpack, Haskell, PureScript, Docker

vii

Contents

Introduction 1
Goals . 1
Methodology . 2

1 State-of-the-art Haskell Based Solutions for Web 5
1.1 Why Haskell Based Solution . 5
1.2 Tools Introduction . 6
1.3 Haskell . 7
1.4 PureScript . 10
1.5 Elm . 12
1.6 Comparison . 13
1.7 Conclusion . 14

2 Analysis and Design 15
2.1 Current State . 15
2.2 Requirements . 15
2.3 Definition of Terms . 16
2.4 Project Overview . 21
2.5 Organization Settings Module 22
2.6 User Management Module . 23
2.7 Knowledge Models Module . 25
2.8 Package Management Module 32
2.9 User Roles & Permissions . 35

3 Implementation 39
3.1 Elm Language . 39
3.2 The Elm Architecture (TEA) 45
3.3 Project Structure in Elm . 49
3.4 Development & Build Tools . 53

ix

4 Testing and Deployment 55
4.1 Unit Tests . 55
4.2 End-to-End Tests . 56
4.3 UI Heuristic Evaluation . 57
4.4 Deployment . 61
4.5 Deployment Process . 62

5 Results 65
5.1 Current State . 65
5.2 Project Future . 65

Conclusion 67

A Acronyms 69

B Contents of enclosed CD 71

C Test Scenarios 73
C.1 Login . 73
C.2 Organization Module . 74
C.3 User Management . 75
C.4 Knowledge Models . 79
C.5 Package Management . 84

Bibliography 89

x

List of Figures

0.1 Activity Diagram Stereotypes and Elements 2

2.1 Knowledge Model State Diagram 20
2.2 Project Modules . 21
2.3 Organization Use Cases . 22
2.4 Organization Settings Module . 23
2.5 User Management Use Cases . 24
2.6 User Management Module . 25
2.7 Knowledge Models Use Cases . 26
2.8 Knowledge Models Module . 27
2.9 Knowledge Model Editor . 30
2.10 Package Management Use Cases 33
2.11 Package Management Module . 34

3.1 The Elm Architecture [46] . 45
3.2 Development & Build Tools . 53

4.1 Deployment Diagram . 62
4.2 Deployment Process . 63

xi

List of Tables

2.1 Roles and permissions matrix . 37

xiii

Introduction

ELIXIR coordinates and develops life science resources across Europe so that
researchers can more easily find, analyse and share data, exchange expertise,
and implement best practices. This makes it possible for them to gain greater
insights into how living organisms work. [1]

ELIXIR-CZ is working on Interoperability Platform[2]. There is a defined
Knowledge Model and some tools for working with it. The Knowledge Model
can be used to create a Data Management Plans using the Data Stewardship
Wizard tool. Now, there is a need to create a complex portal around Knowl-
edge Models management, data management plan generation and the data
stewardship in general.

Goals

The main goal of the thesis is to create a client side web frontend for the Data
Stewardship Portal. I will go through several tasks in order to successfully
finish the project.

The first task is to understand the needs of the Data Stewardship Portal,
analyze the requirements and functionality of individual modules.

The portal should be developed using some Haskell-based solution for web
frontend development. I will perform a brief review of current possibilities
and choose the most suitable one.

I will design and implement the architecture of the Data Stewardship Por-
tal web fronted using the selected technology. The architecture should ensure
the maintenance and future development of the project will be easy.

The portal should focus on knowledge models now. The most important
parts are Knowledge Model Editor and Migration Module. My task is to
design and implement the UI and the functionality of the web frontend for
these modules.

The whole solution should have a good documentation to make it easy
for other developers to collaborate in the future. It should also be tested

1

Introduction

appropriately.

Methodology

The structure of the thesis follows the common software development process.
At the beginning I will start with analyzing the state-of-the-art Haskell based
solutions for web. I will focus on their maturity, usability, how well they are
maintained and documented and how ready they are to be used for the real
world projects. The output of the chapter will be the choice of the most
suitable solution for the Data Stewardship Portal.

The next chapter is Analysis and Design. I will analyze what the cur-
rent state is, what the requirements for the portal are, what should be the
functionality of individual modules and how they should be designed. For
each module, I will create a UML Use Case diagram, go through the indi-
vidual screens needed and create a list of tasks that the user can do on each
screen. Then I will use UML Activity Diagrams for user interface navigation.
It is possible to use UML’s extension mechanism to add new stereotypes. I
will use the similar approach as Benjamin Lieberman suggests in his article
UML Activity Diagrams: Detailing User Interface Navigation[3]. I will use
the following elements and stereotypes:

Figure 0.1: Activity Diagram Stereotypes and Elements

• Action represents activities performed by the user.

• Page represents a separate page.

• Modal represents a modal window.

• Connector refers to another diagram. It is used to connect more dia-
gram flows together.

• Then I will use the standard UML Activity Diagram elements for the
decision, flow start and flow split.

2

Methodology

I don’t need to analyze the data model or create the diagrams about that.
All these things are handled on the server side, the client is just using the API
to get the JSON data from the server but is not working with the database
directly.

The Implementation chapter will be about the solution I picked. I will go
more into details how the solution works and how the whole architecture is
implemented within the solution. I will also describe how the development
process works and what build tools are used.

The next chapter is about Testing and Deployment. I will describe what
testing methods are used in the project and how they work. I will also evaluate
the quality of the UI and how it could be improved. Then I will go more into
details about how the portal fronted is deployed (I will also create a UML De-
ployment Diagram representing that) and how the deployment process works
and how it is automated.

At the end I will evaluate what I have done through my thesis and what is
the project state. I will take a look in the future and describe the next steps
of project development and its possible improvements.

3

Chapter 1
State-of-the-art Haskell Based

Solutions for Web

In this chapter I will describe why I want to use Haskell based solution and
introduce some tools and terms connected with web development. Then I will
go through the options how to use Haskell based solution and describe which
one I choose and why.

1.1 Why Haskell Based Solution

Haskell[4] is a purely functional programming language that allows to write
declarative, statically typed code. Using the functional programming we can
gain a lot of advantages. The code itself is declarative which means it describes
what result we want instead of how to get it, usually with less code. Pure
functions has no side effects – regardless the context we run them in, the result
is always the same. The state is immutable, we can’t change it. We can only
create a new state. Also the language is statically typed which should help to
eliminate runtime exceptions.

Besides the advantages the other Data Stewardship projects (e.g. the
backend for the DSP) are also written in Haskell. So it would be good to keep
close.

The problem here is that the Data Stewardship Portal should be a web
application. Which means it has to be a JavaScript code at the end of the
day, because that’s the only option how to run the code in the browser.

However, JavaScript is not the language we want to have the portal written
in. It is not purely functional, nor statically typed. We cannot be sure whether
the code will work or not without a lot of tests. Runtime exceptions are very
common. There is no compilation so there are no real checks whether the
functions or properties we are using really exist.

Nothing is lost though. There are many languages that actually compiles

5

1. State-of-the-art Haskell Based Solutions for Web

to JavaScript, some of them also have the advantages similar to Haskell lan-
guage. I will explore how applicable they are for the Data Stewardship Portal
use case in this chapter.

1.2 Tools Introduction

Before exploring what Haskell-based solution I should use, I will shortly in-
troduce the tools that are common for Haskell world and the tools that are
common for web development world. I will refer to these tools in the following
sections.

1.2.1 Haskell Tools

Haskell is usually using GHC[6] (Glasgow Haskell Compiler) to compile the
source code into binary. It can be also used as an interactive environment
for Haskell. Open source Haskell software is published in a central package
archive called Hackage[7].

Cabal[8] is the Common Architecture for Building Applications and Li-
braries. It is used for building, packaging, distributing and cataloging Haskell
packages. Authors can use Cabal to upload their libraries to Hackage. Users
of the libraries can then install them from Hackage, also using Cabal.

1.2.2 Web Development Tools

When working on a web project, the most common package manager used
is called npm[9]. It is a package manager for JavaScript. It has a global
online repository (or private instances can be used) and a tool for installing
the packages from the repository. It contains modules for web frontend and
also Node.js.

Bower[10] is something similar to npm. It also has a global online repos-
itory with packages that can be installed by users. However, it focuses on
frontend packages only.

Webpack[11] is a tool for bundling frontend modules for usage in a web
browser. While creating the modules, webpack is loading different file types
with appropriate loaders that can, for example somehow transform the code.
Therefore it can be used for other languages that compiles to JavaScript. It can
be also used for other resources like styles or images. So we can have a single
tool to create the distribution build for the whole frontend application.

Google Closure Compiler[12] is a tool for making JavaScript code smaller
by analyzing the code, removing unused parts and minimizing the rest (it
changes the symbol names to shorter ones, remove unnecessary whitespaces
and comments, etc.)

6

1.3. Haskell

1.3 Haskell

The first option is to compile Haskell itself into JavaScript. There are several
tools that provide this functionality.

1.3.1 Haste

Haste[13] is a tool for compiling Haskell code into JavaScript that can be used
in a web browser. It is also possible to compile the program not only into
JavaScript but also into binary that can be used as a server. Both programs
can than talk to each other using some kind of internal Haste protocol. This
ensures the communication is type safe. On the other hand, it requires to use
Haste on both ends which can be very limiting.

1.3.1.1 Code & Libraries

The code in Haste is quite straightforward. We can use equivalents to native
JavaScript API like getElementById or setting innerHTML. Haste provides
these helpers into the Haskell code. All the business logic behind is then
written purely in Haskell. Everything is wrapped into main function that is
called once the document is loaded.

Haste supports the full Haskell language and brings its own packages for
the common things used in JavaScript – DOM, JavaScript Events, AJAX,
JSON parsing, Canvas manipulations and more.

Haste doesn’t come with any templating system by default though. It has
packages to wrap the JavaScript API and use it in Haskell code. There is no
framework or other tools that would help with writing complex applications
though. Everything has to be created from scratch.

Some libraries extending the basic Haste functionality exist. They are
usually trying to improve the DOM manipulations or port existing JavaScript
libraries like React[5]. However, these are usually outdated, not actively main-
tained and not well documented. Therefore it would not be a good idea to
use them in production.

1.3.1.2 Documentation & Other Materials

Haste has an online API documentation that covers all the functionality. It is
very brief though and contains no examples of usage. There are also several
examples in the Github repository and links to few tutorials can be found on
the website.

1.3.1.3 Tools

We need Haste compiler to be able to compile the code into JavaScript. The
compiler can be either downloaded as a binary or installed using Cabal.

7

1. State-of-the-art Haskell Based Solutions for Web

The result JavaScript generated by the compiler is according to the Haste
homepage normally less than 3x the size of an equivalent hand-written pro-
gram. However, the compiler comes with the option to use Google Closure
Compiler (which is slightly modified and included in Haste, because the de-
fault one is breaking the builds) and then the size of the minified build is
reasonable.

There are no usable integration with other build tools used for web de-
velopment like webpack. The compiler has to be manually run every time or
some ad hoc solution has to be created.

1.3.2 Fay

Fay[14] allows the users to use a subset of Haskell language and compile it to
JavaScript. It supports the fundamental data types that can be supported in
JavaScript and it has simple foreign function interface (FFI) to interact with
the JavaScript API.

1.3.2.1 Code & Libraries

The code itself is conceptually something similar to Haste. It is again similar
to using plain JavaScript. However, there is one important difference. Fay
doesn’t have any default packages that would wrap the JavaScript API. Ev-
erything has to be written from scratch using foreign function interface (FFI).
FFI is using a Fay monad for side effects.

Listing 1.1: Example of FFI usage in Fay [15]
1 setBodyHtml :: String -> Fay ()
2 setBodyHtml = ffi " document .body. innerHTML = %1"

As we can see, Fay brings a way to wrap JavaScript API in Haskell code
using FFI. However, we need to actually write everything by ourselves. There
are some official packages with the functionality, e.g. for manipulating the
DOM or even wrapping the whole JavaScript libraries like jQuery. These are
incomplete, not actively maintained and not very well documented though.

In terms of some high level libraries that would provide more advanced
things (like generating views from templates) there is nothing available for
Fay. We should be able to port existing JavaScript libraries or implement
them ourselves using FFI.

