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Growth in non-Laplacian fields
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We develop a formal method for assigning rules to lattice-based walkers which allows the modeling of
irreversible growth in systems governed by non-Laplacian partial differential equations. The method is

used to study diffusive growth in finite concentration fields, Good agreement with analytic results is ob-

tained. The method is subsequently applied to study electrochemical deposition and investigate the in-

terplay between the electrostatic and diffusion fields. We examine the effect of a local (nonuniform) Bow

field on deposition on a substrate.

PACS number(s): 68.70.+w, 82.20.Wt, 05.40.+j

Laplacian growth models such as diffusion-limited ag-
gregation [1] (DLA) and its modifications give rise to a
variety of morphologies which have been likened to pat-
terns arising in several nonequilibrium growth processes
[2]. Examples include dendritic solidification [3,4], direc-
tional solidification [5,6], electrodeposition [7—9], and
Saffman-Taylor fingering [10,11]. Dendritic crystal
growth processes are described by the diffusion equation
which, in the quasistatic limit, reduces to the Laplace
equation [4]. This approximation is singular in the sense
that the significant coupled factors of a time and concen-
tration dependence, and a finite-range diffusion field, van-
ish from the formulation. The description of an electro-
deposition process by a Laplacian growth model [10] in-
corporates several simplifications including the assump-
tion of local electroneutrality [12]. Recent experimental
results [13] show that local departures from electroneu-
trality play a strong role in the growth of metal deposits.
Clearly the use of models based on the Laplace equation
to describe irreversible growth processes may yield a
significant oversimplification. Another complication aris-
ing in growth processes occurs when the particles' trajec-
tories are influenced by an imposed field. An example is
deposition from a Aowing Quid. Previous investigations
[14—17] use biased random walker algorithms to study
the effect of a uniform drift on deposition processes.
These models are not readily shown to correspond to the
continuum convection-diffusion equations.

In this article we develop a formal method for assign-
ing rules to lattice-based walkers which are consistent
with the general continuum equations describing a
growth process. The rules governing the motion of walk-
ers are derived from a finite difFerence scheme. This
method allows the modeling of growth processes
governed by partial differential equations (PDE's) more
general than the Laplace equation. We first use the
method to develop a lattice-based walker model to study
diffusive growth in a finite concentration field. On intro-
ducing a parameter to reduce noise in the growth pro-
cess, we show that the resultant patterns generated by the
model are in agreement with analytical results. We then
apply the method to the study of electrochemical deposi-

tion (ECD) and to deposition in a hydrodynamic fiow.
The effect of a finite concentration field on aggregate

growth was recently studied [18,19]. In contrast to La-
placian growth the patterns evolved with a constant ve-

locity and became dense above a characteristic length
scale related to the diffusion length 1=2D /U. The pat-
terns exhibit a disordered structure due to the noise in-
herent in the growth algorithm. To model dendritic crys-
tal growth one must systematically reduce this noise. We
introduce noise reduction [3,11,20] into the finite concen-
tration aggregation model and consider the relationship
of the model to a finite difference scheme for the diffusion
equation. This allows a quantitative comparison to be
made with continuum based models of diffusive growth.

Although the lattice rules for the motion of a walker in
aggregation models are generally introduced a priori, the
rules here are derived from the finite difference equation
to demonstrate the general method used in this paper. A
finite difference scheme for solving the diffusion equation
in two dimensions is

At (b,x)
(1)

where c =c(x;,y, t) is the number of particles per unit
volume, D is the diffusion coefficent, and Ax =Ay. An
analogous equation can be written for a Monte Carlo pro-
cess. Defining p, '& =(Ax ) c to represent the number of
particles at each lattice site, taking one time step as equal
to b t and defining D =Db, t l(hx), (1) can be rewritten as

p', ~
'=(1 4D)p", , +D(—p +i, +p —i, +p, +i+p, -i) .

(2)

The clear physical interpretation of this equation is that
the contribution to the particles at site i,j at time t +1 is
from particles at the site itself and its surrounding neigh-
bors at time t. This relationship defines the rules govern-
ing the motion of walkers at each site: ( 1 4D )p ~—
remain at the site, while Dp,

' step to each of the neigh-
bors. The prefactors in these expressions can be inter-
preted as probabilities governing the motion of individual
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particles.
It should be noted that the discretization [Eq. (1)] of

the diffusion equation is not unique. The only constraint
on the choice is that the probabilities associated with
each of the actions of walkers be greater than zero.
Equation (1), and subsequent discretizations, are there-
fore chosen for simplicity. We do not expect the choice
of discretization to affect the overall properties of the
model.

