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Abstract

The segmentation and characterization of structures in medical images represents an
important part of the diagnostic and research procedures in medicine. This thesis focuses
on the characterization methods in two application fields that make use of two imaging
modalities. The first topic is the characterization of the blood vessel structure in the
human retina and the second is the characterization of diaphragm movement during
breathing. The imaged blood vessel structures are considered important landmarks in
both applications.

The framework for the retinal image processing and analysis starts with the testing
of five publicly available blood vessel segmentation methods for retinal images. The
parameters of the methods are optimized on five databases with the ground truth for
blood vessels. An approach for predicting the method parameters is proposed based on
the optimization results. The parameter prediction approach is then applied to obtain
vessel segmentation on a new database and an automatic approach to the blood vessel
classification and computation of the arteriovenous ratio is proposed and evaluated on
the new database.

The framework for the diaphragm image processing and analysis is based on the measure-
ment of diaphragm motion. The motion is characterized by a set of features quantifying
the amplitude and frequency of the breathing pattern, as well as a portion of the non-
harmonic movements that occur. In addition, a set of static features like the diaphragm
slope and height are proposed. Two approaches for the motion measurement are pro-
posed and compared. A statistical evaluation of the proposed features is performed by
comparing measurements from people with and without spinal findings.

The results from the retinal image processing and analysis revealed the possibility of the
successful prediction of the parameters of the blood vessel segmentation methods. The
automatic approach for the automatic arteriovenous ratio estimation revealed a stronger
association with blood pressure than the manually estimated ratio. The results from the
diaphragm image processing and analysis confirmed differences in the position, shape and
breathing patterns between the healthy people and people suffering from spinal findings.
The blood vessel structure was shown to be a reliable marker for characterizing the
diaphragm motion.

Keywords: image processing, segmentation, classification, retina, blood vessels, arter-
ies, veins, arterio-venous ratio, diaphragm, breathing, spinal findings, low
back pain, motion estimation



Abstrakt

Segmentace a charakterizace struktur v lékaiskych obrazovych datech jsou dulezitou
soucésti diagnostickych a vyzkumnych procedur v medicing. Tato dizertace se zabyva
charakterizaci struktur ve dvou oblastech, kde kazda vyuziva jiny zptsob sniméni obrazu.
Prvni oblasti je charakterizace cévni struktury viditelné v sitnici oka. Druhou oblasti je
charakterizace pohybu branice béhem dechového cyklu. Cévni struktura viditelné jak v
sitnici, tak v branici, slouzi v obou pfipadech jako vyznamna pomocné struktura.

V &asti zabyvajici se zpracovanim snimkui sitnice je nejdfive testovano pét metod, s
vefejné dostupnou implementaci, které byly navrzeny pro segmentaci v sitnici viditel-
nych cév. Parametry kazdé metody jsou optimalizoviny na péti vefejné dostupnych
databézich snimku sitnice, které jsou k dipozici s referenéni segmentaci cév. Vysledky
optimalizace jsou pak vyuzity pro névrh predikéniho algoritmu pro odhad parametri
segmentace snimku v libovolné databazi. Predikéni algoritmus je nasledné vyuzit k seg-
mentaci cév v nové databazi a segmentované cévy jsou vyuzity pro navrh a validaci
nového systému pro vypocet poméru sitky zil a tepen.

V ¢&asti zabyvajici se zpracovanim obrazii branice je méfen a charakterizovin pohyb
branice. U pohybu je méfen zdvih branice a frekvence dechu. Také je umoznéno urceni
poméru neharmonického pohybu, ktery branice vykona. Dale jsou méfeny statické piiz-
naku, jako jsou sklon a vySka branice v hrudniku. Dva pristupy k méfeni samotného
pohybu branice jsou navrzeny a porovnany. Je provedeno statistické porovnéni piiznaki
mezi skupinami lidi bez nalezti na patefi a s nalezy.

Vysledky analyzy snimki sitnice prokazaly moznost predikce parametri u metod pro
segmentaci cév v sitnici i s aplikaci navrzeného predikéniho systému. Navrzeny systém
pro vypocet poméru Sitky zil a tepen prokazal lepsi asociaci mezi automaticky vypocte-
nou hodnotou tohoto poméru a krevnim tlakem, nez ru¢né pocitané hodnoty. Vysledky
analyzy obrazi brénice potvrdily rozdily v poloze, tvaru a dechovych vzorcich mezi
zdravymi jedinci a jedinci s nélezy na patefi. Cévy viditelné v branici byly shledany
jako spolehliva zachytna struktura k méfeni pohybu brénice.



SYMBOLS AND ABBREVIATIONS

Acc accuracy

Al artificial intelligence

AMD age-related macular degeneration
AP anteroposterior

AUC area under the ROC curve

AV arteriovenous

AVR arteriovenous ratio

ARITA ARIA database

B blue

BMI body mass index
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Ccv computer vision

DIARETDB1 DIARETDBI diabetic retinopathy database
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DRIVE Digital Retinal Images for Vessel Extraction
EM expectation maximization

FFT fast Fourier transform

FNR false-negative rate

FOV field of view

FPR false-positive rate

G green

GMM Gaussian mixture model

GT ground truth

GUI graphical user interface

H hue
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HSV hue, saturation, value
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k-NN
LBP
LDA
LMSE
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LS-SVM
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MRI
NN

oD
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PDF
PPV
PR
QDA

RGB
RMSE
ROC
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SD

Sn

Sp
STARE
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TNR
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VAS
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K-nearest neighbours

low back pain

linear discriminant analysis
least mean square error
Likelihood Ratio Vesselness
Least Squares Support Vector Machines
Matthew’s correlation coefficient
magnetic resonance imaging
neural network

optic disc

optic disc diameter

principal component analysis
probability density function
positive predictive value

pattern recognition

quadratic discriminant analysis
red

red, green and blue

root mean square error
receiver-operating characteristic
region of interest

range of motion

retinopathy of prematurity
saturation

standard deviation

sensitivity

specificity

Structured Analysis of the Retina
support vector machines
true-negative rate

true-positive rate

value

visual analog scale

vital capacity



{} a set

mazx(.,.) a maximum of the inputs
min(.,.) a maximum of the inputs
[n1, o) a closed interval between n; and ns

[n1..n2] a closed interval of integers between n; and ns
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CHAPTER 1

Introduction

The continuous increase in the workload capacity of computer systems, the ease of sharing
knowledge and data, and miniaturization are paving the way for computerized automated
systems to solve increasingly complex tasks with an increasing amount of autonomy. In
medicine, many use cases can be found for automated systems, beginning with blind
people being able to use smart phones, cochlear implants allowing deaf people to hear
and ending with systems like IBM’s Watson being applied in reasoning about clinical
diagnosis. Together with the growing computation power, the growing amount of data
being recorded, stored and shared allows for the automated systems to surpass the de-
duction possibilities of humans in an increasing number of applications [1, 2]. In the
medical field this allows for increasing proficiency of the computerized systems in disease
diagnosis, prediction or disease prevention [3].

However, modern society, with its diversion from a traditional human lifestyle, suffers
from the higher prevalence of a number of diseases. For example, related to the context of
this thesis are diabetes and other diseases that manifest themselves in the eyes, which are
among the leading cause of blindness today [4]. Another example is the raising prevalence
of low back pain (LBP) [5]. These cases are considered important factors behind the
motivation for the understanding and development of methods of early diagnosis, as well
as methods that would allow decreasing the burden brought about by the diseases.

Computer vision (CV) and pattern recognition (PR) play important role together among
the methods used within the automated systems and this thesis describes the employ-
ment of PR methods — medical image processing in particular — with a focus on the
segmentation and diagnosis of vessel-like structures in two application areas. The first is
in retinal image analysis where the CV and PR methods can and are expected to provide
objective assessment of the retina [4]. The second is analysis of the diaphragm (the res-
piratory muscle) images where the CV and PR methods can help to provide a framework
for understanding the principles behind the role of the diaphragm in establishing body
posture, and its role in LBP and the prevention of the pain. The following paragraphs
map out the general background of the clinical significance of retinal image processing
and about LBP (with its connections to the diaphragm).

13



14 1. Introduction

Visual examination of the retina provides a non-invasive view into the eye and at the
same time into the central nervous system [4]. One of the distinct features of the retina
are the blood vessels, whose structure is an important indicator of diseases such as di-
abetes, hypertension and cardiovascular disease [6]. Retinal imaging has been used to
characterize the vessel structure, and diagnose, monitor and document abnormal con-
ditions [7]. With the current technology, it is already possible to produce quantitative
information of signs of eye diseases like diabetic retinopathy and glaucoma, as well as
many cardiovascular and neurovascular diseases. A review of retinal imaging and its
medical implications has been provided in [4].

To diagnose incipient abnormalities and diseases in their early stages, screening pro-
grammes with systematic protocols are being implemented for groups at risk. As the
screening programmes become more extensive, the amount of data increases and, in
many cases, manual diagnosis becomes a bottleneck. To remedy the problem with the
increasing workload, computer-aided diagnosis tools can be used to provide access to
retinal images and enable high-throughput workflows for the screening programs [4]. To
enable automatic or semi-automatic image analysis and the structural characterization
of the blood vessels, various approaches have been proposed for segmenting the vessels
from retinal images: see [8] and [9]. A review of general vessel extraction techniques has
been published in [10].

LBP is a very frequent phenomenon, while at the same time it is not easy to explain its
origin. LBP has a very generic basis and numerous studies have tried to identify the most
common source of the pain in the lower back, but no clear connection between LBP and
the commonly believed sources like occupational poses or obesity, was concluded [11]. By
contrast, evidence exits that the presence of respiratory disease is a stronger predictor
for LBP than other established factors [11]. The diaphragm, besides its respiratory
function, also has a role in body stabilization and altered diaphragm motion patterns in
patients suffering from LBP [12, 13| are a validated fact. However, the exact mechanisms
behind the role of the diaphragm in the genesis or suppression of LBP remains unclear.
Characterization of the motion of the diaphragm in a objective way and the identification
of its respiratory and postural component should improve our understanding of the field.

The usage of signal processing methods for separating the diaphragm motion into pos-
tural and respiratory parts is a novel method in the characterization of the diaphragm’s
kinematics and it could be a helpful step toward automatic characterization of the di-
aphragm. Our work should help in understanding the role of the diaphragm in stabi-
lizing mechanisms and the possibilities for explaining the altered diaphragm movements
[14, 15]. Because state-of-the-art methods usually only involve measurement of the static
diaphragm, the dynamic properties are not well understood. Also, the visual inspection
of the breathing patterns is an ideal target for the signal processing algorithms that will
raise the precision of diaphragm assessment.

1.1 Objectives

The segmentation of vessel-like structures is connecting all topics in the thesis. First, a
review of the available methods for the blood vessel segmentation in the retina is done and
their performance is compared. Then, these methods are used for the characterization of
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the retinal topology and to support motion tracking in the processing of the diaphragm
images.

In the area of retinal image analysis, the thesis focuses on the blood vessel segmenta-
tion and the characterization of the blood vessel structure in color fundus photographs.
Because the blood vessel segmentation in retinal images is a topic of active research [§],
instead of proposing a new method for the segmentation task, it was decided to review
the existing segmentation methods for which there is an implementation available and
perform a controlled comparison of them. With the blood vessel segmentation methods
in hand, this work aims to propose a framework for automatic estimation of arteriove-
nous ratio (AVR) — a commonly used measure for the characterization of the retina. The
objectives of the first part of the thesis are as follows:

1. To review the existing retinal blood vessel segmentation methods for which there
is an implementation available. In addition, to prepare an experiment to optimize
the method parameters on various retinal databases with ground truth (GT) for
the blood vessels and compare the method performance to each other and to the
performance of the state-of-the-art methods.

2. To propose a model for setting the methods’ parameters when applied to new retinal
image databases. The results from the preceding optimization experiment are used
for this.

3. To propose a framework for the automatic estimation of AVR and validate it on a
new database where relevant clinical measurements from the subjects are available.
The parameter prediction model is used to obtain the vessel segmentation on the
database. The validation of the system is performed by comparison between asso-
ciations with subjects’ blood pressure and the AVR measured manually and by the
proposed system.

The analysis of the diaphragm is aimed at the characterization of the diaphragm move-
ment and shape to allow the investigation of differences between healthy people and
people suffering from LBP or having spine findings. Dynamic series of magnetic reso-
nance imaging (MRI) images of the diaphragm while breathing are used as the input to
the processing. The particular objectives of the second part of the thesis are as follows:

4. To propose a set of features to characterize the motion and shape of the diaphragm
in the body. The features allow for the investigation of the diaphragm motion
in patients suffering from LBP and their comparison to healthy subjects. Simple
measurement of the diaphragm’s motion, defined by the area delineated by the
diaphragm contour while moving, is used. The diaphragm contour is delineated
manually.

5. To investigate and validate the usability of the vessel structure visible in the di-
aphragm for the motion assessment. The methods gathered for the retinal blood
vessel segmentation are used to segment the vessels in the diaphragm. Tracking
of the vessel structure will then be used to obtain accurate measurement of the
diaphragm’s motion.
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1.2 Contributions
Contributions to the state of the art are as follows:

e A controlled comparison of the selected blood vessel segmentation methods while
their parameters have been optimized was performed.

e The parameter prediction of the blood vessel segmentation methods is a novel
approach to the best of our knowledge.

e The parts concerning the optimization of the parameters and the proposal of the
predictive models were published as a conference paper [16] and as a journal pa-
per [17].

e A framework for the classification of the segmented vessels into arteries and veins
was proposed, building on the knowledge from the other state-of-the-art methods.
A novel method for selecting a subset of the classified arteries and veins, and their
combination was established in order to compute the AVR — a widely used measure
for retinal vessel quantification — and validated by an assessment of associations
between the AVR and the clinical data.

e The contributions of the diaphragm processing include an assessment of the non-
respiratory diaphragm function resulting from the isolation of the diaphragm mo-
tions that are not related to respiration. This approach was used to process a set
of data gathered from patients suffering from LBP and led to the proposal of vari-
ous features that can be used to distinguish between the diaphragm movement of
healthy subjects and that of patients suffering from LBP.

e Processing of the diaphragm image sequences was published as a conference pa-
per [18] and as a journal paper [19], and the methods have also been applied
in [20].

e Data from [20] were further used to improve the method in order to automatically
obtain the diaphragm motion by registration of the segmented blood vessels in the
diaphragm.

A detailed list list of the contributions of the thesis and the author’s list of publications
is presented in Chapter 6.

1.3 Thesis outline

Chapter 2, ‘Medical and technical background’, gives background information on the
image processing applied in both modalities that are studied in this work — retinal and
diaphragm images. The anatomical background of both fields is provided.

Chapter 3, ‘Retinal blood vessel segmentation methods’, gives an overview of the available
methods for the vessel segmentation in colour retinal fundus photographs, which are
available in the form of an implementation. Then the available retinal databases which
contain ground truth information for the vessels are reviewed. Setup of the parameter
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optimization experiment is defined and the results of the parameter optimization are
presented. An approach to predicting the parameters of the methods for each testing
database is proposed. Then a comparison is made between the tested methods and the
state of the art.

Chapter 4, ‘Retinal vessel quantification’, describes the proposed approach to automation
of AVR computation. An overview of the measures used for quantitative assessment
of the retinal vessel structure is provided. The methods proposed for the automatic
classification of the vessels into arteries and veins are reviewed. Then the proposed
framework for estimation of the ratio is described. As a result, associations between the
AVR and blood pressure of the subjects is assessed.

Chapter 5, ‘Processing of the diaphragm image sequences’, proposes a system for the
automatic processing of diaphragm motion from dynamic MRI sequences. Diaphragm
motion is separated into respiratory and non-respiratory motion. A set of features for
the characterization of the motion is proposed, as well as a set of features characterizing
the diaphragm’s shape and position. The features are statistically compared between
a group of normal subjects and a group of subjects with LBP. Lastly, an automatic
approach to diaphragm motion detection, based on segmentation of the vessels in the
retina, is proposed and validated on another set of measurements.

Chapter 6, ‘Conclusions’, discuss the achievements presented in the individual chapters
and gives an overview of possible future improvements to the proposed frameworks.
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CHAPTER I

Medical and technical background

Medical imaging covers, among other techniques, techniques for gathering quantitative
information about the internal parts of the human body and organs, gathered both non-
invasively and in vivo. These two important properties let the methods be employed
in the diagnosis and research of pathologies that manifest themselves in living tissues.
Many modalities are employed in order to visualize the various properties of the tissues,
the most widely used visual examination methods include photography with the visible
spectrum, multi-spectral imaging (which improves the spectral resolution and can use
wavelengths that are invisible to the human eye, and can provide important information
on the composition of the photographed object) and ultrasound-based imaging. In ad-
dition, there are methods based on advanced mathematical principles like tomographic
approaches and MRI.

Naturally, the mentioned approaches are only a subset of the several proposed imaging
modalities used to collect quantitative information on the organs. Even though the
number of imaging methods is high, it is exceeded by the number of approaches proposed
for processing the recorded images by image processing and analysis. A very broad
and important field of the processing methods is the segmentation and characterization
of structures in the medical images. The aim of the segmentation procedure is the
delineation of the regions that are of interest — in a medical context, this typically means
segmenting anatomical structures like organs, blood vessels and so on. The aim of the
characterization procedure is then to provide a set of measures that can be used to depict
the properties of the object of interest. The measures are then used to distinguish healthy
and pathological structures, tissues and so on.

The segmentation and characterization techniques discussed here are those which are im-
portant for the context of the presented work. Two case studies are presented throughout
the thesis which are focused on the characterization of the structures in different modal-
ities. The first study is focused on characterizing the blood vessel structure in retinal
photographs, and the second is oriented to characterizing the diaphragm and its motion
in the body. Different motivations are behind the two studies. The retina is a vital organ
with a double blood supply wherein numerous eye and systemic diseases manifest. At

19
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~ Choroid

Anatomy“ofythe Eye

Figure 2.1: Anatomy of the eye — from [22].

the same time, it is an extension of the brain which allows for direct visual examination
of the manifestation of diseases [4]. The diaphragm is the main respiratory muscle of
the body and it also has an important role in body stabilization. Insufficient body sta-
bilization can lead to problems like LBP. In the following chapters, the anatomical and
physiological backgrounds of the retina and diaphragm are given.

2.1 The anatomy and physiology of the eye

Our eyes allow us to perceive 75-80 % of the environment around us. The principle of
how the eye works is that it collects light and, through chemical reactions, changes the
light energy into a neuronal signal which is processed in the visual cortex of our brain.
The connection to the brain is important from the developmental point of view of the
retina because the eye is basically an extension of our brain. Therefore, screening of the
retina means direct in-vivo observation of brain tissue and, due to the blood supply, of
our circulatory system [4].

The anatomy of the eye is depicted in Figure 2.1. The normally white eye ball is called
the sclera, which has a transparent frontal part called the cornea. Under the cornea,
there is the iris, which adjusts the amount of light entering the eye, and the lens, which
focuses the light onto the back of the eye. The back part of the eye is where light-sensitive
cells are located in a layered tissue called the retina. The retina itself is attached to the
inner layer in the eye (the choroid) with the retinal pigment epithelium in the middle.
The inner space of the eye is called the vitreous body and is filled with clear gel called
the vitreous humour [21].
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Figure 2.2: A photo of the retina with a depiction of the important anatomical
parts.

The retina is the light-sensitive layer of the eye that is the most important anatomical part
of the eye in the context of this work. The retina itself is a multi-layered tissue composed
of different cells for light-energy conversion, the pre-processing of visual information and
transmitting the neural signal. The photoreceptive layer is located furthest from the
pupil, next to the choroid and pigment epithelium. The double blood supply is provided
to the retina from the top and the bottom of the layer; the portion which comes through
the choroid brings 65 % of the blood supply and the part coming from the top of the
retina brings 35 %. The photoreceptive cells are divided into rods providing achromatic
vision and cones providing colour vision [4].

The anatomy of the retina is depicted in Figure 2.2. The part responsible for pin-focus
high-resolution colour viewing is the fovea, where the cones’ density is the highest. On
the rest of the retinal surface, rods outnumber the cones. The optic dics (OD) is the part
of the retina where neuronal fibres and blood vessels enter the retina — no photoreceptive
cells are located in the OD which is why it is also known as the blind spot. When the
blood vessels enter retina inside the OD, one artery and one vein do so and then, by
branching, they fill the retinal tissue. From a technical point of view, in the real three-
dimensional space each vessel forms a tree-like structure with one root at the OD. In
the retinal photographs, two-dimensional projections of the trees overlap, creating vessel
crossings and cycles. However, an important property is that even in the two-dimensional
projections, the arteries do not cross arteries and veins do not cross veins [23]. For an
illustration of the differences between the arteries and veins, see Figure 2.4 in the Section
24.
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From a diagnostic perspective, various diseases — including systemic diseases, eye diseases
and diseases of the circulatory system — manifest themselves in the retina and provide
observable and quantitatively measurable features for diagnosis [4]. The complications
of such systemic diseases include diabetic retinopathy related to diabetes, hypertensive
retinopathy from cardiovascular disease, and multiple sclerosis. As a consequence, the
retina is vulnerable to organ-specific and systemic diseases. Imaging of the retina also
allows diseases of the eye — as well as the complications of diabetes, hypertension and
other cardiovascular diseases — to be detected, diagnosed and monitored.

Diseases manifesting themselves in the retina can be classified into diseases of the eye and
systemic diseases. All of the following diseases belong to the group of the most common
causes of blindness worldwide [4].

Diabetes mellitus is among the most prevalent diseases that manifest in the retina. There
are approximately 150 to 200 million people with diabetes worldwide and 50 million in
Europe alone [24]. The microvascular complication caused by diabetes in the retina is
diabetic retinopathy.

Age-related macular degeneration (AMD) is another of diseases manifesting itself in
the retina. The two main types are dry and wet AMD. Dry AMD, also called choroidal
neovascularization, is the most threatening type for vision. It is accompanied by ingrowth
of the choroidal vascular structure into the macula (the outer region around the fovea) and
increased permeability of the vessels. The vascular ingrowth leads to rapidly deteriorating
visual acuity, scarring of the pigment epithelium and permanent visual loss.

Glaucoma is a disease causing damage to the optic nerve and it also results in visual
loss. The effect of the disease can be minimized by early detection and treatment. The
changes brought about by glaucoma can be detected by using various types of retinal
photographs and various types of measurements of the optic disc rim and its ratio to
optic disc diameter is the important predictor of the disease.

