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Abstract
Non-HFE hereditary haemochromatosis (HH) refers 
to a genetically heterogeneous group of iron overload 
disorders that are unl inked to mutat ions in the 
HFE gene. The four main types of non-HFE HH are 
caused by mutations in the hemojuvelin, hepcidin, 
transferrin receptor 2  and ferroportin  genes. Juvenile 
haemochromatosis is an autosomal recessive disorder 
and can be caused by mutations in either hemojuvelin  or 
hepcidin . An adult onset form of HH similar to HFE-HH 
is caused by homozygosity for mutations in transferrin 
receptor 2 . The autosomal dominant iron overload 
disorder ferroportin disease is caused by mutations in 
the iron exporter ferroportin. The clinical characteristics 
and molecular basis of the various types of non-HFE 
haemochromatosis are reviewed. The study of these 
disorders and the molecules involved has been invaluable 
in improving our understanding of the mechanisms 
involved in the regulation of iron metabolism.
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INTRODUCTION
After the identification of  the HFE gene in 1996[1] it 
became apparent that not all cases of  haemochromatosis 
are caused by mutations in HFE. HFE-associated HH 
(HFE-HH) or type 1 HH is the most common form, 

especially in populations of  Northern European origin, 
where the C282Y mutation has a high allele frequency[2]. 
Haemochromatosis that is unrelated to mutations in 
the HFE gene are collectively referred to as non-HFE 
haemochromatosis. Non-HFE haemochromatosis 
occurs in populations world wide and makes up a larger 
proportion of  HH cases in areas where the C282Y 
mutation is less common, such as Southern Europe[3] 
and Asia[4]. Non-HFE HH can be further differentiated 
according to the gene mutated. There are four main types 
of  non-HFE HH. The molecules mutated in all forms of  
HH are related in pathways involved in the regulation of  
iron homeostasis. Hepcidin the central regulator of  iron 
homeostasis and hemojuvelin are mutated in juvenile or 
type 2 HH[5,6]. Transferrin Receptor 2 is mutated in type 3 
HH[7] and the iron exporter ferroportin is mutated in the 
autosomal dominant type 4 HH or ferroportin disease[8,9]. 
The genetic, clinical and laboratory features of  the various 
types of  HH are outlined in Table 1. This review will 
describe in detail the four main types of  non-HFE HH 
and review the current literature in this area.

JUVENILE HAEMOCHROMATOSIS (TYPE 2)
An early onset form of  juvenile haemochromatosis (JH), 
distinct from the typical HFE-HH has been recognised 
for some time[10]. As with HFE-HH, JH or type 2 HH 
is an autosomal recessive disorder, and is characterised 
by elevated serum iron indices and iron deposition in 
parenchymal cells. JH usually presents before the age of  30 
years and has a more rapid and severe course than HFE-
HH. Unlike HFE-HH both sexes are affected equally[10]. 
Cardiomyopathy and hypogonadism are more prominent 
features of  JH, hypogonadism being the most common 
symptom at presentation[11]. The rapid accumulation of  
iron in patients with JH can often be fatal, death usually 
resulting from heart failure[11].

When the HFE gene was identified in 1996, it became 
apparent that JH was indeed a disorder genetically distinct 
the typical HFE-HH. Linkage to the HFE gene region on 
chromosome 6 was ruled out, in a study utilising microsatellite 
markers in five Italian JH families[12]. This was followed 
by a genome wide search that identified linkage to the 
chromosome 1q21 region in nine JH families. Subsequently 
a subset of  families who did not have linkage to 1q21 were 
found to have mutations in the hepcidin (HAMP) gene on 
chromosome 19[5]. This subset of  JH has been termed type 
2B HH and is described in more detail later. The chromosome 
1 form of  JH has been termed type 2A HH.
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HEMOJUVELIN-ASSOCIATED

HAEMOCHROMATOSIS (TYPE 2A)
The gene responsible for the chromosome 1 form of  JH 
was identified in 2004[6]. Fine mapping of  the JH locus 
was performed in 12 JH families of  Greek, Canadian and 
French origin. Sequencing of  genes in this region revealed 
a novel gene that was mutated in all affected individuals[6]. 
The gene originally named HFE2 encodes hemojuvelin 
(HJV), a protein with homology to the repulsive guidance 
molecule (RGM) family of  proteins. Six mutations were 
initially identified in the affected individuals either in 
the homozygous or compound heterozygous state. One 
mutation G320V was present in nine of  the 12 families[6]. 
Since the identification of  HJV, numerous mutations 
have been identified in JH families worldwide[6,13-24]. An 
Italian study identifi ed 16 more mutations among 34 JH 
patients from various European backgrounds[13]. Figure 1
illustrates the structure of  hemojuvelin and position of  
disease-causing mutations. Most mutations are private and 
were detected in single families. A few have been detected 
in more than one population. One mutation in particular 
(G320V) is significantly more frequent and has been 
reported in JH patients in many populations[6,13,16-20,24].