1.3.2.2 Documentation

Fay itself has a basic documentation explaining everything from the installa-
tion to the usage, including also some useful tips how to reduce the output
size. Since the only API provided by Fay is FFI and the Fay monad the
documentation doesn’t have to include much.

8

1.3. Haskell

1.3.2.3 Tools

The Fay compiler can be simply installed using Cabal. If we want to inte-
grate the compiler with other build tools used for building web frontend (e.g.
webpack) we need to create the integration by ourselves.

The output JavaScript from the Fay compiler is pretty small. We can also
use Google Closure Compiler to make it even smaller.

1.3.3 GHCJS

GHCJS [16] is a very complex Haskell to JavaScript compiler that uses GHC
API. It supports large variety of Haskell features, including all type system
extensions supported by GHC.

1.3.3.1 Code & Libraries

The code itself works in a similar way to Haste. GHCJS comes with a col-
lection of packages that provides types for communication with JavaScript or
wrapping the DOM API.

There is an interesting project called Reflex[17] which is functional reactive
programming interface and engine that can be use with GHCJS. It also has a
framework called Reflex-DOM[18] which is suitable for development of single-
page applications.

Listing 1.2: Example of Reflex usage [19]
1 {-# LANGUAGE OverloadedStrings #-}
2 import Reflex .Dom
3
4 main = mainWidget $ el "div" $ do
5 t <- textInput def
6 dynText $ _textInput_value t

This example code creates a text input and dynamic text element showing
the value of the text input.

There is also a project called Reflex-Platform[19] which helps to set up an
environment for building the Reflex application using GHCJS.

1.3.3.2 Documentation & Other Materials

GHCJS Github repository contains extensive Readme describing the installa-
tion process and the usage of the compiler. There is also Wiki with user guide
which is not yet completed. It describes more in detail how to use GHCJS
packages in Haskell code, how to do the deployment and code minification
and more.

There is another repository with several complete examples[20] of how to
use GHCJS for the real world problems.

9

1. State-of-the-art Haskell Based Solutions for Web

1.3.3.3 Tools

We need to clone the GHCJS repository and then run install script using
Cabal. The installation takes very long time (it can be more than one hour).

Since GHCJS is trying to support every possible Haskell feature, the out-
put JavaScript code is huge. Google Closure Compiler can be used to minify
it, however, even the minified code from GHCJS is bigger than builds that are
not minified from the other tools.

There is also unofficial ghcjs-loader[21] for webpack. Unfortunately the
project is outdated and not working with the recent version of webpack.

1.4 PureScript

PureScript[22] is a strongly-typed functional language that can be compiled
to JavaScript. The syntax is similar to Haskell with some differences[23].

Listing 1.3: Example PureScript code [22]
1 import Prelude
2 import Control .Monad.Eff. Console (log)
3
4 greet :: String -> String
5 greet name = "Hello , " <> name <> "!"
6
7 main = log (greet "World ")

There is a Pursuit package database[24] which contains a list of available
PureScript packages with their documentation. The packages are usually
published in the Bower repository and can be easily installed from there.

A lot of PureScript libraries providing different kinds of utility or wrapping
existing JavaScript libraries can be found in Pursuit. There are also some
frameworks for web applications development. Some of the popular ones are
thermite, halogen and pux.

1.4.1 Thermite

Thermite[25] is more high level wrapper for purescript-react[26] (which is
a library with React bindings to PureScript). It has a brief documentation[27]
describing the API and showing example usage.

1.4.2 Halogen

Halogen [28] is declarative UI library. The application created with Halogen
is made of a tree of components. These components are self-contained units
that has a state and can render themselves. Each component defines queries
and messages. Queries are used when interacting with the component – they

10

1.4. PureScript

can be used to change the state or ask about the component state. Messages
are used to notify listeners about the activity within the component.

Halogen has a detailed guide[29] describing how to use the framework. Un-
fortunately, not all chapters are finished yet. It also has several examples[30]
of usage from simple to more complex.

1.4.3 Pux

Pux[31] is another PureScript UI library. Pux application consists of a type
for application State, type for Events, a function called foldp that produces
new state from previous state and event, and a view function that produces
HTML based on the current application state.

Listing 1.4: Pux example [31]
1 data Event = Increment | Decrement
2
3 type State = Int
4
5 −− | Return a˜new s t a t e (and e f f e c t s) from each event
6 f o ldp : : ∀ fx . Event −> State −> EffModel State Event fx
7 f o ldp Increment n = { s t a t e : n + 1 , e f f e c t s : [] }
8 fo ldp Decrement n = { s t a t e : n − 1 , e f f e c t s : [] }
9

10 −− | Return markup from the s t a t e
11 view : : State −> HTML Event
12 view count =
13 div do
14 button #! onCl ick (const Increment) $ text ” Increment ”
15 span $ text (show count)
16 button #! onCl ick (const Decrement) $ text ”Decrement”

Pux also has a detailed guide[32] explaining everything from the basics
to more advanced things and API Reference. Pux has a repository with
examples[33] showing how to solve common problems (e.g. AJAX, nested
foldp function for more complex applications, forms and more).

Another important thing in web applications is routing. Pux provides the
functionality for routing out of the box in Pux.Router module.

Unlike the other frameworks, when rendering the view Pux has an inter-
mediate step. It is using React under the hood and it has to first render from
Smolder Markup (which is Pux representation) to React Virtual DOM and
then the React Virtual DOM is rendered. This makes Pux slower compared
to other frameworks. It should be resolved in the future but performance is
not the priority for Pux yet.

11

1. State-of-the-art Haskell Based Solutions for Web

1.4.4 PureScript Tools and Development

PureScript compiler can be installed using npm. All the libraries and frame-
works are published in Bower repository. That makes the installation very
easy.

There is also a webpack loader for PureScript so it is easy to use web-
pack and all its features (like webpack dev server with live reload) during the
development process.

1.5 Elm

Elm[34] is a reactive purely functional statically typed programming language
for web development inspired by Haskell. Elm compiles to JavaScript. Because
of the types, problems are detected during compilation, therefore there are no
runtime errors in practice.

Elm is not just a language but also a framework to build a web application.
It comes with a simple pattern called The Elm Architecture[36] that helps
to make the architecture of a web application consistent, well-defined and
scalable.

Elm has its own highly optimized Virtual DOM implementation. In bench-
marks [37], it beats current popular frameworks like React or Angular[35].

1.5.1 Tools

Elm comes with several command line tools. They can be easily installed on
Mac and Windows or anywhere using npm. The tools are:

• elm-repl – REPL where we can run Elm expressions.

• elm-reactor – It is used to build an Elm project and start a local server
where it serves the application.

• elm-make – Build tool for Elm projects.

• elm-package – Download and publish Elm packages.

Besides that, it is also possible to build Elm using webpack with appropri-
ate webpack loader[47]. Then we don’t even need to install previous packages
explicitly.

1.5.2 Libraries

Elm has its own package catalog[38] where all the packages are published.
The packages can be installed using elm-package tool. When publishing
a new package to the catalog Elm can detect API changes and force semantic
versioning.

12

1.6. Comparison

1.5.3 Documentation and Tutorials

Elm has a very extensive tutorial[39] which leads the reader from the language
basic through the process of creating the whole application, setting up the
project and using The Elm Architecture.

There is also a language reference for the modules that describes all the
functions and types provided by the module. The libraries in package catalog
also usually have everything well documented.

1.5.4 Elm in Production

Elm is not just experimental language, there are a lot of companies that are
using it in production[40].

1.6 Comparison

1.6.1 Installation and Development

It is important that the tools needed to use the language are easy to install and
use. It should also be easy to integrate the tools into continuous integration.

Haskell. The tools for compiling Haskell to JavaScript can be installed using
Cabal, which is standard for Haskell developers. The problem here is
that there are no usable integration with web development tools out of
the box, e.g. live reload during development.

PureScript. Everything needed can be easily installed using npm and bower.
There is also a webpack integration.

Elm. Elm is easy to install with installation package or via npm. It has also
a webpack integration.

While PureScript and Elm are very easy to start developing in, the Haskell
tools needs more time and effort to make everything work and the development
itself is not so smooth due to missing webpack integration.

1.6.2 Libraries and Frameworks

We don’t want to reinvent the wheel during the development so we want to
have some libraries available. We also want to have a framework to keep the
application structure organized and clean.

Haskell. In terms of libraries we can theoretically used everything available
in Haskell (not everything is supported by all compilers though). None
of the tools for compiling Haskell to JavaScript has a solid framework
that would be ready to use for a complex application.

13

1. State-of-the-art Haskell Based Solutions for Web

PureScript. There is a Pursuit package database for PureScript libraries
that contains a lot of packages. The frameworks for web development
in PureScript exist but they are not yet mature enough to be used for
complex applications in production.

Elm. There are many Elm packages available covering a lot of different things.
The Elm Architecture is a framework included in the language. Follow-
ing its patterns, it is easy to maintain even complex web applications.

There are a lot of libraries available for different tasks for PureScript and
Elm that should cover most common problems. However the frameworks for
PureScript are not documented and/or maintained enough to be used.

1.7 Conclusion

The Haskell solutions don’t have the tooling to make the development process
comfortable enough. There are no frameworks that would be mature enough
to be used for serious application (with the exception of Reflex, which is also
in very early stage).

PureScript is a general purpose language that can not only be used for web
but also in node environment for backend. The available frameworks are not
yet ready for the production though – they lack enough quality documentation
or its performance is not yet the top priority.

Elm doesn’t have all the features that Haskell has, however, it focuses on
web development and has everything needed for that. The Elm Architecture
makes creating of complex web applications easy and helps to keep them clean
and healthy while new features are added. The tooling provided for Elm is
easy to install and use. In my opinion, it is the best option for using the purely
functional programming language for the web frontend these days. That’s why
I decided to choose Elm for the Data Stewardship Portal.

14

Chapter 2
Analysis and Design

In this chapter, I will first talk about what the current state is and why the
Data Stewardship Portal is needed. Then I will go through the planned portal
structure and the individual modules the portal will have and describe what
functionality should be provided by them.

2.1 Current State

The idea behind the Knowledge Model is that it consists of large core which
is applicable everywhere and localizations which extend or overwrite the core.
Localizations can be stacked – one localization can extend another localization
[41].

The Knowledge Models for the core and localizations are written in a JSON
format and are managed in a Github repository. The JSON files are edited
and updated manually. This is not an ideal situation because manual editing
of large JSON files can be tedious, confusing and error-prone. Moreover, it
requires the editor to understand the JSON format.

The Knowledge Models are then used within Data Stewardship Wizard in
order to create Data Management Plans.

2.2 Requirements

The Data Stewardship Portal (DSP) should be created.

2.2.1 Functional Requirements

Portal management. Each organization using the Knowledge Models will
run its own instance of DSP. Therefore it should provide an interface to edit
organization details and manage organization users.

15

2. Analysis and Design

Knowledge Model editor. DSP should provide a user-friendly editor for
the Knowledge Models. The editor should allow the users to edit the Knowl-
edge Model using clean and well-arranged user interface and without the need
to understand the data structures that are used to save the Knowledge Model.

Import and export. DSP should allow the import and export of the
Knowledge Models. Each organization can produce its own Knowledge Models
and these can be exported and imported into the portal of another organi-
zation and used. Also the new version of the core Knowledge Model can be
imported this way.

Versions. DSP should provide a way to manage the versions of the Knowl-
edge Models. When the Knowledge Models can be shareable it is necessary
to version them.

Migrations. DSP should provide a way to update the localization when
a new version of the core or the parent localization is released. The migration
process should allow the users to see all the changes and pick what changes
they need in their localization.

2.2.2 Non-functional Requirements

Extensibility. DSP should be ready to also integrate the Data Stewardship
Wizard and generate Data Management Plans in the future.

Platform. DSP should be a web application that works in a recent versions
of the major desktop browsers.

Technical documentation. DSP should be documented well enough to
make it easy for other developers to collaborate.

Deployment. It should be easy for the organizations to deploy DSP into
their infrastructure.

