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ITERATIVE ESTIMATING EQUATIONS: LINEAR CONVERGENCE
AND ASYMPTOTIC PROPERTIES

BY JIMING JIANG,1 YIHUI LUAN2 AND YOU-GAN WANG

University of California, Davis, Shandong University and CSIRO Mathematical
and Information Sciences

We propose an iterative estimating equations procedure for analysis of
longitudinal data. We show that, under very mild conditions, the probability
that the procedure converges at an exponential rate tends to one as the sample
size increases to infinity. Furthermore, we show that the limiting estimator
is consistent and asymptotically efficient, as expected. The method applies
to semiparametric regression models with unspecified covariances among the
observations. In the special case of linear models, the procedure reduces to it-
erative reweighted least squares. Finite sample performance of the procedure
is studied by simulations, and compared with other methods. A numerical ex-
ample from a medical study is considered to illustrate the application of the
method.

1. Introduction. Longitudinal data is often encountered in medical research
and economics studies. In the analysis of longitudinal data (e.g., Diggle, Liang
and Zeger [3]), the problem of main interest is often related to the estimation of
the mean responses which, under a suitable parametric or semiparametric model,
depend on a vector β of unknown parameters. However, the mission is complicated
by the fact that the responses are correlated and the correlations are unknown.

Suppose that Y is a vector of responses that is associated with a matrix X of
covariates, which may also be random. Suppose that the (conditional) mean of Y

is associated with a vector of parameters, θ . For notational simplicity, write µ =
µ(X, θ) = Eθ (Y |X) and V = Var(Y |X). Hereafter Var or E without the subscript
θ is meant to be taken at the true θ . Consider the following class of estimating
functions G = {G = A(Y − µ)}, where A = A(X, θ). Suppose that V is known.
Then, by Theorem 2.1 of Heyde [7], it is easy to show that the optimal estimating
function within G is given by G∗ = µ̇′V −1(Y − µ), that is, with A∗ = µ̇′V −1.
Therefore, the optimal estimating equation is given by µ̇′V −1(Y − µ) = 0. In the
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case of longitudinal data, the responses are clustered according to the subjects. Let
Yi be the vector of responses collected from the ith subject, and Xi the matrix of
covariates associated with Yi . Let µi = E(Yi |Xi) = µi(Xi, β), where β is a vector
of unknown parameters. Then, under the assumption that (Xi, Yi), i = 1, . . . , n,
are uncorrelated with known Vi = Var(Yi |Xi), the optimal estimating equation
(for β) is given by

∑n
i=1 µ̇′

iV
−1
i (Yi − µi) = 0, which is known as the generalized

estimating equations (GEE) (e.g., Diggle, Liang and Zeger [3]).
However, the optimal GEE depends on Vi , 1 ≤ i ≤ n, which are usually un-

known in practice. Therefore, the optimal GEE estimator is not computable. The
problem of obtaining an (asymptotically) optimal, or efficient, estimator of β with-
out knowing the Vi ’s is the main concern of the current paper. To motivate our ap-
proach, let us first consider a simple example. Suppose that the Yi ’s satisfy a (clas-
sical) linear model, that is, E(Yi) = Xiβ , where Xi is a matrix of fixed covariates,
Var(Yi) = V1, where V1 is an unknown fixed covariance matrix, and Y1, . . . , Yn

are independent. If V1 is known, β can be estimated by the following best linear
unbiased estimator (BLUE), which is the optimal GEE estimator in this special
case:

β̂BLUE =
(

n∑
i=1

X′
iV

−1
1 Xi

)−1 n∑
i=1

X′
iV

−1
1 Yi,(1.1)

provided that
∑n

i=1 X′
iV

−1
1 Xi is nonsingular. On the other hand, if β is known,

V1 can be estimated consistently as

V̂1 = 1

n

n∑
i=1

(Yi − Xiβ)(Yi − Xiβ)′.(1.2)

It is clear that there is a cycle, which motivates the following algorithm, when
neither β nor V1 is known. Starting with the identity matrix I for V1, use (1.1)
with V1 replaced by I to obtain the initial estimator for β , which is known as the
ordinary least squares (OLS) estimator; then use (1.2) with β replaced by the OLS
estimator to update V1; then use (1.1) with the new V1 to update β , and so on. The
procedure is expected to result in an estimator that is, at least, more efficient than
the OLS estimator; but can we ask a further question, that is, is the procedure going
to produce an estimator that is asymptotically as efficient as the BLUE? Before this
question can be answered, however, another issue needs to be resolved first, that
is, does the iterative procedure converge? These questions will be answered in the
sequel.