Patients with HJV-HH were shown to have low levels of  
urinary hepcidin[6]. This suggested that HJV may be involved 
in regulating hepcidin expression in response to iron. The 
generation of  mouse knockouts confirmed that HJV was 
critical for the regulation of  iron homeostasis and the 
induction of  hepcidin[25,26]. Recent studies have suggested 
that HJV regulates hepcidin expression through signalling 
pathways involving bone morphogenic proteins (BMPs)[27].

HEPCIDIN-ASSOCIATED

HAEMOCHROMATOSIS (TYPE 2B)
While most cases of  juvenile haemochromatosis have been 
linked to a locus on the long arm of  chromosome 1 (1q21) 
and mutations in HJV, a small number of  families have 
been described with a JH-like disorder unlinked to 1q21[28]. 
This subset of  patients was found to have mutations in 
the hepcidin (HAMP) gene. Two consanguineous families 
of  Italian and Greek origin were originally reported with 
linkage to a region on chromosome 19, encompassing the 
region containing the hepcidin gene[5]. Homozygosity for 
mutations in the hepcidin coding sequence was detected 
in both families. One family harboured a one base pair 
deletion (93delG), causing a frameshift and an abnormal 
extended protein (T31fsX180). The other family carried 
a single base pair substitution (166C>T) causing the 
replacement of  an arginine with a stop codon (R56X), in 
the predicted cleavage site for prohormone convertases. 
Both of  these mutations severely affect the protein 
sequence and would result in the absence of  any mature 
hepcidin peptide[5].

Hepcidin mutations remain a rare cause of  JH. However, 
since the fi rst report, other cases and mutations have been 
described[5,29-37]. Mutations described in the hepcidin gene 
are shown in Figure 2. These include mutations affecting 
two of  the eight highly conserved cysteine residues (C70R 
and C78T), important for the complex disulphide bonded 
structure of  mature hepcidin[33-35]. A mutation in the 
5 ′UTR of  the hepc id in mRNA (-25G>A) has been 
described in two Portuguese families[36,37]. This mutation 
creates a new initiation codon upstream from the original 

Table 1  Genetic, clinical and laboratory features of the various types of Hereditary Haemochromatosis

HH
Type

Gene Inheritance Clinical features Laboratory
fi ndings

Liver pathology Functional consequences of
mutations

1 HFE Autosomal
recessive

May include: fatigue, lethargy,
arthropathy, skin pigmentation, liver
damage, diabetes mellitus, endocrine
dysfunction, cardiomyopathy,
hypogonadotropic hypogonadism

↑ serum
ferritin,
↑ transferrin
saturation

Hepatocyte iron
loading, fi brosis,
cirrhosis

Impaired hepcidin regulation by iron,
leading to increased intestinal iron
absorption and release of iron from
reticuloendothelial cells

2A Hemojuvelin
(HJV)

Autosomal
recessive

As for HFE.
Earlier onset (< 30 yr). Cardiomyopathy
and hypogonadism more prevalent.

↑ serum
ferritin,
↑ transferrin
saturation

Hepatocyte iron
loading, fi brosis,
cirrhosis

Loss of hepcidin regulation,
leading to increased intestinal iron
absorption and release of iron from
reticuloendothelial cells

2B Hepcidin
(HAMP)

Autosomal
recessive

As for HFE.
Earlier onset (< 30 yr). Cardiomyopathy
and hypogonadism more prevalent.

↑ serum
ferritin,
↑ transferrin
saturation

Hepatocyte iron
loading, fi brosis,
cirrhosis

No/inactive hepcidin, leading to
maximal iron absorption and release
of iron from reticuloendothelial cells

3 Transferrin
Receptor 2
(TfR2)

Autosomal
recessive

As for HFE. ↑ serum
ferritin,
↑ transferrin
saturation

Hepatocyte iron
loading, fi brosis,
cirrhosis

Impaired hepcidin regulation by iron,
leading to increased intestinal iron
absorption and release of iron from
reticuloendothelial cells

4 Ferroportin
(Fpn),
SLC40A1,
IREG1, MTP1

Autosomal
dominant

Typical presentation: as for HFE,
except generally milder. May have
mild anaemia and lower tolerance to
venesection.

