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Abstract-- Traditional algorithms used in grid 

operation and planning only evaluate one 
deterministic state. Uncertainties introduced by the 
increasing utilization of renewable energy sources 
have to be dealt with when determining the 
operational state of a grid. From this perspective 
the probability of certain operational states and of 
possible bottlenecks is important information to 
support the grid operator or planner in their daily 
work. From this special need the field of application 
for Probabilistic Load Flow methods evolved. 
Uncertain influences like power plant outages, 
deviations from the forecasted injected wind power 
and load have to be considered by their 
corresponding probability. With the help of 
probability density functions an integrated 
consideration of the partly stochastic behaviour of 
power plants und loads is possible. 

 
Index Terms-- probabilistic load flow 

I.  NOMENCLATURE 
 real valued scalar ݔ
 complex valued scalar ݔ

ܺ,  Matrix, vector ݔ
ܺற Pseudoinverse of matrix ܺ 
 ௜ nodal voltage angleߜ

 ሻ dirac-impulseݐሺߜ

 ሻ probability density function of real scalarݔ௫ሺ݌
 ݔ

 ሻ two-dimensional probability function ofݔ௫ሺ݌
complex-valued scalar ݔ 
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II.  INTRODUCTION 
N this paper, after a brief discussion of the 
Probabilistic Load Flow (PLF) problem and 

introduction of a newly developed algorithm for 
solving the PLF problem, the possible applications 
of PLF techniques will be discussed. 

In contrast to the regular Load Flow (LF) 
calculation the PLF calculation does not only 
determine the operational state of a grid for a 
single, sharply determined state. The PLF uses 
information about the probability of certain nodal 
power injections or consumptions rather than a 
single value. The objective of the PLF is to 
determine all possible operational states of the 
modelled network and their corresponding 
probability. To achieve this, the nodal behaviour 
is given as a Probability Density Function (PDF). 
The task of the PLF is to determine the PDF of 
network parameters from this input data. 
Therefore all possible combinations of nodal 
power injections and consumptions have to be 
considered in the extreme case. 

Starting from PDF for every node sampled with 
100 values for the actual power balance of that 
node, this leads to 100d combinations on a 
network with d nodes that all have to be evaluated 
with PF techniques. With traditional approaches 
this is unsolvable for networks of a reasonable 
size. A first relieve is to not evaluate all possible 
combinations but to apply a Monte-Carlo 
approach by randomly choosing only some 
possible combinations for a subsequent 
evaluation. This leads to an unpredictable 
imprecision of the results and is also applicable 
for rather small networks only. 

In this paper the mathematical basis of a newly 
developed approach to solve the PLF problem will 
be presented briefly. This approach allows for the 
calculation of a line’s current PDF independently 
from all other lines of the network. It does not 
require a regular LF, but makes use of convolution 
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techniques leading to a hugely reduced 
computation effort. 

Furthermore the approach allows for a qualified 
selection of nodes to be taken into account, 
reducing the computation effort even further. Only 
those nodes having a significant impact on the 
loading of a certain line have to be included into 
the calculation. The deviation introduced by 
limiting the number of nodes considered can be 
estimated from the underlying network model. 

 

III.  PRESENTED ALGORITHM 
While most other approaches to solve the PLF 

problem with means of standard convolution 
techniques base on Jacobian matrices as a network 
model [1]-[3], [6], the presented approach bases 
on a linear map between node and line currents, 
denoted ௡ܻ௟ in the following. This map is 
generated by combining the inverse nodal 
admittance matrix ௡ܻ (1) and the line admittance 
matrix ௟ܻ (2) stated for the exemplary network 
depicted in Fig. 1. 
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Fig. 1: Exemplary four node topology 
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Depending on whether or not line shunt 

elements are considered ௡ܻ௟ can be generated 
using either (3) (with consideration of shunt 
elements) or (4) (without consideration of shunt 
elements). 

 
௡ܻ௟ ൌ ௟ܻ · ௡ܻ

ିଵ (3) 

 
௡ܻ௟ ൌ ௟ܻ · ௡ܻ

ற (4) 

 
For both cases the relationship between nodal 

currents and line currents is determined by (5). 
 

௟ܫ ൌ ௡ܻ௟ ·  ௡ (5)ܫ

 
One of the most important issues is that there is 

usually no information available on the behavior 
of the reference node. It has to be determined 
form the available information for the remaining 
nodes. The current of the reference node – 
indexed with ݎ in the following – can be 
calculated as the negative-signed sum of all 
remaining nodal currents plus the negative signed 
sum of all currents through the shunt elements (6). 