Cardiovascular diseases, in the general sense, include all diseases of the vessels and heart.
In a more particular sense it is used for diseases caused by atherosclerotic changes.
Changes in the vessel structure can thus have an important role in the prediction and
diagnosis of the diseases. Hypertension and atherosclerosis changes the ratio between
the retinal arteries and veins (the AVR). Change in the AVR is also connected with the
increased risk of stroke and myocardial infarction [4].

The segmentation and analysis of the blood vessel structure in the retina has an impor-
tant role in the implementation of screening programs of several of the above-mentioned
diseases [8, 25]: diabetic retinopathy, retinopathy of prematurity, arteriolar narrowing,
hypertensive retinopathy, vessel diameter measurement in relation with diagnosis of hy-
pertension. Furthermore, the vessel structure and its attributes serve in applications
like foveal avascular region detection, computer assisted laser surgery, multimodal image
registration, retinal image mosaic synthesis, optic disc identification and foveal localiza-
tion [8].

2.2 Retinal quantification measures

The retinal quantification measures allow and have been used to describe the relationship
between the systemic cardiovascular diseases and changes in the retina [26]. Associations
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Figure 2.3: An illustration of how patient condition can be reflected in the reti-
nal vasculature. On the image A, there is vasculature with venous beading which
is typical for diabetic retinopathy and on the image B, there is healthy vasculature
(HRF database, Section 2.6). On the image C, there is vasculature with narrow
arteries, compared to the healthy vasculature on the image D. Arterial narrow-
ing can be connected to various conditions like hypertension or atherosclerosis
(Savitaipale database, Section 4.2).

between the measures and various clinical parameters such as age, blood pressure and
body mass index (BMI) are being investigated in large population studies [26, 27] which
allow for applying of the measures as predictors in diagnostic systems. The quantitative
measures of the retina are all based on measurements of the blood vessel structure in the
retina and include junctional exponents, angles at bifurcations, measures of vascular tor-
tuosity, length:diameter ratios, fractal dimensions and AVR [26]. This section is devoted
to the description of the various measures.

The junctional exponent refers to value of  in the equation df = df +d3 which represents
the diameters of the root vessel (dp) with its branches (dy, d2). The theoretical value of
the exponent approximate to value of 3 in healthy vascular networks in order to minimize
power losses in the vascular structure [26]. Estimation of the junctional exponent can
be troublesome in cases when the branches are bigger in diameter than the root vessel,
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it is at the same time sensitive to diameter measurement errors. To overcome these
limitations [28] developed a measure of deviation of the junctional exponent from its
optimal value, p = [d3 — (d3 + d3)]'/3/dy which overcomes the aforementioned problems;
also a significant difference of p between healthy subjects and subjects with peripheral
vessel disease was concluded.

Vascular bifurcation angles are the angles between the branches at the vessel branching
point. Theoretically, the optimal value for the angle has been estimated to be approxi-
mately 75°. The association of the angle with various clinical outcomes has been reported:
reduced arteriolar angles were observed in hypertension, with increasing age and with low
birth-weight males; a lower density of the vascular network was also observed to be con-
nected with lower branching angles. No relation has been reported between bifurcation
angles and peripheral vascular disease [26].

Vascular tortuosity (i.e. the measure of curvature of the vessels) has been used to measure
the severity of conditions such as the retinopathy of prematurity (ROP), where increased
arteriolar tortuosity belongs among the earliest predictors of plus disease. Venous beading
has also been acknowledged as a feature of diabetic retinopathy.

The length:diameter ratio is calculated as the length from a particular vessel bifurcation
to the midpoint in the preceding bifurcation and divided this by the diameter of the
parent vessel at the bifurcation. It serves as a measure of the attenuation of the vessel
and has been found to be increased in hypertension.

Fractal geometry of the vessel structure is used to assess its fractal dimension which,
according to optimal junctional exponent x = 3, would be very close to 2 (optimal filling
of the available space). Research estimated the fractal dimension to have the value 1.7
and arterioles to have a lower dimension than venules [26].

Arteriolar and venular diameters and their ratio, AVR, stand as the most widely used
measures in the case of retinal vessel quantification. Typically the diameter of a vessel
is estimated in the middle of the sides of the double-Gaussian cross-section profile which
minimizes the defocusing effects of the image [29] on the diameter estimation. The main
components of the AVR are the central retinal artery equivalent (CRAE) and the central
retinal vein equivalent (CRVE) — estimates of the arteriolar or venular diameter as the
vessels enter the retina through the OD. Those estimates are computed iteratively using
veins and arteries within the area between 1 and 1.5 optic disc diameter (ODD)s from
the OD’s centre. Efforts have been made to research the formula in order to calculate
the diameter equivalents. First Parr and Spears [30] proposed a polynomial equation for
arteries:

W, = \/0.8712[/@2 + 1.01W2 — 0.22W,W,, — 10.76,

Hubbard et al. later added a similar formula for veins [31]:

W, = \/0.72W2 + 0.91W7 + 450,05,

where W, is the diameter of the trunk vessel and W, and W, are diameters of the
branches. These formulas expected the vessel to be paired iteratively in the way they
branched producing CRAE and CRVE measures. The coefficients of the polynomials
were estimated using measurements on samples of young normotensive subjects. This
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approach was further improved by Hubbard in [32] where the iterative approach was
disengaged in a way that vessels were combined in biggest—smallest pairs and, when
there was an odd number of vessels, the remaining one was moved to the next iteration.
The final rules of the approach consisted of using vessel branches when the diameter
was >80um and vessels <25um were excluded [26]. So far, the last improvement in
the way the AVR is computed has been proposed by Knudtson et al. [33] — the ‘revised
formula’. This important improvement took into consideration that the previously devel-
oped formulas need the diameters to be input in micrometres while in digital images the
measurements are made in pixels. Another improvement was made regarding the fact
that the number of measured vessels had a significant influence on the resulting AVR [33].
In [33] Knudtson et al. proposed using the six largest arterioles and six largest venules
passing through the region of interest (ROI) (0.5-1 ODDs from the OD margin). The
revised formula is based on the branching coefficient b, = w%:,rr:” g, where w; are the di-
ameters of the branches and W is the diameter of the trunk vessel. Based on 44 healthy
normotensive subjects, Knudtson et al. estimated the branching coefficient of arteries as
1.28 and of veins as 1.11. The diameter of the trunk vessel, based on those coefficients,
is estimated for arterioles as

W = 0.88(w} + w3) (2.1)

and for venules as

W = 0.95(w? + w?). (2.2)

The CRAE and CRVE are then computed by iteratively combining vessels with the
smallest and largest diameter from those six largest vessels. This approach simplified
significantly the approach used previously by Parr and Spears [30] and by Hubbard [31].
Furthermore, Knudtson et al. reassessed several previously reported results using the
revised formula and concluded the same association but with tighter confidence intervals.
New studies have been employing the revised formula since [34, 35, 36].

The AVR was verified to be in significant relation to many factors — both systematic and
ocular. The factors most notably include blood pressure, smoking, race, blood pressure,
the risk of having a stroke, the risk of diabetes, BMI and age (for comprehensive list
see [26]).

2.3 Retinal blood vessel segmentation methods

The segmentation of the blood vessels in the color fundus photographs is a relatively well
understood and researched problem [4] and many methods have been proposed to solve
the problem. In this section we review the blood vessel segmentation methods with a
publicly available implementation. For a comprehensive review of the state of the art,
see [8]. Examples of the segmentation output of the methods is presented in Figure 2.6.

The method proposed by Soares et al.! in [37] (the Soares method) is a supervised classifi-
cation algorithm that uses the Morlet (Gabor) wavelet filter response as the classification
feature. Three types of classifiers — the Gaussian mixture model (GMM), the k-nearest
neigbours (k-NN) and least mean square error (LMSE) — are available for use. Fur-
thermore, the green channel of an input image is by default added to the feature set.

Thttps://sourceforge.net/projects/retinal/
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All features are normalized individually to zero mean and unit standard deviation (SD).
The parameters of the method are: the set of Morlet scales (A;,o-) used to define the
classification features, the number of training samples (ns), the number of Gaussians
for modeling the vessels and non-vessels (ng1, ng42), and the number of iterations of the
expectation maximization (EM) algorithm (n;) used to define the GMM. The authors
emphasize the efficiency of the Gabor transform in enhancing the vessel contrast. At
the same time they conclude that there is a long training time, yet short classification
time, for the GMM classifier. The simplicity of the implemented algorithms is empha-
sized. The reported disadvantages are false detections around high-contrast structures,
like pathologies or the OD, and in rare occasions, bad tolerance of uneven illumination.

The method proposed by Sofka et al.? in [38] (the Sofka method) is a supervised classifica-
tion algorithm based on multiscale matched filtering, and confidence and edge measures.
The method extracts the vessel centrelines and, originally, its pixel-wise segmentation
performance was not evaluated. However the method offers pixel-wise Likelihood Ra-
tio Vesselness (LRV) as an output. The LRV measure, with subsequent binarization
by thresholding was used in our experiments. The method is available as a pre-trained
executable with no parameters to set. The authors claim a statistically significant im-
provement of the vessel segmentation performance over Frangi’s vesselness measure and
matched filter. The particular focus is on the detection of low-contrast and narrow vessels
and the improvement of the classifier’s performance on pathologies. The performance of
the method is, however, assessed on thinned vessels due to the wider response of the filter
around the vessel edges.

The method proposed by Azzopardi et al.® in [39] (the Azzopardi method) is an unsu-
pervised algorithm that employs a bar-selective version of a ‘combination of a shifted
filter responses’ (COSFIRE) filter — B-COSFIRE — which first filters the image with a
difference of Gaussians (DoG) mask and then through the COSFIRE mechanism em-
phasizes the line patterns (creating response R). The final segmentation is obtained by
thresholding. For the proper detection of vessel endings, the R of two types of endings
(symmetric and asymmetric endings), are combined by averaging. Each R is defined by
four parameters: the SD of the DoG filter (o), the length of the line pattern (p) and two
parameters allowing for spatial tolerance in the computation of R (o¢,«). The authors
emphasize the versatility of the COSFIRE filter as it can easily be rearranged to detect
shapes other than the lines which were used in the case of vessel segmentation. The
efficiency of the implementation and its robustness to noise are also emphasized.

The method proposed by Bankhead et al. in [40] (the Bankhead method) is an unsuper-
vised algorithm based on an isotropic undecimated wavelet transform (IUWT) [41] and
binarization by percentile-computed threshold. After the binarization, post-processing
by removing isolated objects and filling holes is done. The parameters are a set of wavelet
levels (Apqy) for the TUWT, a percentile (p;) used to compute the threshold value, and
the sizes of the isolated objects and holes (&, &) for the post-process. The authors em-
phasize the high processing speed of the method and the simplicity of the setup, where
the most important parameter — Ap,, — has a small range of values even for images of very
different resolutions. The disadvantage of the method is its slightly worse segmentation

2https://wuw.cs.rpi.edu/ sofka/vessels_exec.html
Shttp://www.mathworks.com/matlabcentral/fileexchange/37395
4http://petebankhead.github.io/ARIA/
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performance when compared to the state-of-the-art methods.

The method proposed by Nguyen et al.? in [42] (Nguyen method) is an unsupervised algo-
rithm based on line operators [43]. Vessel pixels are amplified by filtering the image with
a mask of a defined size (W) that enhances pixels along lines with different orientations.
Multiple filters with varying length of the line ({1 ,) together with the green channel of
the input colour image are averaged to produce a single response with enhanced vessel
contrast. The response is normalized to zero mean and unit SD. The number of filters
is defined by step w. The output of the algorithm is a gray-scale map. Thresholding
(threshold 7) is used to produce the binary map. The authors emphasize the classifica-
tion speed as an advantage of the method. Also, its local accuracy (segmentation near
the vessel pixels) is claimed to be high. The method is supposed to handle well such
areas that are often merged by other segmentation methods. The method is claimed to
perform ‘extremely well on non-pathological images’ [42].

2.3.1 Vessel segmentation assessment methods

The performance of the blood vessel segmentation methods for the retina are usually
assessed using measures where the binary segmentation output of a method is compared
to the binary segmentation done by a human observer in a pixel-wise fashion. Accuracy
(Acc), sensitivity (Sn), specificity (Sp) and area under the receiver-operating characteris-
tic curve (AUC) are well established measures for the assessment [8]. Another measure —
Matthew’s correlation coefficient (MCC) — appeared recently in the vessel segmentation
literature (for example, in [39]) and can give more insight into the evaluation when the
sample sizes of the classes are skewed, which is the case in vessel segmentation. The
performance measurement is typically done only on pixels inside the field of view (FOV),
which is the circular region where the retinal surface appears. Throughout the presented
work, the assessment of the segmentation methods was considered only on the FOV
pixels.

2.4 Classification into arteries and veins

The vascular structure in the retina is physically cycle free (although its projection onto
the 2D image plane becomes a vascular graph with cycles) [23]. One artery enters at the
optic nerve head into the interior of the retina and branches without any reconnection;
the same is true for veins.

Several features are of main interest when the vessels are manually classified into arteries
and veins:

e Arteries are thinner, have a lighter red appearance and show a more clearly visible
central vessel reflex than veins.

e At the crossings (in the 2D projection), only different vessel types are involved. In
other words, an artery does not cross another artery and the same applies to veins.

The typical vessel structure close to the OD with delineated arteries and veins is depicted
in Figure 2.4.

Shttp://people.eng.unimelb.edu.au/thivun/projects/retinal_segmentation/
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Figure 2.4: An example of arteries and veins close to the optic disc in RGB
retina picture.

The automatic methods for vessel classification can be divided in two types: (i) ap-
proaches based on colour-based features and supervised or unsupervised classification
and (ii) approaches employing colour-based features in combination with the underlying
graph structure of the vessels. This thesis focuses on the feature-based classification of
the vessels, thus, an overview of the methods proposed for the automatic classification
of the retinal vessels into arteries and veins is presented.

FEATURE-BASED CLASSIFICATION

Relan et al. experimented with both supervised [44] and unsupervised [45] classification.
Prior to the feature extraction, the input image layers were normalized using the method
of Chrastek [46]. Four classification features were used (in both supervised and unsu-
pervised cases) — the mean of red, the mean of green, the mean of hue and the variance
of red. The classification was pixel based, applied on the centreline pixels of the vessel
segments, and the features were computed from a circular neighbourhood with diameter
of 0.6 -vg, where v, is the vessel diameter around the pixels of interest. The least squares
support vector machines (LS-SVM) classifier [47] was used in the supervised case and
the GMM with EM fitting classifier [48] was used in the unsupervised case.

Grisan et al. [49] proposed an unsupervised method. The processed image was divided
into four quadrants horizontally and vertically with the centre at the OD. The features —
computed in a circular area around each vessel centreline point with diameter of 0.8 vy —
were the variance of red values and the mean hue value. Fuzzy C-means algorithm [50] was
used for classification. Illumination and contrast was normalized by [51]. The approach
was later enhanced by Tramontan et al. [52] by enhancing the tracing algorithm and
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changing the AV classification scheme into a single feature — R contrast — which was
computed from a vessel profile as a ratio between the peak value in a region around the
central pixel and the higher of the edge values. The resulting values were fitted by the
Hill function and classified by thresholding.

Kondermann et al. [53] first applied the 2D spline to the image layers and normalized
the image illumination by subtracting the surface. Vessel profiles (vectors) and whole
segments (matrices) were used directly as the features. The dimensionality of the features
was reduced by multiclass principal component analysis (PCA) [54]. The support vector
machines (SVM) and neural network (NN) classifiers were used for classification.

Saez et al. [55] experimented with various profile- and pixel-based features extracted from
the red, green, hue of grey colour channels. Several different combinations of pixel- or
profile-based features were tested: pixel values in the profiles from individual channels,
pairs of pixels from green and red channels, a combination of the mean hue value and
SD of the red value of a profile, the median value of a profile from each channel and the
most frequent values among a channel, based on pixels or profiles. The median value
of the green channel in a profile was chosen as the most discriminative feature. The
k-means clustering was applied per-image to separate arteries from veins. The ROI was
subsequently divided into quadrants and their rotation by 20° was undertaken to improve
the classification by multiple overlapped clustering outcomes.

Niemeijer et al. published two papers dealing with vessel classification [56, 57]. In [56]
the authors proposed 24 different features for arteriovenous (AV) classification includ-
ing vessel width, vessel contrast, various averaged intensities and the second Gaussian
derivatives of red, green, hue and saturation channels. Classification performance was as-
sessed using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),
SVM and k-NN classifiers. It was concluded that k-NN had the best performance. The
features were computed in every other centreline pixel of the vessels. Twelve features
were selected for the classification. The approach was further expanded in [57] where
27 features were proposed consisting of the mean and SD of the vessel profile computed
from hue, saturation, intensity, red and green channels and in red and green channels
blurred by Gaussian with ¢ = 2,4,8,16. The same classifiers used in the case of the
previous study were tested, with LDA showing the best results. Soft labels assigned to
each centreline pixel were transformed into segment labels by the median.

Muramatsu et al. proposed an approach based on LDA in [58]. The classification features
were rather simple — the red, green and blue (RGB) values of the centerline pixel and the
contrast of the RGB channels computed as the mean of the 5x5 region around centreline
pixel which is subtracted from mean of a 10x10 region outside the vessel. The blue
contrast feature was omitted, resulting in five features in the set used for the classification.

Dashtbozorg et al. proposed two methods for AV classification [59, 60]. The input images
were preprocessed by the method proposed in [61]. In [59] Dashtbozorg et al. tested 30
different features based on RGB, and hue, saturation and value (HSV) image channels;
the intensities of the centerline pixels; the mean and SD of the pixel intensities among
a vessel segment; the maximum and minimum of the pixel intensities among a vessel;
and the intensity of the centerline pixel in a Gaussian blurred channel (red and green
only). Three classifiers were tested to do the AV classification: LDA, QDA, k-NN. The
paper [60] proposes a simpler unsupervised approach to the classification when the vessel
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Table 2.1: A summary of the features reviewed in Subsection 2.4. The letters
R, G, B, H, S, V correspond to the image channels: red, green, blue, hue, sat-
uration, value. Superscripts correspond to the papers where the features were
employed: 'Relan et al. [44] and [45], 2Grisan et al. [49], *Tramontan et al. [52],
“Kondermann et al. [53], ®Saez et al. [55], *Niemeijer et al. [56] and [57], "~
Muramatsu et al. [58], ®Dashtbozorg et al. [59)

1. Variance in the centerline pixel neighborhood in R
2. Mean in the centerline pixel neighborhood in H | ]
3.-4. Mean in the centerline pixel neighborhood in R, G |
5. R contrast 2
6. Multiclass PCA of profile |*
7. Multiclass PCA of rectangular |
vessel segment |
8. Median value of a profile in G
9.-13. Mean value of a profile in H, S, V, R, G |
14.-19. Intensity of the centerline pixel in H, S, V, R, G |
19.-23. SD of of a profile in H, S, V, R, G |
24.-25. Highest intensity of a profile in R, G |
26.-27 Lowest intensity of a profile in R, G |
28.-35. Intensity of a centerline pixel in a Gaussian blurred |
(4 different sigmas) R and G channels
36. Intensity of the centerline pixel in B
37.-39. R, G, B contrast |
(5x5 inside / 10x10 outside) |
40.-43. Mean intensity of the vessel in R, G, B, H, S, V I®
43.-46. SD of the intensity among the vessel in R, G, B, H, S, V |
47. Max intensity among the vessel in R |
48. Min intensity among the vessel in R |

‘ 8

I

pixels of the red channel (after normalization of the image) are considered and clustered
(using k-means) into artery, vein and unknown clusters.

An overview of all the reviewed features can be found in Table 2.1.

2.5 Methods for automatic estimation of arterio-venous ratio

Several systems for the automation of the AVR estimation procedure were proposed. The
general steps, followed by the both manual and automatic approaches, can be summarized

as:

. Image preprocessing

. OD localization and estimating the ROI

. Vessel segmentation

. Cutting the vessels into segments and estimating the vessel width

. Estimating the sub-trees of the vessels
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6. Classifying the vessels as arteries and veins
7. Selecting the final vessels or vessel pairs for estimation of CRAE and CRVE
8. Computing the AVR

Not all these steps have to be present. The final vessel selection differs typically between
the manual method to AVR estimation and the automatic methods. Selecting the final
vessels for AVR computation in the manual approaches is typically done by selecting
either the root part or branches of a vessel. The automatic approaches typically do the
computation in sub-regions of the ROI (e.g. by division into six sub-rings) and assess
the AVR separately in each sub-region. The final AVR value is averaged over the sub-
regions [57, 60]. So far the validation of the automated AVR systems has only been made
by direct comparison of the automatically and manually obtained AVR. No association
between blood pressure or other clinical measurements has been investigated, although
it has been concluded as a desired progress [57]. A review of the proposed systems for
fully automatic AVR estimation follows.

Tramontan et al. [52] proposed a system where the image illumination is normalized,
both intra- and inter- image. The algorithm uses vessel tracing to segment the vessel
network that is subsequently used to detect and segment the OD. It was not specified how
the final vessels are selected for estimating the central vessel equivalents. The proposed
system was evaluated on a non-public dataset. Evaluation of the system was done by
investigating the correlation between the manual and automatic values.

Niemeijer et al. [57] proposed an approach which employed the vessel classification pro-
cedure reviewed in Subsection 2.4. For the vessel width measurement, a technique called
‘tobogganing’ [62, 63] was used in the both the manual and automatic approaches. The
INSIPRE-AVR (see Subsection 2.5.1) dataset was used for evaluation of the system.
The manual and automatic AVR values were compared using Bland-Altman plots and
Student’s t-test.

Dashtbozog et al. [60] proposed a system based on the vessel classification approach
described in Subsection 2.4. A scheme for vessel graph estimation was proposed and
used to improve the vessel classification performance. The system was validated using
the DRIVE, INSPIRE-AVR and VICAVR databases.

2.5.1 Assessment methods for arterio-venous ratio

To assess the performance of AV classification, most of the methods used the classification
accuracy of centerline pixels [44, 45, 53, 58, 57|, others assessed classification accuracy
of the whole segments [49, 55]. The assessment is typically limited to the segments that
are within or around the ROI for the AVR computation.

To assess the whole AVR framework, the correlation coefficient between the manually
and automatically estimated AVR is often used. However, the correlation coefficient has
drawbacks because the manually estimated AVR can be biased, which is why associations
of the AVR with the blood pressure are used. The association of the AVR with blood
pressure is well documented [27], thus it serves as an objective way to validate the
proposed framework. The assessment is done typically in a way that a linear model is
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estimated between the AVR and blood pressure of the measured patients and confidence
intervals and slope of the linear regression are assessed and compared [27]. This way of
assessment of an automatic AVR framework, has not been done yet, although it has been
considered as a desired outcome [57].