2.3 Definition of Terms

2.3.1 Data Stewardship Portal

The Data Stewardship Portal covers everything that is described later. One
instance of the portal is used per Organization. Organization Users are using
the portal to manage the Knowledge Models and Knowledge Model Packages
that can be used to generate Wizards and Data Management Plans.

16

2.3. Definition of Terms

2.3.2 Organization

Defines the organization that is using the Data Stewardship Portal.

Properties

• Organization name

• Organization Group ID. It is used with packages produced by the
organization to unambiguously define them.

2.3.3 User

Defines the user that is using the Data Stewardship Portal.

Properties

• Email. User’s email is used for logging in the portal.

• Name. User’s first name (and middle name if any).

• Surname. User’s surname.

• Role / Permissions. The role and permissions that the user has as-
signed within the portal.

• Password. User’s password that is used when logging in the portal.

2.3.4 Role

The role is a set of permissions. It defines what permissions the user has.

2.3.5 Permission

Permissions are used to determine whether the user is allowed to perform
certain actions.

2.3.6 Knowledge Model

Knowledge Model is a complex data structure that contains some metadata and
Chapters, Questions, Answers, Follow-up Questions, References and Experts
in a tree-like structure.

Knowledge Model is used to generate a complex form about the data needed
that can be later filled in order to get the Data Management Plan.

17

2. Analysis and Design

Properties

• Name. Defines the name of the Knowledge Model.

• UUID. Universally unique identifier of the Knowledge Model.

• Artifact ID. Human readable identifier of the Knowledge Model. It
should be unique within the organization.

• Parent Knowledge Model. Every Knowledge Model can be based
on another Knowledge Model. That means it has all the data from
its parent and then its own local changes. Parent Knowledge Model
is defined as <Organization Group ID>:<Artifact ID>:<Version>.
Knowledge Model doesn’t have to have the parent.

• Chapters. a list of Chapters that are included in the Knowledge Model.

2.3.7 Chapter

Knowledge Model is divided into Chapters grouping the Questions that be-
longs together.

Properties

• Title. Chapter title (e.g. Design of experiment).

• UUID. Universally unique identifier of the Chapter.

• Text. Text that describes the Chapter.

• Questions. a list of Questions that belongs to the Chapter.

2.3.8 Question

Defines the Question that should be asked.

Properties

• Title. This is the actual question (e.g. Is there any pre-existing data?).

• UUID. Universally unique identifier of the Question.

• Short UUID.

• Text. Text that describes more details about the Question and how to
answer it

• Answers. List of Answers to the Question.

• References. List of References that belongs to the Question.

• Experts. List of Experts that belongs to the Question.

18

2.3. Definition of Terms

2.3.9 Answer

Each Question has a set of Answers that the respondent can choose from.

Properties

• Label. This is the actual answer (e.g. No).

• Advice. Answers can have some advice text that should help choosing
the answer.

• Follow-up Questions. List of the Follow-up Questions that should be
asked if the Answer was selected.

2.3.10 Expert

Questions can have Experts assigned to them. Expert is a person who should
know how to answer the specific question and could be asked by respondents.

Properties

• Name. Full name of the Expert for the Question.

• Email. Contact email for the Expert.

2.3.11 Reference

Question can have a reference to the book Data Stewardship for Open Science:
Implementing FAIR Principles by Barend Mons[42] where the respondent can
find more information.

Properties

• Chapter. The Chapter in the book.

2.3.12 Follow-up Question

Defines the Question that is asked only if a specific Answer was selected.
Otherwise it is the same as a top-level Question.

2.3.13 Knowledge Model Package

The Knowledge Model can be exported out of the portal or imported into
the portal as a Package. The Package is a special file type that contains
the Knowledge Model information. The Package contains the Knowledge
Model in a specific Version. The whole package with version is defined by
<Organization Group ID>:<Artifact ID>:<Version>.

19

2. Analysis and Design

2.3.14 Knowledge Model State

Knowledge Models created within the portal can be in various states.

Figure 2.1: Knowledge Model State Diagram

States

• Default. The default state. Nothing has been done with the Knowledge
model since the last version.

• Edited. There are changes made in the Knowledge Model that has not
been published as a new version yet.

• Outdated. There is a newer version of the Knowledge Model Parent.

• Migrating. The migration to a newer version of the Knowledge Model
Parent is in progress.

20

2.4. Project Overview

• Migrated. The migration to a newer version of the Knowledge Model
Parent has been completed but the new version of the Knowledge Model
has not been published yet.

2.3.15 Knowledge Model Migration

Knowledge Model can become outdated when a new version of its Parent
Knowledge Model is published or imported to the portal. Knowledge Model
Migration is the process of applying the new changes from the Parent Knowl-
edge Model to the local Knowledge Model.

Users who are doing the migration go through the changes and decides
whether they want to apply the new changes to their local Knowledge Model
or reject them.

2.4 Project Overview

The whole portal is divided into 4 modules for now, each for different set
of tasks. These modules cover the system management in terms of users
and organization and working with knowledge models (editing, migrating,
importing, exporting, etc.).

There will 2 more modules in the future. They will be for the tasks that
are using the Knowledge Models.

Figure 2.2: Project Modules

21

2. Analysis and Design

2.4.1 Modules

Organization This is a simple module for managing the organization set-
tings.

User Management The portal is used by the users, therefore we need a way
to manage user accounts. That’s what this module is for.

Knowledge Models This module is for working with Knowledge Models
created by the Organization.

Package Management This module is for importing and exporting Knowl-
edge Model Packages and share them between different portals.

Wizards Wizards will be generated from the Knowledge Models. The user
will be able to choose the Knowledge Model and fill in the wizard ac-
cording to their project.

Data Management Plans When the users fills a wizard, they will be able
to use the answers to generate a Data Management Plan.

2.5 Organization Settings Module

Organization settings module is used by admins to edit organization details
which is the only use case for the module.

2.5.1 Use Cases

The only use case for this module is editing organization detail.

Figure 2.3: Organization Use Cases

2.5.2 Tasks

Organization module is actually only one form with organization details. The
only task the admin can do is to save the changes.

22

2.6. User Management Module

Figure 2.4: Organization Settings Module

2.6 User Management Module

Users with ADMIN role can use this module to manage user accounts for other
users that will use the portal.

2.6.1 Use Cases

Within the user management module admin can:

• List users

• Create new user account

• Edit existing user account

• Delete existing user account

2.6.2 Tasks

User management module consists of several screens where admins can per-
form various tasks.

User Management The main screen shows a list of existing user accounts
with their details.

Task list

• Create User
• Edit User
• Delete User

Create User Create user screen shows a form where an admin can fill in the
new user account details and role.

23

2. Analysis and Design

Figure 2.5: User Management Use Cases

Task list

• Save – create new account and return to the main screen.
• Cancel – return back to the main screen without creating the ac-

count.

Delete User Modal When an admin wants to delete the user account, the
modal window is shown to confirm the deletion.

Task list

• Delete – confirm the deletion and close the modal.
• Cancel – close the modal only.

Edit User Profile The form for editing user profile is split into two parts –
one contains the form for user details (email, name, etc.) and role and
the other the form for changing the password. When an admin clicks on
edit actions the form for editing user details is presented.

Task list

• Save – save the changes in user profile form.
• Password – navigate to the other form for changing user password.

Edit User Password The other part of the editing user profile. This one
for changing the password.

24

2.7. Knowledge Models Module

Figure 2.6: User Management Module

Task list

• Save – save the password change.
• Profile – navigate to the form for changing user details.

2.7 Knowledge Models Module

This module is used by Data Stewards to manage the internal Knowledge
Models.

2.7.1 Use Cases

• List knowledge models

• Create new knowledge model

• Edit existing knowledge model

• Upgrade knowledge model

• Delete knowledge model

25

2. Analysis and Design

Figure 2.7: Knowledge Models Use Cases

• Publish new knowledge model version

2.7.2 Tasks

There are several screens and modal windows where Data Stewards can per-
form various actions.

Knowledge Models The main screen shows a list of Knowledge Models cre-
ated in the portal. Based on the Knowledge Model state, Data Stewards
can do different actions.

Task list

• Delete Knowledge Model – This action can be performed in every
Knowledge Model state.
• Edit – If the Knowledge Model is in Default, Edited or Outdated

state, Data Stewards can open the Knowledge Model editor and
make some changes.
• Upgrade – If the Knowledge Model is in Outdated state, it can be

upgraded.

26

2.7. Knowledge Models Module

Figure 2.8: Knowledge Models Module

• Continue migration – If the Knowledge Model is in Migrating state,
Data Stewards can choose to continue the migration.
• Cancel migration – If the Knowledge Model is in Migrating or Mi-

grated state, the migration can be also canceled.
• Publish – If the Knowledge Model is in Edited or Migrated state,

it can be published as a new version.

Delete Knowledge Model Modal Confirmation modal window that is dis-
played when Data Stewards want to delete the Knowledge Model.

27

2. Analysis and Design

Task list

• Delete – Confirm the deletion of the Knowledge Model.

• Cancel – Just close the modal window.

Knowledge Models Editor Knowledge Model editor contains screens with
forms for editing all the entities within the Knowledge Model.

Task list

• Save – Save all the changes made in the editor.

• Cancel – Cancel all the changes made in the editor.

Editor tasks for individual editor screens and entities are described in
the next section.

Upgrade Knowledge Model Modal a modal window that is shown when
Data Stewards want to upgrade the Knowledge Model. It contains a se-
lect box for selecting a new parent Knowledge Model that the current
Knowledge Model should be migrated to.

Task list

• Migrate – Confirm the new parent selection and start a migration.

• Cancel – Close the modal window.

Migration View This is the view used during the migration of the Knowl-
edge Model. What user can see depends on whether the migration is
completed or not.

Migration Change View When the migration is not yet completed it
shows the current change (some entity from the parent Knowledge
Model was added, edited or deleted) and the Data Steward needs
to decide what to do with the change.

Task list

• Reject – Data Steward doesn’t want to apply the change from
the parent Knowledge Model to their Knowledge Model.
• Apply – Data Steward wants to apply the change from the

parent Knowledge Model.

Migration Completed View When the last change is resolved this
view will inform the user that the migration is completed.

28

2.7. Knowledge Models Module

Task list
• Publish – Go to the Publish new version view.

Publish new version view This view is used for publishing new versions
of Knowledge Models. Data Steward needs to fill in the new version
number and write the description about the version.

Task list

• Publish – Confirm the creation of the new Knowledge Model Pack-
age.
• Cancel – Cancel the publishing of a new version.

2.7.3 Editor Tasks

This section describes the tasks users can perform in the Knowledge Model
Editor.

Knowledge Model Editor The default screen when the editor is opened.
Data Stewards can edit Knowledge Model details and manage the Chap-
ters here.

Task list

• Add Chapter – Create a new Chapter and open the Chapter Editor.
• Edit Chapter – Open an existing Chapter in the Chapter Editor.
• Reorder Chapters – Change the order of the Chapters in the Knowl-

edge Model.

Chapter Editor This editor is used for editing the Chapter details and man-
aging the Questions that the Chapter contains.

Task list

• Done – Confirm the changes and return back to the Knowledge
Model Editor.
• Cancel – Cancel the changes and return back to the Knowledge

Model Editor.
• Delete – Delete the Chapter and all its Questions.
• Add Question – Create a new Question and open the Question

Editor.
• Edit Question – Open an existing Question in the Question Editor.

29

2. Analysis and Design

Figure 2.9: Knowledge Model Editor

30

2.7. Knowledge Models Module

• Reorder Questions – Change the order of the Questions in the
Chapter.

Question Editor This is the editor for editing Questions and Follow-up
Questions details and their children (Answers, References and Experts).

Task list

• Done – Confirm the changes and return back to the Chapter Editor
in case of top level Question or to the Answer editor in case of
Follow-up Question.
• Cancel – Cancel the changes and return back to the appropriate

editor.
• Delete – Delete the question and all its children.
• Add Answer – Add a new Answer and open the Answer Editor.
• Edit Answer – Open an existing Answer in the Answer Editor.
• Reorder Answers – Change the order of the Answers in the Ques-

tion.
• Add Reference – Add a new Reference and open the Reference

Editor.
• Edit Reference – Open an existing Reference in the Reference Ed-

itor.
• Reorder References – Change the order of the References in the

Question.
• Add Expert – Add a new Expert and open the Expert Editor.
• Edit Expert – Open an existing Expert in the Expert Editor.
• Reorder Experts – Change the order of the Experts in the Question.