 

௡,௥ܫ ൌ െ ෍ ௡,௜ܫ

௡

௜ୀଵ
௜ஷ௥

െ ෍ ܻ௜,଴ · ܸ௜

௡

௜ୀଵ

 (6) 

 
With the reference node current calculated 

using (6) the mapping between nodal currents and 
line currents can be stated like (7). 

 

௟,௝ܫ ൌ ෍ ௡௟,௝௜ݕ · ௡,௜ܫ

௡

௜ୀଵ

 (7) 

 
Combining (6) and (7) results in (8). 
 

௟,௝ܫ ൌ ෍ ቀݕ௡௟,௝௜ െ ௡௟,௝௥ቁݕ · ௡,௜ܫ

௡

௜ୀଵ
௜ஷ௥

െ ௡௟,௝௥ݕ

· ෍ ܻ௜,଴ · ܸ௜

௡

௜ୀଵ

 

(8) 

 
In order to be able to state a regular convolution 

scheme it is necessary to calculate the normalized 
nodal current ௝ܺ௜, as being the influence of nodal 
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current ܫ௝௜ weighted by the line dependent factors 
of (8). This leads to the expression (9). 

 

௝ܺ௜ ൌ ቀݕ௡௟,௝௜ െ ௡௟,௝௥ቁݕ  ·  ௡,௜ (9)ܫ

 

௟,௝଴ܫ ൌ െݕ௡௟,௝௥ · ෍ ܻ௜,଴ · ܸ௜

௡

௜ୀଵ

 (10)

 
Using (9) and (10), (8) can be restated as (11). 
 

௟,௝ܫ ൌ ෍ ௝ܺ௜

௡

௜ୀଵ
௜ஷ௥

൅ ௟,௝଴ (11)ܫ

 
Based on (11) it is then possible to formulate 

the convolution scheme stated in (12) in order to 
calculate the PDF ݌ூ೗,ೕ

 of the complex valued line 

current ܫ௟,௝. 
 

ூ೗,ೕ݌
ൌ ௑ೕభ݌

כ ڮ כ ௑ೕ೙݌
כ ௟,଴൯ (12)ܫ൫ߜ

 
As (12) is stated with the PDF ݌௑ೕ೔

 of the 

normalized line current ௝ܺ௜, ݌௑ೕ೔
 has to be 

determined from the PDF ݌ூ೙,೔
 of nodal current 

 .௡,௜ in a previous step using (13) and (14)ܫ
 

௡,௜ܫ ൌ ௝ܺ௜

ቀݕ௡௟,௝௜ െ ௡௟,௝௥ቁݕ
 (13)

 
௑ೕ೔݌

൫ ௝ܺ௜൯ ൌ ቚቀݕ௡௟,௝௜ െ ௡௟,௝௥ቁቚݕ

· ூ೙,೔݌
ቌ ௝ܺ௜

ቀݕ௡௟,௝௜ െ ௡௟,௝௥ቁݕ
ቍ 

(14)

 
The factor ቚቀݕ௡௟,௝௜ െ  ௡௟,௝௥ቁቚ in (14) assuresݕ

that the following basic probabilistic condition is 
still met: 

 

ඵ ௑ೕ೔݌
൫ ௝ܺ௜൯ · ݀ ௝ܺ௜ ൌ 1 (15)

 
With the methodology described before it is 

possible to calculate the PDF of line currents from 
the PDF of nodal currents. But as the input data to 

a PLF calculation is usually the PDF of nodal 
power, the PDF of nodal currents have to be 
determined from them. 

As the link between nodal power and nodal 
current is nodal voltage (16), the following part of 
this paper will focus on the determination of nodal 
current PDF from the nodal power PDF with the 
help of a nodal voltage profile. 

 
ܵ௜ ൌ ܸ௜ · ௡,௜ܫ

כ
 (16)

 
As this paper mainly addresses the possible 

applications of PLF computation, only an 
approach using a static voltage profile will be 
presented. This leads to some deviations from the 
accurate PLF solution, but increases the 
readability of this paper. 

The calculation described before could also be 
performed with all nodal voltages equal to 
nominal voltage. In this case the PDF of nodal 
current could be calculated using (17). 