2.6 Databases used in retinal image processing

Medical image databases with an appropriate GT about the image contents enable the
development and proper evaluation of automatic image analysis methods. In this section,
databases containing GT for the blood vessels and databases containing GT for the
estimation of AVR are reviewed.

Five publicly available databases were identified, which have the GT for the blood vessels:
ARIADB, CHASEDBI1, DRIVE, HRF and STARE. Information about the databases
selected for testing the retinal blood vessel segmentation methods is summarized in Ta-
ble 2.2. The number of images, image dimensions, FOV angle and diameter, the subsets
and percentage of vessel pixels in the GT are presented, for further information please
refer to the original publications. Examples of the database images are provided in
Figure 2.5.

Table 2.2: A summary of database information. N; is the number of images and
Ngr is the number of experts and the percentage of annotated vessel pixels (per
expert) in the ground truth segmentation. Abbreviations of the image subsets are
age-related macular degeneration (AMD) and diabetic retinopathy (DR).

Di .
Name, ref. N;  FOV [ HHensions Subsets Nar
FOV g
768x576 AMD (23)
ARIADB [64] | 143 50° 739 px Healthy (61) 2 (9.6%, 8.5%)

DR (59)
999x960 Left eye (14)

CHASEDBLI [65] 28 30° 2 (10.1%, 9.7%)
916 px Right eye (14)
565x584 Traini 20 2 (12.7%, 12.3
DRIVE [66] 0 45 * raining (20) 2 (12.7%, 12.8%)
540 px Test (20)
3504x2336  Healthy (15)
HRF [67] 45 60° 3262 px DR (15) 1 (9.13%)
Glaucoma (15)
700x605
STARE [68] 20 35° * - 2 (10.3%, 14.8%)
649 px

The retinal databases which are publicly available with the GT for the AVR are sum-
marized in the following paragraph. Only a short overview with the basic information is
given here to provide background information, as none of the databases were used in our
experiments with the AVR. Those databases include DRIVE [66], which contains also
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the GT for the blood vessels and is covered at the beginning of this section; INSPIRE-
AVR [57], which contains 40 colour images of the vessels, ODs and an AVR reference
standard — the image resolution is 2392x2048; VICAVR [69], which contains 58 images
which include the calibre of the vessels measured at different radii from the OD as well as
the vessel types labelled by three experts — the image resolution is 768x584; WIDE [70],
which contains 30 high-resolution (although downsampled), wide-field images of healthy
eyes and eyes containing AMD — the image resolution differs with an average of around
800 x 1200. Other, non-public databases can be also found [44, 49].
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CHASEDB1

STARE

Figure 2.5: Example images from the databases used for the assessment of the
blood vessel segmentation methods. The images are labelled by the names of the
databases. It can be seen that the retinal images have similar characteristics but
can differ in color, contrast, texture and presence of pathologies (clearly visible
brighter dots in DRIVE and STARE images for example). The pathologies, OD
and central vessel reflex (a brighter strip typically visible in arteries) are the most
common sources of misclassifications in the vessel segmentation process [8].
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Azzopardi Bankhead

Soares

Figure 2.6: Examples of the binary blood vessel segmentation (optimized for the
segmentation Acc with GT1) of the STARE image from Figure 2.5. Four methods
out of the five reviewed methods — those that give better results — are illustrated. It
can be noted how the pathologies cause false positive detections. Also differences
between the manual segmentations GT; and GTs are clearly illustrated.
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2.7 The anatomy and physiology of the diaphragm

The diaphragm is the main breathing muscle. It is 2-4 mm thick and located at the
bottom of the thoracic cavity, as illustrated in Figure 2.7. The diaphragm is not actually a
single muscle but rather a composition of several parts which can be activated separately.
It has a concave, asymmetric shape with the most cephalic point — the centrum tendineum
— connecting the parts together. The diaphragm separates the thoracic and abdominal
walls and the abdominal cavity [71].

N\ Nose

Mouth

Lungs Trachea

Diaphragm

Figure 2.7: An illustration of the diaphragm’s location inside the trunk. Picture
by Theresa Knott, distributed under a CC-BY 3.0 license — taken from [72].

The diaphragm and deep stabilization muscles of the body have been described as an im-
portant functional unit for dynamic spinal stabilization [73, 74]. The diaphragm precedes
any movement of the body by lowering itself and subsequently establishing abdominal
pressure, which helps to stabilize the lumbar part of the spine. Proper activation of
the diaphragm within the stabilization mechanism requires the lower ribs to be in an
expiratory (low) position. During the breathing cycle, the lower ribs have to stay in the
expiratory position and only expand to the sides. This is an important prerequisite for
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a straight and stabilized spine. Under these conditions, the motion of the diaphragm is
smooth during respiration and properly helps to maintain the abdominal pressure.

Dysfunction of the cooperation among the diaphragm, abdominal muscles, pelvic floor
muscles and the deep back muscles is the main cause of vertebrogenic diseases and struc-
tural spine findings, such as hernia, spondylosis and spondylarthrosis |75, 76]. Diaphragm
function control is a broad and important issue for a number of fields of investigation,
including pulmonology [77], chest surgery, rehabilitation [78] and gastroenterology [79].
However, studies dealing with the lumbar stabilization system mostly do not include
monitoring diaphragm activity [80]. A traditional objective of studies dealing with the
diaphragm’s function is to study the diaphragm’s respiratory function [81]; studies fo-
cused on the postural function are rare.

Studies focused on diaphragm activation with the aim of posture stabilization include
those of Hodges [82, 83, 84, 85|, who concluded that phase modulation corresponds to
the movement of the upper limbs in diaphragm electromyography records. Some works
deal with various modes of the diaphragm’s functions in various respiration types [86, 87]
or in situations not directly related to respiration, like activation during breath holding
[88]. These studies have always concentrated on healthy subjects who did not exhibit
symptoms of respiratory disease or vertebrogenic problems.

The causes of LBP and their relations to spinal findings have been the subject of several
studies and continue to be a significant research topic. Jensen [89] assessed low back
MRI with the goal of finding structural changes related to LBP. Jensen found no direct
connection between certain types of structural changes and LBP. The only structural
change related to pain was disk protrusion. Carragee [90] studied the MRI findings of
200 subjects after a period of LBP and found no direct and significant MRI finding
related to LBP.

The way in which the diaphragm is used for non-breathing purposes is affected by its
recruitment for respiration [91]. There is evidence that the presence of respiratory disease
is a stronger predictor for LBP than other established factors [11]. However, the rela-
tionship between the respiratory function and the postural function is widely disregarded
[14]. The coordination of muscles in the body for posture stabilization is a complex issue,
and the role of the diaphragm in this cooperation has not been intensively studied [13].

2.8 Diaphragm assessment using magnetic resonance imaging

MRI has not been a modality used very often in the studies of the diaphragm. Although
several studies exist addressing suitability of the MRI images for the measurements or
assessing the influence of image artifacts. A review of the existing studies that employed
MRI in the assessment of the diaphragm is provided in this section. Example of the
diaphragm screened using MRI is provided in Figure 2.8.

Gierada [92] used MRI for observing the anteroposterior (AP) size of the thorax, the
height of the diaphragm during inspiration and expiration, and also the ventral and
dorsal costophrenic angle during maximal breaths in and out. Gierada used a 1.5 T MRI
device for measuring the height of the excursions of the diaphragm at three different
points in several sagittal planes. Gierada [93]| assessed MRI artifacts and concluded that
MRI is a valid method for diaphragm image processing along the diaphragm contour.
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Figure 2.8: An example of the diaphragm screened by MRI in a sagittal plane.

Differences in diaphragm movement while performing thoracic or pulmonary breathing
with the same spirometric parameters were tested by Plathow [94]. Plathow also exam-
ined the vital capacity (VC) of the lungs compared with 2D and 3D views in [95]. He
concluded that there was a better correlation between lung capacity and the 3D scans. In
another study, Plathow focused on the dynamic MRI. He proved significant correlations
among diaphragm length and spirometric values vital capacity, forced expiratory volume
(FEV1) and other lung parameters [96]. Plathow [97] assessed diaphragm length using
dynamic MRI in the mid-coronal plane by 1.5 T magnetic resonance, and concluded that
the spatial and time resolution was sufficient for acquiring the breathing sequences.

Suga [98] used breathing MRI (BMRI) for comparing healthy subjects and subjects with
chronic obstructive pulmonary disease (COPD), measuring measuring the height, excur-
sions and antero-posterior (AP) size of the diaphragm with the zone of apposition. Suga
concluded that BMRI is a useful non-invasive method with good spatial and temporal
resolution.

Kotani [99] and Chu [100] assessed chest and diaphragm movements for scoliosis patients
using breathing MRI. Kotani [99] concluded that there was ordinary diaphragm motion
with limited rib cage motion in the scoliosis group. The position of the diaphragm
was measured relative to the apex of the lungs to the highest point of the diaphragm.
Chu [100] compared healthy subjects against subjects with scoliosis, finding the same
amount of diaphragm movement in both groups. The scoliosis group had the diaphragm
significantly lower in the trunk and relatively smaller lung volumes.

Paradox diaphragm movements for subjects with COPD were investigated by Iwasawa
[81] using dynamic MRI. Iwasawa used deep breath sequences while comparing the di-
aphragm height and costophrenic angles. Iwasawa also used a displacement area to
measure movement of the diaphragm.

The effect of intra-abdominal pressure on the lumbar part of the spine was observed by
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MRI and pressure measurement by Daggfeldt and Thorstensson [101].

The measured parameters can be summarized as follows:

e Measurements of cranio-caudal excursions of the diaphragm [102, 103, 98, 104, 92,
105]

e The anteroposterior and lateral proportion of the diaphragm [99, 100]

The height and anteroposterior proportion of the diaphragm [92, 81]

Shortening of the diaphragm contour in the sagittal and frontal plane [106]

Curvature of the diaphragm [107]
e Comparison between the movement of the ventral and dorsal diaphragm part [93]

e Assessment of the diaphragm motion using displacement area of the diaphragm
[81, 88]

2.9 Relation between low back pain and diaphragm

LBP is a wide-spread and widely studied phenomenon. Alternating respiratory patterns
and anatomical changes in the diaphragm have been assessed in LBP subjects. Studies
concluding that there is increased susceptibility to pain and injury [73, 84, 108] identified
differences in muscle recruitment in people suffering from LBP.

Janssens [15] used the fatigue of inspiratory muscles and observed an altered postural sta-
bilizing strategy in healthy subjects. Jenssens also observed non-worsening stabilization
with an already altered stabilizing strategy in subjects suffering from LBP.

Kolar [109] investigated differences in diaphragm contractions between healthy subjects
and LBP subjects. He observed lesser contractions in the posterior part of the diaphragm
while the postural demands on the lower limbs increased, and he suspected that the intra-
abdominal pressure lowering might be the underlying mechanism of LBP.

Grimstone [12] measured respiration-related body imbalance in subjects suffering from
LBP, observing worse stability in subjects with LBP. Roussel [14] assessed the altered
breathing patterns of LBP subjects during lumbopelvic motor control tests, concluding
that some subjects used an altered breathing pattern to provide stronger support for
spinal stability.
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CHAPTER III

Retinal blood vessel segmentation

3.1 Introduction

In this chapter, the performance of pixel-wise blood vessel segmentation methods de-
signed for retinal images with publicly available implementation is reviewed and com-
pared. Five methods, two supervised and three unsupervised, were studied, and their
performance was assessed using five publicly available databases with GT for vessel seg-
mentation.

To assess the performance potential of each method, an experiment was set up so that
the parameter space of each method was sampled for each database and the optimal
segmentation performance was searched using a grid search (see Subsection 3.3.1). In
order to keep the conditions of the experiment consistent, the image preprocessing parts
of the methods were separated and applied to all the methods.

Analysis of the algorithms’ performance over the parameter value ranges provides several
valuable results: (1) a comparison and assessment of the generalization capability of the
methods over several different databases that exploits the segmentation potential of each
method, (2) a comparison of the performance and settings of the methods with the
original publications and with the state of the art, and (3) baseline settings suitable for
application of the methods to other data.

Results from the parameter optimization were then used to propose a set of models which
allow to predict the parameters of the segmentation methods for new databases. The
prediction is based on various features of the databases like image resolution or OD size.

3.2 Data

The databases used to assess the segmentation performance and optimize the methods’
parameters were reviewed in Section 2.6. The databases are ARTADB, CHASEDBI,
DRIVE, HRF and STARE.

41
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The DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (Structured
Analysis of the Retina) databases are currently the datasets most commonly used to
evaluate retinal vessel segmentation methods. All the methods reviewed in this chapter
were originally evaluated using DRIVE and STARE, with an exception of the Bankhead
method, which was only evaluated using DRIVE. Our experiments were done on three
other databases with different properties, which enabled a more robust comparison of the
methods and allowed modeling and predicting the settings of the methods’ parameters.

3.3 Methods

The methods reviewed for the blood vessel segmentation task were introduced in Chap-
ter 2, Section 2.3. The methods are the Azzopardi method, Bankhead method, Nguyen
method, Soares method and Sofka method.

3.3.1 Performance optimization and comparison

The segmentation performance of each algorithm was assessed using the manual segmen-
tation of a database’s first observer (sorted in alphabetic order) as a reference and using
MCC, Acc, Sn, Sp and AUC as the performance measures. In the case of databases
without a FOV mask (ARIADB, CHASEDBI1, STARE), the mask was generated using
edge detection and ellipse fitting. The measures are expressed as percentages. If two sets
of manual segmentations were provided in a database, the performance of the second ob-
server (the second manual segmentation) was assessed and compared to the performance
of the automatic methods.

THE SETUP OF THE GRID SEARCH

A grid search was used to find the best segmentation performance in a subspace created
by a Cartesian product over the sampled sets of the parameter values in Table 3.1. The
parameters of the methods were optimized for highest Acc and AUC!. Below we discuss
the details for each method that differ from standard grid search procedure.

With the Soares method, the parameter settings of the classifiers are determined by
preliminary experiments and the reported values were set as indicated in Table 3.1. To
search for the best Ao, a greedy optimization approach was used in order to avoid
evaluating poorly performing Aor.

With CHASEDBI1 and HRF, it was infeasible to execute the Sofka method on the images
in the original resolution. Therefore, the images were downscaled so that the longer side
of an image was 600 pixels.

The Azzopardi method is set up using eight parameters, which is a relatively large number.
As a consequence, an exhaustive search in the parameter space requires evaluating the
performance at too many points. Therefore, it was decided to explore the performance
for the parameters individually beginning at the point defined in [39] or at a randomly

LComplete results from the optimization procedure are available at http://www.it.lut.fi/mvpr/
medimg
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Table 3.1:

Sampled values of the parameters.

The superscript over the set

of wavelet levels (e.g., {1,2}=?) represents subsets of the indicated size (e.g.
{1,2)52 = {{1},{2},{1,2}}).
algorithm performance was done separately for individual parameters begin-
ning at the ‘starting point’ and adding values indicated in the column Test
ranges. For the Bankhead method £s was sampled logarithmically in the inter-
val (0, max value (all vessels removed)) on each database. AR, CH, DR, HR, ST
are abbreviated names of the databases which are ARTA, CHASEDBI1, DRIVE,

For the Azzopardi method assessment of the

HRF, STARE.
Soares method Bankhead method Nguyen method
Ammor {1,2--17}=* Avan | {1,2,--+,4}%* (AR,CH,DR,ST) || W | {12,13,---,20} (AR, DR, ST)
ne | {2-10°} (AR, DR, ST) {1,2,--,5}<3 (HR) {45,46,--- 55} (HR)
{3-10°} (CH, HR) Dt {0.05,0.1,---,0.3} {25,26,---,35} (CH)
ng1 {30} [ 40 values in log. scale w {2,4,--- , W -1}
Ng2 {40} &n {0} T {0.5,0.55, -+ , 1.5}
Sofka method Azzopardi method
7, pad {0.50,0.52,---,2.0} (AR) Starting point
preprocessing | {0.50,0.52,---,1.5} (CH,DR) || Parameter | AR | CH | DR | HR | ST Test ranges
{0.50,0.52,---,1.5} (HR,ST) o1 25 | 48 | 24 | 7.2 | 2.7 | {0,£0.2,£0.5}
7, CLAHE {20.0,20.02,--- ,21.0} (AR) o2 2 4.3 1.8 6.8 | 2.1 | {0,£0.2,40.5}
preprocessing | {18.0,18.02,---,20.5} (CH) r1 10 18 8 26 12 {0,+4, +6}
{8.0,8.02,---,14.0} (DR) T2 24 34 22 50 | 24 {0, £4, +6}
{31.50,31.52,--- ,33.5} (HR) ool 2 3 3 2 | 1 | {01,405}
{20.0,20.02, - -- ,22.0} (ST) 002 2 1 1 {0,£1,£0.5}
ax 04 | 02| 07 | 04 | 06 | {0,£0.5,£0.2}
[ 01| 01 ] 01 ] 01|01/ {0,£0.5 0.2}
r {0.1,0.105,--- ,0.2}
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selected point. Then, the ranges defined in Table 3.1 were followed from the starting
point only in the direction of the parameter axes. The whole procedure was repeated
from the best observed point as long as there was an improvement in the performance.

The performance of the Bankhead method was observed to be influenced very little by
parameter &, and thus, &, was not used in the experiment. It should be noted that
the AUC measure was assessed on the vessel-enhanced image before binarization and
cleaning as the post-processing step. As a consequence, it yielded low values. It is
possible to observe the influence of the cleaning on the receiver-operating characteristic
(ROCQ) characteristics in Figures 3.3 — 3.5.

TRAINING DATA

Subsets of the databases were used as training data to optimize the parameters and
to train the classifier of the Soares method. The number of training images differed for
each database: with DRIVE, the dedicated training set was used. With HRF, 15 random
images were selected for training. With ARIADB, 30 random images were selected. With
STARE and CHASEDBI, each database was randomly divided into two subsets of the
same length and each subset was used to train a classifier. Each of the classifiers was
then used to classify images from the training set of the other classifier.

IMAGE PREPROCESSING

Two different preprocessing approaches of the input images were identified among the
methods. The first one is the ‘pad only’ preprocessing method, which pads the edges of
the FOV [37] and forms a part of the Soares method. The second one is the contrast lim-
ited adaptive histogram equalization (CLAHE) preprocessing method, where the image
is padded as above and then CLAHE is applied. This approach comes as a part of the
implementation of the Azzopardi method. With the pad-only preprocessing, padding by
50 pixels was used. With the CLAHE preprocessing, the image was padded to the image
edges before applying the CLAHE algorithm with 6x6 tiles per image.

Each method except the Sofka method was applied to the green channel of the input
image. The Sofka method can be applied to the green channel alone or to the full colour
image. It produced better results when applied to the colour image.

3.3.2 Prediction of the segmentation parameters

Taking advantage of having multiple test databases with different image resolutions, we
aimed to fit linear models in order to be able to predict the settings of the methods for new
databases. Eight features of the databases were chosen and tested as a predictors. Linear
models were then established based on various subsets of the predictors and assessed using
statistical properties of the models.

The established predictors are in Table 3.2, d,. is the angular resolution of the segmented
database expressed in pixels per FOV angle, d,, is the percentage of the vessel pixels in
the vessel , doq is the mean diameter of the OD, d,,f is the number of pixels in the FOV
mask and dgf is the diameter of the FOV mask in pixels. Lastly dyi..3 corresponds to
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Table 3.2: A description of the predictors used to model the parameters of the
segmentation methods. Values marked * refer to the values from Table 2.2. A
description of the computation of vessel width is provided in the text.

Predictor Definition
d FOV Y %
r FOV[]
dn, Percentage of the vessel pixels in the manual segmentations Ny *
dod Mean optic disc diameter
daf FOV & in pixels.
dny Number of pixels in the FOV.
dy1.3 Mean vessel width

drive

count

0 5 10 15 20 25
median vessel diameters median vessel diameters

Figure 3.1: An example of the histogram of vessel width estimated on different
databases. The means of the Gaussians estimated by GMMs were used as the
predictors of the vessel segmentation parameters.

vessel width. The Bankhead method was applied on the retinal images which resulted in
preliminary vessel segmentation. The Bankhead method was selected because its parame-
ters are stable with varying image resolution. The segmented vessels were also separated
into vessel segments using Bankhead’s toolbox [40]. A length limit was applied to the re-
sulting vessel segments so only reasonably long segments were processed. The statistical
distribution of the vessel widths was then fitted with three Gaussians by using the GMM.
The mean of each model component was then used as the predictor in ascending order
(dy1 corresponded to the lowest i, dy2 to the second lowest and so on). The distribution
of the vessel widths is illustrated in Figure 3.1.

The predictors were used to estimate linear models and adjusted R? was assessed for each
model to determine its ability to predict the segmentation parameters. Combinations of
one to three predictors were used. The segmentation parameters were divided into two
groups — a resolution-related group and all the others were grouped. The resolution-
related group was expected to be predictable via the selected predictors and, thus, a
model was searched for in order to give as good as possible prediction for all parameters
in the group. Application of the models on the whole group was also done in order to
be able to draw conclusions about the generalizability of the models and decrease the
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Table 3.3: The division of the parameters on the resolution-related group and
the non-resolution-related group.

Category Parameters

Resolution-related  Azzopardi 01.2,T1.2

Bankhead Abanl..?a fs

Nguyen w
Soares Aori 3
Other Azzopardi  0g1.02, 1.2, T
Bankhead Dt
Nguyen w, T
Soares —

influence of random perturbations in both predictors and parameters. The parameters
in the ‘non-resolution-related’ group were inspected separately. The inspection was done
for the parameters optimized by both AUC and Acc measures.

3.4 Results

The results from the optimization experiment and the comparison of the results with the
state-of-the-art methods are reported in Subsection 3.4.1. Then Subsection 3.4.2 reports
parameters corresponding to the results reported in Subsection 3.4.1 and deals with the
prediction of the parameters.

3.4.1 Performance of the algorithms

The performance of the algorithms is presented in Table 3.4. It is possible to refer to
Figure 3.2 for visual comparison of the resulting accuracy and its change with change to
the preprocessing. The ROC characteristics of the methods are provided in Figures 3.3 —
3.5 for a more general comparison of the methods. In the ROC comparison, each method
is presented only with the preprocessing type that resulted in better performance, applied
to all databases, in order to keep the amount of data reasonable.