Using the rules defined by (2) for the motion of walk-
ers, simulations are performed in a rectangular cell of
width L with periodic boundary conditions imposed la-
terally. A finite concentration field is simulated at height
H by maintaining the average occupancy of these sites at
p walkers per lattice site. When a particle strikes a sur-
face site (a site adjacent to the cluster) it is absorbed by
the cluster. Noise reduction at the growing interface is
implemented by accumulating particles at surface sites,
until the total reaches m, whereupon the site is filled. Al-
though the parameter was originally introduced to reduce
noise [3,11,20] in the DLA model, it has a clear interpre-
tation as the inverse of the volume of the diffusing parti-
cles. In fact, the parameters p, m, and D of the model
can be related to physical parameters by the relationship
of the model to the finite difference scheme.

In the limit of this model as p, m~~ such that
A=p/m remains finite, the distribution of walkers from
one time step to the next is given exactly by the finite
difference equation (1). The proportion of a surface site
filled per time step (the interfacial velocity) is given by
U=D gz~ Vp Im where the summation is over the
nearest neighbors to the surface site. In this limit the
model is similar to the algorithm of late stage crystal
growth based on a cell dynamical scheme [21]. As b, —+0
the algorithm for deterministic Laplacian growth [22,23]
is recovered.

We compare morphologies generated by our model in
the deterministic limit (the field scaled by a factor m)
with three analytic results. The relevant boundary condi-
tions are p =0 and v n=DVp. n at the interface, where v
is the velocity and n is the unit normal directed outward
from the cluster. Far from the interface p =A. In one
dimension a similarity solution exists which satisfies the
initial condition p (x,0)=b, for x & 0. The position of the
growing interface is given by X(t)=p&t [24] where p
satisfies
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FIG. 1. Comparisons of morphologies generated by the
deterministic lattice-walker model with analytical predictions.
(1) One-dimensional interface; (2) Ivantsov parabola; (3)
modified model.
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is plotted against its theoretical value in Fig. 1 ~ An ex-
ample of the least-squares fit for p is shown in Fig. 2(a).
The behavior is qualitatively correct and the results of
the model are of the right order. The breakdown of the
solution appears to be due to the dominance of lattice
effects, which strongly bias tip sites. Note that (4) does
not uniquely determine p or u, but only their product
[26]. In the conventional analysis, anisotropic surface
tension is needed to select a unique tip radius [25,27]. In-
terfaces in diffusion-controlled growth are unstable on all
length scales if there is no surface tension, therefore the
scale of the growth for a given discretization is largely
determined by the lattice spacing.

These lattice effects can be avoided by modeling a solu-
tion which has a characteristic length scale greater than
that of the underlying lattice. Such a solution is obtained
by reversing the sign of the moving boundary condition
and defining p =b, for x =0 and z H( —~, Ut], and p =0
for z)z, where z, =p/2 —x /2p+ut is the position of the
interface. In this case u is a parameter, and p is deter-
mined by a relation for Pe:

b, =&rrP exp(P )erfcP . (3)

The values of P determined from the lattice-walker model
are shown along with the theoretical result in Fig. 1. The
agreement is excellent. In two dimensions the Ivantsov
parabola [25] provides a method of comparison. The par-
abola advances with constant velocity u and tip radius p.
The relationship between the dimensionless Peclet num-
ber Pe= up/2D and the bath concentration is given by an
equation analogous to (3),

6 =&sr&Pe exp(Pe)erfc&Pe .

The tip radius and velocity are estimated by a least-
squares fit to the advancing interface. The Peclet number
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FIG. 2. Example of a least-squares fit for the average inter-
face profile at uniform time intervals. (a) needle crystal; (b) the
modified model.
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b, =+~'1/Pe exp(Pe) erfV'Pe . (5)

By reducing v, the characteristic length scale p is in-
creased. This solution can be readily simulated by (i)
changing the boundary conditions of the model so that
sites on the x axis with z & vt are held at concentration 6
and (ii) modifying the growth rule of the algorithm so
that a cluster site becomes a field site after it has accumu-
lated m walkers. An example of a fully developed parab-
ola is given in Fig. 2(b) and the results of the model are
compared with the theoretical values in Fig. 1. The con-
sistent agreement with analytic results gives us
confidence that the method for assigning rules to lattice-
based walkers is well founded and able to reproduce mor-
phologies realized in other physical systems.

Experimental studies of electrochemical deposition
have led to the identification of several morphologies
(DLA-like, dense branching morphology, and dendritic)
[9] dependent on the experimental conditions. Several
mechanisms have been proposed to explain the large
range of morphologies. A hypothesis for the respective
roles of the Laplacian and the diffusion fields has been
given [28,29] and electrochemical aspects of the problem

such as departures from electroneutrality have been stud-
ied experimentally [12]. We numerically model ECD and
study the interplay between the electrostatic field and the
diffusion field, and consider the effects of screening on the
growth morphology.