 
ூ೙,೔݌

൫ܫ௡,௜൯ ൌ ௌ೔݌
ቀ1 ݑ݌ · ௡,௜ܫ

כ
ቁ (17)

 
An improved accuracy can be achieved by 

estimating the voltage profile resulting from the 
injected and absorbed power at all nodes. In order 
to maintain a regular convolution scheme the 
voltage profile corresponding to the expected 
values of nodal power will be used and assumed 
constant. The voltage profile will be derived from 
the expected values for active and reactive power 
of each node by a DC-like approach, based on a 
simplification of the Fast Decoupled Load Flow 
(FDLF). 

In [7] a detailed derivation of the used matrices 
is given. The following equations describe the 
resulting relationship between active power and 
voltage angle on the one hand, and reactive power 
and absolute voltage on the other hand. 

 
ܲ ൌ Ԣܤ · Δ(18) ߜ

 
ܳ ൌ ԢԢܤ · Δܸ (19)

 
This can be used to estimate the complex 

voltage argument and the absolute voltage from 
the vectors of active and reactive power. As 
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matrix ܤԢ and ܤԢԢ are both singular there does not 
exist an inverse matrix, but only the 
pseudoinverse matrix ܤᇱற (20) and ܤᇱᇱற (21) 
respectively. 

 
Δߜ ൌ ᇱறܤ · ܲ (20)

 
Δܸ ൌ ᇱᇱறܤ · ܳ (21)

 
Using the notation of (22) and (23), (20) and 

(21) can be restated to (24) and (25) in order to 
emphazise their origin in the expected values. 

 

ሺܲሻܧ ൌ ൥
ሺܧ ଵܲሻ

ڭ
ሺܧ ௡ܲሻ

൩     ܧሺܳሻ ൌ ൥
ሺܳଵሻܧ

ڭ
ሺܳ௡ሻܧ

൩ (22)

 

൯ߜ൫Δܧ ൥
ଵሻߜሺΔܧ

ڭ
௡ሻߜሺΔܧ

൩     ܧ൫Δܸ൯ ൥
ሺΔܧ ଵܸሻ

ڭ
ሺΔܧ ௡ܸሻ

൩ (23)

 
E൫Δߜ൯ ൌ ᇱறܤ · ൫ܲ൯ (24)ܧ

 
E൫Δܸ൯ ൌ ᇱᇱறܤ · ܧ ቀܳቁ (25)

 
Due to the used matrices being singular, the 

resulting vectors are only one of an infinite 
number of possible solutions for the given vectors 
of expected values. It is necessary to define the 
values for one node as a reference for all other 
elements in order to find the solution actually 
searched for. Usually the absolute value of the 
voltage at the reference node is set to 1 ݑ݌ and its 
complex argument to 0. To determine the 
corresponding solution it is necessary to apply a 
common shift to the vectors calculated using (24) 
and (25), so that the absolute value at the 
reference node equals 1 ݑ݌ and the complex value 
equals 0. With the help of (26) and (27) this can 
be achieved. 

 
௜ሻߜሺܧ ൌ ௜ሻߜሺΔܧ െ ௥௘௙൯ (26)ߜ൫Δܧ

 
ሺܧ ௜ܸሻ ൌ ሺΔܧ ௜ܸሻ ൅ ൫1 െ ሺΔܧ ௥ܸሻ൯ (27)

 
With the voltage profile estimated using (26) 

and (27) the shunt element related current can be 

estimated with (28). 
 

௟,௝଴ܫ ൌ െݕ௡௟,௝௥ · ෍ ܻ௜,଴ · ሺܧ ௜ܸሻ · ݁௝·ாሺఋ೔ሻ
௡

௜ୀଵ

 (28)

 
As the input parameters to the PLF-calculation 

are the PDF of nodal power, the PDF of nodal 
currents have to be derived from this input 
parameters. With the estimated voltage profile 
(30) and the basic nodal power equation (29) it is 
possible to estimate the complex-valued nodal 
power using (31). 

 
ܵ௜ ൌ ܸ௜ · ௡,௜ܫ

כ
 (29)

 
൫ܸ௜൯ܧ ൌ ሺܧ ௜ܸሻ · ݁௝·ாሺఋ೔ሻ (30)

 

௝ܵ௜ ൌ ൫ܸ௜൯ܧ · ௡,௜ܫ
כ

ൌ ൫ܸ௜൯ܧ · ௝ܺ௜
כ

ቀݕ௡௟,௝௜ െ ௡௟,௝௥ቁݕ
 כ

(31)

 
The nodal power ௝ܵ௜ is double indexed here 

because this nodal power corresponds to the 
normalized nodal current calculated for line ݆. 