↑ ↑ serum
ferritin,
normal
transferrin
saturation

Predominant
Kupffer cell iron
loading, fi brosis 

Reduced ferroportin iron transport
ability, leading to accumulation of
iron in reticuloendothelial cells

Atypical: as for HFE ↑ serum
ferritin,
↑ transferrin
saturation

Predominant
hepatocyte iron
loading, fibrosis, 
cirrhosis

Loss of ferroportin regulation by
hepcidin, leading to increased
intestinal iron absorption and release
of iron from reticuloendothelial cells



ATG. Measurement of  urinary hepcidin in a patient 
homozygous for this mutation, suggests that steady state 
transcription of  hepcidin from the original ATG codon does 
take place. But there is loss of  upregulation of  hepcidin 
transcription in response to iron[37]. In another study it was 
shown in vitro that the out of  frame upstream initiation 
codon was functional and prevented normal transcription 
from the original ATG[38].

DIGENIC INHERITANCE AND MODIFIERS 

OF HFE
The remaining mutations in hepcidin have been detected 
in the heterozygous state in patients carrying HFE 
mutations. Merryweather-Clarke et al described patients 
with haemochromatosis who carried mutations in both 
HFE and hepcidin. One patient carried a four base pair 
deletion in HAMP (Met50del ⅣS2+1(-G)) and had a JH-
like phenotype. Another family carried the G71D mutation 
in combination with either heterozygous or homozygous 
C282Y, and adult-onset iron overload. This was the fi rst 
description of  iron overload due to digenic inheritance of  
mutations in two separate genes. Two studies have detected 
hepcidin mutations in large cohorts of  patients with HFE-
HH[29,30]. Jacolot et al detected HAMP mutations in five 
individuals from a cohort of  392 C282Y homozygotes 
and found that these were among the more iron-loaded. 
In addition, four of  31 subjects with iron overload, but 
at least one chromosome lacking an HFE mutation also 
carried a HAMP mutation. This supports the concept 
that digenic inheritance of  HFE and HAMP mutations 
can lead to iron overload. Biasiotto et al also screened for 
hepcidin mutations in iron overload patients carrying the 
C282Y allele and detected sequence variations in some[30]. 
They concluded that a novel substitution in the hepcidin 
promoter (-72C>T) may aggravate iron loading in patients 
with HFE mutations.

HJV mutations have also been detected in patients 
with HFE-HH. Two studies suggested that heterozygosity 
for HJV mutations may aggravate the phenotype in 
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Figure 1  Structure of human hemojuvelin and positions of mutations. A: The exon structure of human hemojuvelin is shown with positions of known mutations 
marked[6,13-24,30,39]. *Q6H was found associated with C321X; B: Predicted structure of the full length HJV protein, showing the positions of structural domains and motifs. 
SP, signal peptide; PG, poly-glycine sequence; RGD, RGD motif; PP, poly-proline sequence; vWF, partial von Willebrand factor type D domain; N, potential N-linked 
glycosylation sites; GPI, GPI-attachment site; TM, transmembrane domain, cleaved after GPI attachment.

Figure 2  Structure of human hepcidin and positions of mutations. A: The 
exon structure of human hepcidin is shown with positions of known mutations 
marked[5,29-37]. B: Predicted structure of the hepcidin peptide. SP, signal peptide; 
Pro, pro-region; Mature, 25 amino acid mature hepcidin peptide.
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HFE-HH[30,39]. Le Gac et al reported nine of  310 C282Y 
homozygous patients with additional HJV mutations. 
Eight of  the nine patients appeared to have a more severe 
phenotype, suggesting that heterozygosity for mutations 
in HJV were having a modifying effect[39]. A similar effect 
of  HJV mutations was reported by Biasiotto et al[30], the 
N196K mutation being associated with abnormally high 
iron indices in a C282Y/H63D compound heterozygote. 
The effect of  HJV mutations on phenotypic expression of  
HFE-HH is small, and has not been detected in all studies. 
Lee et al did not detect any HJV mutations in a group of  
49 C282Y homozygotes[24]. Wallace et al reported a G320V 
heterozygous relative of  a JH patient, who was also a 
C282Y/H63D compound heterozygote, but with normal 
iron indices[17].