Answer Editor The editor for editing Answers and manage their Follow-up
Questions.

Task list

• Done – Confirm the changes and return back to the Question editor.
• Cancel – Cancel the changes and return back to the Question editor.
• Delete – Delete the Answer and all its Follow-up Questions.
• Add Follow-up Question – Add a new Follow-up Question and open

the Question Editor.
• Edit Follow-up Question – Open an existing Follow-up Question in

the Question Editor.

31

2. Analysis and Design

• Reorder Follow-up Questions – Change the order of the Follow-up
Questions in the Answer.

Expert Editor Editor for editing Experts.

Task list

• Done – Confirm the changes and return back to the Question editor.
• Cancel – Cancel the changes and return back to the Question editor.
• Delete – Delete the Expert.

Reference Editor Editor for editing References.

Task list

• Done – Confirm the changes and return back to the Question editor.
• Cancel – Cancel the changes and return back to the Question editor.
• Delete – Delete the Reference.

2.8 Package Management Module

Package Management module is used by Data Stewards to export internal
Knowledge Model Packages and share them with other organizations or import
external Knowledge Model Packages from other organizations.

2.8.1 Use Cases

• List Packages

• View Package Detail

• Import Package Version

• Export Package Version

• Delete Package

• Delete Package Version

2.8.2 Tasks

There are several screens and modal windows used for managing Knowledge
Model Packages in the portal.

Package Management The main screen shows a list of Knowledge Model
Packages.

32

2.8. Package Management Module

Figure 2.10: Package Management Use Cases

Task list

• Show Detail – Navigate to Package Detail View.
• Import – Navigate to Import Package.

Import Package: File Selection This is the first step of importing a Pack-
age to the portal. Data Stewards have to select the file from their com-
puter and then they move to the next view.

Task list

• Choose file – Open the browser file selection window where the user
can select the file.
• Drag & Drop File – Instead of selecting file in the window users

can simply drag & drop the file from their local file system.

Import Package: Selected File The second step after the user has se-
lected the file.

33

2. Analysis and Design

Figure 2.11: Package Management Module

34

2.9. User Roles & Permissions

Task list

• Upload – Upload the selected file and then move to the Package
Management view.
• Cancel – Cancel the selection and return back to the File Selection.

Package Detail The detail screen shows information about the package and
a list of its versions.

Task list

• Delete Package – Delete the whole Package with all its versions.
• Delete Version – Delete just a specific version of the Package.
• Export Version – Download the Package file that can be then im-

ported to another portal.

Delete Package Modal Before the Package is deleted the user has to con-
firm it in this modal window.

Task list

• Delete – The whole package will be deleted.
• Cancel – Close the modal window.

Delete Version Modal Modal window where the user has to confirm dele-
tion of a package version.

Task list

• Delete – Delete the selected version.
• Cancel – Close the modal window.

2.9 User Roles & Permissions

All the action in the system are allowed based on user permissions. User roles
defines what permission the user has. Because of that it is easy to define new
role as a set of different permissions if necessary.

2.9.1 Roles

We now have 3 roles defined in the system.

Admin This is the person responsible for managing the users and the orga-
nization settings.

35

2. Analysis and Design

Data Steward Data Steward is responsible for managing the Knowledge
Models. He should edit them according to organization needs and keep them
up to date.

Researcher Researcher is the person who is actually working on an ex-
periment. He is using the Knowledge Models in wizards to generate Data
Management Plans.

2.9.2 Permissions

There are several user permissions in the system that allows to perform dif-
ferent actions.

UM PERM Permission that allows the user to access the User Manage-
ment module and perform all the actions there.

ORG PERM Permission that allows the user to edit the organization set-
tings.

KM PERM Allows the user to access the Knowledge Model module, create
new and edit or delete existing knowledge models.

KM UPRGADE PERM Allows the user to start the migration and up-
grade the Knowledge Model if the newer parent is available.

KM PUBLISH PERM Allows the user to publish a new version of the
Knowledge Model which then becomes available in the Package Management
module for export and in the Wizards module to be filled.

PM PERM Allows the user to access the Package Management module
and import/export knowledge model packages there.

WIZ PERM Allows the user to access the Wizards module.

DMP PERM Allows the user to access the Data Management Plans mod-
ule.

36

2.9. User Roles & Permissions

Table 2.1: Roles and permissions matrix

Admin Data Steward Researcher
UM PERM x
ORG PERM x
KM PERM x x
KM UPRGADE PERM x x
KM PUBLISH PERM x x
PM PERM x x
WIZ PERM x x x
DMP PERM x x x

37

Chapter 3
Implementation

3.1 Elm Language

Elm offers a lot of language features. Some of them are similar to Haskell,
some of them are inspired by other functional languages.

3.1.1 Functions

Functions are core thing in Elm language. Elm has two types of functions –
anonymous and named.

An anonymous function has a list of arguments and function body. a named
function has a function signature that defines the function name and argument
types.

Listing 3.1: Elm functions
1 -- Anonymous function
2 \x y -> x + y
3
4 -- Named function
5 add : Int -> Int -> Int
6 add x y = x + y
7
8 -- Function usage
9 add 1 2 == 3

3.1.2 Partial Function Application

Functions in Elm can be partially applied. We don’t have to pass all the
arguments to the function but only first few and the result is new function
that takes the rest of the arguments.

39

3. Implementation

Listing 3.2: Partial function application
1 -- using add function from previous example
2 increment : Int -> Int
3 increment = add 1
4
5 increment 5 == 6

3.1.3 Function Composition

Sometimes it is handy to create a function as a composition of multiple func-
tions. Elm has operators << and >> for that. Operators define the direction
of composition.

Listing 3.3: Function composition
1 (f >> g) == (\x -> g(f(x)))
2 (f << g) == (\x -> f(g(x)))

3.1.4 Avoiding Parentheses

There can be a lot of parentheses in the code if we need to apply multiple
functions . Elm has a backward function application <| and forward function
application |> to avoid a lot of parentheses.

Listing 3.4: Backward function application [43]
1 -- with parentheses
2 leftAligned (monospace (fromString "code "))
3
4 -- with <|
5 leftAligned <| monospace <| fromString "code"

Listing 3.5: Forward function application [43]
1 -- with parentheses
2 scale 2 (move (10 ,10) (filled blue (ngon 5 30)))
3
4 -- with |>
5 ngon 5 30
6 |> filled blue
7 |> move (10 ,10)
8 |> scale 2

It is very common to see the usage of these operators in the Elm code.
Especially |> is used quite often when processing some data and multiple
functions need to be used. Therefore it is recommended to have the data as
a last argument when designing functions.

40

3.1. Elm Language

3.1.5 Union Types

Union types (also called Algebraic Data Types in other functional languages)
are extremely useful. They consist of a type name and constructors. The
name is then use as a type in functions that are using it. Constructors are
used to create new instances.

Listing 3.6: Union type example
1 -- union type definition
2 type Color = Red | Green | Blue
3
4 -- union type usage
5 redColor : Color
6 redColor = Red

Union type constructors can also have some data associated with them.
Then we use the constructor as a function. In the following example, there
is now new constructor for other color that has one string argument for the
color hex code.

Listing 3.7: Union type constructor with data
1 type Color = Red | Green | Blue | Other String
2
3 yellowColor : Color
4 yellowColor = Other "# ffff00 "

We can also use type variable to create a generic data structure. For
example if we want to create a tree structure we don’t want to specify what
type should be saved in the tree. Instead, we use type variable and then we
can define the used type when using the tree.

Listing 3.8: Union type with type variable
1 type Tree a = Node a (Tree a) (Tree a) | EmptyTree
2
3 intTree : Tree Int
4 intTree = Node 2 EmptyTree EmptyTree

3.1.6 Pattern Matching

Pattern matching is a common feature in functional languages. It consists
of defining the patterns the data should match, checking which pattern they
match and deconstructing the data using the pattern.

It is very common to use pattern matching with union types to find out
which constructor has been used. If the constructor has some additional

41

3. Implementation

data associated with it we can access them when deconstructing the data using
the pattern.

Listing 3.9: Pattern matching with union type
1 getColorCode : Color -> String
2 getColorCode color =
3 case color of
4 Red -> "# ff0000 "
5 Green -> "#00 ff00"
6 Blue -> "#0000 ff"
7 Other code -> code

3.1.7 Maybe

Maybe is a generic union type that can be either Just something or Nothing.
It is used when a function can return something but the operation might not be
successful, e.g. getting the first element of a list – if the list is empty, it returns
Nothing and if the list is not empty, it returns Just <first element>. It
can also be used to handle optional values.

Listing 3.10: Definition of Maybe [44]
1 type Maybe a = Just a | Nothing

When working with Maybes we can use pattern matching to check if it is
Just value or Nothing. This can be a lot of code that is usually very similar,
therefore Elm comes few useful functions to work with Maybes.

In the following example we have a function that will return user image
URL. However a user doesn’t have to have the image. In that case we want
to use the default image url. Elm has a function Maybe.withDefault that
returns the value packed in Maybe or the default value in case of Nothing.

Listing 3.11: Example of Maybe.withDefault usage
1 -- using pattern matching
2 userImageUrl : Maybe String -> String
3 userImageUrl maybeUrl =
4 case maybeUrl of
5 Just url -> url
6 Nothing -> " default .png"
7
8 -- using Maybe. withDefault
9 userImageUrl : Maybe String -> String

10 userImageUrl = Maybe. withDefault " default .png"

Another helpful function is Maybe.map that applies given function to a value
wrapped with Maybe.

42

3.1. Elm Language

Listing 3.12: Maybe.map example [44]
1 Maybe.map sqrt (Just 9) == Just 3
2 Maybe.map sqrt Nothing == Nothing

When we have more functions that returns Maybe we can chain them
together using Maybe.andThen function. If a Maybe contains a value andThen
applies the given function to the value, otherwise it returns Nothing without
using the function.

Listing 3.13: Example of chaining functions with Maybe.andThen
1 fn1 : Int -> Maybe String
2 fn1 = ...
3
4 fn2 : String -> Maybe String
5 fn2 = ...
6
7 result : List Int -> Maybe String
8 result lst =
9 head lst

10 |> Maybe. andThen fn1
11 |> Maybe. andThen fn2

3.1.8 Result

Result is another generic union type. It is used for computations that might
not be successful and we want to return an error. Result can be either Ok
and contains the result value or Err and contains the error.

Listing 3.14: Definition of Result [45]
1 type Result error value = Ok value | Err error

In Elm we have again withDefault, map and andThen functions in the
Result module that works in a similar fashion as these functions for Maybe.

3.1.9 Record

Records are lightweight labeled data structures, similar to JavaScript objects.
Records can contain data of different types. Record field values can be re-
trieved using accessor.

Record fields can be also updated. Since everything is immutable in Elm,
the record is not really updated but a new record with updated value is created.

43

3. Implementation

Listing 3.15: Record
1 -- creating a record
2 user = { name = "John", age = 21 }
3
4 -- accessing a record field
5 user.name -- "John"
6
7 -- updating a record
8 { user | age = 22 } -- { name = "John", age = 22 }

When using records with a function, we need to write a record type an-
notation – name the fields and their types. Records can be also used with
pattern matching to deconstruct the field values instead of getting the values
with accessors.

Listing 3.16: Records usage
1 userLabel : { name : String , age : Int } -> String
2 userLabel {name , age} =
3 name ++ ", " ++ age

3.1.10 Type Aliases

We can use type aliases to create a name for existing type that can be used
within the type annotations. This is especially useful with records.

1 -- create type alias
2 type alias User =
3 { name : String
4 , age : Int
5 }
6
7 -- usage
8 userLabel : User -> Html msg
9 userLabel user =

10 user.name ++ ", " ++ user.age

Type aliases can be also used to create an alias for existing type and
making the code more clear.

