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Abstract 

Rising market prices for energy, an apparent future shortage in fossil fuels, and alarming reports on pollution 
through CO2 are causing a world-wide trend towards renewable and ecologically clean forms of energy. We 
report about ongoing work in the R&D project DEZENT establishing renewable electric energy supply and 
eventually replacing fossil energy sources. Producers are at the same time also consumers. Their production and 
consumption are largely unpredictable. With our combined expertise in Real-Time systems and Electric Power 
Distribution we developed price negotiations which are pursued by consumer/ producer agents on a P2P basis 
and are governed by tough end-to-end deadlines (< 0.5 sec) dictated by EE constraints. The strategies used for 
periods of 0.5 sec are designed for fast convergence while we may at the same time assume a constant demand/ 
supply situation. Malicious users will not succeed, and customers pay considerable less than under conventional 
management policies or structures. In this paper we allow the negotiation strategies themselves to be adaptive 
across periods thus achieving a most flexible bargaining for each individual customer involved. For this purpose 
we have defined distributed learning algorithms derived from Reinforcement Learning. While maintaining all 
benefits from the earlier stage of development we demonstrate that we obtain a much better performance across 
periods than the initial static algorithms. To our knowledge we have presented and investigated the first 
distributed learning algorithm in the area of Adaptive Real-time Systems. Since the electric distribution 
management can be equally finalized within each period we have laid the ground for a thorough provision with 
sustainable and clean electric energy. 

1. Introduction 
 

Rising market prices for energy, an apparent future shortage in fossil fuels, and alarming reports on 
pollution through CO2 are causing a world-wide trend towards renewable and ecologically clean forms 
of energy. This trend has been steadily growing over the past decade. Private investments have been 
encouraged and heavily subsidized in most of the European countries, through tax deductions, and 
even more through a very favorable refund program for feeding electric power from renewable sources 
into the public network.  

In 2005 the European Union for the Coordination of Transmission of Electricity (UCTE) demanded 
to impose an obligation on grid operators to reduce integration costs for renewable energy capacities 
and to enable wind turbines to actively contribute to grid stability [UCTE05]. Enabling renewable 
power capacities to serve as reserve and balancing power capacities could obviously meet these 
demands. This was an encouraging incentive for our research. 

Technological Basis. Different from traditional power production, while environmentally clean 
and sustainable technologies are based on solar or wind power, or on other renewable energy sources, 
they are typically realized through highly distributed small or mid-size facilities. All of them are 
absolutely environmentally clean, or climate-neutral as in the case of vegetable oil based BHPPs. Fuel 
cells and combined block heat and power plants can even be put into the basement of private homes. 
Their start-up and shut-down times are very short (ca. 1 min.).  

Through electrolytic processes hydrogen and oxygen can be produced from excess energy thus 
allowing for a stable long-term storage of electric energy. Recent progress in lithium-ionic 
accumulator technology in combination with ultra- or super-capacitors allows for an efficient short-
term storage strategy, with extremely high power gradients. These combined technologies allow for 
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efficient and scalable power storage, providing high peak power within 0.5 sec when required 
[BuB05]. 

Instead of costs for raw materials, or of their transportation to large power plants, renewable energy 
largely comes for free (or at most at low production and minor transportation costs), except for the 
initial investment for the installation and continued maintenance of power facilities, for the growth of 
rape and its minor local transportation costs. The sources are inexhaustible, and through combining 
electric and heat production the technical efficiency is well over 90 %.  

Since windcraft, photovoltaics and BHPPs are typically widely distributed and dispersed, their 
combined effect may well be used to guarantee a stable supply.  