TRANSFERRIN RECEPTOR 2-ASSOCIATED 

HAEMOCHROMATOSIS (TYPE 3)
Transferrin Receptor 2 (TfR2)-HH was first described 
in 2000[7]. This was the f irst HH syndrome to be 
attributed to non-HFE mutations. Mutations in TfR2 
were first detected in six members of  two Sicilian 
families. The defect was linked to a region on the long 
arm of  chromosome 7 (7q22), and affected individuals 
we r e found to be homozyg ous fo r a nonsense 
mutation (Y250X) in TfR2 [7]. Affected individuals 
had iron overload with a similar phenotype to HFE-
HH. TfR2-HH is a rare condition; however, several 
mutations have been reported worldwide associated 
with haemochromatosis[7,30,40-52]. Mutations reported in 
TfR2 are illustrated in Figure 3.

TfR2 is a homologue of  the classical transferrin 

receptor (TfR1)[53], the molecule responsible for the uptake 
of  transferrin-bound iron into cells. Unlike the ubiquitous 
expression of  TfR1, TfR2 expression and activity is 
restricted almost exclusively to the liver[54]. Rather than 
being involved in the uptake of  transferrin bound iron, it 
appears that the main function of  TfR2 is as a sensor of  
iron levels and regulator of  hepcidin. In both patients and 
animal models with TfR2-HH hepcidin levels are low in 
relation to iron stores[55-57].

The clinical features of  TfR2-HH resemble that 
found in HFE-HH. Onset is usually in adulthood and 
is associated with increased serum iron indices and iron 
accumulation in parenchymal cells. Clinical features 
reported in patients with TfR2-HH include abnormal 
liver function, liver fibrosis, cirrhosis, arthritis, diabetes, 
hypogonadism, cardiomyopathy and skin pigmentation[41,44]. 
All of  these features are typical of  HFE-HH. A direct 
comparison of  phenotype between HFE-HH and 
TfR2-HH is difficult, due to the low prevalence of  
TfR2 mutations and small number of  reported cases. It 
appears, however, that TfR2-HH may have a more severe 
phenotype. Early onset of  disease has been reported in 
a number of  cases. Two adolescent siblings homozygous 
for the R105X mutation were reported with elevated 
transferrin saturation[51]. However, the serum ferritin in 
both cases was normal and liver biopsy was not performed. 
Two unrelated cases, presenting at ages 3 and 16 years were 
reported, homozygous for the Y250X mutation[40]. Both 
had raised serum iron, transferrin saturation and hepatic 
iron. The 16-year-old, who presented with fatigue, also had 
raised serum ferritin. Other cases suggestive of  an earlier 
onset and more severe phenotype than HFE-HH have also 
been reported[42, 44].
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B

Figure 3  Structure of human transferrin receptor 2 (TfR2) and positions of mutations. A: The exon structure of human TfR2 is shown with positions of known mutations 
marked[7,30,40-52]. The frameshift mutations R30fsX60 and P555fsX561 are also known as E60X and V561X respectively. G792R may be associated with R396X; B: Predicted 
structure of TfR2 protein. YQRV, endocytosis signal; TM, transmembrane domain; RGD, RGD motif; S, predicted interchain disulphide bonds; N, potential N-linked 
glycosylation sites.
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Pietrangelo et al recently reported an unusual family 
with both adult and juvenile onset haemochromatosis[52]. 
Two siblings presented in their early twenties with 
features typical of  JH. These included hypogonadotropic 
hypogonadism, cardiomyopathy and cirrhosis. Both were 
found to be homozygous for a mutation Q317X in TfR2. 
In addition compound heterozygosity for HFE-C282Y/
H63D was also present. A brother who had a less severe 
adult onset phenotype was homozygous for the Q317X 
TfR2 mutation, but had wild type HFE sequence. This is 
the fi rst and only report of  juvenile haemochromatosis due 
to mutations in two genes normally associated with adult-
onset haemochromatosis[52]. This observation suggests 
that defects in either HFE or TfR2 can be compensated to 
some extent by the other. Homozygosity for mutations in 
either one can lead to appreciable iron overload with onset 
normally in adulthood. The combination of  mutations in 
both genes has an additive effect on iron loading, leading 
to an earlier onset and JH-like phenotype. Both HFE 
and TfR2 are thought to regulate hepcidin expression in 
the liver through as yet unidentified signalling pathways. 
It is possible that HFE and TfR2 work through either 
parallel or converging signalling pathways resulting in 
the induction of  hepcidin. This would explain why the 
loss of  one can be compensated to some extent by the 
other. The loss of  both, however, would lead to complete 
loss of  regulation of  hepcidin by iron, as occurs in JH. 
Further studies will be needed to clarify the relationship 
between HFE and TfR2, and the signalling pathways they 
are involved in.