The example considered above is called balanced data, in which the observa-
tions are collected at a common set of times for all the subjects. In this case, the
procedure (without iterations) is known as robust estimation for analysis of longi-
tudinal data. However, as pointed out by Diggle, Liang and Zeger [3], page 77, so
far the method has been restricted to the case of balanced data. In many practical
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situations, however, the data is seriously unbalanced, that is, the time sets at which
the observations are collected vary from subject to subject. An extension of the
robust estimation method to unbalanced longitudinal data will be given.

In fact, we are going to consider a statistical model for the longitudinal data that
is much more general than the above example, or the case of balanced data, and
propose a similar iterative procedure that not only converges, but converges expo-
nentially. The latter is the main theoretical finding of this paper. Furthermore, at
convergence the iterative procedure produces an estimator of β that is asymptoti-
cally as efficient as the optimal GEE estimator. In Section 2 we propose a semipara-
metric regression model for the longitudinal data. An iterative estimating equations
(IEE) procedure is proposed in Section 3 under the semiparametric model. The
convergence property as well as asymptotic behavior of the limiting estimator are
studied in Section 4. In Section 5 we consider a special case of our general model,
the case of (classical) linear models. Some simulation studies are carried out in
Section 6 to investigate empirically the performance of the IEE and its comparison
with other methods. A numerical example using data from a medical study is con-
sidered in Section 7. Some further discussion and concluding remarks are given in
Section 8. Proofs and other technical details are deferred to Section 9.

2. A semiparametric regression model. We consider a follow-up study con-
ducted over a set of prespecified visit times t1, . . . , tb. Suppose that the responses
are collected from subject i at the visit times tj , j ∈ Ji ⊂ J = {1, . . . , b}. Let
Yi = (Yij )j∈Ji

. Here we allow the visit times to be dependent on the subject. Let
Xij = (Xijl)1≤l≤p represent a vector of explanatory variables associated with Yij

so that the first component of Xij corresponds to an intercept (i.e., Xij1 = 1).
Write Xi = (Xij )j∈Ji

= (Xijl)j∈Ji ,1≤l≤p . Note that Xi may include both time
dependent and independent covariates so that, w.l.o.g., it may be expressed as
Xi = (Xi1,Xi2), where the elements of Xi1 do not depend on j (i.e., time) while
those of Xi2 do. We assume that (Xi, Yi), i = 1, . . . , n, are independent. Further-
more, it is assumed that

E(Yij |Xi) = gj (Xi, β),(2.1)

where β is a p × 1 vector of unknown regression coefficients and gj (·, ·) are fixed
functions. We use the notation µij = E(Yij |Xi) and µi = (µij )j∈Ji

throughout this
paper. Note that µi = E(Yi |Xi). In addition, denote the (conditional) covariance
matrix of Yi given Xi as

Vi = Var(Yi |Xi),(2.2)

whose (j, k)th element is vijk = cov(Yij , Yik|Xi) = E{(Yij − µij )(Yik − µik)|Xi},
j, k ∈ Ji . Note that the dimension of Vi may depend on i. Let D = {(j, k) : j, k ∈ Ji

for some 1 ≤ i ≤ n}. The following assumption is made.
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ASSUMPTION A1. For any (j, k) ∈ D, the number of different vijk’s is
bounded, that is, for each (j, k) ∈ D, there is a set of numbers Vjk = {v(j, k, l),
1 ≤ l ≤ Ljk}, where Ljk is bounded, such that vijk ∈ Vjk for any 1 ≤ i ≤ n with
j, k ∈ Ji .

Since the number of visit times, b, is assumed fixed, an equivalence to Assump-
tion A1 follows.

LEMMA 1. Assumption A1 holds if and only if the number of different Vi’s
is bounded, that is, there is a set of covariance matrices V = {V (1), . . . , V (L)},
where L is bounded, such that Vi ∈ V for any 1 ≤ i ≤ n.