Decentralized power distribution and management. Traditionally, electric power production and 
distribution are handled in a centralized manner. It is a top-down procedure, from the 500 kV, 110 kV, 
20 kV levels, down to the 0.4 kV grids.  On the other hand, the lack of timely prediction about local or 
regional consumption peaks requires a very conservative planning of reserve capacities. Also, due to 
technical constraints in large power plants (like long start-up and shut-down times with extensive 
maintenance and decreased life times) the generators would run continuously, thereby creating a 
considerable reserve capacity that may never be used: a built-in waste of energy. Finally power 
failures and energy balancing in large grids, if globally handled, are hard to manage as e.g. recently 
proven through the catastrophic black-outs in the Eastern US and Canada or, lately, the crashing of 
dozens of huge power line pylons resulting from heavy icy rain in Germany. The centralized control 
concept causes high overhead costs, high inflexibility and a lack of scalability and fault tolerance. 
Even under of highly efficient computer control, timely reactions and negotiations could only be 
achieved through a decentralized management.  

Instead, in this paper we present a bottom-up principle of power distribution and balancing, as part 
of a completely decentralized management of renewable electric energy production and consumption. 
For the sake of higher fault tolerance it even exploits the widely distributed renewable source structure 
as a basis for efficient fault control: Failures would have a limited local or regional impact only, and, 
while also a consumer, every energy producer represents a potential back-up/ reserve facility.  

We have introduced a staged management of the electrical power grid with 4 operating 
stages. Due to page limitations we only describe the negotiation phase among the involved 
agents. The other 3 phases the safe distribution and management of the electric power. For 
more details we refer the reader to [HKW+06].- Our DEZENT algorithm is, to the best of our 
knowledge, the first completely decentralized solution for these problems. 

2. Distributed Agent Negotiations in DEZENT 
 

2.1  The Model 

2.1.1 General assumptions 

Under the assumption that the overall power needs in a region can be covered through renewable 
sources (which is already realized in quite a number of towns in Southern  Germany) the customers 
should negotiate the prices for electric power themselves, even more so since consumers are 
(potentially) also producers. Due to their common interests or double roles, respectively, we consider 
as their dominant attitude 
● to satisfy their needs under minimal investments; 
● to rely on excess power in case of failures or shortcomings while in turn providing excess 

production to neighbors on demand (balancing-in-the-small or bottom-up).  
As renewable energy comes for free or at moderate prices (e.g. bio-gas) and covering is secured, 

unused excess  production would not be an issue except for user investment while balancing power is 
a local or at most regional business. While balancing may proceed on several levels negotiations on 
each level run in parallel on each level. In the worst case an extra local or regional reserve capacity 
(regenerative or not) may come into the picture  (see fig. 1). 
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We follow basic requirements of fairness: 
● to negotiate and distribute every portion of consumer demand, or of produced power; 
● to take into account their unpredictable variation. 

We respect these by choosing the smallest perceivable action possible as negotiation period. This 
will be 0.5 sec (e.g. the latency of a light switch). During this time we assume the demand and supply 
situation to be constant. In other words: Changes occurring in the meantime will be accumulated until 
the next period. This imposes narrow and hard end-to-end deadlines both on the negotiation and 
power distributions processes. The algorithms we present below have been designed according to 
these constraints, i.e. as real-time adaptive solutions of the problem phrased.  

Negotiation processes on behalf of actors (human or technical) will be carried out through 
distributed software agents since they will take place well below the level of actor perception or 
reaction. 

As common in Electrical Engineering, electric energy will be partitioned into arbitrary portions, 
according to needs and supply. Since the actor latency (e.g. a switch action) will be not less than 0.5 
sec until the requested action is in effect we will assume that during this interval the need and supply 
situation is constant. All energy is available in the whole network. The underlying electric grid 
structure is supposed to be free of failures. This opens the door for participants acting under their own 
responsibility yet poses particular novel challenges on an appropriate handling of unpredictable 
consumer requests and producer offers, under fine-grained time-critical and stringent fault tolerance 
constraints.  