1 type alias Minutes = Int
2 type alias Seconds = Int
3
4 toSeconds : Minutes -> Seconds
5 toSeconds minutes =
6 minutes * 60

44

3.2. The Elm Architecture (TEA)

3.2 The Elm Architecture (TEA)

The Elm Architecture is a pattern used by Elm applications to define the ar-
chitecture. It is very good for modularity, refactoring, code reuse and testing.
It is easy to keep even the complex applications clean and maintainable with
the TEA.

The Elm application is divided into three main parts:

• Model. The state of the application.

• Update. How to change the state.

• View. How to display the state.

Figure 3.1: The Elm Architecture [46]

3.2.1 Model

Model is usually defined as a type alias for a specific type, usually a record
type.

Listing 3.17: Example model
1 type alias Model =
2 { name : String
3 , age : Int
4 }

45

3. Implementation

3.2.2 View

View in Elm is written in a declarative way. It simply takes the model and re-
turns the Html type. Elm runtime is then responsible for the actual rendering
of the HTML code.

Elm has a packages with functions for HTML elements and HTML at-
tributes. HTML element functions has two parameters – the first one is a list
of HTML attributes, the second one is a list of children HTML elements.

Listing 3.18: Example view
1 view : Model -> Html Msg
2 view model =
3 div [class " container "]
4 [h1 [] [text "My Elm Application "]
5 , p [] [text (" Hello " ++ model.name)]
6]

3.2.3 User Input and Messages

The user input is handled in form of so called Messages. Messages are defined
as a union type specific for the application.

Listing 3.19: Example messages definition
1 type Msg
2 = Increase
3 | Reset

View elements (e.g. buttons) can then produce messages.

Listing 3.20: Example of HTML button with message
1 button [onClick Increase] [text " Increase "]

3.2.4 Update

Update function maps message and model to a new model. In other words, it
decides based on the message how to change the model.

Listing 3.21: Example of update function
1 -- Model is just Int in this example
2 type alias Model =
3 Int
4
5 update : Msg -> Model -> Model
6 update msg model =

46

3.2. The Elm Architecture (TEA)

7 case msg of
8 Increase ->
9 model + 1

10
11 Reset ->
12 0

3.2.5 Effects

Sometimes we need other input than just a user input from the application
itself (e.g. HTTP request or using Web Sockets). There are two types of
effects in Elm:

• Commands. Commands are used to do something (HTTP request,
generate random number etc.).

• Subscriptions. Subscriptions are used to register that we are interested
in something (time change, location change, Web Socket message etc.).

Both, Commands and Subscriptions are just the data that describes what
to do. We are not doing anything, we just tell the Elm runtime what to do.

When we are using commands we need to change the update function to
return not only the new model but also the command.

3.2.6 Commands Example

Let’s see how the commands are used on an example with HTTP request.
First, we define two messages.

The first one tells to get the user data and has user id string parameter.
The second one is used when the get user profile request is complete. It has one
parameter of Result type. Result can be either Http.Error when the request
failed or Ok <some type> when the request is successful. In this example
there is User type. The definition is not important but we can assume it is
a record type with some user data.

Listing 3.22: Message type for getting user data
1 type Msg
2 = GetUser String
3 | GetUserComplete (Result Http.Error) User

Then we define getUser function that creates HTTP request. First we
create the request itself using Http.get function that takes the url as a String
and decoder. Decoder is a function that can convert the HTTP response into
desired type, User in this case.

47

3. Implementation

The Http.send function creates a command from the request. The first
parameter is the message that should be used when the request is complete.

Listing 3.23: Example function to create HTTP request
1 getUser : String -> Cmd Msg
2 getUser userId =
3 let
4 request =
5 Http.get (apiUrl ++ userId) decodeUser
6 in
7 Http.send GetUserComplete request

The update function looks different now. Instead of just model, it returns
a tuple with model and command. We can see that in case of GetUser message,
it doesn’t change the model but it creates a command using getUser function.
On the other hand, when the request is complete and update function receives
GetUserComplete message it updates the model (if there was no error) and
returns Cmd.none (which means no command for the Elm runtime).

Listing 3.24: Example update function with commands
1 update : Msg -> Model -> (Model , Cmd Msg)
2 update msg model =
3 case msg of
4 GetUser userId ->
5 (model , getUser userId)
6
7 GetUserComplete (Ok newUser) ->
8 ({ model | user = newUser }, Cmd.none)
9

10 GetUserComplete (Err _) ->
11 -- handle the error here
12 (model , Cmd.none)

3.2.7 Subscriptions Example

Let’s say we want to do something every 10 seconds. In that case we can use
subscriptions function. It takes one parameter – the model – and returns Sub
type that Elm runtime can handle.

In this example, we use function every from the Time package. The first
parameter is an interval how often we want updates, the second defines what
kind of message we want to receive in update function.

It means that every 10 seconds update function will be called with MyMsg
as a message.

48

3.3. Project Structure in Elm

Listing 3.25: Example subscriptions function
1 subscriptions : Model -> Sub Msg
2 subscriptions model =
3 Time.every (10 * second) MyMsg

It is of course possible to use different subscriptions based on model. For
example, we want to receive time updates only if foo property of the model
is true.

Listing 3.26: Example subscriptions function
1 subscriptions : Model -> Sub Msg
2 subscriptions model =
3 if model.foo then
4 Time.every (10 * second) MyMsg
5 else
6 Sub.none

3.3 Project Structure in Elm

As we could see in the previous section, the Elm Architecture offers a solid
way to split the application logic into appropriate parts and put everything
where it belongs.

However, the Data Stewardship portal is very complex and having for
example all update code in a single update function would not be the best
solution. Luckily, the Elm Architecture is perfect for modularity. We can
simply create separate functionality for models, view and update for each
module and connect them in their top level alternatives. Let’s see an example
of how this could work.

3.3.1 Model

Each module has its own model and the top level model consists of some top
level data (e.g. current route or logged in user information) and the data for
each nested module.

The nested model simply contains the data needed for the module itself.

Listing 3.27: Nested model
1 module NestedModule . Models exposing (..)
2
3 type alias Model =
4 { name : String
5 , age : Int
6 }

49

3. Implementation

Then the top level model imports all the nested models and includes them.
Besides other top level app data, it also contains a route. Route defines what
page in the browser is opened. It will be necessary for other parts of the
application.

Listing 3.28: Top level model
1 module Models exposing (..)
2
3 import NestedModule . Models
4
5 type alias Model =
6 { -- some top level app data
7 , route : Route
8 , nestedModuleModel : NestedModule . Models .Model
9 }

3.3.2 Messages

The nested module contains simple definition of messages that are used by
the module’s update function.

Listing 3.29: Nested module messages
1 module NestedModule .Msgs exposing (..)
2
3 type Msg
4 = Message1
5 | Message2

The top level messages import all the messages from the nested modules.
The top level Msg type has constructor that wraps all the messages types from
the nested modules. This will be important for the top level update function.

Listing 3.30: Top level messages
1 module Msgs exposing (..)
2
3 import NestedModule .Msgs
4
5 type Msg
6 = NestedModuleMsg NestedModule .Msgs.Msg
7 -- messages from other modules
8 -- and some top level messages

50

3.3. Project Structure in Elm

3.3.3 Update

The update function in the nested module takes the Msg and Model type from
the nested module and produces a tuple with new nested model and command.
The important thing is that it returns command with top level message and
not a module message. This is necessary because this way the module can
produce also commands that are changing the global application state (e.g.
changing the application route).

Listing 3.31: Nested module update function
1 module NestedModule . Update exposing (..)
2
3 import Msgs
4 import NestedModule . Models exposing (Model)
5 import NestedModule .Msgs exposing (Msg (..))
6
7 update : Msg -> Model -> (Model , Cmd Msgs.Msg)
8 update msg model =
9 case msg of

10 Message1 ->
11 -- do something and return model and cmd
12 (model , cmd)
13
14 -- Handle other module messages

The top level update function simply decides based on the message type
which module update function should be used and send the module message
and module model to the correct update function. Then it updates the nested
model in the top level model and returns a new top level model with a com-
mand returned from the module update function.

Listing 3.32: Top level update function
1 module Update exposing (..)
2
3 import Msgs exposing (Msg (..))
4 import NestedModule . Update
5
6 update : Msg -> Model -> (Model , Cmd Msg)
7 update msg model =
8 case msg of
9 NestedModuleMsg nestedModuleMsg ->

10 let
11 (newModel , cmd) =
12 NestedModule . Update . update
13 nesteModuleMsg

51

3. Implementation

14 model. nestedModuleModel
15 in
16 ({ model
17 | nestedModuleModel = newModel
18 }
19 , cmd
20)
21
22 -- Handle msgs from other modules
23 -- and other top level messages

3.3.4 View

The view from the nested module knows what to render based on the model
from the nested module. It doesn’t know anything about top level model or
view. The Html it returns is also using the top level message instead of module
message. It is because some elements can produce messages that can change
the global application state (e.g. link to a different view).

Listing 3.33: Nested module view
1 module NestedModule .View exposing (..)
2
3 import Msgs
4 import NestedModule . Models exposing (Model)
5 -- other imports for Html , etc.
6
7 view : Model -> Html Msgs.Msg
8 view model =
9 div []

10 [-- code handling what should be
11 -- visible in the module view
12]

The top level view imports views from all the nested modules. It uses the
top level model and based on the route it decides what nested view should be
used. Then it sends only the nested model to the nested view. The nested
view renders only the content of the module itself. The result is then send to
appView function which wraps it with the app layout, menu etc.

Listing 3.34: Top level view
1 module View exposing (..)
2
3 import Models exposing (Model)
4 import Msgs

52

3.4. Development & Build Tools

5 import NestedModule .View
6 -- other imports for Html , etc.
7
8 view : Model -> Html Msg
9 view model =

10 case model.route of
11 NestedRoute ->
12 model. nestedModuleModel
13 |> NestedModule .View.view
14 |> appView
15
16 -- Views for other routes

3.4 Development & Build Tools

The development of Elm application is very easy and convenient. There is
a webpack loader for Elm[47] which means we can simply use webpack to
build everything from compiling Elm into JavaScript to compiling CSS styles
from SCSS. We create so called bundle using webpack which is the bundled
application ready to be used in the browser.

There is also webpack dev server[48] with a live reload feature. The dev
server is using the same configuration as the webpack is using for building
the application. It starts a local server which serves the bundled application.
When something is changed in source files, the application is automatically
rebuild and reloaded in the web browser.

Elm loader is using elm-make[49] to build elm into JavaScript and elm-
package[50] to download additional Elm packages needed for the application
build.

All of these tools can be simply installed using npm. Project dependencies
that should be installed from npm are defined in a file called package.json.

Figure 3.2: Development & Build Tools

53

3. Implementation

Elm has its own file called elm-package.json that defines the Elm dependen-
cies. With these two files it is simple to install all the project dependencies or
build the application with the single command.

54

Chapter 4
Testing and Deployment

This chapter will be about different kind of tests that are used in the Data Stew-
ardship Portal. Then I will analyze how good the UI of the portal is. After
that I will talk about how the portal is deployed and how the deployment
process works.

4.1 Unit Tests

Unit testing is an essential part of software development. It focuses on testing
the smallest units of source code like functions or objects. Sometimes, it is
necessary to simulate the context using mocks.

However, it is quite simple in Elm. The source code contains only pure
functions, so there is no need for mocking the context. We only need to pass
some parameters to the function that is being tested and check if the output
is as expected.

Listing 4.1: Example test in elm-test [51]
1 suite : Test
2 suite =
3 describe "The String module "
4 [describe " String . reverse "
5 [test " reverses a known string " <|
6 _ ->
7 " ABCDEFG "
8 |> String . reverse
9 |> Expect .equal " GFEDCBA "

10 , fuzz string " restores the origi ..." <|
11 \ randomString ->
12 randomString
13 |> String . reverse
14 |> String . reverse

55

4. Testing and Deployment

15 |> Expect .equal randomString
16]
17]

Elm has a library called elm-test[51] that provides some functions for
writing unit tests and also a test runner. There are 3 most important functions
provided by the elm-test:

• describe adds description to a list of tests. It can be also nested to
create clear structure of tests.

