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Abstract  

A class of quasiperiodic structure three-component 
Fibonacci (3CF) Ta/AI multilayer films is fabricated by 
dual-target magnetron sputtering. The microstructure 
of this film is investigated by transmission electron 
microscopy and electron and X-ray diffraction. Cross- 
section transmission electron microscopy demonstrates a 
well formed layer structure of 3CF Ta/A1 superlattices. 
The electron-diffraction satellite spots, which can be 
indexed by three integers, correspond to the X-ray dif- 
fraction peaks in both position and intensity. The scat- 
tering vectors observed in electron and X-ray diffraction 
are in good agreement with the analytical treatment from 
the projection method. 

I. Introduct ion  

The quasicrystal is an intermediate state between peri- 
odic and disordered solids (Levine & Steinhardt, 1984). 
Since the discovery of quasicrystals by Schechtman, 
Blech, Gratias & Cahn (1984), considerable attention 
has been paid to quasiperiodic systems. In studies of 
quasiperiodic structures, one-dimensional (1D) quasi- 
periodic superlattices offer a simple example because 
the characteristic intervals and growth sequence can be 
intentionally controlled. For this reason, many experi- 
mental studies on quasiperiodic superlattices have been 
reported. Merlin, Bajema, Clarke, Juang & Bhattacharga 
(1985) were the first to produce quasiperiodic (Fibo- 
nacci) GaAs-A1As superlattices. Since then, much pro- 
gress on aperiodic superlattices has been made (Todd, 
Merlin & Clarke, 1986; Hu, Tien, Li, Wang & Feng, 
1986). Recently, we proposed the use of quasiperiodic 
superlattices with high-Z and low-Z metal combinations 
as a reflector of soft X-rays in the case of high photon 
energies (Peng, Hu & Jiang 1991; Jiang et al., 1992). 
This means that the quasiperiodic superlattices may 
provide optical elements for special applications and 
studies on quasiperiodic structures become more valu- 
able. 

While previous experiments mostly focused on the 
two-component quasiperiodic superlattices, we foresee a 
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more complicated property in reciprocal space for the 
three-component Fibonacci structure. The aim of this 
paper is to present the diffraction behaviour of three- 
component Fibonacci (3CF) Ta/AI superlattices by the 
projection method and electron and X-ray diffraction. 
This work is motivated by our previous studies (Peng, 
Hu, Jiang, Zhang & Feng 1992) of aperiodic structures 
with more than two components. 

2. Theoret ica l  mode l  

The 3CF structure is generalized from the Fibonacci 
sequence with two components, A and B. This structure 
can be created by the substitution rule A ~ A C, C --~ B 
and B ~ A. There are several ways to describe the 3CF 
structure. If the limit of generation is set to be St, 
the rule S r -  S~_l +S~_3, with S l = {A},S 2 -{AC},  
S 3 -{ACB},  gives the 3CF structure. We define two 
ratios ~ and r/, with ~ = limn__.~[Nr(B)/Nr(A)] and 
rl = limn__,~[Nr(C)/Nr(A)], where Nr(A), Nr(B), Nr(C) 
are the number of A, B, C in S ,  respectively. According 
to the substitution rule, these two ratios satisfy the fol- 
lowing equations: 

q3 + q - -  1, 
(1) 

r/2 = ~. 

It follows that 

r /=  [1/2 + 1/2(31/27)1/2] 1/3 + [1/2 - 1/2(31/27)1/2] 1/3, 

= - 2  + [29/54 + 1/2(31/27)1/2] 1/3] 

+ [29/54 - 1/2(31/27)1/2] 1/3. (2) 

On the other hand, it is useful to recast the substitution 
rule in the form of a 3 × 3 integer matrix M, i.e. 

~ M , (3) 

where 

( 101~ 
M = 100] .  

010]  
(4) 
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Obviously, the characteristic equation of matrix M is 

X 3 - - X  2 - -  | " - - 0 .  ( 5 )  

It is noteworthy that 1/ is just reciprocal of the char- 
acteristic root 2 of (5). 