2.1.2 Agent Negotiation Structure 

In DEZENT distributed agent negotiations take place on multiple levels within subdivisions of the 
total agent population. Within these subdivisions (balancing groups) negotiations are carried out 
through balancing group managers (BGMs). While monitoring bids and offers, BGMs will arrange for 
contracts on power quantities on the basis of “close” matches of bids and offers (see fig. 1).  

Negotiations will start independently for the groups on the lowest level (each corresponding to a 
balancing group on the lowest (0.4kV) voltage level). If a balance cannot be found for all processes in 
a group the negotiation scope will be extended to the other groups on the same level, or higher up, 
under the control of the next-higher BGM. The purpose is to accommodate the unsatisfied processes. 
Only in the worst case will the back-up services be utilized (2.1.1). 

 
 

Fig. 1 Negotiation Topology     Fig. 2 Negotiation Frames and Adjustment 
 

Since an actor may be a producer and a consumer at the same time negotiations are initialized as 
follows: The customer agent, after having computed the difference current_needs – 
current_production acts as a producer agent if the difference is negative, as a consumer agent if the 
difference is positive, and it does nothing if the difference is zero.  

During each negotiation period consumers issue bids for energy quantities they need, producers 
offer rates to sell such quantities. All quantities are limited to the next negotiation period. Since we 
assume the need and supply situation not to change during the period under discussion the price for a 
quantity will not depend on its size, in other words: According to the spirit of the approach there are 
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no long-term negotiations or discounts. As costs for producers arise just for amortization and 
maintenance a limited negotiation range is deemed appropriate. Within the given range consumers 
will tend to issue bids on the low side, producers will try to offer power for relatively high rates, each 
group according to their interests. As the negotiations proceed and unless a deal has been closed 
producer/ consumer rates are lowered, or raised, respectively, from step to step, in order to be finished 
before a negotiation cycle is finished. The urge is motivated by the fact that for the next cycle the yet 
unsatisfied processes would face a narrower negotiation range and additional charges that account for 
estimated power losses calculated from the supply configuration of the previous negotiation period. 
Thus both sides are put to a disadvantage. 

2.2 The Base Negotiation Algorithm 
2.2.1 Negotiation period  

As just explained there are producer/ consumer agents and balancing group agents. The latter 
conduct negotiations between producers and consumers on various levels (see fig. 2). On each level 
negotiations are performed in cycles of 10 steps each. For the purpose of simplicity we assume that in 
the model presented, based on synchronized clocks, negotiations in each cycle under a BGM start at 
the same time, and the duration of a step is 1 ms . (This still allows balancing group managers to 
process the requests of a large number of customer agents (up to 104)). After reaching the highest level 
(level 3 in fig. 2) negotiations will be finished since the remainder needs and power quantities will be 
handled by the main reserve facility. No new customers will be admitted during this period.  We call 
this a negotiation period. Customers who have been satisfied during the negotiation period do no 
longer participate. As a consequence, a producer cannot act as a consumer during a negotiation 
period, and vice versa. 

2.2.2 Price frames and adjustments 

Negotiations on each level are held within fixed price frames. Frames on the same level have 
identical sizes. Customers that are unsatisfied after a cycle of one level will continue negotiations on 
the next higher level, however, the negotiation frames are shrunk by a fixed shrinking value Sr for all 
levels (See the example in fig. 2 with a shrinking value of  20% and 40%, respectively), lowering or 
raising the upper and lower limits, respectively, by half of the percentage. We do not only finalize on 
matching pairs of bids and offers but also consider bids and offers for contracting that are similar as 
specified by preset limits for their differences. The finalized energy price on level k is then calculated 
by adding Ak-Ak-1 to the arithmetic mean value between the similar bid and offer for the consumer and 
by subtracting Bk-1-Bk from the mean value for the producer (for k ≥ 1). 

Let a current frame at a negotiation level k be denoted by [Ak, Bk]; k = 0,1,2,.. For a producer/ 
consumer the minimum offer/ maximum bid will be Ak/ Bk , respectively. The opening bid bid0 has to 
be chosen from [Ak, ½(Bk + Ak)], the opening offer offer0 is taken from [½(Bk + Ak), Bk]. 