• test simply runs a test which is a function that returns Expectation
that is evaluated when the test is run.

• fuzz is similar to test, however, the function is run several times with
randomly generated input.

Using these functions we can create tests for everything we need. The run-
ner can be used from the command line and is easy to integrate into continuous
integration solutions.

4.2 End-to-End Tests

Unit tests covered the smallest units of the code. However, it is also important
to test that the flows in the application works from the start to the end from
the user perspective as expected. This type of tests are called end-to-end tests.

I decided to use Test Scenarios for testing the end-to-end functionality of
the application flows. The scenario simply describe step by step what the
user and the system are doing during the activity and what is the expected
outcome.

The scenarios are based on the use cases for each module. They should
cover all the possible actions shown in the activity diagrams.

They consist of the following parts:

The Goal. What is the user trying to achieve in the scenario. E.g. User
wants to log in.

Precondition. What are the preconditions for the scenario, whether we
should be in a specific application state or the user should have specific role
etc. E.g. User is not logged in the portal.

56

4.3. UI Heuristic Evaluation

Main Success Scenario. This part describe step by step the scenario if
everything is going well. Example:

Step Actor Action Description
1 User User navigates to the login page
2 User User fills in his email and password and clicks

the Login button
3 System System logs the user in and redirect him to the

Homepage

Scenario Extensions. This part can extend the steps from the Main Suc-
cess Scenario. It can describes what happens when some specific condition
happens, user fills in invalid data or clicks different button than the one that
leads to the successful end etc. Example:

Step Condition Action Description
3a User filled in incorrect combi-

nation of username and pass-
word

User is not logged in and an
error message is shown in-
stead

Success End Condition. This part describes what should be the state of
the application if the scenario was successful. E.g. User is logged in and see
the homepage.

The test scenarios are described in Appendix C.

4.3 UI Heuristic Evaluation

I will use 10 Usability Heuristics for User Interface Design by Jakob Nielsen[52]
to analyze the user interface of the Data Stewardship Portal and find out what
could be improved.

4.3.1 Visibility of system status

The system should always keep users informed about what is going on, through
appropriate feedback within reasonable time.

• When getting the data from or posting to the server and it takes long
time, the loading indicator is shown.

• All the pages contain a title describing the user where he is, also the
appropriate menu item is highlighted.

Possible flaws

• During the Migration there is no information about which Knowledge
Model and to what version is migrating.

57

4. Testing and Deployment

4.3.2 Match between system and the real world

The system should speak the users’ language, with words, phrases and concepts
familiar to the user, rather than system-oriented terms. Follow real-world
conventions, making information appear in a natural and logical order.

• The system is using the terminology already used within the Knowledge
Models and everything should make sense to the users.

4.3.3 User control and freedom

Users often choose system functions by mistake and will need a clearly marked
”emergency exit” to leave the unwanted state without having to go through an
extended dialogue. Support undo and redo.

• All forms and modal windows has also a cancel button so the user can
just step back.

• Confirmation is always required before something is deleted.

• User can always use the menu to navigate back where he wants.

4.3.4 Consistency and standards

Users should not have to wonder whether different words, situations, or actions
mean the same thing.

• There is always the same terminology and/or same icons for the same
actions regardless the entity.

• Also the UI of the same type of the pages for different entities has always
the same layout.

4.3.5 Error prevention

Even better than good error messages is a careful design which prevents a prob-
lem from occurring in the first place. Either eliminate error-prone conditions
or check for them and present users with a confirmation option before they
commit to the action.

• When the user is importing a new version to the portal, the file has to
be sent to the server first to find out whether the file is valid.

• When the user is entering values in forms, he can fill in invalid values.
The error message is shown immediately before the form is submitted.

• Some values from the forms has to be validated on the server after the
form submission, e.g. whether the email address is used in the portal.

58

4.3. UI Heuristic Evaluation

• Besides the previous cases, there are no other situations where the user
should see an error message.

4.3.6 Recognition rather than recall

Minimize the user’s memory load by making objects, actions, and options
visible. The user should not have to remember information from one part of
the dialogue to another. Instructions for use of the system should be visible or
easily retrievable whenever appropriate.

• Every information the user need for the task he wants to do should be
always visible on the screen. E.g. when the user is publishing a new ver-
sion of the knowledge model, he can also see what was the last published
version.

Possible flaws

• The problem that could be here was already mentioned before – during
the Migration there is no information about which Knowledge Model
and to what version is migrating. User has to remember that from the
list view where he started the migration.

4.3.7 Flexibility and efficiency of use

Accelerators – unseen by the novice user – may often speed up the interaction
for the expert user such that the system can cater to both inexperienced and
experienced users. Allow users to tailor frequent actions.

• Most of the actions are reachable in two clicks, all of them in three clicks.
It should be fast enough to do anything in the system.

Possible improvements

• There could be some keyboard shortcuts to eliminate the need to use
the mouse whenever possible.

• There could be a customizable dashboard at the homepage where the
user could set up some widgets to bring the information he needs the
most to the homepage.

4.3.8 Aesthetic and minimalist design

Dialogues should not contain information which is irrelevant or rarely needed.
Every extra unit of information in a dialogue competes with the relevant units
of information and diminishes their relative visibility.

59

4. Testing and Deployment

• Every screen contains only the information that is needed for the task
within the screen.

• Buttons for primary actions has always distinctive color to catch user’s
attention. There is maximum of one primary action per screen.

4.3.9 Help users recognize, diagnose, and recover from errors

Error messages should be expressed in plain language (no codes), precisely
indicate the problem, and constructively suggest a solution.

Possible flaws

• Error messages used in the forms could be more descriptive, now it shows
only e.g. InvalidEmail.

• When the server returns an error the client just show a general error
without trying to read the error returned by the server. It should show
the error from the server whenever possible.

4.3.10 Help and documentation

Even though it is better if the system can be used without documentation, it
may be necessary to provide help and documentation. Any such information
should be easy to search, focused on the user’s task, list concrete steps to be
carried out, and not be too large.

Possible flaws

• Data Stewardship Portal has no user documentation. It should be easy
enough to use for the users though.

4.3.11 Conclusion

The user interface of the Data Stewardship Portal is following most of the
points with minor problems. The future improvements should include:

• Improve Migration screen to include the information about the Knowl-
edge Model.

• Error messages should more precisely and descriptively reflect what hap-
pened.

• The portal should have user documentation.

60

4.4. Deployment

4.4 Deployment

4.4.1 Docker

The application is deployed using Docker[53]. Docker allows to bundle ap-
plications into images that defines all the dependencies and requirements the
application has – operating system, installed packages, etc. The image con-
tains everything needed for the application to run properly. Docker can start
containers from the images with a specific configuration (e.g. environment
variables).

Containers doesn’t have any persistent data inside them. That means
they can be safely restarted or removed and started again without loosing the
data. If we need to store some data permanently, we need to use a volume.
Volumes can be mounted into containers and their data are stored on the host
filesystem. When the container is removed, a new one can be started with the
same volume.

It is also easy to scale dockerized application. Simply more containers can
be started with a load balancer in front of them. Docker containers can be
used not only on a single host but also with various infrastructure tools like
Kubernetes[54] or Google Cloud Platform[55]. If there is a need for that in
the future, it will be easy and smooth to do that because the images will be
already prepared.

4.4.2 DSP Client Docker Image

The Docker image for DSP Client is quite simple. The whole application is
just a couple of static files (JavaScript scripts, CSS styles, images, etc.). We
just need something to serve those files. The image is based on nginx[56]. It
is a web server with high performance and low requirements. After the source
of the DSP Client is build it is copied into the image and served by nginx.

4.4.3 Reverse Proxy

DSP Client is using simple HTTP protocol for communication. However, to
connect it to the outside world we should use HTTPS to make the connection
secure with encrypted requests.

There will be more services running on the same Docker host (e.g. the
whole backend for DSP). So it is a good idea to separate the HTTPS commu-
nication and the certificates management from the applications.

We can configure another nginx as a reverse proxy. It will be the only
service that will be exposed to the outside world. Its responsibility will be
providing a secure HTTPS connection and pass requests through to the re-
quested services.

The other services are available only in the internal Docker network and
cannot be reached from outside directly, only through the reverse proxy.

61

4. Testing and Deployment

Figure 4.1: Deployment Diagram

Therefore we don’t need to configure HTTPS and handle certificates for each
service, we can simply use HTTP within the internal network.

The HTTPS certificates are generated using Let’s encrypt service[57].
They are stored in the volume on the host filesystem and are mounted into
the reverse proxy container and used by nginx.

4.5 Deployment Process

Git[58] is used as a source control management tool. The source code is stored
in Github[59]. It is a service that supports software development with git and
is used by most open source projects.

Travis CI[60] is a service for continuous integration that can be connected
with a Github repository. We have to create a configuration file for Travis CI

62

4.5. Deployment Process

Figure 4.2: Deployment Process

describing what tasks should be performed in order to build, test and deploy
the project. Travis CI then watches for the changes in the Github repository
and perform the tasks.

The whole project is built into a Docker image, so Travis CI run tests, build
the Elm source code into JavaScript and creates the Docker image. When the
image is created it is pushed into a Docker registry. Docker registry is a service
where Docker images can be pushed into and pulled from. We use our own
private Docker registry for all Elixir DSP images so the frontend image is also
pushed there.

The server where the whole project runs is using Docker to run all the
images. It can get all the images from our private Docker registry and run
them with appropriate configuration.

63

Chapter 5
Results

I will describe the state of the Data Stewardship Portal and what features it
provides now. Then I will look in the future of the project – what will be the
next steps and what could be done to improve the current state.

5.1 Current State

The Data Stewardship Portal has now well-defined and manageable architec-
ture in Elm language using TEA. It is very easy to add new parts and keep
everything clear.

The portal contains essential parts to be used by organizations and their
members – it contains organization and user management modules. Users can
be added with appropriate roles to have access to the parts of the portal they
need to.

All the functionality needed for working with Knowledge Models has been
developed. The portal contains Knowledge Model editor where the data stew-
ards can make changes. Knowledge Models can be exported out of and im-
port into the portal, also between different organizations. When a new parent
Knowledge Model appears in the portal, it is possible to migrate local knowl-
edge models dependent on it to apply all the new changes.

To sum it up, the functionality needed for portal administrators and
data stewards has been created and is ready to use.

The portal is ready to be used in production. It is distributed in form of
Docker image. The project is tested and and the image is build automatically
using Travis CI.

5.2 Project Future

This theses was just the beginning for the Data Stewardship Portal. The
development of the portal will continue and it will eventually help scientists

65

5. Results

to plan the data management for their experiments.

5.2.1 New Modules

The portal now handles the organization and user management and all the
processes with the knowledge models. There are two more modules planned
for the researchers to plan their projects:

• Wizards module – for answering the questions from the knowledge
models.

• Data Management Plans module – for generating data management
plans from filled wizards.

5.2.2 Usability Improvements

There are some usability details that can be improve in the current state. UI
heuristic evaluation revealed few flaws:

• Add more details about the Knowledge Model to the Migration view

• Make error messages more understandable for the user

• Create user documentation

The project is now targeting desktop browsers but there might be the need
to make it also mobile friendly.

5.2.3 Other Improvements

Currently most of the deployment process and testing is automated. The only
thing that needs to be done manually are the test scenarios. It would be good
to automate them and include them to the deployment process.

66

Conclusion

I acquainted myself with the Data Stewardship Portal project, analyze its
requirements and requested functionality.

I did a review of state-of-the-art Haskell based solution for web frontend
development, considered their advantages and disadvantage and chose the
most suitable one for the Data Stewardship Portal.

I designed and implemented the architecture of the web frontend for the
DSP using the selected solution. Then I designed and implemented a web
UI and functionality of the Knowledge Model Editor and Migration Module
within the portal.

I elaborated a technical documentation to make it easy for other developers
to collaborate on the project and prepared generated API doc.