Based on the considerations and findings 
described before, it is possible to determine the 
PDF of the normalized nodal current ௝ܺ௜ as stated 
in (32). 

 

௑ೕ೔݌
൫ ௝ܺ௜൯ ൌ ቮ

ቀݕ௡௟,௝௜ െ ௡௟,௝௥ቁݕ

൫ܸ௜൯ܧ
ቮ

· ௌ೙,೔݌
ቌܧ൫ܸ௜൯ · ௝ܺ௜

כ

ቀݕ௡௟,௝௜ െ ௡௟,௝௥ቁݕ
ቍכ

 (32)

 
The leading factor is again needed to fulfill the 

probabilistic condition (15). 
With the previously calculated values and PDF 

it is possible to state the calculation of the PDF of 
complex-valued line current ܫ௟,௝ using standard 
convolution technique as stated in (33). 

 
ூ೗,ೕ݌

ൌ ௑ೕభ݌
כ ڮ כ ௑ೕ೙݌

כ ௟,௝଴൯ (33)ܫ൫ߜ

 
As the PDF of interest is the PDF of absolute 
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line current (34) has to be applied to the result of 
(33) in order to calculate the PDF of หܫ௟,௝ห 

 

௟,௝ห൯ܫหூ೗,ೕห൫ห݌ ൌ න
ூ೗,ೕ݌

൫หܫ௟,௝ห · ݁௝·ఋ൯

ߨ2 · หܫ௟,௝ห
· ߜ݀

ଶగ

଴

 (34)

 
Summary 
 
The presented algorithm possesses the 

following valuable features: 
1. It allows for the computation of ݌หூ೗,ೕห 

for a given line ݆ independently from all 
other lines. 

2. It allows for the selection of the most 
important nodes by analysis of the 
model matrix ௡ܻ௟ prior to the main 
computation. This allows reducing 
significantly the computational 
complexity. 

3. For the nodes excluded from the 
computation an estimation of the 
introduced deviation can be given by 
analysing ௡ܻ௟ together with the extent of 
the PDF of the excluded nodes. 

4. The probability of each value of a 
complex-valued line current ܫ௟,௝ can be 
calculated separately, allowing for the 
parallelization of the computation. 

 

IV.  EXEMPLARY RESULTS 
In order to proof the validity of the presented 

approach examples computed for two test cases 
will be discussed in the following. The results 
computed using the presented approach will be 
verified against the reference results of a Monte-
Carlo (MC) based algorithm. The first test case 
involved a radial network with 5 nodes, like 
sketched in Fig. 2. 

 

 
 
Fig. 2: Test network No. 1 

 
The results show a good correlation to the 

reference MC results. This is true for the line next 
to the reference node (node number one) (see Fig. 
3), as well as for one of the intermediate lines (see 
Fig. 4). 

 
Fig. 3: Precision comparison test network 1, line 1-2 
 

 
Fig. 4: Precision comparison test grid 1, line 3-4 

 
Also the results for the second test case, based 

on the meshed network sketched in Fig. 5, show 
good correlation with the reference result (see Fig. 
6). 

 

 
 
Fig. 5: Test network No. 2 

 

 
Fig. 6: Precision comparison meshed grid, line 2-4 

 



 6

To proof advancement to the state of the art in 
PLF computation, introduced by the presented 
approach, Fig. 6 also displays the result for ݌ூమర

 
calculated with an algorithm based on the 
linearization of the Jacobian matrix as a network 
model. The severe deviation from the reference 
result is clearly visible. Not only the fact that there 
is a mayor deviation, but also that these deviations 
are not predictable is one of the main reasons for 
the limited practical usability of this class of 
algorithms. 

 

V.  POSSIBLE APPLICATIONS 
In network operation and network extension 

planning Probabilistic Load Flow computation 
provides much more complex information about 
the possible operational state of a network than 
conventional deterministic Load Flow 
computation. Instead of focusing on deterministic 
states caused by a selected number of scenarios, it 
provides an operator or planner with information 
about all possible states and their corresponding 
probability. The results not only show whether or 
not a certain extreme loading is possible, but also 
its probability and thus a mean to estimate the 
duration of appearance. It is then the operators or 
planners decision if any countermeasures are 
necessary or not. Keeping in mind that it is 
actually not an over-current that harms a line, but 
the produced and accumulated heat, it becomes 
clear that the information about the probability – 
and thus expected duration of appearance – is 
extremely valuable information. 