Each agent also specifies a device-specific urgency urg0 and strategy parameters s1C and t1P. They 
characterize the gradient of the bidding and offer curves, respectively. When after step n; n ∈ [0,9] the 
unsatisfied agents adjust their bids/offers this will be done according to: 
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The s2C and t2P are determined by the opening bid (bidC(0) = bid0) or offer (offerP(0) = offer0), 
respectively.  

      
2 0log( )C ks B bid= − − ,      (3) 
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2 0log( )P kt offer A= − − ,     (4) 

Bidding and offering curves, after starting from their opening values, asymptotically approach Bk and 
Ak, respectively, with increasing n. 

 
2.2.3 Negotiation period  

At the end of each step unsatisfied consumers are identified and sorted by the BGM for current level 
k, according to their current bids. Then the consumers are processed top-down starting with the 
highest bidding consumer. Offers similar to the bid of the first consumer are identified and sorted by 
price. Offers are processed top-down as well. 

For closing a contract between the first-listed consumer and the first-listed producer the needs of the 
consumer will be fulfilled as far as possible, within the following constraint: Only up to X Wh (Watt-
hours) will be granted to the consumer at a time. (This prevents any consumer to purchase a very 
high amount of energy thus leaving other consumers out in the cold!) After purchasing X Wh from 
one or more producers the current consumer’s negotiation is interrupted, and the algorithm proceeds 
with the next-listed consumer. After processing the last-listed consumer, the algorithm starts again 
with first interrupted consumer (from the top of the list), allowing it to continue its negotiation for up 
to another X Wh. Going through the customer procedure again it proceeds until no match can be found 
in the current step any more. The algorithm stops and proceeds with the next step (and the afore 
mentioned bid/offer adjustments). (This approach is quite similar to the Round_Robin mechanism 
found in process-scheduling to maximize CPU-utilization and to prevent starvation of late or low-
priority processes). 

 
Fig. 3 Contracting for Energy Quantities   Fig. 4 Unsatisfied Agents 
 
When a contract between a similar bid and offer has been closed (on a maximum of X Wh!) we 

distinguish the following cases for handling the total quantities: 
 

A.  The needed quantity is only a fraction of the offered size. The offer of the producer is adjusted 
to the difference of the need and the current size of the offer, the highest bidder is deleted. The 
algorithm proceeds with the next consumer. 

B.  The offered quantity matches the needed one exactly. Producer and consumer are deleted, and 
the algorithm proceeds with the next consumer. 

C.  The needed quantity is not completely covered by the offer. The need of the bidder is adjusted 
to the difference of his current need and the given offer size, the producer is deleted, and the 
algorithm proceeds to identify the next similar producer. 

D.  If the need of the consumer is not yet satisfied but no similar offers are identified or left, the 
algorithm proceeds with the next consumer. 

 

Fig. 3 illustrates the progression of the negotiation algorithm under a BGM during one cycle. In this 
example there are 6 consumers (ascending curves) and 5 producers (descending curves) participating. 
Encircled bid/offer pairs (of similar values) and numbers correspond to the order in which contracts 
are closed. According to the first three cases of the afore mentioned algorithm, on contracting either 
the consumer curve ends (contract 2) due to needed quantities smaller than offers, or the producer 
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curve ends (contracts 3, 4) due to offers smaller than needed quantities. Finally both curves end since 
needed and offered quantities quantities match exactly (contracts 1, 5, 6). In this example two 
consumers remain unsatisfied by the end of the tenth step. They start with the lowest possible bid and 
do not adapt fast. Conversely, the curves that are contracted at 1 start rather high (consumer) or low 
(Producer), respectively and they adapt their values very fast. 