Following the Bombier-Taylor theorem, if the char- 
acteristic polynomial of the substitution rule has only 
one root, 20, of absolute value greater than one, i.e. 2o is 
a Pisot number, the tiling will be quasiperiodic. Elser 
(1985) and Zia & Dallas (1985) found the projection 
method to generate quasiperiodic structures and dealt 
with the diffraction behaviour. The key of the projection 
method lies in the fact that a low-dimensional quasi- 
periodic structure may be regarded as the projection of a 
high-dimensional periodic structure. In the case of the 
3CF structure, 2 (= 1/r/), as mentioned above, is a Pisot 
number. Therefore the 3CF structure is quasiperiodic 
and can be obtained by the projection method. In an 
orthogonal coordinate system, we project a cubic lattice 
along a line that satisfies 

C O S  ~ 1  : C O S  0~ 2 : C O S  0~ 3 = 1 : ~ : r/, (6) 

where el, ~2, ~3 are the angles between the projecting 
axis and three orthogonal coordinate axes, respectively. 
The set of projected points on the projected axis can 
construct a 3CF lattice. The three intervals dA, d~, d c 
can be expressed as 

d~ : de : dc = cos 0~ 1 : COS ~2 : COS 0( 3 = 1 : ~ : r/. (7) 

By performance of the Fourier transformation of the real 
lattice, the diffraction vector q (Peng et al., 1992) can be 
obtained: 

q(n I , n 2, n3) = 2rtD-I (nl + n2~ + n3q ), (8) 

where n~, n 2, n 3 are integers and D is the average lattice 
wavelength. The diffraction peaks are located using (8). 
Obviously, each peak can be indexed by three indices 
(n 1, n2, n3). The strongest peaks demonstrate the self- 
similarity of the reciprocal lattice, i.e. 

q(an+3, a,+~, an+2) = q(an+ 2, a~, a,+~) + q(a~, an_2an_l). 
(9) 

Here, a~ is defined as a, =a ,_~- I -an_  3 with a I = 
a 2 = 0 a n d a  3 = 1. 

It should be pointed out that a cube is topologically 
equivalent to a cuboid. A nonstandard 3CF lattice fol- 
lowing d ~ : d ~ :  d c - ¢ 1 :  ~:r /  can also be projected 
from an orthogonal lattice instead of a cubic one, and (8) 
and (9) still hold. This property makes it possible to 
realize a 3CF structure in experiments. 

Secondly, these building blocks are ordered in the 3CF 
sequence. A 3CF Ta/A1 multilayer film was fabricated 
on a glass substrate by dual-target magnetron sputtering. 
Fig. 1 shows the schematic layer structure of the 3CF 
Ta/A1 film. In a typical sample, Ta slabs with the same 
thickness were separated by A1 slabs with different 
thicknesses. The building blocksoA, B and C consist of 
(11.7 .~Ta--33.64 A A1), (11.7 A Ta-9.13 ,~ AI) and 
(11.7 .~ Ta-19.49 A AI), respectively. The sample 
consists of sixteen generations of the 3CF sequence with 
an average lattice parameter D = d~ + d ~  + d c r  1 = 
76.32 A, and the total thickness is "-- 1.44 l.tm. 

Cross-section specimens for transmission electron 
microscope (TEM) observation were prepared by ion- 
beam thinning. TEM observations were carried out on a 
Philips EM430 operating at 300 kV. The standard 0-20 
scan of X-ray diffraction was performed using a Sie- 
mens D-2000 diffractometer with Cu K~ radiation and a 
symmetric graphite (002) monochromator. 

4. Results and discussions 

Fig. 2 shows a cross-sectional bright field image of a 
3CF Ta/A1 superlattice. The layer structure is well 
formed compared with the films prepared by the mag- 
netron sputtering technique. The slight undulatory form 
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3. Experimental 

The procedure to generate a 3CF structure involves two 
steps. First, three building blocks A, B, C are defined. 

Fig. 1. Schematic ordering of three-component Fibonacci (3CF) Ta/AI 
multilayers. The building blocks A,B and C are (11.7 A Ta-- 
33.64 A AI), (11.7 A Ta--9.13 .~ A1) and (11.7,~Ta--19.49 A AI), 
respectively. The 3CF sequence is ACBAACACBACBA ... .  The first 
several 3CF generations are shown. The sample consists of sixteen 
generations and the total thickness is ~ 1.44 gm. 
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of the layers in the superlattice may come from the 
fluctuation of sputtering and the roughness of the sub- 
strate. The bright and dark layers correspond to A1 and 
Ta slabs, respectively. The thicknesses of three building 
blocks are very close to the designed values, and the 
3CF sequence (ACBAACACBACBA. . . )  can be clearly 
identified. 