First we compare the influence of preprocessing on each method and focus only on the
preprocessing approach that leads to better performance. Influence of the preprocessing
selection is illustrated in Figure 3.2. Applying CLAHE preprocessing had a positive
effect on the Azzopardi and Bankhead methods. With the Nguyen method, the effect
was positive on average, but the results were inconsistent. In general, the choice of the
preprocessing approach had the smallest effect on the Nguyen method. The effect on the
Soares method was negative, with the exception of the STARE database. The effect on
the Sofka method was negative for all databases. The absolute difference between the
accuracy measured with CLAHE and pad only was up to 0.5 in percentage units. As a
result, the comparison that follows will consider the results from CLAHE preprocessed
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Table 3.4: The performance of the methods, each assessed with selected type of
preprocessing: the Soares and Sofka methods with pad only and the Azzopardi,
Bankhead and Nguyen methods with CLAHE. Corresponding parameter settings
are given in Subsection 3.4.2. The results published in the original papers are
shown in italics under the current results. The best scoring results in sense of Acc
and AUC for each database are shown in bold.

Acc optimized; Pad only — Soares, Sofka. CLAHE — Azzopardi, Bankhead, Nguyen.

Soares method

Sofka method

Azzopardi method

— || Acc Sn Sp MCC AUC|| Acc Sn Sp MCC AUC|| Acc Sn Sp MCC AUC
AR || 93.6 53.6 97.7 57.6 90.7 | 93.3 44.5 98.3 53.3 86.3 ||94.0 56.2 97.9 60.8 89.2
CH ||94.6 69.0 974 68.9 96.4| 93.2 50.9 98.0 58.0 90.8 || 94.3 63.7 97.8 66.7 93.2
93.9 75.9 95.9 68.0 94.9
DR ||94.7 71.7 98.1 75.0 96.1| 93.5 60.9 98.2 67.9 91.5 | 945 70.0 98.1 74.0 95.6
9r — —  — | — — = 944 66 97.0 7.8 96.1
HR || 95.8 734 98.0 733 97.0| 94.3 583 97.8 61.4 93.7 | 95.7 69.3 98.3 72.0 95.6
ST || 95.1 70.3 98.0 72.6 96.7| 93.8 56.5 98.1 62.7 924 || 953 714 98.0 73.3 952
94.8 — — — — —_ — — — — 95.0 77.2 97.0 73.4 95.6
Bankhead method Nguyen method Second manual segm.
— || Acc Sn  Sp MCC AUC|| Acc Sn Sp MCC AUC|| Acc Sn Sp MCC
AR || 93.8 56.9 97.6 50.0 85.7 || 93.8 52.4 98.1 58.7 87.593.0 57.6 96.7 57.0
CH || 940 644 974 654 91.7 ] 944 66.5 975 674 93.5 | 95.6 77.0 97.8 75.7
DR || 94.0 63.1 98.6 70.7 90.5 || 94.5 67.8 98.4 733 934|947 776 97.3 76.0
93.7 70.2 972 — — 941 — — — — — —_ — —
HR || 95.6 71.2 98.1 71.8 92.1|/95.8 72.0 98.2 73.3 94.7 — —_ — —
ST || 95.2 69.2 98.2 72.3 93.7(/95.5 71.5 98.3 74.3 95.8 || 93.5 89.5 93.8 72.2
—_ = — — — 952 — — — — —_ = — —
AUC optimized
Soares method Sofka method Azzopardi method
— || Acc Sn  Sp MCC AUC|| Acc Sn Sp MCC AUC|| Acc Sn Sp MCC AUC
AR 93.5 52.6 97.7 57.1 90.9 || 93.3 44.4 98.3 53.3 86.3 |/93.8 54.5 97.8 59.2 92.4
CH ||94.5 69.7 97.3 689 96.4| 93.2 50.9 98.0 58.0 90.8 || 94.2 67.0 97.2 66.7 95.9
DR || 94.7 72.0 98.0 74.9 96.2 || 93.5 60.9 98.2 67.9 91.4 | 944 70.1 98.0 73.4 96.4
HR || 95.7 73.0 98.1 73.1 97.1 943 58.3 97.8 61.4 93.7 || 954 68.1 98.1 70.4 96.7
ST || 95.1 71.3 979 727 96.8 || 93.8 56.4 98.1 62.7 924 || 95.0 68.7 98.0 71.5 97.0
Bankhead method Nguyen method
— || Acc Sn Sp MCC AUC|| Acc Sn Sp MCC AUC
AR || 929 47.3 97.7 529 88.8 || 93.7 53.1 97.9 58.2 89.5
CH | 94.0 644 974 654 91.7 ||94.0 64.3 974 652 94.7
DR[| 93.1 59.4 98.1 66.0 91.1 || 944 67.2 98.4 73.0 94.2
HR || 954 71.3 979 71.0 94.1 || 955 68.8 98.3 71.2 95.8
ST || 94.7 66.0 98.1 69.5 95.0 [|95.3 71.4 98.1 73.5 96.3
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Influence of the preprocessing type.

Soares ; AAeoo o A o ion
: : : 2 e DRIVE
Sofka A [ ° : : ¢ =ew CHASEDB1
. : : : e HRF
Azzopardi : oo ® A A oA : ¢ =% STARE
Bankhead ! o @A-A : o A ! e ARIADB
: : : performance
Nguyen | | | (N ] H | oA  : j - of the second
93 93.5 94 94.5 95 95.5 96 - manual segm.

Segmentation accuracy [%]

Figure 3.2: A comparison of the segmentation performance: pad only (circles)
and CLAHE (triangles). The databases are marked with different colours. Solid
dots and triangles mark the algorithm accuracy. Vertical lines mark the perfor-
mance of the second observer when available.

images for the Nguyen, Azzopardi and Bankhead methods, and the results based on pad
only for the Soares and Sofka methods.

A comparison of the methods reveals relatively similar performance. For the four meth-
ods (except the Sofka method), the absolute difference between the best and the worst
accuracy on individual databases was up to 0.5 in percentage units. No method seemed
to be clearly superior. The best and second best performance were achieved by the
Azzopardi and Bankhead methods on ARTADB, by the Soares and Nguyen methods on
CHASEDBI, by the Soares and Azzopardi methods on DRIVE, by the Nguyen and Soares
methods on HRF and by the Nguyen and Azzopardi methods on STARE.

The search for optimal parameters brought about a small improvement in the perfor-
mance of the algorithms compared to the performance published in the original papers.
Nguyen et al. [42] obtained lower 7 value than was obtained in the experiments presented
in this chapter which led to significantly worse performance on STARE. Compared to
the original papers, the performance of the Bankhead and Nguyen methods were slightly
improved by CLAHE preprocessing.

COMPARISON WITH STATE OF THE ART

Here we provide a brief comparison of the tested methods with state-of-the-art meth-
ods which are not available with implementation. Papers for the comparison that were
published before year 2011 were gathered from the review by Fraz et al. [§]. The more
recent papers were gathered from the list of papers that cite [64], [65, 66, 67, 68] — the
publications introducing the databases reviewed in Section 2.6. It was observed that
many methods report high performance but without providing a clear methodology for
performance assessment. To ensure that the comparison is fair, only methods explicitly
stating that performance was measured on pixels inside the FOV were included.

Typically the performance of retinal vessel segmentation algorithms is reported on DRIVE
and STARE and, thus, many results are available using those databases. Few methods
were identified that also reported performance on CHASEDB1 and HRF. A compari-
son of those state-of-the-art methods for which accuracy was reported is presented in
Tables 3.5, 3.6 and 3.7. When sensitivity and specificity were also provided, the per-
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Figure 3.3: The ROC characteristics of the studied methods. Manual segmenta-
tion by second observer is marked with an asterisk. The ROC curves correspond
to the parameters optimized by Acc (the solid line) and AUC (the dotted line).
The Bankhead method is different due to its post-processing: one is the ROC
curve of the IUWT response (the solid line) and the other is the convex hull of all
possible performances from the parameter search (the dotted line).
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Figure 3.4: The ROC characteristics of the studied methods. Manual segmenta-
tion by second observer is marked with an asterisk. The ROC curves correspond
to the parameters optimized by Acc (the solid line) and AUC (the dotted line).
The Bankhead method is different due to its post-processing: one is the ROC
curve of the IUWT response (the solid line) and the other is the convex hull of all
possible performances from the parameter search (the dotted line).



3.4 Results

51

STARE
100 -
Moghimirad et al. [114]
95 ‘Wang et al. [113]
Strisciuglio et al. [121]
- Zhang et al. [126]
ob | 2 *
=3
B e
85 B
p— Z
=
2% 7
° _Se 4
80 ?j 2 o/ 4 Odstréilik et al. [67]
=22 . Liu et al. [120]
» s S ;
'@' oE A Y ——y 4 Kaba et al. [133]
= 75 F3 © b/ Frangi et al. [132]
UC') B E ] Imani et al. [116]
EN JI \ Argiiello et al. [130]
70 |3 \ You et al. [128] Soares opim Acc
g g s . .
: g Lazéar and Hajdu. [122] Azzopardioptim acc
65 |- 1 Bankhead optim Acc
/‘ A Li et al. [135] Nguyen optim Acc
o L 3 ',' Mendoga et al. [123) | S0ares apim AL
i Xiao et al. [115] .
N N Azzopardioptim Auc
:' 3 Zhang et al. [134] | ______. Bankheadoptim auc
55 - s -
N Perret and Collet [127] Nguyenopsm auc
50 LU | | | | | | | I I |
0 2 4 6 8 10 12 14 16 18 20
1-Sp [%]
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formance was plotted in Figures 3.3 — 3.5. The latter way of comparing the methods

enables a clearer and fairer way of comparison.

Table 3.5: An overview of state-of-the-art methods evaluated on DRIVE and
STARE. The methods are sorted by mean performance on both databases.

DRIVE STARE
Algorithm Sn Sp Acc AUC| Sn  Sp Acc AUC
Wang et al. [113] 81.7 97.3 97.7 94.8 |81.0 97.9 98.1 97.5
Moghimirad et al. [114] |78.5 99.4 96.6 95.8 |81.3 99.1 97.6 96.8
Imani et al. [116] 752 97.5 952 — |75.0 97.5 959 —
Al-Rawi et al. [138] —  — 954 944 | — — — —
Lam et al. [139] —  — 947 96.1| — — 95.7 974
Liu et al. [120] 73.5 97.7 947 — |76.3 97.1 95.7 —
Annunziata et al. [136] — — — — |71.3 984 95.6 96.6
Roychowdhury et al. [111] |72.5 98.3 95.2 96.2 |77.2 97.3 95.2 96.9
Fraz et al. [110] 74.1 98.1 94.8 97.5 |75.5 97.6 95.3 97.7
Xiao et al. [115] 75.1 979 953 — |71.5 974 948 —
Zhang et al. [117] 78.1 96.7 950 — | — — — —
Strisciuglio et al. [121] 77.3 97.2 94.7 95.9 |80.1 97.2 954 96.3
Zhao et al. [118] 73.5 979 948 — |71.9 97.7 95.1 —
Krause et al. [119] 752 974 947 — | — — — @ —
Soares method 71.7 98.1 94.7 96.1 |70.3 98.0 95.1 96.7
Zhang et al. [126] 774 971 945 — |79.4 97.1 951 —
Nguyen method 67.8 98.4 945 934 |71.5 98.3 95.5 95.8
Azzopardi method 70.0 98.1 94.5 95.6 |71.4 98.0 95.3 95.2
Orlando and Blaschko [112] | 78.5 96.7 — — | — — — —
Staal et al. [66] —  — 944 952| — — 952 96.1
Miri and Mahlooji [124] |73.5 98.0 94.6 _ = = —
Fraz et al. [125] 73.5 97.7 94.5 96.7 |73.3 97.5 95.0 96.7
Perret and Collet [127] 714 97.8 944 — |67.1 982 951 —
Lazar and Hajdu. [122] |76.5 97.2 94.6 — |72.5 97.5 949 —
You et al. [128§] 741 97.5 943 — |72.6 97.6 95.0 —
Tagore et al. [140] — 942 953 — | — — 95.0 96.1
Masooomi et al. [131] 73.5 96.3 943 — | — — — —
Frangi et al. [132] 746 97.2 942 — |754 974 95.0 —
Mendoca et al. [123] 75.0 97.5 946 — |71.8 97.3 946 —
Bankhead method 63.1 98.6 94.0 90.5 |69.2 98.2 95.2 93.7
Argiiello et al. [130] 72.1 97.6 943 — |73.1 96.9 945 —
Zhang et al. [134] 71.2 972 93.8 — |71.8 97.5 948 —
Kaba et al. [133] 74.7 96.8 94.1 — |76.2 96.7 946 —
Yin et al. [129] 780 96.8 943 — |854 94.2 933 —
Sofka method 60.9 98.2 93.5 91.5 [56.5 98.1 92.4 93.8
Li et al. [135] 715 972 934 — |71.9 969 941 —
Odstréilik et al. [67] 70.6 96.9 93.4 95.2 |78.5 95.1 93.4 95.7
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Table 3.6: An overview of state-of-the-art methods evaluated on CHASEDBI.

Algorithm Sn  Sp Acc AUC
Roychowdhury et al. [111] | 72.0 98.2 95.3 95.3
Fraz et al. [110] 722 97.1 94.7 97.1
Soares method 69.0 97.7 94.6 96.4
Nguyen method 66.5 97.5 94.4 93.5
Azzopardi method 63.7 97.8 94.3 93.2
Bankhead method 64.4 97.4 94.0 91.7
Sofka method 45.6 98.3 93.0 89.1

Table 3.7: An overview of state-of-the-art methods evaluated on HRF.

Algorithm Sn  Sp Acc AUC
Cheng et al. [141] 70.4 98.6 96.1 —
Soares method 73.4 98.0 95.8 97.0
Christodoulidis et al. [137] [ 85.1 95.8 94.8 —
Nguyen method 72.0 98.2 95.8 94.7
Annunziata et al. [136] |71.3 98.4 95.8 —
Azzopardi method 69.3 98.3 95.7 95.6
Bankhead method 71.2 98.1 95.6 91.3
Lazar and Hajdu. [122] [71.0 98.3 95.3 —
Odstréilik et al. [67] 774 96.7 94.9 96.7
Sofka method 58.3 97.8 94.3 93.7

3.4.2 Parameter prediction

Parameters obtained from the state-space search are reported in Table 3.8. These pa-
rameters correspond to the results in Table 3.4.

In order to compare the resolution-related models, three best models based on the range
of R? were selected from groups of single-, two- and three-predictor models. The perfor-
mance of the models is summarized in Table 3.9. It was concluded from the results that
similar groups of models yielded high results in both cases of parameter optimization by
Acc and AUC, which strengthens confidence in the generalizability of the models. For
single predictor models, d, and d,; were the most informative predictors with median
R? > 0.95 ranging from 0.39-0.99. For models with two predictors the best combinations
were {d,1,doq} and {d,, d,1} with median R? > 0.96 and the range raised to 0.6-0.9. For
models with three predictors the parameters were {d,1,dy2, doq} With median R? > 0.97
and the range 0.94-1. In summary — all the methods scale well among images of differ-
ent resolutions. The parameters r1,r, of the Azzopardi method were the most difficult
to predict. The parameters optimized according to AUC were easier to predict than
parameters optimized by Acc (the lower range of R?).

The parameters from the non-resolution-related group were more difficult to model by
the chosen predictors. Tables with the corresponding assessment were placed in Ap-
pendix I. Parameter-wise, the Azzopardi method’s o1 and o9 optimized by Acc had low
R? even for models with three predictors (maximally 0.87). When optimized by AUC
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Table 3.8: Parameters corresponding to the results reported in Table 3.4. Note
that all the 7 within the AUC optimized parameters were optimized according to
Acc. The parameters which were acquired as a two sets (CHASEDBI1, STARE)
were averaged. Optimization of the parameters by ~AUC is not applicable to the

Bankhead method.

Acc optimized

ARIADB CHASEDB1 DRIVE HRF STARE
Soares
Apor {2,3,5} {3,7,9} {2,4} {5,13,15}  {2,4,5}
Ns 2ebH 3eb 2e5H 3eb 2ebH
Sofka,
T 1.86 1.3 0.82 3.74 1.75
Azzopardi
o1, 02 3.3, 1.6 5.3, 3.9 2, 1.6 7.2,6.4 2.8, 1.6
r1, T2 19, 27 21, 22 8, 25 23, 44 12, 28
001, 002 1,0.5 2.5, 0 3, 1.5 0.5, 0 0.5, 0.5
ai, az 0.4, 0.1 0.2,0 0.5, 0.1 0.4, 0 0.5, 0.1
T 0.14 0.16 0.16 0.16 0.15
Bankhead
Apan {2,3} {3,4} {2,3} {3,4} {2,3}
Dt 0.12 0.12 0.12 0.12 0.12
Es 522 780 150 1030 270
Nguyen
w 19 33 17 45 17
w 18 16 4 22 16
T 1.05 0.95 0.9 1.05 1.05
AUC optimized
ARIADB CHASEDB1 DRIVE HRF STARE
Soares
Amor {27376} {376710} {273,5} {5710716} {27477}
Ns 2eb 3ed 2ebH 3ed 2ebH
Sofka
T 1.86 1.3 0.82 3.74 1.75
Azzopardi
o1, 02 4.9, 2.4 7.1, 2.8 2.8, 1.8 74, 6.8 2.7, 2.8
r1, T2 16, 24 21, 28 8, 16 26, 50 12, 24
001, 002 4.57 1 9, 1.3 4.57 3 9.5, 0 1.3, 3
a1, az 04,0 0, 0.1 0.1, 0.1 0.4, 0.1 0.2, 0.1
T 0.18 0.185 0.18 0.21 0.2
Bankhead — — — — —
Nguyen
w 20 39 19 59 19
w 2 2 2 2 6
T 1.25 1.15 0.95 1.25 1.1
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Table 3.9: The linear models of the resolution-related parameters based on
different predictors. Assessment of the models was done by averaging R? over the
parameters. The models marked with an asterisk were statistically significant for
all the parameters.

Predictors (Acc) i Predictors (AUC) i
median (min, max) median (min, max)
d, 0.91 (0.41, 0.99)  dy;* 0.91 (0.72, 0.99)
dy1 0.94 (0.39, 0.99) d,3 0.83 (0.58, 0.96)
dog 0.86 (0.35, 0.99)  d, 0.95 (0.54, 0.99)
o1, dog 0.98 (0.69, 1) o, dog* 0.95 (0.91, 1)
dy, dy 0.96 (0.60, 1) dy, dyy 0.96 (0.90, 1)
dap, duy 0.88 (0.50, 0.97)  du1, dny 0.95 (0.82, 1)
dya, dag, dn 1.0 (0.95, 1) dot, dyz, doa 0.97 (0.94, 1)
dyr, dys, dog 0.99 (0.94, 1) d, dy1, dog 0.99 (0.90, 1)
dyr, dag, dny 0.98 (0.94, 1) o1, dus, dog 0.97 (0.88, 1)

the predictability was better for the models with one or two predictors. The parame-
ters a; and as were predictable for those optimized by Acc (R? 0.65-0.99) but were
not predictable when AUC was optimized. The parameter w of the Nguyen method was
also not predictable by models with less than three predictors in the case of using both
approaches to optimization.

The parameters p;, Apon of the Bankhead method spans a small range of values and the
fixed value of 0.12 was used as the modelled value. The assessment of a selected model
using classification accuracy can be found in Table 1.6. The practical application of the
proposed models is described in Chapter 3.

3.5 Discussion

As a consequence of lacking a standard evaluation methodology for automatic retinal
image processing methods [142], factors affecting the outcome of the evaluation (for ex-
ample, test set size, image preprocessing, evaluation metrics) vary among studies. Here,
segmentation accuracy was used as the primary measure for comparing segmentation
performance. It is the most widely used measure for assessing the segmentation perfor-
mance and it makes interpreting the results intuitive. Using accuracy alone can lead to
simplifying conclusions when, in general, the accuracy of the segmentations with different
sensitivity are compared. Typically, human raters tend to produce results with higher
sensitivity than automatic algorithms, but their accuracy can be lower. Performance on
the STARE database is a typical example [37]. Automatic methods, on the other hand,
might not be able to compete with manual segmentation at the same sensitivity level.
Therefore, we found it necessary to also provide the ROC characteristics (Figures 3.3 —
3.5) of the algorithms to demonstrate the relative performance of the methods at different
sensitivity.
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The performance of all the methods, except the Sofka method, was very much similar on
all the databases studied, and the order of best-performance varied based on the different
databases analyzed. The Soares method provides a slightly better AUC — it offers better
accuracy when higher sensitivity is considered. The comparison with the state-of-the-art
methods (Figures 3.3 — 3.5) revealed only few significantly better methods and showed
the methods to perform closely to each other. There might thus be a need to improve
the whole assessment methodology. One option could be to use skeletonized vessels [38],
which results in higher demands on the detection of narrower vessels.

As stated above, ROC curves offer a meaningful way to compare the performance of the
automatic methods and manual segmentations. It was shown in Figures 3.3 — 3.5 that the
manual segmentation of CHASEDB1 and STARE outperform the automatic segmenta-
tion markedly, and they can be regarded as challenging datasets. For DRIVE, the Soares
and Azzopardi methods offer performance very close to the manual segmentation, and
for ARIA, manual segmentation is outperformed by all the methods.

Considering the advantages and disadvantages of the methods reviewed from the original
publications in Subsection 2.3, most authors claimed fast segmentation. The exact seg-
mentation times were not measured in our study, but it is possible to conclude that each
method classified an image of STARE or DRIVE within the order of seconds, the fastest
method being the Bankhead method, followed by the Nguyen and Azzopardi methods. 1t
is worth noting that the training phase of the Soares method was speed up approximately
20 times by optimizing the source code.

The Sofka method was the only method designed to prevent false positive classifications
around high-contrast areas like pathologies or the OD. The performance of the method
was, however, well below the others. Qualitative inspection of the results showed that
the reason for the poor performance may mainly be because of the method is not well
suited for pixel-wise classification [38]. The resulting vesselness gains high values near
the vessels thus producing classification wider than that one used as the GT. Therefore,
in [38] the method was used to detect the vessel centrelines. However, the method was
not inspected closer as it is provided as an executable binary, and our focus was more on
the methods provided with the source code.