The algorithm proceeds from level k to level (k+1) if unsatisfied users are left on level k. The BGM 
on level (k+1) starts with collecting all these users. Then BGM checks for each opening offer or bid 
from level k whether or not it fits into [½(Bk+1 + Ak+1), Bk+1] or [Ak+1, ½(Bk+1 + Ak+1)], respectively. 

If the check is positive the values remain unchanged for level (k+1). Otherwise the value would be 
outside of [Ak+1, Bk+1], and the opening bid/ offer will be adjusted to Ak+1/ Bk+1, respectively (in this 
case s2C / t2P have to be recalculated according to (3) and (4)). 

Calculated power losses within a cycle on the kth level are contracted out on level (k+1) by a 
consumer agent acting on behalf of the BGM of that cycle, obeying all of the above mentioned 
constraints. 

For further studies on the favorable cost behavior in DEZENT please see [WHL+06a, WHL+06b]. 
Also, for the results that the algorithm is robust against a large class of security attacks we refer the 
reader to the same references, due to space limitiations.  

3.  Periodic Reinforcement Learning in DEZENT 

As explained in 2.2 negotiations are organized in cycles, and the strategies within a cycle as ell as 
strategy adjustments (of the negotiation frames) between cycles are automated. Typically only 3-4 
cycles (of 30-40 msec total duration) are needed for finalizing the negotiation process, resulting in 
covering the consumer needs with regenerative power, without accessing traditional (reserve) power 
sources (see fig.3). 

Between periods, i.e. every 0.5 sec (2.2.1), a different form of adaptation has been established. It is 
based on distributed learning concepts which do not require (globally organized) training for the 
agents. Instead, we have derived novel AI techniques from the methods of Reinforcement Learning 
[SB98]. In the sequel, we will briefly outline the basic ideas of our approach. A technical 
representation is subject of a forthcoming publication. 

Reinforcement Learning is a computational approach for understanding and automating goal-
directed learning and decision making. It focuses on individual learning from direct interaction with 
the individual’s environment. This is different from supervised learning, the traditional form of 
learning studied in most forms of Machine Learning, Statistical Pattern Recognition, and Artificial 
Neural Networks. These AI approaches are important examples of learning, but not really adequate for 
agent based learning and learning from interaction [SB98]: In interactive problems it is often 
impossible to obtain examples of a desired behavior that are both correct and representative of global 
situations and requirements where agents have to act. Under mostly unpredictable interaction between 
distributed agents each agent is left with learning from its own experience. 

For a typical learning problem an agent is faced repeatedly with a choice among different actions. If 
for an action a numerical reward is to be received which depends directly on this action the purely 
evaluative feedback indicates how good a chosen action is, but not whether it is the best or worst 
possible action. Purely instructive feedback, on the other hand, indicates the correct action to choose, 
unaffected by the action actually chosen. 

One of the challenges that arise in reinforcement learning and not in other kinds of learning is the 
trade-off between exploration and exploitation. To obtain a high reward, an agent will prefer actions 
that it has tried in the past and found to be efficient for producing a reward. Yet for discovering highly 
rewarded actions, it may have to try actions that it has not selected before. So the agent has to exploit 
the past but it also has to explore actions in order to make better action selections in the future. The 
dilemma is that neither exploration nor exploitation can be pursued exclusively without failing at the 
task at hand. Each agent will try a variety of actions and progressively favor those that appear to be 
best. On a stochastic task, each action must be tried many times to gain a reliable estimate of its 
expected reward [SB98]. Exploitation is the right thing to do for maximizing/minimizing the expected 
reward during the next period, but exploration may produce the higher total reward in the long run. 
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In DEZENT each combination of an opening bid or offer, bidCi(0) or offerPi(0) respectively, and an 
element of a finite set of strategy parameters s1Ci or t1Pi, respectively, is called a strategy and 
corresponds to a possible action to be chosen by an agent for the next negotiation period. (A strategy 
corresponds to a producer or consumer curve.)  