As will be seen, Assumption A1 is essential for consistent estimation of the
unknown covariances. On the other hand, the assumption is not unreasonable. We
consider some examples.

EXAMPLE 1 (Balanced data). Consider the case of balanced data, that is,
Ji = J , 1 ≤ i ≤ n. Furthermore, suppose that vijk is unknown, but depends only on
j and k. Then, one has Vi = V1, an unknown constant covariance matrix, 1 ≤ i ≤ n.
Thus, Assumption A1 is satisfied.

The following examples show that Assumption A1 remains valid in some un-
balanced cases as well.

EXAMPLE 2. Suppose that the observational times are equally spaced. In such
a case we may assume, without loss of generality, that tj = j . Suppose that the
responses Yij satisfy

Yij = x′
ij β + ui + wij + eij ,(2.3)

i = 1, . . . , n, j ∈ Ji ⊂ J , where xij is a vector of fixed covariates, ui is a subject-
specific random effect, wij corresponds to a serial correlation, and eij represents
a measurement error. It is assumed that the ui’s are independent and distributed
as N(0, σ 2

u ), and the eij ’s are independent and distributed as N(0, σ 2
e ). As for the

wij ’s, it is assumed that they satisfy the equation of the first-order autoregressive,
or AR(1), process, wij = φwij−1 + zij , where φ is a constant and |φ| < 1, and

the zij ’s are independent with distribution N{0, σ 2
w(1 − φ2)}. Finally, we assume

that u, w and e are independent. Under this model, we have E(Yi |Xi) = Xiβ ,
where Xi = (x′

ij )j∈Ji
. Furthermore, we have Vi = (vijk)j,k∈Ji

, where vijk = σ 2
u +

σ 2
wφ|j−k| + σ 2

e δj,k , and δj,k = 1 if j = k and 0 otherwise (e.g., Anderson [1], page
174). It follows that vijk does not depend on i. We now further specify the Ji ’s.
Suppose that the responses are collected over a week such that the data is collected
on Monday, Wednesday and Friday for 40 percent of the subjects. For the rest of
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the subjects, the data is collected on Tuesday and Thursday. Then the Ji ’s are either
{1,3,5} or {2,4}. It follows that D consists of (j, j), j = 1, . . . ,5, (1,3), (1,5),
(3,5), (2,4) and the pairs with the components exchanged. Furthermore, the Vi’s
are either V (1) or V (2), where

V (1) = σ 2
u

(
1 1
1 1

)
+ σ 2

w

(
1 φ2

φ2 1

)
+ σ 2

e

(
1 0
0 1

)
,

V (2) = σ 2
u


 1 1 1

1 1 1
1 1 1


 + σ 2

w


 1 φ2 φ4

φ2 1 φ2

φ4 φ2 1


 + σ 2

e


 1 0 0

0 1 0
0 0 1


 .

In practice, the covariance structure of the data may not be known. For exam-
ple, if the wij ’s are known to satisfy a process with covariances cov(wij ,wik) =
σ 2

wρ(j, k) with ρ(·, ·) completely unknown, then the covariance matrices V (1) and
V (2) will be practically unspecified. However, there are only two possible covari-
ance matrices. Thus, again by Lemma 1, Assumption A1 is satisfied.

EXAMPLE 3 (Growth curve). This model is the same as Example 2 except
that a term (µ + ai)tij is added to the right-hand side of (2.3), where µ is an
unknown baseline slope, ai is a random effect with distribution N(0, σ 2

a ), and
tij is the time at which response Yij is collected. Assume that a1, . . . , an are in-
dependent, and the a’s are independent with u, w and e. Then we have vijk =
σ 2

u + σ 2
a tij tik + σ 2

wφ|j−k| + σ 2
e δj,k . Note that, unlike Example 2, here the expres-

sion of vijk , indeed, depends on i, the subject. However, since tij ∈ J = {1, . . . , b},
the number of different values of the product tij tik is bounded. As a result, the
number of different vijk’s is bounded, and hence Assumption A1 is satisfied.