Qualitative inspection? of the other methods showed that with the Soares method false
positive detections at the edge of the OD are rare but appear more often with the unsuper-
vised methods. This was, however, largely corrected by applying CLAHE preprocessing.
The preprocessing, on the other hand, increased the noise in the images as well as the
subsequent classifications. The Azzopardi method was the most resistant to the noise and
the only one benefiting significantly from the preprocessing. Uneven illumination does
not seem to influence the classification of the unsupervised methods. A more important
factor appears to be that the vessels in the over- or under-illuminated areas have reduced
contrast. On the other hand, the Soares method is affected more by the uneven illumi-
nation, possibly due to fact that there are not enough examples of such images in the
training data.

Considering the individual methods, the Soares method provides very good performance
if part of the classified data is available for training. Training on a different database
leads to a performance drop [37] and when databases with different image resolution are

2The vessel segmentation in all the tested images is available at http://www.it.lut.fi/mvpr/medimg.
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Figure 3.6: An Illustration of the linear models. Selected parameters are corre-
lated with the angular resolution of the databases.

considered, it is infeasible to properly train the classifier unless the images are resampled.
The Soares method, when properly trained, provides high AUC which is valuable when
segmentation with higher sensitivity is desired. Of the unsupervised methods, the Az-
zopardi method yielded the highest AUC, which in some databases was even comparable
with the Soares method. The Azzopardi method seems to produce robust segmentation
of the wider vessels and also has the best robustness against pathologies and other high-
contrast areas. Narrow vessels cause the lower response of the filter and are usually
missed. The Nguyen method provides performance similar to the Azzopardi method, but
loses performance with pathologies with high contrast. On the other hand, it has a higher
response to narrow vessels thus providing a more balanced segmentation. The AUC of
the Nguyen method is lower than that of the Soares and Azzopardi methods. Lastly, the
Bankhead method provides the worst performance although not by a high margin. At
the same time, it is the fastest method. Also the Bankhead method exhibits performance
improvement from simple post-processing, such as the removal of isolated objects up to
a certain size, as can be seen in the performance gain of the method in Figures 3.3 — 3.5.

Most of the parameters of the methods proved to be possible to model and predict by
using the database resolution and the expected percentage of vessel pixels in the GT.
Also, the strong correlation of most of the parameters with the predictors (Figure 3.6)
supports this hypothesis. As a result, the proposed models are expected to provide
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close-to-optimal parameters for the methods. However, the models were not validated on
databases not used to establish the models. This was due to the limited number of the
databases. Therefore, the models could fail on other, unseen databases. In that case, the
Bankhead method seems to be the option with the smallest number of choices required
for parameter settings and the best robustness against parameter variation as it needs a
small range of wavelet coeflicients, uses percentile-based thresholding and the size of the
removed objects can be defined proportionally to the size of the ROI.

With regard to the sets of the tested parameter values, the range of limits were carefully
selected. In the case of the Bankhead and Nguyen methods, the parameters are expected
to be sampled properly in order to get close-to-optimal settings on each database. The
Azzopardi method is harder to optimize because it has eight parameters. The whole
parameter subspace defined by the ranges was thus difficult to evaluate, so there might
be room for improvement. Azzopardi et al. [39] have, however, already optimized the
parameters for DRIVE, STARE and CHASEDB1. With the Soares method, no parameter
search was made for the parameters of the Morlet wavelet other than A,,.,., which was
limited to integer values. This provides room for further improvement of the Morlet
wavelet-based vessel segmentation methods and the current tested method in particular;
setting the € and ko parameters can produce a filter with similar properties as the line
operator that is implemented in the Nguyen method. The advantages of this type of
response could be integrated into the framework of the Soares method. One observation
with respect to the wavelet filter mask is that between the A,,,, values 1 and 1.5, the
wavelet mask has a different mean value for different orientations and using a different
normalization of the mask might enable use of the response with a wavelet level size <2.



CHAPTER IV

Retinal vessel quantification

4.1 Introduction

Retinal vessel features like diameter, tortuosity and fractal dimension have been identified
to be connected with various retinal and systemic diseases and proposed for the early
identification of these diseases [26]. The employment of the computerized systems to
automate the manual processing of the images has, thus, been of high interest as in the
case of vessel segmentation a large body of research has been oriented towards methods
for the automatic assessment of the vessel features.

In this chapter, an approach to automation of the AVR measurement and its assessment
on a new retinal database is proposed. The approach consists of the application of the
vessel segmentation methods to the database, separation of the vessels into individual
segments, generation of AV GT and, finally, separating the vessels into arteries and veins
with subsequent selection of the final vessels and automatic estimation of the AVR. The
ROI for the estimation of AVR is placed in the usual location, inside a circular ring within
1-1.5 ODDs from the OD centre. Locating the centre and measuring the diameter of the
OD were manual in this work.

In Chapter 2, the clinical background of the retinal vessel quantification was described,
with a particular focus on the measurement and applications of AVR: A review of the
vessel features — or retinal characterization measures — was provided in Section 2.2. Then
in Section 2.4 we provided a review of the automatic methods for the AV classification
of retinal vessels. In addition, Section 2.5 provided an overview of the automated frame-
works for AVR estimation.

In this chapter, the database used in this study will be introduced in Section 4.2.
Throughout Section 4.3, the parts of the AVR framework are introduced: first the pre-
diction models of the vessels segmentation parameters are applied to obtain the vessel
segmentation on our database, next the approach to the vessel tracing and GT estimation
is described, then the section focuses on our approach to the automatic classification of
the segmented vessels into arteries and veins, and finally the approach to estimate the

59
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final AVR is covered. The results of the AV classification using our selection of features
and the comparison of the automatically and manually computed AVRs against the blood
pressure is presented in Section 4.4. The results are discussed in Section 4.5.

4.2 Data
4.2.1 The Savitaipale database

The database used in this work was based on the Savitaipale study — a population-based
follow-up cohort study on the risk factors of type 2 diabetes and screening for abnormal
glucose metabolism in primary health care. The study consisted of adults born 1933-1956
and residing in the Savitaipale municipality in Eastern Finland. The participants of the
study were examined at baseline during 1996-1999 and with follow-up during 2006—2008.
The retinal photographs were taken during the follow-up. In total 1561 participants were
invited to the study, off whom 1168 agreed to participate.

Images in the database are RGB colour fundus photographs of the size 2544x1696 pixels,
stored in JPEG (with optically visible quality degradation by compression) format with
8-bit colour depth per colour channel. Four retinal photographs are available per person
— one macula and one OD centred picture from both eyes. From the clinical parameters
measured during the study, systolic and diastolic blood pressure, age, BMI and sex were
made available for use in the presented work. A summary of the clinical data is provided
in Table 4.1.

Manual measurement of the AVR, made by a person trained in the task, was provided
with the database. It was made on 915 images which had sufficient quality. When
doing the measurements, the grader was masked to the subjects’ characteristics and end-
points. Images of the right eye were preferably measured; when an image was not of
sufficient quality then the image of left eye was used. The diameters of the six largest
arterioles and six largest venules (in pixels) were measured with a computer program
(Adobe Photoshop CS 11) in an area of 0.5 to 1 standard ODD from the OD edge.
Standard ODD in the study was 301.7 pixels, which was established based on a random
sub-sample of 100 participants. Typically the branches were measured in order to fulfil
the preferred number of the vessels (six).

4.3 Methods

Throughout this section, the application of the vessel segmentation prediction, as pro-
posed in Subsection 3.3.2, to our database is described in Subsection 4.3.1. Approach
used to trace the edges of the segmented vessels and measure the vessel width is sum-
marized in the Subsection 4.3.2. Approach to estimation of the AV ground truth for the
segmented vessels is summarized in the Subsection 4.3.3. The most important parts of
the AVR estimation framework are the approach to the vessel classification into arteries
and veins which is covered in the Subsection 4.3.4, and the approach to the final AVR
estimation, which is covered in the Subsection 4.3.5.
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Table 4.1: A summary of the clinical measurements of the participants in the
Savitaipale study and manual measurement of the AVR. The values are reported
as the mean and SD values.

Men Women
No. of images 419 466
Age 62.5

(6.4) 63 (6.7)

BMI 97.4 (4.4)  27.4 (4.9)

Systolic pressure [mmHg]  133.3 (15.0) 132.8 (14.6)

Diastolic pressure [mmHg]  83.0 (8.5) 80.3 (8.4)
( (0.0

8
AVR 0.626 (0.06) 0.643 (0.05)

4.3.1 Prediction of the vessel segmentation parameters

No manual segmentation of the retinal vessels was available for the Savitaipale database
and, thus, methods for the vessel segmentation and prediction of their parameters from
Subsection 3.3.2 were applied. In order to obtain reasonable vessel segmentation, several
combinations of the segmentation methods and the prediction models of their parameters
were tested. The Azzopardi and Nguyen methods were selected for testing because they
offer slightly better performance than the Bankhead method and no training examples
were available to train for the Soares method.

The selection of the model for the prediction of the method’s parameters and the assess-
ment of it was done by subjective qualitative comparison of the segmentation obtained
using a subset of the models described in Subsection 3.3.2. Models based on the following
sets of predictors were tested:

o {d,1}, referred to as AUC, or Accy
o {dy1,doq}, referred to as AUC, or Acco
o {dy1,dy2,doq}, referred to as AUC5 or Accs

AUC/Acc marks the measure used for optimizing the predicted parameters. Those were
the best among the models for predicting the resolution-related parameters. Although
these models are confirmed to only work well for the resolution-related parameters they
were used for predicting all the parameters because no important difference was observed
when a different model was setup for prediction of the non-resolution-related parameters.

Five images were randomly selected from the Savitaipale database for comparison of the
models, segmented and compared by the author. Illustrations of the differences in the
obtained segmentations can be found in Figure 4.1. The Azzopardi method was selected
as the segmentation algorithm because it appeared to better separate close vessels and
better delineate the edges of the vessels in general, as illustrated in Figure 4.1 at the
bottom. Comparison between the models 1, 2 and 3 did not reveal any big differences
in the segmentation, although the model {d,1,dy2, doq} appeared to give slightly more
robust results in edge detection in the presence of noise and central vessel reflex (an
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illustration is given in Figure 4.1, on the top row). A decision between using the AUC-
based model or the Acc-based model led to the selection of the AUC-based one because of
its higher robustness against noise and better detection in the presence of central vessel
reflex (an illustration of this can be found in Figure 4.1, on the middle row).

The Azzopardi method with the prediction model AUC3 was used for the final classifi-
cation. Furthermore the post-processing method proposed by Bankhead et al. [40] (the
removal of connected components up to a certain size and the filling of holes up to a
certain size) was applied after the segmentation. The threshold to obtain binary classi-
fication from the Azzopardi method was determined manually as well as the settings of
the post-processing: 7 = 0.95, £, = 2000, &, = 200.

4.3.2 Vessel tracing

Tracing of the vessel edges and measurement of their diameter was done using the
method proposed by Bankhead et al. [40], employing their Matlab implementation. In
the method, the traced vessel segments are derived from the binary vessel segmentation
which is thinned with subsequent detection of junction points that serve to delineate
individual segments. The thinned segment centreline pixels are then interpolated using
splines. The spline is used to establish interpolated straightened vessel picture. This
picture is blurred with the directional Gaussian filter — prolonged in the direction of the
vessel. The edges of the vessel are then searched from the centreline in a perpendic-
ular direction; the edge is established as the point with maximal gradient around the
centreline.

4.3.3 Arterio-venous ground truth estimation

In order to train and validate our approach to the AV classification of the vessel segments
the GT measurement of the vessel classes was needed. Having the vessels segmented and
separated into segments, as described in Sections 4.3.1 and 4.3.2, a tool was implemented
that allowed the labelling the segments as artery, vein, both, unknown and no-vessel. At
the same time, it is possible to label endpoints of each segment as head or tail (or
head-head, tail-tail and counter-current for some rare types of vessel orientation).

The location and diameter of the OD was also provided manually in our experiments and
another tool was implemented for that. Each OD was delineated by set of points that
were fitted by an ellipse. The average length of the axes of the ellipse were used as an
estimation of half an ODD.

4.3.4 Classification into arteries and veins

This section describes the approach to AV classification in the presented framework.
Supervised classification was chosen for the task with the LS-SVM [47] classifier previ-
ously proposed by Relan et al. [44]. The supervised classification was chosen because it
generally produces better and more robust results when appropriate training data are
available, which was also the case in our experiments. Classification features were es-
timated from averaged vessel profiles where the averaged profile was computed as the
mean of p,, individual profiles (such a sub-profile can be seen in Figure 4.2, delineated
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Figure 4.1: An illustration of the properties of the distinct prediction models for
the vessel segmentation that were considered for use on the Savitaipale database.
Areas with the important properties of the models are delineated by coloured
rectangles. The depicted properties are: on the top row — more robust edge
detection and better robustness in the presence of the central vessel reflex of the
model AUC3; on the middle row — better robustness in the presence of central
vessel reflex of the model based on AUC-optimized parameters; on the bottom
row — better delineation of the vessel edges and less merging of close vessels by
the Azzopardi method. The properties are discussed in Subsection 4.3.1.
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by the orange lines — the individual profiles — crossing the blue vessel’s centreline). For
computing the features, six key points were established on each profile — two points (e,
er) corresponding to the vessel edges, two points (h;, h,) placed in the upper part of
the vessel 0.75 - vg (vq is vessel diameter) from the middle and two points were placed
0.25 - vg from the middle (¢, ¢,). The points come in pairs, one from the left side and
the other from the right side. Furthermore we defined the area between h; and h, as the
outer area, the area between ¢; and e, as the vessel diameter or central area and between
¢; and ¢, as the inner area. An illustration of how the points are defined is presented
in Figure 4.2. The profile edges were estimated in the green colour channel. The colour
channels used to derive the features were taken from the RGB and HSV colour spaces.
To eliminate local changes in the image illumination, all channels were normalized by
subtracting a median filtered version from itself — the median filter was square shaped
with 125-pixel-long sides. The following features were then proposed:

1. Vessel height: the difference in the image intensity at the point hy; 1 and minimal
intensity in the corresponding profile half; the mean of the feature, computed from
the left and right half, is used

2. Central vessel height: the difference between the minimum intensity of the corre-
sponding left or right vessel part is subtracted from the maximum intensity in the
mner areq

3. The ratio between the vessel height and the central vessel height
4. The mean image intensity in the vessel diameter area

5. The mean image intensity in the outer area

The SD of the image intensities in the vessel diameter area

The SD of the image intensities in the outer area

® N>

The mean intensity under the centreline pixels of the sub-segment in the image
smoothed by the median filter

9. Vessel diameter

10. Vessel length

Features 1-7 were established from the red (R), green (G), blue (B), hue (H), saturation
(S) and value (V) colour channels and both from the raw channel and the one normalized
by subtraction of the median filtered image. Feature 8 was established from each of R,
G, B, H, S, V channels. In total, 92 features were proposed.

Greedy forward-feature selection was used to gather the feature set for the final clas-
sification. The parameters of the SVM classifier — v and o2 were optimized using the
simplex search method of Lagarias et al. [143] (the fminsearch function in Matlab was
used). Training of the classifier was only done on segments — more precisely the sub-
segments used to compute the features — inside the ROI used for estimation of the AVR.
The segments selected for classification were limited by diameter >10 pixels, which re-
sulted from preliminary experiments where it was observed that vessels with a smaller
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Figure 4.2: An illustration of the profile extraction and estimation of the profile-
based features. The vessel segment which is being processed is delineated by the
blue solid curve in the upper picture. A sub-segment of the length of 25 pixels
is delineated by the brighter orange cross-section lines (every 3rd cross-section is
plotted), which corresponds to profiles belonging to the individual sample points
of the vessel centreline — these profiles can be seen in the 3D view, colored red.
The individual cross-section profiles are then averaged to obtain a single profile
from the sub-segment. Filled circles on the profile, detected by the Bankhead
algorithm [40], mark the vessel edges delineating the vessel diameter vq. The
circle without any fill in the middle is the mean point between the edge points
used to divide the profile’s left and right sides. Triangles delineate arbitrarily
chosen points — the two labelled outer area are estimated as points laying 0.75 - vq
from the middle, the points labelled inner area are estimated as points laying
0.25 - vg from the middle. The features 1 and 2 from Subsection 4.3.4 are marked
as fh—ieft and fe—iefe.
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diameter are significantly harder to classify. To assign each vessel segment a single label,
soft classification of the sub-segments was averaged and used to assign a final label.

For the training process, 40 images were randomly selected from the database and manu-
ally labelled as described in Subsection 4.3.3. The set was divided into 20 training images,
10 images used for the feature selection and optimization of the v and ¢? parameters
(the optimization set) and 10 images were used for the validation of the performance (the
validation set) and the estimation of vessel confidence (see Subsection 4.3.4 for details).

CLASSIFICATION CONFIDENCE

In order to be able to identify vessels that are likely to be classified wrongly, a vessel
confidence (v.), measure was defined. It provides an estimate of how likely a vessel is to be
misclassified based on the SVM soft classification. First, the sub-segments located within
the ROI were extracted from the images of the validation set and the trained classifier
was applied to obtain the set of soft classification values: S. = {si,i = 1..s;} and s; is
the number of sub-segments. Then the range of soft classification values was divided into
N bins; we used 10 bins in our experiments, and two histograms were obtained from S.:
one for arteries, H, = {h"}, and the other for veins, H, = {hl'}; where A" means the
frequency of s’ values within the n-th bin. The vessel confidence of an arbitrary vessel
segment p with the soft classification value s2 that is closest to the centre of bin k is then
estimated as v, = 1—min(h®, h%) /maz(hE, h¥). The confidence was estimated separately
for segments thinner than 14 pixels and wider than 14 pixels. A threshold v, = 0.85
was set and vessels with lower confidence (non-confident vessels) were excluded from
processing. The threshold was set empirically as a reasonable value to avoid problematic
misclassifications.

4.3.5 Automatic estimation of the arterio-venous ratio

For automatic estimation of the AVR, it is necessary to be able to properly select final ar-
teries and veins for computing the ratio. We approached the vessel selection by grouping
the vessels based on the smallest angle a,. between their centrelines — groups are created
such that each vessel in the group is closer than an arbitrary threshold to at least one
other vessel — resulting in the n sets (i.e. groups) of vessel segments, G°,, i € [1..n].
A second grouping is then done within each G?, and is based on vessel parallelity r,.
Paralellity between two vessels is defined by a circular ring with the largest area cov-
ering both vessels while none of the vessels has an end point included in the ring; r,
is defined as the thickness of the ring. The second grouping divides G', into m; sets
G, 7 € [l.my], in this case, all vessel pairs within a set G, have to satisfy r, > t,

for an arbitrary threshold, ¢,; a segments can occur in multiple G;i but the intersection
of two sets G};i N Gin- cannot be equal to either G’;i or Gin». Each vessel left ungrouped

forms a new G7,.

During the final selection, one set of an- is selected from each G?, based on the average
distance of the vessels within Gfﬂ from the OD, where the distance is computed as the
shortest distance between the vessel’s centreline and the OD’s centre. Two approaches
to the selection of the final vessels were tested: the first one, AV R, does not change the
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Figure 4.3: An illustration of the final vessel selection. The vessels with delin-
eated edges are the ones which were considered for processing (vq > 10 pixels).
The vessels with the bold red edges (classified as arteries) and blue edges (clas-
sified as veins) are the final vessels used for AVR estimation. The dashed vessels
had classification confidence lower than the selected threshold. The class of vessels

that are not the final vessels is not depicted. The three vessels marked group based
on the angle illustrate the grouping process. The three vessels were grouped by
the smallest angle (G.) and the two subgroups were grouped based on parallelity
(Gpi)- Subgroup 2 (the darker vessel) was selected as the final vessel based on its
smaller distance to OD.

final number of either arteries or veins, i.e. when e.g. four final arteries and six final veins
are estimated, the numbers are kept as those numbers; the second approach, AV Ry, is
such that the number of final vessels is limited to min(ng,n,,6), where n, is the final
number of arteries and n, is final the number of veins.

When the final number of arteries or veins is lower than four — which can happen, for
example, when some of the vessels in the image are estimated as not-confident or when
many misclassifications happen — the image is excluded from processing.

4.4 Results

The proposed AVR framework is assessed in two ways. First, in Subsection 4.4.1, the
accuracy of the vessel segments classification into arteries and veins is presented. The
classification accuracy is compared for vessels of different widths and also to the state-of-
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Table 4.2: Information on the training, testing and validation sets of the vessel
segments. The vessel segments were limited to those inside the AVR ROI with vq
> 10 px and length > 20 px.

Images Segments (A, V) Sub-segm. 25 px

training set 20 410 (220, 190) 2213
test set 10 221 (119, 102) 1197
validation set 10 197 (109, 88) 1070

the-art methods. Then, in Subsection 4.4.2, the associations of the AVR with patients’
blood pressure are presented. The association between the AVR and blood pressure is
well researched [27] and the associations between the AVR and the blood pressure are
used to assess the AVR estimation systems [144].

4.4.1 Accuracy of the arterio-venous classification

Assessment of the AV classification was done by assessing the accuracy, sensitivity and
specificity of the centreline pixel classification. Accuracy is the percentage of correctly
classified pixels from all the tested centreline pixels. Sensitivity is the percentage of
correctly classified pixels labelled as arteries in the GT. Specificity is the percentage of
correctly classified pixels labelled as veins in the GT (specificity). At the same time,
performance of the classification among the whole segments was assessed because each
segment comes to the AVR computation process as one piece, providing a single diameter
value. Also, the percentage of correctly classified segments was used as a measure for
feature selection.

The segments included in the process were filtered by their diameter and length, and
only segments inside or crossing the ROI were taken into account. The width and length
limits were such that only segments wider than 10 pixels and longer than 20 pixels were
considered. The length p,, of the sub-segments was set to 25 pixels. Final classification
of a vessel was then obtained as an average soft label of the sub-segments within the
vessel. Statistics on the properties of the vessel segments is provided in Table 4.2.

Feature selection done on the test set resulted in the feature set { Rng, Gns, B2, G2} (a
capital letter marks the colour channel, n after the channel indication means normalized
image and the lower index marks the feature number as defined in Subsection 4.3.4). An
assessment of the AV classification performance is in Table 4.3. Pixel-wise accuracy of
the AV segments that were wider than 10 pixels was 0.96 on the validation set with the
performance skewed significantly between narrower and wider segments, as segments with
10-14 pixels reached an accuracy of 0.93 and segments wider than 14 pixels reached 0.998.
However, the drawbacks are that when non-vessel segments appear in the image, they are
classified as either an artery or vein because the proposed system does not consider any
other classes. When the non-vessel segments are included in the assessment, the accuracy
declined to 0.946, 0.928 and 0.998 respectively. In reality, the non-vessel segments are
typically shallow and can be confidently classified as arteries.