I created tests and test scenarios for the solution and evaluated the quality
of the UI. I described the results and outlined what the future of the project
should be.

All the goals and assigned tasks were fulfilled and the project is ready for
future development.

67

Appendix A
Acronyms

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CI Continuous Integration

CSS Cascading Style Sheets

DOM Document Object Model

DSP Data Stewardship Portal

FFI Foreign Function Interface

GHC Glasgow Haskell Compiler

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

JSON JavaScript Object Notation

REPL Read-Eval-Print Loop

TEA The Elm Architecture

UI User Interface

UML Unified Modeling Language

UUID Universally Unique Identifier

69

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

dsp-client.................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
assignment.pdf the assignment in PDF format
thesis.pdf...........................the thesis text in PDF format

71

Appendix C
Test Scenarios

C.1 Login

C.1.1 Login and menu items

User wants to login and should see the correct menu items based on his role.

Precondition

User is not logged in the portal.

Main Success Scenario
Step Actor Action Description
1 User User navigates to the login page
2 User User fills in his email and password and clicks the Lo-

gin button
3 System System logs the user in and redirect him to the Home-

page

Scenario Extensions
Step Condition Action Description
3a User filled in incorrect combina-

tion of username and password
User is not logged in and an error
message is shown instead

Success End Condition

User is logged in and see the correct menu items based on his role.

• Admin

– Organization
– User Management

73

C. Test Scenarios

– Knowledge Models
– Package Management
– Wizards
– Data Management Plans

• Data Steward

– Knowledge Models
– Package Management
– Wizards
– Data Management Plans

• Researcher

– Wizards
– Data Management Plans

C.2 Organization Module

C.2.1 Edit Organization

User wants to edit organization details.

Precondition

User is logged in and has Admin role.

Main Success Scenario
Step Actor Action Description
1 User User navigates to the Organization
2 User User fills in Organization name and Organization

Group ID
3 User User clicks the Save button
4 System System updates the Organization detail and shows the

success message

Scenario Extensions
Step Condition Action Description
2a User leaves some fields empty Error message below the field is

shown and the form cannot be
submitted

2b User fills in invalid Group ID Error message below the field is
shown and the form cannot be
submitted

74

C.3. User Management

Success End Condition

The organization detail is updated and the success message is shown.

C.3 User Management

C.3.1 Create User

User wants to create a new user profile.

Precondition

User is logged in and has Admin role.

Main Success Scenario
Step Actor Action Description
1 User User navigates to the User Management and clicks

Create User
2 User User fills in the following fields: Email, Name, Sur-

name, Password; and selects a Role for the new user
3 User User clicks the Save button
4 System System creates a new user profile

Scenario Extensions
Step Condition Action Description
2a User leaves some fields empty or

fills them with invalid value
Error message below the field is
shown and the form cannot be
submitted

3a User clicks the Cancel button No new user is created and user is
redirected back to the User Man-
agement

4a Email is already used by another
user

New user profile is not created
and an error message is shown

Success End Condition

New user profile is created, can be seen in the user list and can log in.

C.3.2 Delete User

User wants to delete an existing user profile.

Precondition

User is logged in and has Admin role.

75

C. Test Scenarios

Main Success Scenario
Step Actor Action Description
1 User User navigates to the User Management where he can

see the list of user profiles
2 User User clicks the Delete button in the row of the user

profile he wants to delete
3 System System shows a modal window with the confirmation

of deleting the profile
4 User User clicks the Delete button in the modal window
5 System System deletes the user profile and shows the success

message

Scenario Extensions
Step Condition Action Description
4a User clicks the Cancel button Confirmation modal window is

closed and no user profile is
deleted

Success End Condition

User profile is deleted, it is no longer visible in the user list and cannot be
used to log in the portal.

C.3.3 Edit User Profile

User wants to change an existing user profile.

Precondition

User is logged in and has Admin role.

Main Success Scenario
Step Actor Action Description
1 User User navigates to the User Management where he can

see the list of user profiles
2 User User clicks the Edit button in the row of the user pro-

file he wants to edit
3 System System shows a form with user profile data
4 User User updates Email, Name, Surname and/or Role of

the user profile
5 User User clicks the Save button
6 System System updates the user profile and shows a success

message

76

C.3. User Management

Scenario Extensions

Step Condition Action Description
4a User leaves some fields empty or

filled with invalid value
Error message below the field is
shown and the form cannot be
submitted

6a Email is already used by another
user

Profile is not updated and an er-
ror message is shown

Success End Condition

User profile is updated and all changes can be seen in the user list.

C.3.4 Edit User Password

User wants to change the password of an existing user profile.

Precondition

User is logged in and has Admin role.

Main Success Scenario

Step Actor Action Description
1 User User navigates to the User Management where he can

see the list of user profiles
2 User User clicks the Edit button in the row of the user pro-

file he wants to edit
3 System System shows user profile with tabular navigation be-

tween editing user profile and user password
4 User User selects the Password tab
5 System System shows a form for editing user password
6 User User fills in New password and New password again

fields
7 User User clicks the Save button
8 System System updates the password of the user profile and

show success message

Scenario Extensions

Step Condition Action Description
6a Passwords in the fields are differ-

ent
An error message is shown and
the form cannot be submitted

77

C. Test Scenarios

Success End Condition

Password is changed and the edited user profile can log in with the new pass-
word.

C.3.5 Edit Own Profile

User wants to edit his own profile.

Precondition

User is logged in.

Main Success Scenario
Step Actor Action Description
1 User User clicks his name in the menu
2 System System shows a form with user profile data
3 User User updates his Email, Name and Surname
4 User User clicks the Save button
5 System System updates the user profile and shows a success

message

Scenario Extensions
Step Condition Action Description
3a User leaves some fields empty or

filled with invalid value
Error message below the field is
shown and the form cannot be
submitted

5a Email is already used by another
user

Profile is not updated and an er-
ror message is shown

Success End Condition

User profile is updated.

C.3.6 Edit Own Password

User wants to change his password.

Precondition

User is logged in.

78

C.4. Knowledge Models

Main Success Scenario

Step Actor Action Description
1 User User clicks his name in the menu
2 System System shows user profile with tabular navigation be-

tween editing user profile and user password
3 User User selects the Password tab
4 System System shows a form for editing user password
5 User User fills in New password and New password again

fields
6 User User clicks the Save button
7 System System updates the password of the user profile and

show success message

Scenario Extensions

Step Condition Action Description
5a Passwords in the fields are differ-

ent
An error message is shown and
the form cannot be submitted

Success End Condition

Password is changed and user can log in with the new password.

C.4 Knowledge Models

C.4.1 Create Knowledge Model

User wants to create a new knowledge model.

C.4.2 Precondition

User is logged in and has Admin or Data Steward role.

79

C. Test Scenarios

Main Success Scenario

Step Actor Action Description
1 User User navigates to Knowledge Models
2 User User clicks Create KM button
3 System System shows a form for new Knowledge Model
4 User User fills in Name and Artifact ID for the Knowledge

Model and can select Parent Package
5 User User clicks the Save button
6 System System creates new Knowledge Model and shows the

Editor
7 User User can use the editor and clicks the Save button
8 System System updates the Knowledge Model according to

the changes in the Editor

Scenario Extensions

Step Condition Action Description
4a User leaves some fields empty or

fill in an invalid value
Error message below the field is
shown and the form cannot be
submitted

7a User clicks the Cancel button No new changes to the Knowl-
edge Model are saved

Success End Condition

New Knowledge Model is created and is visible in the Knowledge Models list.

C.4.3 Edit Knowledge Model

User wants to edit an existing Knowledge Model.

C.4.4 Precondition

User is logged in and has Admin or Data Steward role. Knowledge Model is
in one of the following states: Default, Edited, Outdated.

80

C.4. Knowledge Models

Main Success Scenario

Step Actor Action Description
1 User User navigates to Knowledge Models
2 System System shows a list of Knowledge Models
3 User User clicks Edit button for the Knowledge Model he

wants to edit
4 System System shows the Knowledge Model Editor
5 User User makes changes in the Editor and clicks the Save

button
6 System System updates the Knowledge Model according to

the changes in the Editor

Scenario Extensions

Step Condition Action Description
5a User clicks the Cancel button No new changes to the Knowl-

edge Model are saved

Success End Condition

Knowledge Model is updated according to the changes made in the Editor and
is now in the Edited state.

C.4.5 Upgrade Knowledge Model

User wants to upgrade the Knowledge Model to a newer version of parent.

Precondition

User is logged in and has Admin or Data Steward role. Knowledge Model is
in the Outdated state.

81

C. Test Scenarios

Main Success Scenario

Step Actor Action Description
1 User User navigates to Knowledge Models
2 System System shows a list of Knowledge Models
3 User User clicks the Upgrade button for the Knowledge

Model he wants to upgrade
4 System System shows a modal window with new parent ver-

sions available
5 User User selects one of the new parent versions
6 User User clicks Create button
7 System System creates a new migration and redirects the user

to the migration
8 System System shows one change after another during the mi-

gration
9 User User selects if he wants to Apply or Reject the change

to his Knowledge Model
10 System System shows that the migration is completed once

the last change is processed

Scenario Extensions

Step Condition Action Description
6a User clicks Cancel button The modal window is closed and

no migration is created
9a User leaves the page in the mid-

dle of migration
Knowledge Model stays in the
Migrating state and user can con-
tinue the migration later

Success End Condition

Knowledge Model is parent is upgraded and all the changes selected during
the migration are applied to the Knowledge Model. It is no longer in the
Outdated state.

C.4.6 Delete Knowledge Model

User wants to delete an existing Knowledge Model.

C.4.7 Precondition

User is logged in and has Admin or Data Steward role.

82

C.4. Knowledge Models

Main Success Scenario
Step Actor Action Description
1 User User navigates to Knowledge Models
2 System System shows a list of Knowledge Models
3 User User clicks Delete button for the Knowledge Model he

wants to delete
4 System System shows the confirmation modal window
5 User User clicks Delete button
6 System System deletes the Knowledge model from the portal

Scenario Extensions
Step Condition Action Description
3a User clicks the Cancel button The modal window is closed and

Knowledge Model is not deleted

Success End Condition

Knowledge Model is deleted from the portal and is no longer visible in the
Knowledge Models list.

C.4.8 Publish Knowledge Model Version

User wants to publish a new version of the Knowledge Model.

Precondition

User is logged in and has Admin or Data Steward role. Knowledge Model is
in one of the following states: Edited, Migrated.

Main Success Scenario
Step Actor Action Description
1 User User navigates to Knowledge Models
2 System System shows a list of Knowledge Models
3 User User clicks Publish button for the Knowledge Model

he wants to publish
4 System System shows a form for the new version
5 User User fills in the new version number and the descrip-

tion
6 User User clicks the Publish button
7 System System creates a new version for the Knowledge Model

Package

83

C. Test Scenarios

Scenario Extensions

Step Condition Action Description
5a User fills in invalid values or

leaves the fields empty
An error message is shown below
the field and the form cannot be
submitted

6a User clicks the Cancel button User is returned back to the
Knowledge Model list and noth-
ing is created

Success End Condition

New Knowledge Model Package version is available in the Package Detail.
Knowledge Model is in the Default state.

C.5 Package Management

C.5.1 Import

User wants to import package version to the system.

Precondition

User is logged in and has Admin or Data Steward role.

Main Success Scenario

Step Actor Action Description
1 User User navigates to Package Management and clicks the

Import button
2 System System shows the Import package screen
3 User User clicks Choose file button and select the appropri-

ate file
4 System System shows the file details so that user can confirm

the import
5 User User clicks Upload button
6 System System imports the version from a file to the system

84

C.5. Package Management

Scenario Extensions

Step Condition Action Description
3a User uses drag and drop to drop

a file from the filesystem to the
drop area

Scenario continues the same way
to step 4

5a User clicks Cancel button Scenario returns back to step 2
6a User selected invalid file Nothing is imported and an error

message is shown, scenario gets
back to step 4

6b User selected version that is al-
ready present in the portal

Nothing is importend and an er-
ror message is shown, scenario
gets back to step 4

Success End Condition

New package version is imported to the portal. If the whole package was not
yet present in the portal it can now be seen in the package list. The version
is visible in the package detail.