As in the previous example, the parametric covariance structure may not be
known in practice, or one may be concerned with model misspecifications. There-
fore, as a robust approach, one may prefer to use unspecified covariances with the
understanding that Assumption A1 is satisfied.

In a way, the models in the previous examples are formulated as the classical
linear models, in which the covariates xij are considered fixed. We now consider a
logistic model in which the covariates are considered random.

EXAMPLE 4. Suppose that Yij , i = 1, . . . , n, j ∈ Ji , are binary responses (i.e.,
Yij = 0 or 1). A covariate is associated with the age of the subject. More specif-
ically, there are nine age groups: 40–44, . . . , 75–79 and 80 or over. Let Xi = j

if the age of subject i belongs to the j th group. Suppose that, given Xi and
an additional (unobservable) subject-specific random effect αi , Yij , j ∈ Ji , are
(conditionally) independent such that logit{P(Yij = 1|Xi,αi)} = β0 + β1Xi + αi ,
where logit(x) = log{x/(1 − x)}, and β0 and β1 are unknown regression co-
efficients. Furthermore, (Yi,Xi, αi), i = 1, . . . , n, are independent, where Yi =
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(Yij )j∈Ji
. Finally, we assume that αi |Xi ∼ N(0, σ 2). It follows that E(Yij |Xi) =

E{E(Yij |Xi,αi)|Xi} = E{h(β0 + β1Xi + αi)|Xi} = E{h(β0 + β1Xi + σξ)}, where
h(x) = ex/(1 + ex), and the last expectation is with respect to ξ ∼ N(0,1). Simi-
larly, we have vijk = E[{h(β0 + β1Xi + σξ)}2−δj,k ] − [E{h(β0 + β1Xi + σξ)}]2.
If the conditional independence is not assumed, neither is any other specified con-
ditional covariance structure, and the above expression for vijk may not hold. In
such a case, the vijk’s are unspecified. However, it is easy to see that for any j, k,
there are, at most, nine different vijk’s (corresponding to Xi = 1, . . . ,9). Thus,
Assumption A1 is satisfied.

3. Iterative estimating equations.

3.1. Estimation of β when Vi’s are known. Our main interest is to estimate β ,
the vector of regression coefficients. According to the earlier discussion, if the Vi ’s
are known, β may be estimated by the GEE given below,

n∑
i=1

µ̇′
iV

−1
i (Yi − µi) = 0,(3.1)

where µi = (µij )j∈Ji
with µij = gj (Xi, β), and µ̇i is the matrix of first derivatives

whose (j, l) element is given by ∂µij /∂βl , j ∈ Ji , 1 ≤ l ≤ p (e.g., Liang and Zeger
[12]). Namely, the estimator, β̂ , is defined as the solution to (3.1).

3.2. Estimation of Vi ’s when β is known. On the other hand, if β is known,
the covariance matrices Vi can be estimated by the method of moments (MoM) as
follows. Let I (j, k, l) denote the set of indexes 1 ≤ i ≤ n such that vijk = v(j, k, l)

(see Assumption A1 in Section 2). For any (j, k) ∈ D, 1 ≤ l ≤ Ljk , define

v̂(j, k, l) = 1

n(j, k, l)

∑
i∈I (j,k,l)

{Yij − gj (Xi, β)}{Yik − gk(Xi, β)},(3.2)

where n(j, k, l) = |I (j, k, l)|, the cardinality. Then, define V̂i = (v̂ijk)j,k∈Ji
, where

v̂ijk = v̂(j, k, l), if i ∈ I (j, k, l). In this approach, the estimators of the covari-
ances are obtained componentwise. Alternatively, the estimators may be obtained
as matrices. Let I (l) denote the set of indexes 1 ≤ i ≤ n such that Vi = V (l) (see
Lemma 1). For any 1 ≤ l ≤ L, define

Ṽ (l) = 1

n(l)

∑
i∈I (l)

(Yi − µi)(Yi − µi)
′,(3.3)

where n(l) = |I (l)|. Then define Ṽi = Ṽ (l) if i ∈ I (l). The following lemma jus-
tifies the use of the words “method of moments.” Write X = (Xi)1≤i≤n.