The Fourier transform of the 3CF sequence consists of 
a dense set of components such that the diffraction peaks 
are expected at all wave vectors in the reciprocal space 
defined by q(n 1, n2, n3) -- 2rcD-l(nl + n2~ + n3rl). Both 
electron and X-ray experiments were performed on the 
present samples, because the microstructural informa- 
tion of 3CF at the local level can be obtained from 
electron diffraction while the information from X-ray 
scattering is averaged over a wide region of the 3CF 
sample. We can compare the experimental results from 
electron diffraction with those from X-ray diffraction. 
Fig. 3(a) shows the electron diffraction pattern of the 
3CF Ta/A1 superlattice (only diffraction spots on the 
right side of the zero beam are shown). Eight satellites 
are visible, and their diffraction vectors can be calcu- 
lated from their spacings, and those are shown in Table 
1. The corresponding X-ray diffraction spectrum of the 
same sample is given in Fig. 3(b). The diffraction peaks 
form a dense set, and their positions, intensities, dif- 
fraction vectors, as well as indexes (n 1 , n 2, n3) , are listed 
in Table 1. One-to-one correspondence can be found 
between the electron and X-ray diffraction results 
[shown in Fig. 3(a), (b) and Table 1] except that the first 
two peaks observed in the X-ray diffraction spectrum are 
missing in the electron diffraction pattem, probably 
because the zero beam of the electron diffraction pattern 
is too strong and swamps them. Table 1 shows that the 
diffraction vectors in the electron diffraction case are in 
good agreement with those in X-ray diffraction. The 

diffraction vectors in these two spectra fit the results 
given by equation (8). The self-similarity [shown in 
equation (9)] can also be found in the indices of the 
strong diffraction satellites. For example, q(3, 1, 2 ) =  
q(2, 1, 1) + q(1, 0, 1). 

The distribution of the spots in the electron diffraction 
pattem and the peaks in the X-ray diffraction spectrum 
from the 3CF Ta/A1 superlattice are very different from 
the results from the periodic Ta/A1 superlattice (Jiang et 
al., 1989). In the case of the 3CF structure, the dif- 
fraction intensities do not decrease gradually when the 
diffraction vectors increase, as they do for the periodic 
Ta/A1 case. The phenomenon stems from the quasi- 
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Fig. 2. The cross-sectional bright field image from 3CF Ta/A1 multi- 
layers. Ta and A1 appear as dark and bright layers, respectively. 

Fig. 3. Diffraction pattern from 3CF Ta/A1 multilayers with the 
average lattice parameter D= 76.32 A. (a) Electron diffraction 
pattern of cross-sectional sample near the transmitted beam. (b) 0--- 
20 scan of X-ray diffraction. The strong peaks are indexed by three 
integers. Cu K~ radiation. 
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Table 1. As for  3CF Ta/Al multilayer film with the average lattice parameter D =  76.32 A, comparison o f  dif- 
fraction vectors from electron and X-ray diffraction with those from the projected method 

Camera length L2 = 65.94 mm ~, for electron diffraction. Cu K~t radiation for X-ray diffraction. 

Electron diffraction (q = 27tr/L2) X-ray diffraction (q = 4n sin 0/2) 
Indexing 

[q = 2rt/D(n I + n2~ + n3r/)] 

Satellite spacing q Peak position 20 q lobs q 
No. (mm) (~-  I) lobs (o) (~k-1) (arbitrary units) (nl, n2, n3) (tk- 1) 

1 - - - 0.633 4.502 x 10 -2 32713 (0,0,1) 5.617 × 10 -2 

2 - - - 1.003 7.134 x 10 -2 4206 (1,0,0) 8.233 x 10 -2 
3 0.75 0.07146 S 1.281 0.0911 7377 (0,1,1) 0.0945 
4 1.20 0.1143 M 1.577 0.1121 2014 (1,1,0) 0.1207 
5 1.61 0.1534 S 2.178 0.1549 5491 (I,0,1) 0.1385 
6 1.90 0.1810 S 2.484 0.1767 11290 (1,1,1) 0.1768 
7 2.40 0.2287 W 3.056 0.2173 1324 (1,2,1) 0.2151 
8 2.80 0.2668 W 3.762 0.2675 137 (2,1,1 ) 0.2591 
9 3.21 0.3059 W 4.376 0.3112 1383 (2,0,3) 0.3332 

10 4.21 0.4011 M 5.252 0.3734 128 (3,1,2) 0.3976 

periodic order. On the other hand, the locations of  strong 
satellite spots in TEM and strong peaks in X-ray dif- 
fraction from the 3CF Ta/A1 superlattice are more 
complicated than for Fibonacci Ta/A1 mult i layer  films 
(Peng, Hu & Jiang, 1991; Jiang et al., 1992), requiring 
labelling by three integers instead of  two. As the number  
of  components  increases in 1 D structures, we expect that 
the diffraction spectrum will become even more com- 
plicated. A transition from quasiperiodic to non- 
quasiperiodic diffraction behaviour  may occur. 
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