Segment-based accuracy was lower than that of the pixel-based one, sliding to 0.89 in
the case of non-vessel inclusion. For the final AVR estimation system, it is important
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Table 4.3: The accuracy of the final classifications (both pixel-based and
segment-based classifications). Division on the narrow and wide segments (bot-
tom part) show much better performance of the classification for the wider vessels,
that are more important in AVR estimation. An assessment was also made solely
on AV segments and on AV segments with non-vessels (n-v) included.

Accuracy Sensitivity Specificity

Diameter N Centerline Segments Centerline Segments Centerline Segments
10 197 AV only 0.964 0.934 0.998 0.991 0.930 0.864

208 incl. n-v 0.946 0.885 0.960 0.90 0.894 0.768
10-14 100 AV only 0.928 1.0 0.822 0.880 1.0 0.667

111 incl. n-v 0.891 0.793 0.935 0.853 0.746 0.511
~14 97 AV only 0.998 0.990 0.996 0.978 1.0 1.0

97 incl. n-v 0.998 0.990 0.996 0.978 1.0 1.0

that the specificity (the true positive rate for veins) in the segment-based case is 0.77,
which means 23 % of the wrongly classified vein segments.

In comparison with the state of the art, the classification performance is among the best
state-of-the-art methods. Typical reported accuracy of the AV classification is around
90 %. Grisan et al. [49] reported accuracy of the segment-based classification of 88.6 %
of 443 segments obtained from 24 images with an accuracy of 93.7% of the main vessels
(vessels belonging to the main vessel arcs). Konderman et al. [53] reported pixels-based
accuracy of 95.3 % with no indication on the vessel width limits. Saez et al. [55] reported
the accuracy of artery classification (equivalent to our sensitivity) to be 79.2% and the
accuracy for veins (equivalent to our specificity) to be 87.9%. Niemeijer et al. [57]
reported pixel-based accuracy of 84 %.

The approach most similar to this work was proposed by Relan el al. [44]. The study
concluded pixel-based accuracy of 94.88 %, equivalent to our sensitivity of 97.9% and
equivalent to our specificity 90.1 %. The exact width of the vessels included in the com-
putations cannot be compared between the approaches but considering their limitation
of using vessels wider than 55 % of the maximal width in pairs of quadrants — the mean
maximal width per image in our approach was 24.7 pixels, leading to 13.6 pixels as the
minimal width limit (this estimation is the upper bound of Relan’s limit because it does
not consider the quadrant-wise computation) which is higher then out limit 10 pixels.
Considering that Relan et al. used 802 vessel from 70 images, the numbers are consis-
tent with our 394 vessel segments from 40 images. The results obtained in our study
are thus considered comparable to (or considered to outperform) other state-of-the-art
feature-based approaches.

4.4.2 Arterio-venous ratio and its associations

From the 167 testing images, 35 were excluded for being invalid during the automatic
processing. The reason for the exclusion was typically low classification confidence of
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Figure 4.4: Linear models between the AVR and diastolic blood pressure. The
single dots are all the results of all automatically segmented images (without those
automatically excluded) and the dots with circles are the data points gathered
from the correctly classified images. The left axes show the manually estimated
AVR, the middle axes show AV R, and the right axes show AV R;.

several vessels while a few misclassifications occurred at the same time, which results
in one vessel class having less than four final vessels. The results from the other 132
images were used to estimate linear model M; between the AVR and blood pressure
(Figures 4.4 and 4.5). These images were manually divided into these still containing
misclassified vessels and those where all vessels were classified correctly. Another 43
images were sorted out during the process which left 89 test images. These were used
to create linear models M5 and to estimate the influence of the wrongly classified vessels
on the resulting AVR.

Associations between the manual and automatic AVR and diastolic and systolic blood
pressure can be seen in Figure 4.4 and 4.5. A summary of M; and Ms is provided
in Table 4.4. As shown in the figures and also depicted in the table, both automatic
and manual AVRs were negatively correlated with diastolic blood pressure; the slope
of the fitted linear models and their statistical significance were stronger in the case
of the automatic procedures and strongest in the case of AVR,. Model M, showed a
slight increase in the significance of the parameters versus model M;. The presence of
the misclassified vessels had an influence on the root mean square error (RMSE) of the
models. This can be seen clearly in the figures where outliers are present, especially above
the linear model, although it should be noted that only about seven of these outliers lie
significantly out of the range of correctly classified vessels. The RMSE values of model
Ms are very close between the models AVR,,,, AVR, and AV R;.

Associations with the systolic pressure were observed only for the automatic AVR and
only for model Ms. The variation in the results was also close to that in the case of
diastolic pressure. From the other clinical parameters, BMI was the only parameter
found to be significantly associated with the AVR. Age and sex were not found to be
significantly associated with the study sample.

Correlation coefficient between the manual and automatic AVR, when all 132 images were
considered, was 0.48 for AV R, and 0.52 for AV R;. When those 89 correctly classified
images were considered, the correlation coefficient was 0.53 for AV R, and 0.59 for AV R;.
All the correlations were significant (p < 1076).
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manual AVR

Table 4.4: Associations of the estimated AVR with systolic and diastolic blood
pressure. AV R, marks AVR as estimated by manual grading, AV R, is AVR
as estimated by the automatic approach and the final vessels are included in the
computation without restrictions and AV R; is AVR where the final vessels were
limited so that amount of veins and arteries was equal. M; is the model where
all automatically assessed images were included and M> is the model where only
images without misclassifications were included. I is the model’s intercept and
L is the model’s linear coefficient. Linear coefficients were multiplied by 10 for
convenience, i.e. L = -0.027 means average change of the AVR with increase of
10 mmHg in the blood pressure. CI is confidence interval.
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Figure 4.5: Linear models between the AVR and systolic blood pressure. The
single dots are all the results on all automatically segmented images (not the
automatically excluded ones) and the dots with circles are the data points gathered
from the correctly classified images. The left axes show the manually estimated
AVR, the middle axes show AV R, and the right axes show AV R;.

180



72 4. Retinal vessel quantification

4.5 Discussion

The system we use to predict the parameters of the vessel segmentation methods is pro-
posed for the first time to best of our knowledge. Although only qualitatively assessed, it
was concluded that the segmented vessels were obtained with sufficient quality. Although
comparison with manual vessel segmentation would be of great interest, the topic itself is
not straightforward because only a small amount of research [145, 146, 142] has focused
on the selection of proper methods for the assessment of binary vessel segmentation.

Proper assessment of the vessel segmentation is a complex topic owing to the fact that it
is dependent on its application and that the vessel edges are not defined in the objective
way in the typical GT. For example, most research assesses the proposed methods for
vessel segmentation using pixel-wise accuracy — as was done in Chapter 3 of this work
— compared with manual segmentation. Considering only the centerlines of the vessels
is important in the subsequent vessel tracing using the Bankhead method; it has to be
concluded that the optimized parameters of vessel segmentation might only be rough
estimates of the optimal values in the application sense. It was concluded, based on our
results, that when the segmentation parameters were optimized by AUC, the resulting
vessel segmentation was more robust, and in applications similar to the one presented
here it is encouraged that researchers consider AUC as the measure for comparison of
vessel segmentation performance.

The proposed features for AV classification were mostly based on the state of the art
and did not broaden the knowledge about the applicable features. The set of features
selected by feature selection confirms the strong predictability of the contrast-related
features: the ratio of the height of the central reflex and the height of the whole vessel.
The height of the central vessel reflex, which was among the selected features, is a novel
method considering the literature reviewed for the purpose of this work. Also it was
concluded that the profile-based features are as strong as or better than features based
on the neighbourhood of the centreline pixels, which were employed in most of the recent
studies. More direct comparison will be needed in order to be able to draw conclusive
results indicating the quality of the features.

The confidence of the vessel classification, as defined in the presented work, has not been
presented elsewhere. The concept of an undecided classification is not new and has been
applied in other approaches, by Relan et al. [45] for example. Approaches that rely on
unsupervised classification typically define an interval or area in the feature space that
is considered uncertain. The approach proposed in the presented work is novel in the
usage of the probability estimate for misclassifications. The probability estimate could
have an important impact in the future application of structure-based AV classification,
where the confidently classified labels can be propagated through the vessel network to
the segments with lower confidence. In our case, it allowed us to estimate the quality of
the classification of images where the AV GT is not present and to optimize the necessary
number of training images or other parameters.

The proposed approach to the selection of the final vessels offers an alternative to the
method which averages the AVR estimated from several sub-rings with small thickness.
The proposed approach was not compared to this method so it is not possible to conclude
how the results differ. The advantage of the proposed approach is that it provides the
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possibility to decide to include either the branches or roots of the vessels within the AVR,
computation. Compared to other approaches, like tracing the vessel graph, this approach
can be less prone to errors in the graph estimation, such as vessel disconnections. The
grouping of the vessels is not computationally expensive unless some groups contain many
vessels before the parallelity grouping is performed. In that case, the computation can
be problematic because all the combinations of the vessels are tested. This situation
does not happen often though, and in our experiments the image was excluded from
processing when such a case emerged.

Statistical analysis of the automatically estimated AVR gave very promising results when
a stronger association between the blood pressure and the automatically estimated AVR
was concluded. Furthermore, a stronger association was found between the AVR com-
puted without regularization of the number of final vessels in the sense of limiting the
number of either arteries or veins when a number of vessels in one class exceeded the
other. This result could be explained by the fact that when a vessel of one type branches
less often than the other, all vessels from the more-branched vessel should be included in
the computation. When the number is limited it actually raises a bias. Although there
was a relatively high number of images with misclassifications (33 %), approximately only
around six vessel images with misclassified vessels resulted in outliers in the final AVR
estimation. The influence of the misclassifications in the other images was most likely
not that significant because only narrow vessels were misclassified.

It was concluded that the automatic approach can provide an advantage over manual
measurement of the AVR by showing stronger associations with the clinical measure-
ments. The fact that the manual measurements were established independently and
before the presented study started supports the validity of the results. The manual mea-
surements were done in the pure manual way, without employment of a semi-automatic
approach (like, for example, that used in [144]). There could be important differences
when such approaches are employed and further research should focus on addressing such
questions.

The proposed automatic AVR estimation framework has the advantages of the automatic
prediction of the vessel segmentation parameters, a simple and robust method for final
vessel selection and an AV classification approach comparable with the state-of-the-art
approaches. The disadvantages are the missing automatic detection of the OD, the
supervised nature of the AV classification and no employment of the vessel structure
in support of the vessel classification. Those are the main weaknesses that should be
addressed in the future.



74

4. Retinal vessel quantification




CHAPTER V

Processing of the diaphragm image sequences

5.1 Introduction

In this chapter, methods for the assessment of a non-respiratory diaphragm function are
presented. Screening of the diaphragm was done by functional MRI. The main goal was
to separate respiratory diaphragm movements from non-respiratory movements, and then
to evaluate their role in body stabilization. The subjects included in the study consisted
of a group of healthy volunteers, and a group of volunteers in whom structural spine
disorders had been identified and who suffered from LBP that had lasted for at least one
year.

The diaphragm was investigated to assess reactability and movement during tidal breath-
ing and breathing while a load was applied to the lower limbs. The harmonicity of the
diaphragm movement, frequency and range were used to characterize both the respiratory
and postural movements. Another part of the assessment was acquired from the static
diaphragm, where the inclination, height and position in the trunk were estimated. Two
methods were applied for the estimation of diaphragm movement. One was based on a
similar method [109] and the other was based on the registration of the blood vessels vis-
ible caudally from the diaphragm in the MRI pictures. The differences between healthy
subjects and subjects with LBP were evaluated statistically. The results of our work
should help in understanding the function of the diaphragm in the posture stabilization
system, with possible implications for physiological practice.

5.2 Study settings and data
5.2.1 Study settings
Diaphragm activity was monitored under two different situations:

e 57 — subjects lie supine on their backs during tidal breathing.

(0]



76 5. Processing of the diaphragm image sequences

Table 5.1: Details of the study groups (mean + SD). C; is the control group;
(Y is the patients group.

Ch Cs
Age 35411 42411
Weight (kg) 71+15 78416
Height (cm) 172410  174+6

Sternum height (cm) 20.9 £1.61 21.4+1.77
Thorax height (cm) 30+2.1 30.2+1.7

e S5 —subjects lie supine on their backs during tidal breathing while loading is applied
to the distal part of their extended lower extremities against the flexion of the hips.
The applied pressure was of the fourth grade according to Janda’s muscle test [147].
The subjects ensured that no additional pain was induced by the maneuver.

5.2.2 Subjects groups

Two groups of volunteers were selected:

e (U7 were subjects without a pathological condition (n=16; 11 women, 5 men: the
control group) and were given id numbers 1-16.

e (5 were subjects with a structural pathological condition of the spine localized in
the lumbar spine area (n=17; 8 women, 9 men: the patients group) and were given
the id numbers 17-33.

Neither the control group nor the patients group had any pulmonary disease. The average
age of the control group was 35 years old (in a 23-56 age span). The average age in the
patients group was 42 years old (in a 23-65 age span). Detailed characteristics of the
two groups are summarized in Table 5.1.

Structural findings in the patients group were confirmed by the previous MRI in the
lumbar spine area. The study excluded patients with an inborn defect of the spine or
a defect acquired traumatically. All patients group had suffered from LBP of various
intensity and frequency for at least one year (classifying the LBP as chronic). The
intensity of the LBP was determined using a visual analog scale (VAS) with a range of
0-10. The subjects indicated their current pain on the day of imaging and their overall
pain over the course of one month before imaging. The VAS values for the control group
C, were zeros for all subjects.

Acute pain was not the criterion for selection of the patients group. The main criterion
was the spinal findings.

Due to a distinct inter-group difference in age, a paired t-test was performed to confirm
no statistical significance among the groups. The resulting p-value (p = 0.08) showed no
statistical difference at the 5% significance level. The normality of the age distribution
within the groups using the Kolmogorov-Smirnov test (pc1 = 0.89, pce = 0.55) confirmed
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normal distribution of the data. No differences in the mean for all other parameters in
Table 5.1 were confirmed with great significance (p > 0.2).

The other portion of the data studied in this work consisted of healthy, asthma and
COPD groups of patients. These data were processed in the study [20]. The dataset
consisted of images from 31 patients measured in situations .S; and S5.The apparatus for
the data acquisition was the same as in the case of group Cy (see Subsection 5.2.3). This
data portion was used to improve the method for motion estimation of the diaphragm
as reported in Subsection 5.3.5.

ETHICS STATEMENT

All patients provided written, informed consent for participation in the study. The study
was approved by the Ethics Committee of the Motol University Hospital in Prague, Czech
Republic.

5.2.3 Data acquisition

The healthy group was examined in an open Siemens MRI apparatus, with a 0.23 T
magnet and the NUMARIS/4 syngo MRI 2004A software version. The length of each
recorded sequence was 18 s. During this time, 77 images were recorded at regular inter-
vals. The subject was in a supine position, using a large body-size coil. The projection
plane was placed sagittally in the axial topogram and directed paravertebrally down the
right side, midway through the center of the vertebral body and the edge of the thoracic
wall. The width of each layer was 33 mm. The true FISP dynamic sequence was used,
configured as follows: 1 NSA, matrix 240x256 pixels, TR 4.48 ms, TE 2.24 ms, FA 90,
TSE1, FOV 328 mm.

The patients group was scanned by General Electric SIGNA HDx MRI, with a 1.5 T
magnet and the 14-M5A software version. The length of each recorded sequence was
22.2 s, resulting in the acquisition of 60 images. The projection plane was placed sagittally
in the axial topogram and directed paravertebrally down the right side, midway through
the center of the vertebral body and the edge of the thoracic wall. The width of each
layer was 15 mm. A GE FIESTA cine dynamic sequence was used, configured as follows:
1 NSA, matrix 256x256 pixels, TR 3.1 ms, TE 1.3 ms, FA 55, FOV 420 mm.

The proposed processing methodology is independent on distinct images resolution,
e.g. the resolution of the control group was 1.37 mm/pixel and the resolution of the
patients group was 1.64 mm/pixel. Three markers, 20-ml syringes filled with water, were
placed on the skin surface of each subject on her or his right side. They are shown as
hyper signal marks on the body surface (see for example Figure 5.1). The first marker
was placed in the mid-clavicular line at the level of the jugular notch, and the second
marker was placed at the level of the inferior 10-rib costal margin. The last marker was
placed on the back of the subject at the level of the thoracolumbar junction.

The spatial resolution of our images was sufficient for proper diaphragm contour recog-
nition on each sequence. In addition, the temporal resolution was sufficient, with a
maximum recorded breathing frequency of 0.54 Hz. The diaphragm contour areas were
not affected by artifacts. Image brightness was the only varying parameter, and there
was no significant effect on the resulting differential curves.
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diaphragm in actual position

differential area a;

L

diaphragm in the lowest position

Figure 5.1: Differential area definition. Figure shows t-th image from a se-
quence with the corrensponding diaphragm contour. The t-th diaphragm contour
together with the lowest placed diaphragm contour in the sequence delineate the
differential area at.

5.3 Methods

5.3.1 Processing of the input images

In order to assess diaphragm activity, the differential curve (diff-curve) was calculated
across all MR images. Firstly, let us define the differential area (a;) as the area bordered
by the diaphragm in the lowest position from the sequence and the diaphragm in current
(t-th) image — see Figure 5.1. The image containing the lowest placed diaphragm is
called the background picture. Secondly, the diff-curve is defined as the time series of
a;, measured in mm?. Hence, the diff-curve is an integral quantity which characterizes
the diaphragm motion in the same manner as spirometry, but it consists strictly of
diaphragm movement. The algorithm for a; calculation is shown in Figure 5.2A-C.
Typical diff-curves are shown in Figures 5.3 and 5.4.

5.3.2 The extraction of respiratory and postural movements from diff-curves.

Each digitally sampled signal can be expressed as the sum of a finite number of har-
monic waves of different amplitudes and phases. Discrete decomposition of the signal
into harmonic components is traditionally represented by the harmonic spectrum of the
signal. The spectrum denotes the relation between the amplitudes and frequencies of the
harmonic waves. Typical diff-curve spectra are shown in Figure 5.3. Each peak in the
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Figure 5.2: Differential area calculation. The background image (the image with
the lowest placed diaphragm) is subtracted from the image on t-th position in a
sequence (A). The subtracted image is thresholded, providing a binary image with
a clearly visible crescent corresponding to the movement of the diaphragm (B).
The red-bordered part surrounding the highest and the lowest diaphragm position
from the whole sequence. Continuous image parts inside the border are labeled
and the part corresponding to the diaphragm movement is processed (C). Some
of the extracted parameters were normalized using the thorax width (D).
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spectrum represents a single harmonic component. If the diaphragm only worked for res-
piration with stable depth of the motion, it would lead to a simple spectrum with a single
peak corresponding to the breathing frequency. This motion would be fully described
by a single sine wave. Diaphragm motion is more complex, and often involves other,
non-respiratory movements. However, due to the harmonic properties of respiration, the
harmonic spectrum is useful for diff-curve processing.

We chose to model diaphragm motion using two sine waves corresponding to the respi-
ratory and non-respiratory movements. These waves are extracted from the diff-curve
spectrum using the inverse Fourier transform. The two models are shown in Figure 5.3 A
and B. The original diff-curve is plotted by a solid line. The respiratory model is called
a respiratory curve (res-curve). The non-respiratory model is called a postural curve
(pos-curve). The res-curve fully characterizes the respiratory movement by frequency
and amplitude. The pos-curve provides a model of a postural global range using a pos-
curve amplitude. If there were several peaks that together compose the final respiratory
or postural part of the signal, we chose the peak that best described the values of the
original signal (peaks and subsequent pos-curves are marked in Figure 5.3 with a green
square).

The relation between breath regularity and the spectrum complexity of the correspond-
ing diff-curves is summarized in Figure 5.3. Figure 5.3 A and C, provides an example of
a diff-curve with the corresponding spectrum for a person whose respiratory movements
are very regular. In the corresponding spectrum, there is one significant peak, which
represents the subject’s respiration marked by a red dot. The diaphragm’s respiratory
movement is also modulated by other movements. This causes the occurrence of smaller
peaks besides the respiratory peak. These peaks capture smaller parts of the diaphragm’s
movement. Figure 5.3 B and D show a more complex diff-curve with less regular res-
piration. The spectrum (Figure 5.3 D) has a clearly visible peak, which corresponds to
the respiration (marked by a red dot) and, again at lower frequencies, there are peaks
which modulate the respiratory movement. This time, however, the peaks capture a
much larger part of the diaphragm’s movement.

Three typical diff-curves with corresponding respiratory and postural models for both
situations (S7 and Ss) are shown in Figure 5.4. There is a clearly visible respiratory
function (A) with a big postural movement in situation S (B) for subject 11. Subject 25
(in E, F) did not respire for the first six seconds of the imaging in situation Ss, and then
his or her respiration became regular. Subject 24 (C, D) exhibited almost no respiration
during situation Sy. Diff-curves including no respiration led to exclusion of the subject
from further statistical data processing.

5.3.3 Parameter extraction

Two sets of parameters were extracted on the basis of diaphragm MRI activity — dynamic
parameters and static parameters. The dynamic parameters are based on the processing
of the diff-curve. The main aim of introducing the dynamic parameters was to assess
which part of diaphragm motion is related to respiration, and how significant the non-
respiratory movements are. The dynamic parameters are as follows:

e Frequency (f,) and amplitude (a,) of the res-curve.
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Subject no. 31 (Cz, 82)
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Figure 5.3: Diff-curves (A, B, the solid line) and appropriate spectra (C, D, the
solid line). Extracted res-curves (the red dashed line, A, B) and pos-curves (the
green dotted line, A, B) with corresponding spectral peaks (C, D) marked in the
spectra with a red dot (the respiratory peak) and a green square (the postural

peak).

Figure 5.4: Diff-curves (the solid line) and extracted res-curves (the red dashed
line) and pos-curves (the green dotted line). An example of harmonic breathing
(A), breath with a strong postural part after the load occurred (B), harmonic
breath which became partly non-harmonic after the load occurred (C, D), and
breath which almost lost its ability for respiratory movement after the load oc-

A Subjectno. 11, (C1, S1)

time (s)

C Subject no. 25, (Cz, S1)
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E Subject no. 24, (Cz’ S1)

curred (E, F).