Fig. 7 sketches the way the results of PLF 
computation have to be interpreted. As the result 
is a Probability Density Function, actual 
probability can only be determined for given 
intervals on the absolute line current axis. In the 
given example the probability of an absolute line 
current above 0.8 ݑ݌ equals the area between the 
PDF and the line current’s axis, starting from 
 In this qualitative example the probability .ݑ݌ 0.8
of a absolute line current of 0.8 ݑ݌ and more 
equals to 20%, while the probability of an 
absolute line current of 1.1 ݑ݌ and above is only 
1%. It is now the operators or planners decision to 
intervene or to back up to short term mitigations 
in case an inacceptable line loading really occurs. 
Information about weather conditions might also 
be taken into account, as low temperature and 

high wind speed conditions improve the cooling 
of overhead lines. 

 
Network expansion planning 
In case of network expansion planning, the 

results can be used to assess the probability – and 
thus the average time of occurrence – of network 
contingencies. This information is of great 
importance for the investment decision as 
contingency costs can be estimated on the basis of 
the PLF results [4], [5]. Furthermore the most 
important nodes, strongly involved in the 
appearance of the contingency – can be identified 
by analysing the before mentioned matrix ܻ௡௟. 

The so called N-1 criterion, used in 
conventional network extension planning can be 
included by the line current PDF of lines at risk 
for multiple, relevant network topologies. In this 
case it is necessary to take into account the 
probability of the selected topologies as well. By 
weighting the respectively resulting PDF with the 
probability of occurrence of the underlying 
topology, it is possible to estimate the average 
duration of overload even with consideration of 
line outages. 

 

 
 
Fig. 7: Interpretation of the results 

 
On-line operation 
Another possible field of application is the 

calculation of the probability of line loading under 
the strong influence of stochastic power injection 
(e.g. feed-in from wind turbines). Wind forecasts 
can then be directly turned into line loading 
forecasts, helping the network operator to assess 
the risk of line overloads. It is then his decision 
whether or not he wants to limit the feed-in. For 
this decision the results of the PLF computation is 
the only qualified basis. 

Apart from the influence of power injections 
with a stochastic character, PLF allows for the risk 
assessment of generator outages. As the 
probability of an outage can be easily modelled 
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with the PDF of injected power, the consideration 
of generator outages is a natural feature of PLF 
computation. For networks without frequency 
control, the algorithm presented in this paper 
provides a fairly good approximation (see section 
IV). If a frequency control has to be modelled as 
well, it becomes a necessary extension to the 
algorithm presented in this paper to include the 
dependencies between generator feed-ins 
introduced by the frequency control mechanism. 

 

VI.  CONCLUSIONS 
As in many other academic and technical fields, 

also in power systems the use of probabilistic 
mathematic is pushing forward. Two different 
main causes can be identified. On the one hand 
there is a huge pressure towards a more efficient 
usage of existing or future networks, while on the 
other hand the increasing usage of uncontrolled 
generation unit with a stochastic nature makes the 
power flow patterns more and more diverse and 
complex. The coincidence of both prepares the 
ground for PFL techniques in power systems. 

The Probabilistic Load Flow problem was 
addressed over decades now, but previously 
available approaches either suffered from severe, 
hardly predictable deviations from the actual 
results, or their application was limited to 
extremely small networks. Main source of the 
deviations occurring in those algorithms 
applicable also to networks of a reasonable size 
are mainly introduced by network model 
simplifications. 

In contrast to the previously presented 
approaches, the approach presented in this paper 
incorporates an exact linear model of the 
underlying network. The issue of non-linearity of 
the power flow equations is addressed by 
determining network states in terms of voltage and 
nodal current profiles, for which the 
corresponding complex-valued nodal power 
profile is determined in the very last step. This 
circumvents the lack of a function inverse to the 
power flow equations. While in this paper an 
approach using static voltage estimation was 
presented as an introduction into the field of PLF 
computation, an approach including a dynamic 
voltage profile computation is presently under 
verification and will be published soon. 
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