FERROPORTIN DISEASE
Ferroportin disease differs from other genetic iron 
overload disorders in that it is inherited in an autosomal 
dominant pattern. An autosomal dominant form of  

haemochromatosis was first reported in 1990, in a 
Melanesian pedigree from the Solomon Islands[58]. In 
a large 96 member pedigree, 31 of  81 members tested 
were affected in at least three generations. All affected 
individuals had raised transferrin saturation and serum 
ferritin levels. Liver biopsies in 19 individuals showed a 
pattern of  iron staining consistent with HFE-HH, with 
iron present in hepatocytes and Kupffer cells. Some degree 
of  fibrosis or cirrhosis was present in the majority of  
cases. This study was performed before the identifi cation 
of  the HFE gene; hence, analysis of  HFE mutations could 
not be performed. However, linkage to the HFE locus on 
chromosome 6 was excluded, by HLA typing of  affected 
and non-affected family members[58]. Another large 
pedigree with multiple affected individuals, but without 
pathogenic mutations in the HFE gene was described in 
1999[59]. This Italian family consisted of  53 living members, 
with 15 affected across three generations. Linkage to the 
HFE region on chromosome 6 was excluded by typing of  
microsatellite markers.

Mutations in ferroportin, associated with autosomal 
dominant haemochromatosis were first described in 
2001. An asparagine to histidine mutation (N144H) was 
identified in a large multi-generation family from the 
Netherlands[9]. At the same time an alanine to aspartate 
mutation (A77D) was reported in the large Italian pedigree 
described previously[8]. Since these fi rst reports, many more 
ferroportin mutations have been described in association 
with autosomal dominant haemochromatosis[60-85]. Figure 4
shows the mutations reported in the literature to date. 
Ferroportin mutations have been reported in populations 
throughout the world. Most of  the reported ferroportin 
mutations are private and restricted to single families. 
Some mutations, however, are more common and have 
been reported in diverse populations. The most prevalent 
is the deletion of  one of  a group of  three valine residues 
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(V162del). This mutation has been reported in families 
from Australia, the UK, Italy, Greece, Sri Lanka and 
Austria[61-66]. It has been proposed that this mutation has 
occurred independently, several times, due to slippage 
mispairing in a repeat sequence. Other mutations 
reported in multiple populations include A77D (Italy 
and Australia)[8,60] and Q248H[75-79]. It is unclear whether 
Q248H is a mutation or polymorphism. It has been 
reported at high frequencies in African and African-
American populations, in both controls and individuals 
with iron overload, where it can occur in the heterozygous 
or homozygous state. There is suggestive evidence that it 
may contribute to slightly higher serum ferritin levels[76-79], 
but this effect is very small compared to other ferroportin 
mutants. There are three mutations affecting asparagine 
144, suggesting that this residue is important for the 
functioning of  ferroportin. In the original Dutch family 
reported by Njajou et al[9], it was mutated to a histidine 
(N144H)[9], in an Australian family to an aspartate 
(N144D)[71] and in a Solomon Island patient to a threonine 
(N144T)[67]. Whether this mutation is responsible for 
the autosomal dominant Solomon Island iron overload 
syndrome reported by Eason et al [58], remains to be 
determined.

The phenotypic features of  most cases of  ferroportin 
disease differ significantly from that of  HFE-HH. The 
typical features are an early elevation in serum ferritin, 
with normal transferrin saturation, and iron accumulation 
preferentially in the Kupffer cells of  the liver. With 
increasing age, iron stores increase, and iron is seen in 
hepatocytes as well as Kupffer cells, and the transferrin 
saturation can be elevated. In these cases liver damage 
is minimal, with fibrosis occurring in some individuals. 
Venesection therapy is not always tolerated, with anaemia 
developing, especially in early cases when the transferrin 
saturation is low. It is now apparent that some cases 
of  ferroportin disease differ from this typical pattern. 
A second atypical phenotype has been proposed, with 
features that more closely resemble HFE-HH. Atypical 
features include an early rise in transferrin saturation, and 
iron accumulation preferentially in hepatocytes, with some 
Kupffer cell iron apparent in some cases. Venesection 
therapy in these cases is usually tolerated well, but liver 
damage would appear to be more prevalent, with two 
reports of  cirrhosis[71,80].