B Subject no. 11, (C1, Sz)

10
time (s)

D Subject no. 25, (Cz, 82)

0 5 10 15 20

time (s)

F Subject no. 24, (Cz’ 82)

0 5 10 15 20
time (s)
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Figure 5.5: Parameters rg;: Parameters rg; are computed as a vertical subtrac-
tion of the caudal diaphragm position from cranial diaphragm position. The three
parameters correspond to the anterior (rg1), middle (rg2) and posterior (rgs) di-
aphragm parts. Points were spread evenly on the diaphragm contour with a small
constant drift of rg1 and rgs from the contour margins.

Amplitude of the pos-curve (ap).

The amplitude ratio of the res-curve and pos-curve (r,, = Z—p)

Range of the diaphragm motion measured in mm in three different points (Figure
5.5) placed on diaphragm surface (rg;,7 € 1,2, 3).

The percentage of energy represented by the three highest spectrum lines (p3).

e The SD (op¢), skewness (7pe) and kurtosis (Bp¢) of the diff-curve.

The static parameters assess the shape and position of the diaphragm. For the static
parameters, the following features were extracted:

e The inclination of the diaphragm in the sagittal plane in the caudal position (dec,);
the angle measured as shown in Figure 5.6

e The distance of two lines parallel with the line used for estimation of dec, and
intersecting the most caudal and most cranial points (Figure 5.7) of the diaphragm
contour (hg)

o The vertical distance from the anterior point used for rgs and back marker (d,);
this parameter corresponds to the diaphragm height in the thorax (Figure 5.8)
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Figure 5.6: Measurement of the diaphragm inclination. The inclination of the
diaphragm was measured by the angle between the line fitted to the diaphragm
contour and horizontal axis. The inclination was measured during the caudal
diaphragm position.

Figure 5.7: Measurement of the diaphragm height hy. Measurement was done
during the diaphragm caudal position. The middle line is the line fitted to the
diaphragm contour by the least squares method.
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Figure 5.8: Measurement of the diaphragm height in the trunk. The figure
indicates when the height is negative (the diaphragm higher than the back marker)
and when the height is positive (the diaphragm is placed under the back marker).

5.3.4 Statistical analysis

A paired t-test was used to identify differences between the control group and the patients
group. The significance of the statistical test is marked * (p < 0.05), or by the symbol
** (p < 0.001) as indicated in Tables 5.2-5.4 in Section 5.4. A Kolmogorov-Smirnov
analysis was performed to assess the normality of the data.

The correlation (by Pearson’s correlation coefficient) between all the parameters and the
subjects BMI was assessed in order to eliminate any possible effect on the results. The
parameters affected by the BMI dependence were in situation S7: p3 and hy and in situa-
tion So: ar, Bpc,Ypc and dy,. A possible way to suppress the correlation with the BMI is
to normalize the parameters by the width of the subject’s thorax (Figure 5.2 E; the width
was determined during the lowest position of the diaphragm). However, no influence on
the statistical results was observed after normalization, except for the parameter hg, for
which the results of the Student’s t-test changed by two orders of magnitude (but there
was no change of significance). In order to keep the results clear, all parameters were
kept in the original units, with the exception of hgy, which is in the normalized form.

All the extracted features were treated for outlier values. Outlier values were determined
as follows:

proper data range = [P25 —w - (P75 — P25), P75 —+ w - (P75 — P25)] (51)

where P, means k-th percentile, w is a constant set by default to 1.5 (ensuring approxi-
mately 99.3 percent coverage of the data when the data is normally distributed). Data
outside this range is likely to consist of error values or marginal data that distorts the
statistics.
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Figure 5.9: An MRI image of the diaphragm (on the left), the corresponding
vessels (on the right, green coloured) and the ROI (the dashed curve).

Secondly, as stated in the methodology section (Subsection 5.3.2), patients were present
in our datasets whose respiration did not exhibit proper respiration movement. These
subjects were also excluded from the statistical evaluation — four subjects, all from the
patients group Cy (id numbers: 19, 24, 27, 29).

5.3.5 Enhanced extraction of the diaphragm movement

In order to provide estimation of the diaphragm movement in arbitrary points on the
surface of the diaphragm, a method was established to track the motion of the diaphragm.
Vessels that are visible located caudally from the diaphragm contour, were segmented
and used as a landmarks for registration. Extraction of the vessels was done by the
Nguyen method which has been described in Chapter 3. The method was selected based
on preliminary experiments. The methods used for the retinal blood vessel segmentation,
presented in Chapter 3, were already well tested and understood by the author so selection
was limited on these methods. The Azzopardi and Nguyen methods provided better
and more versatile results then the Bankhead method and were unsupervised which was
necessary condition for application in this case. The Nguyen method then provided good
segmentation results while setting the method parameters is much more straightforward
than in the case of the Azzopardi method.

The segmented vessels were limited to a ROI delineated by the diaphragm contour in
the most cranial position and an half-ellipse which was attached to the endpoints of the
diaphragm contour in the most caudal position. The eccentricity of the ellipse was chosen
as 0.3. Both the detected vessels and the ROI are illustrated in Figure 5.9.

After the vessel detection the vessel structures were registered on each other between
the successive images in the image sequence. Rigid transformation, employing transla-
tion and rotation of the segmented vessels, was chosen for the registration. Selection
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of the transformation type comes from the nature of the task where the movement of
the whole structure is of interest, small displacement of the individual vessels are ac-
tually causing bias. The objective function of the registration process was defined as
Zpi:vels |vs1 — vs2|, where vg; is either binary or soft vessel classification. The registration
parameters — translation and rotation — were found by a combination of grid search over
the binary segmentation (to obtain preliminary translation parameters) and the simplex
search method of Lagarias et al. [143] where the translation obtained by the grid search
was used as the initial value and rotation was added among the minimized parameters.
During the grid search procedure binary segmentation was used as the vg; and during
the fine-tuning process, soft classification was used. The registration process resulted in
a transformation T such that T'(v;) = v2, where v; refers to the vessel classification in
the i-th image. The pair-wise registration of the images in the sequence then resulted in
set of transformations T, = {13..T},_1}, where T; is transformation of the i-th image on
(i+1)-th. The registration process is illustrated in Figure 5.10.

The set T, can be used to directly obtain the motion of an arbitrary point, e.g., on the
diaphragm’s contour. The motion of the diaphragm when estimated this way has the
advantage of providing information not only about the cephalo-caudal diaphragm motion,
but also about its ventro-dorsal motion. Furthermore, estimation of the cephalo-caudal
motion is not biased by the arc-like shape of the diaphragm in the dorsal and ventral
parts. The outcome of the motion estimation is illustrated in Figure 5.11 where three
points — in the ventral part of the diaphragm, in the middle and in the dorsal part —
were selected and their motion compared. In the figure, the motion range of different
points differ, which suggests that the diaphragm was rotating during the motion and
at the same time the ventro-dorsal movement has significant range when compared to
the cranio-caudal direction and assessing only the cranio-caudal range could lead to
misinterpretations.

5.4 Results

The results of the dynamic parameter measurements and comparison are presented in
Subsection 5.4.1 and in Tables 5.2 and 5.3. The results of the static parameter measure-
ments and comparison are presented in Subsection 5.4.2 and Table 5.4.

5.4.1 Dynamic parameters
RESPIRATORY AND POSTURAL CURVES

We observed significantly faster respiration in the patients group in both observed situa-
tions (S, S2), with p < 0.05. Respiratory frequency did not change much for the control
group after a load was applied to the lower limbs (0.21Hz in S, 0.22Hz in S3). By
contrast, the frequency of the patients group rose significantly (p = 0.01). The height
of the diaphragm respiratory movements reflected by the respiratory curve amplitude
(a,) resulted in a very significant difference among the groups, with p < 0.001 in both
situations S and S3. As in the case of respiratory frequency, there was no change in
respiratory curve amplitude in the control group when a the load was applied to the
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Figure 5.10: The registration of the diaphragm. Two vessel structures are
visualized in their original position (the left image) and after the registration (the
right image). The picture at the bottom shows the averaged vessel image from all
60 images after registration.
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Figure 5.11: A comparison of the diaphragm motion estimated by the regis-
tration of the vessel structures (top and middle axes) and by computation of the
diff-curve (bottom axes). In the axes corresponding to the registration-based mo-
tion, the dashed line corresponds to the most ventral diaphragm part, the solid
line corresponds to the middle part and the dotted line corresponds to the dorsal
part of the diaphragm.

Table 5.2: Dynamic parameters results: part I. Si 2 stands for the monitoring
situations, C1,2 stands for the subjects groups and p stands for the p-value of
Student’s t-test among the groups. Sz — S stands for the subtraction of the
parameters; it indicates a change in the parameter after the load was applied to
the lower limbs. The parameters are: the frequency (f,) and amplitude (a,) of
the res-curve, the amplitude of the pos-curve (ap), the amplitude ratios of the
res-curve and pos-curve (rpr) and the percentage of energy yielded by the three
highest spectrum lines (ps3).

fr (Hz)  ar (mm?)  1pe (=) ap(mm?)  ps (%)
Si Ci 021+£006 1823+873 0.3+02 378+163 46.7+7.8
Co 026£0.06 870+£297 0.31+£021 258152 29.7+6.3

p * *k _ * Kk
So Cy 0.224+0.08 1928 +864 0.30+0.12 659+ 353 45.9+5.3
Cy 0.34+0.1 540 +£314 0.95+0.61 574+402 24.5+5.8

* *ok * $ok
P _

S — 51 C1 0.006+0.07 300£740 —0.02+0.25 160+470 —1.6+6.6
Cy 0.083£0.08 —360+£190 0.7+0.55 320£310 —9.2+3.8

* * *% *
p
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Table 5.3: The dynamic parameters results: part II. S72 stands for the mon-
itoring situations, C7 2 stands for the subjects groups, p stands for the p-value
of Student’s t-test among the groups. S2 — S; stands for a subtraction of the
parameters; it indicates a change in the parameter after the load was applied to
the lower limbs. The parameters are: SD (opc), the skewness (ypc) and kurtosis
(Bpc) of the diff-curve, the range of the diaphragm motion measured at three
different points placed on the diaphragm surface (rg;, i € 1,2, 3).

opC YpC Bpc Tg1 (mm) g2 (mm) rgs (mm)
S Cp 1416 607 —0.11£0.46 1.92+0.39 21.1+10.1 40.7+13.4 47.1+12.3
Cy 786 +218 —0.65+0.20 2.23+0.33 TE7.7 21.7£5.7 29.8+t6.6

kX kX * k3% XX kx

p
So Cy 1711 +624 —0.13£0.29 1.67+0.10 22.1+10.8 46.1 £14.3 56.5 £ 17.7
Cy 670£290 —0.57+0.66 2.89+0.68 10.1+6.1 20.6=£8.6 23.7+8.1
p *k * *k *% *k *k
So—51 Ci1 300650 0.084+0.37 —0.144+0.51 0.95+11 54+ 15 6.5+ 19
Cy —964+210 0.114+0.66 0.49+0.79 4.6 £6.2 —-0.36+7 —5.4+8.8

* _ * _ _ *
p

Table 5.4: Static parameters results: Si2 stands for the monitoring situations;
C1,2 stands for the subjects groups; and p stands for p-value of Student’s t-test
among the groups. Sz —S7 stands for a subtraction of the parameters; it indicates
a change in the parameter after the load was applied to the lower limbs. The
parameters are: diaphragm inclination in the sagittal plane in caudal position
(decq), the height of a strip overlapping the diaphragm contour (hg) and the
diaphragm height in the thorax (dp).

ha (—) deco (°)  dp (mm)
S C; 025+£0.06 23.8+7.1 29 + 28
Cs 0.32+£0.05 15+ 5.6 —64 £ 18

* *% *%

Sa C: 025£0.05 248+96 35+20
C; 031+£0.06 178458 —51+17

* * *%

S — 51 Ci1 0.0009+0.04 1.7+£6 6.6+20.7
C: —0.02£0.03 3.6+£31 158+14.1

P _ _ _
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lower limbs (1823 mm? Sy, 1928 mm? S;). By contrast, the patients group showed low-
ered excursions when load was applied (870 mm? S, 540 mm? S5). The inter-situational
difference was significantly different amongst the groups with p = 0.004. In comparison
with the patients group, the control group had three times bigger excursions in situation
S1, and 6.5 times bigger excursions in situation Ss.

In order to compare diaphragm excursions in millimeters, rg; parameters were introduced.
The diapragm excursion was measured at three points on the diaphragm contour: the
anterior, central and posterior parts (see Figure 5.5). The control group exhibited a
significantly larger motion range than the patients group in the both situations (p <
0.001). In addition, the measurements showed larger motion of the posterior part of the
diaphragm than the anterior part. In S7, the antero-posterior ratio was 2.2 in the control
group and 4.2 in the patients group. In Ss, the control group raised the range of the
posterior part to 56.5 mm, resulting in the antero-posterior ratio of 2.5. The patients
group, in contrast, raised the range in the anterior area and reduced the range in the
posterior area, resulting in the antero-posterior ratio of 2.3.

The range of postural movements (the amplitude of the postural curve a,) was larger in
the control group (C;: 380 mm? Sp, 660 mm? So, Co: 260 mm? Sp, 570 mm? Sy), with the
only statistically significant difference being in situation S; (p = 0.04). For both groups,
the amplitude of the postural curve rose when a load was applied to the lower limbs,
while the rises in C and Cs did not differ significantly (p = 0.27). The amplitude ratio
of the res-curve and pos-curve rp,. shows which type of diaphragm motion dominates
in the overall motion. When this parameter is greater than 1, the postural moves of
the diaphragm are bigger than the respiratory moves, and vice versa. Moreover, in
situation Sy the range of the motion in the patients group was equally distributed between
respiratory and postural movement ranges (rp, 0.95, meaning 50 % of the total motion
range by the postural motion), while in the both situations the control group had the
same 7, of 0.3 (23 % of the total motion range for the postural motion and 77 % for the
respiratory motion).

DIAPHRAGM MOTION HARMONICITY AND CENTRAL MOMENTS

The most important diff-curve shape parameter is its harmonicity, reflected by the pa-
rameter ps. When the patient loses control over diaphragm motion, the diff-curve loses
its typical harmonic shape and the three highest spectral lines contain less of the signal
energy (see Subsection 5.3.2). The control group was able to keep the harmonicity at
almost the same level in both situations (S 46.7 %, So 46 %), while the patients group
achieved a significantly lower (p < 10~7) percentage (S; 29.7%, Sz 25.5%). For the
patients group, the decrease in the p3 value was significantly higher (p = 0.002) than the
decrease for the control group.

The third central statistical moment, skewness (yp¢), elegantly characterizes the cen-
tering of the diff-curve around its mean value. This parameter can be used to indicate
whether the patient kept the diaphragm longer in the inspiratory position or in the
expiratory position. Naturally, harmonic breath would lead to zero skewness. If the
diaphragm is kept longer in the inspiratory position, the skewness has a positive value,
and if the diaphragm is kept longer in the respiratory position, the skewness has a nega-
tive value. In Sy, both the control and the patients group had negative skewness (-0.11,
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-0.65). However, the control group exhibited big variance (positive skewness in the case
of six subjects). For the patients group, all the values were negative except in the case
of one subject. The difference is significant (p < 0.001), despite large variance in the
control group. In So, the mean skewness values were -0.13 and -0.57. The control group
became more consistent, while the patients group exhibited large variance in this param-
eter. This is due to an increase in the influence of the postural part of the diaphragm
movement. The difference between the groups C; and Cy was significant (p = 0.02).
There was no significant change, either in the control or in patients group, after the load
was applied to the lower limbs (p = 0.87).

The fourth central statistical moment kurtosis can be used to study control over di-
aphragm movement. The harmonic motion shows lower kurtosis rather than more ran-
dom, uncontrolled motion. In situation Sy, the control group had a lower kurtosis pa-
rameter (1.92) than the patients group (2.23), with a significant difference, p = 0.03. In
situation Sp, the kurtosis parameter for the control group fell to 1.67, and for the patients
group it rose to 2.89, which raised the significance of the inter-group difference (p-value
=3-1075).

5.4.2 Static parameters

Diaphragm height, described by the hg parameter (higher hg means a more bulging
diaphragm), differs significantly between the groups, both in situation S; (p-value =
0.001) and in situation Sz (p-value = 0.003). The parameter was independent of the
postural load and has a very similar value for the both situation S; and situation Ss:
0.25 for the control group and 0.32 for the patients group. The parameter was normalized
by the anteroposterior size of the thorax.

The inclination of the diaphragm in caudal position (dec,) differs significantly between
the groups in the two observed situations (S7, p = 0.0005; S, p = 0.02). The difference
between situation S; and situation Se was not large (within the SD range) and was
statistically the same for the both groups (p = 0.27). The mean inclination in situation
S1 was 23.8° in the control group and 15° for the patients group, i.e. the control group
kept the diaphragm in a more vertical position.

The diaphragm height in the thorax (d,) differs considerably between the groups (p <
10~19). The control group kept the diaphragm below the back marker in both situations.
In situation Sy, the value was 2.9 cm, and in situation S5, the value was 3.5 cm. The
diaphragm was lowered by 0.6 cm on average, which is a small value in comparison with
the SD of the values. In situation S7, the patients group had the diaphragm in a position
6.4 cm above the back marker on average, and 5.1 cm above the marker in situation Ss.
The average difference is 1.3 cm. No statistically significant difference (p-value 0.15) was
found among the diaphragm shifts after the load was applied to the lower limbs.

5.4.3 Summary

Slower and deeper respiratory motion (parameters f,., a,) were concluded in group S in
both observed situations. In addition, after the postural demands rose in situation So,
the breathing speed increased significantly (p = 0.01) and the breath depth (a,) lowered
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Figure 5.12: An illustration of the three points selected on the vessel contour
for the validation of the motion estimation. Arbitrary points in the anterior and
posterior part of the diaphragm contour and the point in the middle of the contour
were selected. The arrow shows the average direction of the point movement
between successive diaphragm images.

significantly (p = 0.004) in the patients group. There were larger postural moves in the
control group, and they remained larger in both situations, rising equally for each group.
The res/pos ratio, 7., shows great domination of postural moves in the patients group.
As the respiratory movement lowered with the postural load, the ratio increased in the
patients group, and the difference between the groups became significant. A significant
difference in the harmonicity emerged, which is denoted by the parameters ps and Bpc.
These parameters indicate a much more harmonic diaphragm movement in the control
group, with or without the load. The diaphragm motion in the thorax was symmetrical
for the control group.

The results for the static parameters revealed that the diaphragm of the control group
was flatter (parameter hg) in both situations. The inclination of the diaphragm was
greater (i.e. it was more verticalized) in the control group. The patients group had the
diaphragm placed significantly higher in the trunk, as indicated by the d, parameter.

5.4.4 Diaphragm motion estimation

No reference for the motion estimation was established or provided on the image data
available for the presented study. The method of using a diff-curve for motion estimation
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Table 5.5: The correlation coefficient of both the vertical and absolute motion
of the diaphragm was strongly correlated with the motion as estimated by the
diff-area.

Correlation coefficient
Vertical motion Absolute motion
Mean Min Max  Mean Min Max
Pant  0.968  0.879 0.993 0.967 0.873 0.992
Peen 0975  0.931 0997 0976 0.876  0.995
Dpos  0.959  0.863 0.997 0.962 0.855 0.998

has been considered by other research groups [109] and was regarded as the baseline
method throughout this work. We compared estimation of the motion by assessing abso-
lute and vertical motion of three points placed equidistantly on the diaphragm contour
during the most caudal position of the diaphragm (Figure 5.12). The correlation co-
efficient has been estimated between the motion of the points and the diff-curve-based
motion, the same curves as are illustrated in Figure 5.11.

The resulting correlation coefficient can be found in Table 5.5. The mean correlation
coefficient was very high for all the measured points with a mean value over 0.95. This
shows strong confidence in the motion estimation. The best correlation was yielded by
the motion measured at the central point; this was expected and can be explained by the
central point having most stable motion compared to the sides of the diaphragm which are
affected more by the rotation of the diaphragm. An important part of diaphragm motion
was observed to be in the antero-posterior, as illustrated by the arrow in Figure 5.11.

5.5 Discussion

The extracted parameters were selected in a way that allows a wide spectrum of di-
aphragm properties to be assessed. Novel methods in the diaphragm motion estimation
are the evaluation of the motion harmonicity using statistical methods (skewness, kurto-
sis), the separation of the diaphragm motion into postural and respiratory parts using the
processing of the harmonic spectrum or assessment of the amount of the non-respiratory
motion using the energy carried by the spectral lines. A novel method for more precise
motion estimation using tracking of the vessel structure visible in the retina has been pro-
posed. From the static parameters, a novel method of diaphragm inclination assessment
has been used by fitting a line into the diaphragm contour.

In the results section, we concluded that there is a statistically significant difference in
the range of motion (ROM) of the diaphragm. Two and three times greater ROM were
noted in the control group compared to the patients group in the both situations S;
and Sy. In addition, the average diaphragm excursions rge (central part) in situation
S1 were 40 mm in the control group and 22 mm in the patients group. In situation Ss,
rge was 46 mm in the control group and 21 mm in the patients group. The diaphragm
excursions rose from the ventral part to the dorsal part. Gierada [92] also concluded
that there was a bigger motion range in the ventral part of the diaphragm than in the
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dorsal part. Kondo, who studied the correlation between lung volume and diaphragm
motion, came to the same conclusion in [104]. Kolar [88] observed diaphragm excursions
of 27.3 £+ 10.2 mm in the apex during tidal breathing and 39 £+ 17.6 mm in the dorsal
part. Takazakura [105] showed a difference of 20 mm within the highest point of the
diaphragm motion when sitting and when supine. Taking into account the large range
of diaphragm motions reported in the literature [148], our measurements are consistent.

When considering changes in the range of diaphragm motion after pressure was applied
to the lower limbs, the ROM values for the control group rose on the average, but
there was large variance in the group, and the rise was bigger in the posterior part
than in the anterior part. The ROM values for the patients group rose in the anterior
part of the diaphragm, and lessened in the posterior diaphragm part. In contrast to
our measurements, Kolar [109] observed the opposite change in the same situations. In
Kolar’s case, the ROM was the same during tidal breathing, but the group with LBP
had lower excursions of the anterior part of the diaphragm. The subjects in Kolar’s
study had the diaphragm at the same height in the trunk, despite the symptoms. It was
observed that the diaphragm was significantly higher for the patients group. This may
be a mechanism by which the patients group was able to keep the diaphragm excursions
more evenly spread after the postural demands increased.