For a consumer Ci’s strategy strategyCi, we have  

1 1 1, :
i i i iC C C Cs s s ∈ =  S , 

       [ ]1
20 0 0(0) , ( ) :

i iC Cbid A B A∈ + = Ο ,         (5) 

    :
i i i iC C C Cstrategy StrategySpace ∈ × = S O .  

 
For a producer Pi’s strategy strategyPi, we have 

1 1 1, :
i i i iP P P Pt t t ∈ =  T ,  

    [ ]1
2 0 0 0(0) ( ), :

i iP Poffer B A B∈ + = Ο ,         (6) 

            :
i i i iP P P Pstrategy StrategySpace ∈ × = S O .  

After each period an agent considers the contracted rate which partially depends on the chosen 
strategy, otherwise on the producer strategies involved. In order for consumers (producers) to keep 
their power costs low (their reimbursement for investment and maintenance covered) they will assume 
as a main idea pursued in reinforcement learning that strategies resulting in low energy rates (for 
consumers, high rates for producers) should more likely recur than those followed by high prices. But 
how can an agent determine whether a price is high or low? (Please remember that the individual 
demands or supplies may vary unpredictably.) A judgment regarding a good negotiated energy price 
during the next period will be made by comparison against a reference price. A simple estimate of the 
reference price is an average of previously negotiated energy prices. This method is called 
reinforcement comparison. We weigh recent energy prices higher than long-past ones, by means of a 
constant step-size parameter. Then the reference price ( )

iCr t for a Consumer Ci in period t is calculated 

by Ci as follows: 
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       (7) 

 
where ,0 1α α< ≤  is the step-size parameter and ( )

iCr t  the energy price negotiated in period t. The 

reference price (0)
iCr  is initialized with the current price frame’s mean energy price, suggesting a 

balanced supply situation: 

     0 0(0)
2iC

B A
r

+=           (8) 

 
Calculation of a reference price is done individually by every consumer Ci and every producer Pi. 

Reinforcement comparison is then used by every agent to update the new estimated energy price or 
strategy preference 

/ ( 1, )
i iC P tp t a+  of a strategy a chosen in period t, resulting for Ci  in  

 
( 1, ) ( , ) ( ) ( )

i i i iC t C t C Cp t a p t a r t r tβ  + = + − 
        (9) 

 
On this basis chose between two exploitation actions will be derived, by modifying both the 

strategic parameters (flattening or steeping the curves) and the opening bid (bidCi(0) or offer offerPi(0), 
respectively) for the next period.  

The exploration action is a simple trial-and-error approach where an agent, starting from its last 
strategy, randomly selects a strategy in its near neighborhood. Two consumer strategies strategyCi’ and 
strategyCi’’ are neighbors in our current model iff  

1
41 1´ ´´

i i iC C Cs s− ≤ S  and 1
4(0)´ (0)´́

i i iC C Cbid bid− ≤ O . 
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The neighborhood between producer strategies strategyPi’ and strategyPi’’ is defined accordingly. 
The selection among the conflicting exploitation/ exploration actions is done by utilizing a common 
randomized action selection method.  

This learning method has been shown to greatly enhance the situation of customer agents compared 
to various elementary strategy adjustment procedures. Due to page limitations, we have to refer the 
reader to [WHL+07b].    

3. Conclusion 

We have defined a novel distributed real-time negotiation procedure for agents taking care of 
producers and consumers of renewable energy on a large scale. Producer and consumer agents act in 
their own responsibility, and so do the actors behind, although the agent actions are far below the level 
of human perception. The base negotiation algorithm is very flexible, and Reinforcement Learning  
methods added considerably to the adaptive performance of the agents thus creating the basis for a 
superior form of innovative distributed power grid management. Different from traditional power 
distribution, while balancing in DEZENT is arranged bottom-up, local failures do not cause global 
blackouts. Since the electric distribution management can be equally finalized within each period 
[HKW+06] we have laid the ground for a thorough provision with sustainable and clean electric 
energy. 
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