C.5.2 Delete Version

User wants to delete a specific version from the portal.

Precondition

User is logged in and has Admin or Data Steward role.

Main Success Scenario

Step Actor Action Description
1 User User navigates to Package Management
2 System System shows a list of packages
3 User User selects the package whose version he wants to

delete
4 System System shows the package detail view with the list of

versions
5 User User clicks the Delete button for the version he wants

to delete
6 System System shows the confirmation modal
7 User User clicks the Delete button
8 System System deletes the version

85

C. Test Scenarios

Scenario Extensions
Step Condition Action Description
7a User clicks the Cancel button The confirmation modal is closed

and nothing is deleted

Success End Condition

User is at the package detail and the deleted version is no longer there.

C.5.3 Delete Package

User wants to delete the whole package from the portal.

Precondition

User is logged in and has Admin or Data Steward role.

Main Success Scenario
Step Actor Action Description
1 User User navigates to Package Management
2 System System shows a list of packages
3 User User selects the package he wants to delete
4 System System shows the package detail
5 User User clicks the Delete package button
6 System System shows the confirmation modal
7 User User clicks the Delete button
8 System System deletes the package and redirects the user to

the package list

Scenario Extensions
Step Condition Action Description
7a User clicks the Cancel button The confirmation modal is closed

and nothing is deleted

Success End Condition

User package and all its versions are deleted and are no longer in the package
list.

C.5.4 Export Package Version

Precondition

User is logged in and has Admin or Data Steward role.

86

C.5. Package Management

Main Success Scenario
Step Actor Action Description
1 User User navigates to Package Management
2 System System shows a list of packages
3 User User selects the package whose version he wants to

export
4 System System shows the package detail
5 User User clicks Export button for the version he wants to

export
6 System System returns the file that is downloaded by the

browser

Success End Condition

The package file is downloaded.

87

Bibliography

[1] ELIXIR. What we do [online]. [cit. 2018-01-03]. Available from:
https://www.elixir-europe.org/about-us/what-we-do

[2] ELIXIR CZ. ELIXIR CZ Interoperability Platform. [cit. 2018-01-03]. Avail-
able from: https://github.com/DataStewardshipPortal

[3] LIEBERMAN, Benjamin. UML Activity Diagrams: Detailing User In-
terface Navigation [online]. 2004-04-29 [cit. 2018-01-05]. Available from:
https://www.ibm.com/developerworks/rational/library/4697.html

[4] HASKELL COMMUNITY. Haskell [software]. [cit. 2017-12-04]. Available
from: https://www.haskell.org

[5] FACEBOOK, Inc. React [software]. [cit. 2017-12-04]. Available from:
https://reactjs.org

[6] THE GLASGOW HASKELL TEAM. The Glasgow Haskell Compiler
[software]. [cit. 2017-12-04]. Available from: https://www.haskell.org/ghc/

[7] HASKELL COMMUNITY. Hackage [software]. [cit. 2017-12-04]. Available
from: https://hackage.haskell.org

[8] CABAL DEVELOPMENT TEAM. Cabal [software]. [cit. 2017-12-04].
Available from: https://www.haskell.org/cabal/

[9] NPM, Inc. npm [software]. [cit. 2017-12-04]. Available from:
https://www.npmjs.com

[10] BOWER TEAM. Bower [software]. [cit. 2017-12-04]. Available from:
https://bower.io

[11] WEBPACK CONTRIBUTORS. webpack [software]. [cit. 2017-12-04].
Available from: https://webpack.github.io

89

Bibliography

[12] GOOGLE, Inc. Google Closure Compiler [software]. [cit. 2017-12-04].
Available from: https://github.com/google/closure-compiler

[13] EKBLAD, Anton. Haste [software]. [cit. 2017-12-19]. Available from:
https://haste-lang.org

[14] FAYLANG. Fay programming language [software]. [cit. 2017-12-19]. Avail-
able from: https://github.com/faylang/fay

[15] FAYLANG. Fay programming language – Quick Start [online]. [cit. 2017-
12-19]. Available from: https://github.com/faylang/fay/wiki

[16] GHCJS CONTRIBUTORS. GHCJS [software]. [cit. 2017-12-20]. Avail-
able from: https://github.com/ghcjs/ghcjs

[17] TRINKLE, Ryan. Reflex [software]. [cit. 2017-12-20]. Available from:
https://github.com/reflex-frp/reflex

[18] TRINKLE, Ryan. Reflex-DOM [software]. [cit. 2017-12-20]. Available
from: https://github.com/reflex-frp/reflex-dom

[19] TRINKLE, Ryan. Reflex Platform [software]. [cit. 2017-12-20]. Available
from: https://github.com/reflex-frp/reflex-platform

[20] GHCJS CONTRIBUTORS. GHCJS Examples [online]. [cit. 2017-12-20].
Available from: https://github.com/ghcjs/ghcjs-examples

[21] YAMADA, Pedro Tacla. ghcjs-loader [software]. [cit. 2017-
12-20]. Available from: https://github.com/beijaflor-io/ghcjs-
commonjs/tree/master/ghcjs-loader

[22] PURESCRIPT. PureScript [software]. [cit. 2017-12-09]. Available from:
http://www.purescript.org

[23] PURESCRIPT CONTRIBUTORS. Differences from
Haskell [online]. [cit. 2017-12-09]. Available from:
https://github.com/purescript/documentation/blob/master/language/Differences-
from-Haskell.md

[24] PURESCRIPT. Pursuit [software]. [cit. 2017-12-09]. Available from:
https://pursuit.purescript.org

[25] FREEMAN, Phil. purescript-thermite [software]. [cit. 2017-12-09]. Avail-
able from: https://github.com/paf31/purescript-thermite

[26] PURESCRIPT CONTRIB. purescript-react [software]. [cit. 2017-12-09].
Available from: https://github.com/purescript-contrib/purescript-react

90

Bibliography

[27] FREEMAN, Phil. Thermite Documentation [online]. [cit. 2017-
12-09]. Available from: https://github.com/paf31/purescript-
thermite/blob/master/generated-docs/Thermite.md

[28] SLAMDATA, Inc. purescript-halogen [software]. [cit. 2017-12-09]. Avail-
able from: https://github.com/slamdata/purescript-halogen

[29] SLAMDATA, Inc. The Halogen guide [online]. [cit. 2017-12-09]. Available
from: https://github.com/slamdata/purescript-halogen/tree/master/docs

[30] SLAMDATA, Inc. Halogen Examples [online]. [cit. 2017-12-
09]. Available from: https://github.com/slamdata/purescript-
halogen/tree/master/examples

[31] MINGOIA, Alex. PUX [software]. [cit. 2017-12-09]. Available from:
https://github.com/alexmingoia/purescript-pux

[32] MINGOIA, Alex. Build type-safe web applications with PureScript [on-
line]. [cit. 2017-12-09]. Available from: http://purescript-pux.org

[33] MINGOIA, Alex. PUX Examples [online]. [cit. 2017-12-
09]. Available from: https://github.com/alexmingoia/purescript-
pux/tree/master/examples/

[34] CZAPLICKI, Evan. Elm [software]. [cit. 2017-12-10]. Available from:
http://elm-lang.org

[35] GOOGLE, Inc. Angular [software]. [cit. 2017-12-10]. Available from:
https://angular.io

[36] CZAPLICKI, Evan. The Elm Architecture [online]. [cit. 2017-12-10].
Available from: https://guide.elm-lang.org/architecture/

[37] CZAPLICKI, Evan. Blazing Fast HTML [online]. 2016-08-30 [cit. 2017-
12-10]. Available from: http://elm-lang.org/blog/blazing-fast-html-round-
two

[38] ELM ORGANIZATION. Elm Packages [online]. [cit. 2017-12-10]. Avail-
able from: http://package.elm-lang.org

[39] CZAPLICKI, Evan. An Introduction to Elm [online]. [cit. 2017-12-10].
Available from: https://guide.elm-lang.org

[40] Elm Companies [online]. [cit 2017-12-10]. Available from:
https://github.com/lpil/elm-companies

[41] HOOFT, Rob. Ideas behind the data model [online]. [cit. 2018-
01-05]. Available from: https://github.com/DataStewardshipPortal/ds-
km/tree/master/datamodel

91

Bibliography

[42] MONS, Barend. Data Stewardship for Open Science: Implementing FAIR
Principles. ISBN 9780815348184.

[43] CZAPLICKI, Evan. Elm Core Libraries – Basics [online]. [cit.
2017-12-13]. Available from: http://package.elm-lang.org/packages/elm-
lang/core/latest/Basics

[44] CZAPLICKI, Evan. Elm Core Libraries – Maybe [online]. [cit.
2017-12-13]. Available from: http://package.elm-lang.org/packages/elm-
lang/core/latest/Maybe

[45] CZAPLICKI, Evan. Elm Core Libraries – Result [online]. [cit.
2017-12-13]. Available from: http://package.elm-lang.org/packages/elm-
lang/core/latest/Result

[46] CZAPLICKI, Evan. The Elm Architecture + Effects [online]. [cit. 2017-
12-15]. Available from: https://guide.elm-lang.org/architecture/effects/

[47] ELM COMMUNITY. Elm loader [software]. [cit. 2017-12-15]. Available
from: https://github.com/elm-community/elm-webpack-loader

[48] WEBPACK CONTRIBUTORS. webpack-dev-server [software]. [cit.
2017-12-15]. Available from: https://github.com/webpack/webpack-dev-
server

[49] ELM ORGANIZATION. elm-make [software]. [cit. 2017-12-15]. Available
from: https://github.com/elm-lang/elm-make

[50] ELM ORGANIZATION. elm-package [software]. [cit. 2017-12-15]. Avail-
able from: https://github.com/elm-lang/elm-package

[51] ELM COMMUNITY. elm-test [software]. [cit. 2017-12-27]. Available
from: https://github.com/elm-community/elm-test

[52] NIELSEN, Jakob. 10 Usability Heuristics for User Inter-
face Design [online]. 1995-01-01 [cit. 2017-12-28]. Available from:
https://www.nngroup.com/articles/ten-usability-heuristics/

[53] DOCKER Inc. What is Docker [online]. [cit. 2017-12-29]. Available from:
https://www.docker.com/what-docker

[54] THE KUBERNETES AUTHORS. Kubernetes [software]. [cit. 2017-12-
29]. Available from: https://kubernetes.io

[55] GOOGLE, Inc. Google Cloud Platform [software]. [cit. 2017-12-29]. Avail-
able from: https://cloud.google.com

[56] NGINX, Inc. nginx [software]. [cit. 2017-12-29]. Available from:
http://nginx.org

92

Bibliography

[57] INTERNET SECURITY RESEARCH GROUP (ISRG). Let’s Encrypt
[software]. [cit. 2017-12-29]. Available from: https://letsencrypt.org

[58] GIT. git [software]. [cit. 2017-12-29]. Available from: https://git-scm.com

[59] GITHUB, Inc. Github [software]. [cit. 2017-12-29]. Available from:
https://github.com

[60] TRAVIS CI, GmbH. Travis CI [software]. [cit. 2017-12-29]. Available
from: https://travis-ci.com

93

	Introduction
	Goals
	Methodology

	State-of-the-art Haskell Based Solutions for Web
	Why Haskell Based Solution
	Tools Introduction
	Haskell
	PureScript
	Elm
	Comparison
	Conclusion

	Analysis and Design
	Current State
	Requirements
	Definition of Terms
	Project Overview
	Organization Settings Module
	User Management Module
	Knowledge Models Module
	Package Management Module
	User Roles & Permissions

	Implementation
	Elm Language
	The Elm Architecture (TEA)
	Project Structure in Elm
	Development & Build Tools

	Testing and Deployment
	Unit Tests
	End-to-End Tests
	UI Heuristic Evaluation
	Deployment
	Deployment Process

	Results
	Current State
	Project Future

	Conclusion
	Acronyms
	Contents of enclosed CD
	Test Scenarios
	Login
	Organization Module
	User Management
	Knowledge Models
	Package Management

	Bibliography