It was also observed that the diaphragm was more contracted in the posterior part for
the control group. Diaphragm inclination measurements showed significant lowering of
the posterior part of the diaphragm relative to the anterior part of the diaphragm for
the control group. The patients group kept the diaphragm in a more horizontal position.
The average changes in inclination after a rise in postural demands were only small in
comparison with the variance of the inclination. The height of the diaphragm contour
(hq) above the zone of apposition was also measured as a significant parameter between
the groups of subjects. Suwatanapongched [148] concluded that there was a flattening
of the diaphragm in the older population in his study. Our results did not show any
significant age-related correlation of diaphragm flatness. Instead, the only significant
correlation that we observed was between diaphragm height and the LBP intensity of the
patients group during the month before the measurements were made. The correlation
was significant in situation S;. It is assumed that this diaphragm bulging is due to a
lesser ability to contract the diaphragm properly. To the best of our knowledge, there
are no results in the literature for the measurements of diaphragm flatness in subjects
suffering from LBP. The lesser ability to contract the diaphragm in the patients group
is also supported by the significantly higher position in the trunk.

Another question which emerges in relation to LBP intensity is the effect of acute pain.
The effect would bias our findings as the study focused on long-time changes in the
motion patterns of the diaphragm. The first factor is the pain induced by the applied
load. This was controlled by our methodology and the subjects ensured that no acute pain
was induced by postural load. The second factor concerns differences in pain intensity
perceived on the day of measurement, and the influence of the pain on the results. An
important consideration is that the pain was chronic, and so we assume a tendency of the
muscles to overload the spine and some influence on the observed structural degenerative
spinal findings. The range of pain intensity on the day of measurement of the patients
is wide, ranging from 0 to 8.9. This wide range of pain intensity is useful for revealing
a possible dependency of the parameters on the acute perception of pain. The best
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practice would be to classify the subjects into groups according to pain and to treat
the groups statistically. However, this kind of evaluation was not possible because we
would have needed many more study subjects. A second option was to examine the
correlation between pain intensity and the measured parameters. No correlation was
observed between the measured parameters and pain intensity except for bulging (i.e.
long term pain) of the diaphragm, as was discussed above. The results indicate that, as
the pain is long term, the patients do not change their respiratory patterns according to
fluctuations in the chronic LBP.

It was concluded that a useful method for comparing the ratio of actual respiratory-
related motions with other motions of the diaphragm is to separate the differential curve
into respiratory and non-respiratory movements of the diaphragm. This division was
inspired by various works. In [149, 150, 151] the postural and respiratory functions
of the diaphragm were assessed using invasive EMG. Hodges [150, 75, 152] described
tonic and respiratory activation during the breathing cycle and superposition of the elec-
tromyographic signals phasically related to harmonic limb movement. Hodges also used
the harmonic spectrum in his investigation of muscle cooperation for compensating for
breathing movements in body posture. Our study showed a non-negligible proportion of
non-respiratory diaphragmatic motion, referred to as postural movements. These move-
ments formed one third of the diaphragm motion range, on average, in tidal breathing.
The rise in the range of postural motions when there is an increase in postural demands on
the body confirms the participation of the diaphragm in postural mechanisms. Separat-
ing the respiratory signal from the postural signal was important in cases when postural
movements start to form a large proportion of the diaphragm motion, as in situation .S
for the patients group. A simple investigation of the differential curve does not show
significant lowering of the respiratory motion range, but after the signals are separated
significant changes are revealed in both the postural and the respiratory parts of the
movement.

In our measurements, we did not observe the same diaphragm excursions in the posterior
part of the diaphragm for healthy subjects and for subjects suffering from LBP that were
observed by [109]. The excursions were reduced in the patients group. In contrast with
Kolar’s findings [109], we concluded that there was also lowering of the diaphragm’s
inspiratory position in the patients group in situation Sp. Our measurements support
the hypothesis of less diaphragm contraction in the patients group, with a significant
correlation between diaphragm bulging and the intensity of the patient’s LBP. We did
not conclude that any other parameters beyond diaphragm flatness were dependent on
the intensity of the subjects’ back pain. A high position in the trunk also supports the
hypothesis of the lesser ability to contract the diaphragm being found in LBP subjects.
These findings support the hypothesis that changed diaphragm recruitment could be an
important underlying factor for LBP [11].

An improvement to the state-of-the-art diaphragm processing methods was proposed in
the motion detection part. The methods based on the diff-area and diff-curve have been
further improved to measure the motion of the diaphragm by registering blood vessels
among the successive images. The proposed methods showed themselves to be successful
in the registration, correctly assessing the diaphragm motion in all the patients within the
group used for testing the motion detection. The enhanced method could have important
implications for improving the accuracy of the motion estimation by employing the exact
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direction of the motion and could be employed as an alternative method to measuring
the height of the diaphragm contraction, as was done in [20]. Another improvement
compared to the diff-curve-based method is the direct measurement of the motion in
pixels or mm, allowing direct assessment of the motion range of the diaphragm.

Some limitations of the harmonic model of respiratory and postural movements need
to be addressed. The modelled breath has to be periodic and preferably harmonious.
The breath frequency has to be stable within the observed sequence. If these conditions
are not fulfilled the results will be biased. Our measurements were suitable for using
the sine model. All subjects displayed a stable frequency of breathing. However it
is desirable to extend the model to observe the time dependence of the parameters.
The sine wave model of diaphragm postural function works well for assessing the range
of postural motion. A more complex model needs to be created for a more detailed
inspection of the postural function. Magnetic resonance imaging is a reliable method for
making detailed observations and assessments of the diaphragm. A restriction of dynamic
assessment is the frequency of the movement. This is limited by the sampling (imaging)
frequency, which is currently quite low. Thus the diaphragm can be recruited by only
stabilizing compensation in static loadings. A limitation of the automatic processing
is the necessity to manually delineate the diaphragm contour in its most caudal and
most cranial positions. Besides that, the proposed methodology is independent of the
orientation of the patient within the image. Dependency on the resolution of the image
exists and has to be taken into account when applying the motion detection method in a
different context. The applied blood vessels segmentation method is, however, steerable
for images of different resolution.



CHAPTER VI

Conclusions

In this thesis, diverse features for the characterization of structures in medical images
were proposed and validated. The main emphasis was put on the blood vessel segmenta-
tion in the retina which was subsequently successfully applied for the vessel segmentation
in the diaphragm images. The outcomes described in the thesis are valuable for both
research and clinical environments.

6.1 Contributions

The following contributions to the research community were provided in this thesis:

e An overview of the publicly available retinal blood vessels segmentation methods

was provided. A quantitative assessment of the methods was made on five publicly
available databases while optimizing the method parameters for each database. The
methods were compared with the current state-of-the-art. To allow for automatic
segmentation of the blood vessels on new databases, a method for predicting the
segmentation parameters was proposed. Data from the optimization procedure of
the methods were made publicly available! and the whole optimization and pre-
diction framework is planned to be released. Results from this part of the work
were presented at the Ophthalmic Medical Image Analysis (OMIA) workshop at the
Medical Image Computing and Computer Assisted Interventions Conference (MIC-
CAT) 2015 [16] and were published in the journal Computerized Medical Imaging
and Graphics [17]. A description of the methodology and results is provided in
Chapter 3.

The method for predicting the vessel segmentation parameters was validated through
its application on a new database of retinal pictures. It was concluded that the
segmentation parameters were estimated successfully and allowed obtaining reli-
able vessel segmentation. On the basis of vessel segmentation, a new framework

Thttp://www.it.lut.fi/mvpr/medimg
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for characterizing the retinal vessel structure by automatic estimation of the AVR
was proposed. The framework achieved state-of-the-art performance in the vessel
classification into arteries and veins. In addition, it contains a novel method for the
simple and robust selection of the final vessels used in the estimation of the AVR.
An important result was concluded in the observation of a stronger association
between the automatically estimated AVR and blood pressure than was observed
for the manually estimated AVR. A description of the methodology and results is
provided in Chapter 4.

e Software tools were implemented during the work on the retinal characterization.
A simple graphical user interface (GUI) for the delineation of the OD in the retina
by fitting an ellipse into manually given input points. In addition, a GUI for the
labelling of the vessel segments as either arteries or veins and also for labelling the
vessel end-points as head or tail. The both tools will be made available to the
public for further use.

e A method for the diaphragm motion characterization was proposed in Chapter 5.
The method provides an estimate of the proportion of the diaphragm motion which
is responsible for respiration, and the proportion which is unrelated to respiration.
The features proposed for characterizing the motion can be used to assess the
diaphragm motion patterns of patients and make diagnostic decisions for physio-
therapic interventions. In addition to the motion characterization, a set of static
features characterizing the diaphragm position and shape were proposed and val-
idated on healthy subjects and subjects with back problems. The methods and
results from this part were presented at the International Conference on Informa-
tion Technology and Applications in Biomedicine (ITAB) 2010 [18] and published
in the PLOS ONE journal [19].

e A method for the accurate estimation of the diaphragm motion was developed
based on registration of the vessel patterns between successive MRI images. The
method allows for more accurate detection of the diaphragm movement by track-
ing arbitrary point on the diaphragm surface. The output of the method is the
movement measured in pixels or millimetres. The proposition of the new method
and its validation are provided in Chapter 5

6.2 Future work

Several areas exist where the presented research can be continued. The optimization
of the vessel segmentation parameters was performed using a grid search. A possibility
to apply faster optimization methods can be further investigated. If more intelligent
optimization methods would be applicable, it would allow for faster and more easily
applicable optimization. The models estimated for the prediction of the segmentation
parameters were established using five retinal image databases. This limits the number
of predictors that can be reasonably used in the models so including more databases in
the process would enable the creation of more general and better models.

During the application of the segmentation methods after the parameter prediction, it
was concluded that a methodology allowing proper, application-based assessment of the
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resulting vessel segmentation is missing. In the presented case, vessel segmentation was
used to establish vessel segments and estimate their edges. The optimal method to assess
the quality of automatic vessel segmentation with respect to its following application is
a possibility in future research.

The framework for AVR estimation provides many areas for improvement. Among the
most important ones is the employment of the vessel structure, i.e., the crossing and
bifurcation information, in supporting the classification into arteries and veins. In the
future, different classifiers could be considered for the soft classification of the vessel seg-
ments. Alternatively, training the classifier using a larger set of images can be considered
because, in the current settings, the classifier appeared to fail in some cases where large
segments have visually distinct features. Therefore, it is expected that generalizability
of the classifier should be improved. An automatic method for OD detection should
be added to the framework in order to make it fully autonomous. Finally, the associa-
tion between the AVR and clinical parameters should take into account diagnoses of the
patients.

Future research directions of diaphragm image processing include the development of a
fully automated method for ROI detection, i.e., automatic detection of the diaphragm
contour. This would be of great interest in order to fully automate the presented method.
In addition, the method proposed for registering the diaphragm images is considered as
a baseline that justifies the applicability of the vessel structure to be used in the task.
However, the method should be compared to the standard registration methods and a
faster method should be applied.

6.3 A list of candidate’s publications
6.3.1 Publications related to the topic of the thesis

JOURNALS WITH IMPACT FACTOR

e Vostatek, P., Novak, D., Rychnovsky, T., & Rychnovska, S. (2013). Diaphragm
postural function analysis using magnetic resonance imaging. PLOS ONE, 8(3),
e56724.

Author’s participation: 25 %, IF(2016)=2.8

e Hellebrandové, L., Chlumsky, J., Vostatek, P., Novak, D., Ryznarova, Z., & Bunc,
V. (2016). Airflow limitation is accompanied by diaphragm dysfunction. Physio-
logical Research, 65(3), 469.

Author’s participation: 25%, IF(2016)=1.5

e Vostatek, P., Claridge, E., Uusitalo, H., Hauta-Kasari, M., Falt, P., & Lensu, L.
(2017). Performance comparison of publicly available retinal blood vessel segmen-
tation methods. Computerized Medical Imaging and Graphics, 55, 2-12.

Author’s participation: 50 %, IF(2016)=1.7

OTHER ISI OR SCOPUS INDEXED PUBLICATIONS

e Vostatek, P., Novak, D., Rychnovsky, T., & Wild, J. (2010, November). Diaphragm
postural function analysis using magnetic resonance. In Information Technology
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and Applications in Biomedicine (ITAB), 2010 10th IEEE International Confer-
ence on (pp. 1-4). IEEE.
Author’s participation: 30 %

OTHER PUBLICATIONS

e Vostatek, P., Claridge, E., Filt, P., Hauta-Kasari, M., Uusitalo, H. & Lensu, L.,
Evaluation of publicly available blood vessel segmentation methods for retinal im-
ages, Chen X, Garvin MK, Liu JJ, Trusso E, Xu Y, editors. Proceedings of the
Ophthalmic Medical Image Analysis Second International Workshop, OMIA 2015,
Held in Conjunction with MICCAI 2015, Munich, Germany, October 9, 2015.
187-144.

Author’s participation: 50 %

6.3.2 Publications unrelated to the topic of the thesis

e Macas, M., Lhotska, L., Bakstein, E., Novak, D., Wild, J., Sieger, T. ... & Jech,
R. (2012). Wrapper feature selection for small sample size data driven by complete
error estimates. Computer methods and programs in biomedicine, 108(1), 138-150.
Author’s participation: 3%

e Sieger, T., Serranova, T., Ruzitka, F., Vostatek, P., Wild, J., Stastna, D. ... &
Jech, R. (2015). Distinct populations of neurons respond to emotional valence and
arousal in the human subthalamic nucleus. Proceedings of the National Academy
of Sciences, 112(10), 3116-3121.

Author’s participation: 5%,

e Bakstein, E., Sieger, T., Wild, J., Nova’k, D., Schneider, J., Vostatek, P. ... &
Jech, R. (2017). Methods for Automatic Detection of Artifacts in Microelectrode
Recordings. Journal of Neuroscience Methods.

Author’s participation: 5%
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APPENDIX [

Retinal blood vessel segmentation

I.1 Models of the non resolution-related parameters

The models of the non-resolution related parameters of the methods for the retinal blood

vessel segmentation. Properties of the models are described in Section 3.3.2.

Predictors (Acc)

Table 1.1: Azzopardi method, oo1, 002

R2

median (min, max)

Predictors (AUC)

RQ

median (min, max)

dv3

dvl

dr

va

dod

d'u27 d'u3

ddf, dnf
dvla va

dr; va

d»,\, dv3

dr; dod7 dnf
dv17 dv27 ddf
dr, dog, daf
dvla d1)27 dnf
dra dv2> de

0.13
0.12
0.11
0.10
0.06

(-0.27, 0.53)
(-0.19, 0.43)
(-0.13, 0.35)
(-0.31, 0.52)
(-0.12, 0.25)
0.29 ( 0.29, 0.29)
0.13 (-0.54, 0.80)
0.11 (-0.06, 0.28)
0.10 (-0.07, 0.28)
0.07 (-0.20, 0.35)
0.87 ( 0.74, 1.00)
0.75 ( 0.58, 0.93)
0.64 ( 0.31, 0.97)
0.63 ( 0.40, 0.85)
0.24 ( 0.06, 0.42)

dv2

d'ul

dv3

dy

dod

dra dvl

dvh dod
dvh va
ddfv dnf
dv27 ddf

dra dvh d'u2
dy2, dod, daf
dT‘7 dU17 dv3
dy3, dog, day
drv dvla ddf
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0.62 (0.47, 0.76)
0.61 (0.59, 0.62)
0.58 (0.48, 0.69)
0.46 (0.45, 0.47)
0.44 (0.43, 0.45)
0.72 (0.65, 0.80)
0.58 (0.49, 0.66)
0.52 (0.39, 0.65)
0.50 (0.30, 0.71)
0.50 (0.34, 0.65)
0.77 (0.61, 0.93)
0.73 (0.69, 0.77)
0.73 (0.60, 0.86)
0.69 (0.42, 0.95)
0.68 (0.60, 0.76)
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Predictors (Acc)

Table 1.2: Azzopardi method, a1, a2

R2

Predictors (AUC)

R2

median (min, max) median (min, max)
dyo 0.65 (0.32, 0.97)  dny -0.09 (-0.25, 0.06)
dys 0.55 (0.18, 0.92)  dyy 20.10 (-0.26, 0.05)
dyy 0.37 (-0.03, 0.77)  dpa -0.16 (-0.17, -0.15)
d, 0.25 (-0.16, 0.66) d.. -0.18 (-0.20, -0.16)
dod 0.17 (-0.22, 0.57)  d1 -0.22 (-0.22, -0.22)
dy, dya 0.95 (0.93, 0.98)  doq, dar 0.09 (-0.34, 0.51)
dy2, dod 0.95 (0.92, 0.98)  dy1, du3 0.00 (-0.55, 0.56)
dy, dys 0.95 (0.92, 0.97)  d,., dg -0.07 (-0.49, 0.34)
dot, dog 0.91 (0.86, 0.97)  dy1, duo 20.12 (-0.72, 0.48)
dys, dod 0.91 (0.87,0.96)  dog, dny -0.18 (-0.58, 0.23)
dy1, dya, dog 0.99 (0.99, 1.00)  dy1, duz2, dod 0.97 ( 0.96, 0.99)
dv2, dod, day 0.97 (0.97,0.97)  doa, daf, dny 0.87 ( 0.76, 0.97)
v, dyy, dys 0.96 (0.94, 0.98)  dys, das, dny 0.82 ( 0.66, 0.99)
dys, dod, dny 0.96 (0.93, 0.99)  dy1, dys, dny 0.81 ( 0.64, 0.98)
dy3, dod, day 0.96 (0.92,0.99) d,, dgs, dns 0.79 ( 0.57, 1.00)

Predictors (Acc)

Table 1.3: Azzopardi method, T

R2

median (min, max)

Predictors (AUC)

R2

median (min, max)

dv2

d'u3

d

dod

dvl

dog, dag

dvh dUS

duh dv2

dr, dgy

doda dnf
dya, dagp, dnf
dy1, dag, dnf
dy, dog, daf
dvla dv27 dnf
dev ddfa dnf

0.05
0.03
-0.02
-0.03
-0.05
-0.20
-0.34
-0.37
-0.38
-0.39
1.00
0.97
0.95
0.89
0.87

dod

dnf

dr

ddf

d'ul

dv27 d'u3

dry dvl

dr; va

dr; dv3

dvla dod

dr; dv37 dnf
dr; dv27 dnf
dvla dv27 d'u3
dr; dv27 ddf

dy2, dy3, day

0.58
0.57
0.57
0.57
0.39
0.91
0.88
0.69
0.63
0.60
1.00
1.00
1.00
0.99
0.97
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Predictors (Acc)

Table I.4: Ngyuen method, w

R2

median (min, max)

Predictors (AUC)

median

R2

(min, max)

dy1 0.30 dya -0.14
dr 0.28 dy1 -0.18
dys 0.24 dys3 -0.20
dod 0.23 daf -0.23
daf 0.20 dnf -0.24
daf, dnyf 0.46 dr, dy1 0.07
dy2, dy3 0.06 dya, dys -0.26
dyy dog 0.04 dy1, dog -0.54
dy1, dyo -0.00 dy, dya -0.59
dy1, dod -0.01 dy2, dog -0.68
dr, dod, daf 1.00 dr, dy2, dny 1.00
do1, dv2, day 0.98 dy2, dy3, dgqf 0.99
dv1, dv2, dny 0.93 dy, dy3, dny 0.98
dy2, dgf, dny 0.64 dy2, dy3, dny 0.94
dy, dog, dny 0.59 dy1, dy2, dys 0.88
Table 1.5: Ngyuen method, T
. R? . R?

Predictors (Acc) median (min, max) Predictors (AUC) median (min, max)
dn 0.58 dn, 0.91
daf -0.11 dy1 0.17
dnyf -0.13 d, 0.09
dod -0.18 dy3 0.09
d, -0.18 day 0.09
Ay dya 0.77 dp, dys 0.87
dpy dys 0.69 d, d, 0.86
dpy dy1 0.57 dp, dy2 0.86
dp, dp 0.48 dp, dog 0.86
Ay dog 0.44 dp, dy1 0.86
dp, dy1, dog 1.0 dy2, daf, dpny 1.0
dy, dgf, dp s 1.0 dy1, daf, dnyf 1.0
dpy dya, dys 1.0 dys, daf, dnf 0.97
dy, dp, dyo 0.95 dy1, dv2, dny 0.86
dn, dy2, dod 0.91 dr, dp, dod 0.82
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Table I.6: Prediction of the method parameters by angular resolution of the
databases (M,) or by the angular resolution and the percentage of vessel pixels
in the ground truth (M;,). Least squares method was used to fit the models.
Assessment reports the segmentation accuracy when the predicted parameters

were used.
database ARIA CHASEDB1 DRIVE HRF STARE
Soares, Amor {2,3,5} {3,7,9} {2,3,4} {5,13,15} {2,4,5}
M, {2,3,5} {3,7,9} {2,3,4}  {5,13,15} {2,4,6}
assessment 93.6 94.6 94.7 95.8 95.1
Azz., 81,82 3.3,1.6 5.3,3.9 2.0,1.6 7.2,6.4 2.8,1.6
Min 3.2,14 4.7,3.6 2.0,1.6 7.4,6.5 3.4,2.0
Azz., 1,72 19,27 21,22 8,25 23,44 12,28
Min 17.7,24.9 18.0,31.0 7.8,23.4  23.840.5 16.0,26.3
Azz., 501, s02 1,0.5 2.5,0 3,1.5 0.5,0 0.5,0.5
M:n 0.8,0.3 1.3,0.4 3.0,1.4 0.87,0 1.4,0.5
Azz., a1, az 0.4,0.1 0.2,0 0.5,0.1 0.4,0 0.5,0.1
M;n 0.4,0.1 0.4,0 0.5,0.1 0.3,0 0.4,0.1
Azz., T 0.14 0.16 0.16 0.16 0.16
Min 0.14 0.15 0.16 0.16 0.15
assessment 94.0 94.0 94.5 95.5 95.3
Bankhead, &, 522 780 150 1029 270
M, 336 634 284 1084 407
assessment 93.8 94.1 93.9 95.6 95.2
Nguyen, 7 1.05 0.95 0.90 1.05 1.05
Min 1.05 1.01 0.90 1.03 1.01
Nguyen, W 19 33 17 45 17
Min 18 29 17 46 21
Nguyen, w 18 16 4 22 16
Min 16 16 4 22 16
assessment 93.8 94.1 94.5 95.8 95.4
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