The heterogeneity of  ferroportin disease has led to 
the suggestion that mutational differences account for 
the phenotypic variation observed in patients. In general 
each mutation can be classified as leading to either the 
typical or atypical ferroportin disease phenotype. It 
has been proposed that particular mutations affect the 
function of  ferroportin in different ways. The ferroportin 
gene, also referred to as IREG1, MTP1, SLC11A3 and 
SLC40A1, encodes a multiple transmembrane domain 
iron transporter, highly expressed in duodenum, liver 
and reticuloendothelial cells. It is responsible for iron 
transport across the basolateral surface of  enterocytes into 
the blood and recycling of  iron in the reticuloendothelial 
system. Mutations such as A77D and V162del lead to 
the typical phenotype of  reticuloendothelial iron storage, 
with relatively low transferrin saturation. A non-functional 

ferroportin molecule would be predicted to lead to this 
phenotype. Heterozygosity for a non-functional mutant 
would be predicted to lead to haploinsufficiency for 
ferroportin, with only half  the amount of  functional 
ferroportin present on the surface of  cells at any one 
time. In the reticuloendothelial system, where the vast 
majority of  daily iron turnover occurs, this would be 
predicted to cause a blockage in the release of  iron back 
into the circulation. Hence, iron would accumulate in 
the reticuloendothelial macrophages, and serum iron 
concentrations would be relatively low. These low levels 
of  circulating iron would in turn lead to an increase in 
iron absorption in the duodenum, possibly involving 
sensors in the liver, such as HFE and TfR2 and signalling 
via the hepcidin pathway. The turnover of  iron in the 
reticuloendothelial system far outweighs that in the 
duodenum. Hence, the ferroportin required to transport 
iron across the basolateral surface of  enterocytes would 
probably be sufficient to transport more iron into the 
body, even if  a non-functional mutant was present. Over 
a long period of  time body iron stores would increase to 
a point where the capacity of  the reticuloendothelial cells 
to store iron would be reached, and iron would accumulate 
in parenchymal cells such as hepatocytes. This is seen 
in advanced typical ferroportin disease and is usually 
accompanied by an increase in the transferrin saturation.

It was recently reported that ferroportin expression 
on the cell surface can be regulated by hepcidin[86]. It 
was shown that hepcidin could bind to ferroportin 
on the cell surface and induce its internalisation and 
degradation. In this way hepcidin could rapidly reduce 
iron absorption in the intestine and release of  iron from 
the reticuloendothelial system, resulting in a reduction 
in serum iron. It has been proposed that the mutations 
which cause the atypical ferroportin disease phenotype 
affect the ability of  hepcidin to internalise ferroportin. 
Failure to internalise would lead to a permanently 
“switched on” ferroportin molecule. This would lead to 
increased iron absorption in the duodenum and release 
from reticuloendothelial cells, resulting in high serum iron 
levels and storage of  iron in parenchymal cells. Having a 
permanently “switched on” ferroportin molecule would 
effectively be the same as having hepcidin deficiency, as 
they both result in the same end point. This explains why 
the atypical form of  ferroportin disease phenotypically 
resembles other forms of  haemochromatosis, which all 
result from hepcidin defi ciency.

CONCLUSION
There are four main genes implicated in non-HFE 
haemochromatosis. Mutations in these genes occur in 
populations world wide and account for the majority of  
HH cases not linked to HFE. The study of  these disorders 
has led to a greater understanding of  how the body regulates 
iron homeostasis. All the genes implicated in the different 
forms of  haemochromatosis are involved in the regulation 
and maintenance of  iron homeostasis. Hepcidin is at the 
centre of  the iron regulatory pathway. Its expression in the 
liver can be regulated by the activities of  HFE, TfR2 and 
HJV. Hepcidin itself  can regulate the activity of  the iron 
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exporter ferroportin. Mutations in any one of  these genes 
can disrupt the regulation of  iron homeostasis and lead 
to iron overload. Further study of  these molecules, their 
relationships to each other, and signalling pathways they 
are involved in will further illuminate our understanding of  
iron metabolism and its regulation.
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