Neglecting convection of the electrolyte the equations
governing the concentration fields of ions (c+) in ECD
are

Bc+ = —V j+, (6)

j+ = DVc—++iMc+VP, (7)

where j+ denotes the ion fiux, p the electrostatic poten-
tial, D the diffusion coefficient, and p the ionic mobility.
The electrostatic potential is determined by the solution
to the Poisson equation:

e
V P= ——(z+c+ —z c ) .

E,
(8)

The rules governing the motion of the walkers which are
consistent with (6) and (7) are determined from

p,+'=p, 4D+ V—JP +p—+, , D+ —((t;+, j P, j) p—, , D ——(P; j—P;, , )k, — k
+p', , +i D+ 2(0,, +1 4,, ) +p—',, i D (—4,, 0—

,j
—1)— — (9)

where k=j2bt/(bx) There is .experimental [12,13] and
theoretical evidence [30] of the existence of a charged re-
gion with an associated potential drop near the tips of the
growing deposit. The screening at the tips can be simply
incorporated into the ECD model by replacing (8) with

V /=i(. P, (10)

where A,
' is a length scale describing the extent of the

charged region.
Numerical simulations are performed in rectangular

cells of width I. =256, the clusters grown to a height of
350. A constant potential drop is imposed across the cell,
the potential at the upper boundary (H =1000) of the
cell being fixed at zero. Varying p and A,

' allows one to
study the interplay of the length scales associated with
the diffusion and electric fields. The emergent length
scales of the growth morphologies are simplest to discern
for a high noise reduction parameter. We show in Fig. 3
numerical results for various p and k ' where I =8. At

I

large concentration (small diff'usion length l) A,
' deter-

mines the spacing between parallel needles. Figures
3(a)—3(c) show that the spacing increases with A, '. At
lower concentrations (large l) the diffusion field deter-
mines the spacing between the needles [see Fig. 3(d)].
The selection of the characteristic distance between nee-
dles is clearly determined by the largest screening length.

There have been several recent studies examining the
influence of fluid flow on growth morphology
[12,14—16,31,32]. In most previous studies the complex
fluid motion was replaced by a uniform flow. We exam-
ine the effect of a local flow configuration on the mor-
phology. The equation governing the concentration field
is again (6), with the fiux term now given by

j= —DVc+cu,
where u is the local velocity field. The equation describ-
ing the evolution of the probability field of walkers
defined by (6) and (11) is

pi j pi j [1 4D
o ui~+1/2j +

2 ui 1/2 j 2
u—l~j +1/2+ 2 ui j —1/2 ]+J i+1j [D 2ui~+1/2j ]

+Pi —1,j [D+ z ui —1/2 j ]+Pij +1 [D Yuij +1/2 ]+Pij —1 [D+ 2 uij —1/2 ] (12)

The local flow field is then given by the solution to the Navier-Stokes equations. A good approximation to the flow field
can be obtained by solving the equations for potential fiow [33]. We introduce the velocity potential, P(x,y) defined by
u„= —BPIBx, u = —BPIBy; for two-dimensional irrotational fiow P satisfies the Laplace equation. The velocity terms
defined in (12) are given by the gradient of the potential [e.g. , u;+1/2 j = —(p;+1 &

—p; j )].
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Previous studies of deposition on a surface in the pres-
ence of a uniform drift yield clusters that are strongly in-
clined toward the incoming fiow field [16] [see Fig. 4(a)].
We simulate this deposition process on a plate at the base
of a square lattice with side length 200. A constant ve-
locity (parallel to the plate) and concentration were main-
tained along the perimeter of the cell, and zero normal
velocity was imposed at the cluster surface. The walkers
stick irreversibly to the cluster, their motion in the field

FIG. 3. The efFect of varying the screening lengths of the
diffusion and electrostatic fields. (a) p/m =0.4, k '=0; (b)
p/m =0.4, A, '=10; (c) p/m =0.4, A, '=25; (d) p/m =0.1,'= 10.

governed by (12). The effect of the local fiow field on the
cluster morphology is dramatic. The clusters grow verti-
cally from the plate with little tendency to grow upstream
[see Fig. 4(b)]. In the radial geometry [14] clusters grown
from a seed in a uniform fIow field had a strong tendency
to grow in the quadrant directed upstream. This effect
was not seen when a local field was incorporated.

Extensions of our method include the incorporation of
surface tension into the deterministic model. This will
reduce lattice effects, and may provide an alternative to
the current schemes implemented in the numerical study
of dendritic crystal growth [21,34]. A comprehensive
study of ECD and using more realistic interfacial bound-
ary conditions is underway. Recent experimental results
show that charge at the tips of the aggregate can lead to
convective motion of the fiuid [13]—we shall utilize the
method described above to study the effect of convection
on ECD. The model of convection diffusion deposition
can be generalized to include viscous Aow and may be ap-
propriate for studying certain biological processes and
engineering problems.

The authors wish to acknowledge valuable discussions
with M. N. Barber.
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