LEMMA 2. Under the assumed model, we have E(V̂i |X) = Vi = E(Ṽi |X),
1 ≤ i ≤ n.
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The proof is straightforward and therefore omitted. In some cases, the two esti-
mators are identical, as the following lemma shows.

LEMMA 3. Suppose that there is a division J = {1, . . . , b} = J (1)∪· · ·∪J (s)

such that J (q) ∩ J (r) = ∅, if q 	= r and for each 1 ≤ i ≤ n there is 1 ≤ r ≤ s such
that Ji = J (r). Then, we have V̂i = Ṽi , 1 ≤ i ≤ n.

The proof follows directly from the definitions. Again, we consider some exam-
ples.

EXAMPLE 1 (Continued). Here Ljk = L = 1 and I (j, k,1) = I (1) =
{1, . . . , n}. So that v̂ijk = v̂(j, k,1) = n−1 ∑n

i=1{Yij −gj (Xi, β)}{Yik −gk(Xi, β)},
the (j, k) element of Ṽi = Ṽ1 = n−1 ∑n

i=1(Yi − µi)(Yi − µi)
′.

EXAMPLE 2 (Continued). Consider the special case in which Ji is either
{1,3,5} or {2,4}. Let I (1) = {1 ≤ i ≤ n :Ji = {1,3,5}}, I (2) = {1 ≤ i ≤ n :Ji =
{2,4}} and n(l) = |I (l)|, l = 1,2. Then we have

v̂(j, k,1) = 1

n(1)

∑
Ji={1,3,5}

(Yij − x′
ij β)(Yik − x′

ikβ), j, k = 1,3,5;

v̂(j, k,2) = 1

n(2)

∑
Ji={2,4}

(Yij − x′
ij β)(Yik − x′

ikβ), j, k = 2,4.

On the other hand, we have

Ṽ (1) = 1

n(1)

∑
Ji={1,3,5}

(Yi − Xiβ)(Yi − Xiβ)′,

Ṽ (2) = 1

n(2)

∑
Ji={2,4}

(Yi − Xiβ)(Yi − Xiβ)′,

where Xi = (x′
ij )j∈Ji

. It follows that V̂i = Ṽi , 1 ≤ i ≤ n.

The next example shows that, when the two estimators are different, the first
estimator is likely to be more efficient than the second one.

EXAMPLE 5. Consider, again, Example 2, but this time assume that every sub-
ject has a baseline measure on Monday. Then 50% of the subjects have follow-up
measures on Tuesday, and 50% of the subjects have the follow-ups on Wednesday.
In other words, Ji is either {1,2} or {1,3}. To be more specific, let n = 2m such
that subjects 1, . . . ,m have the follow-ups on Tuesday, and subjects m + 1, . . . , n
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have the follow-ups on Wednesday. If we assume that the covariances do not de-
pend on i, and write vjk = cov(Yij , Yik), then there are two different covariance
matrices,

V (1) =
(

v11 v12
v21 v22

)
, V (2) =

(
v11 v13
v31 v33

)
.

On the other hand, it is easy to see that Ljk = 1 for all possible j , k, and
I (1,1,1) = {1, . . . , n}, I (1,2,1) = I (2,2,1) = {1, . . . ,m} and I (1,3,1) =
I (3,3,1) = {m + 1, . . . , n}. Thus, we have

v̂11 = 1

n

n∑
i=1

(Yi1 − x′
i1β)2,(3.4)

v̂12 = m−1 ∑m
i=1(Yi1 − x′

i1β)(Yi2 − x′
i2β), v̂22 = m−1 ∑m

i=1(Yi2 − x′
i2β)2, v̂13 =

m−1 ∑n
i=m+1(Yi1 −x′

i1β)(Yi3 −x′
i3β) and v̂33 = m−1 ∑n

i=m+1(Yi3 −x′
i3β)2. Sim-

ilarly, we have

Ṽ (1) = 1

m

m∑
i=1

(Yi − Xiβ)(Yi − Xiβ)′,

Ṽ (2) = 1

m

n∑
i=m+1

(Yi − Xiβ)(Yi − Xiβ)′.

Comparing the estimators, it is seen that v̂ and ṽ are identical except for the case
j = k = 1. In the latter case, the componentwise estimator of v11, v̂11, is given by
(3.4); on the other hand, there are two estimators of v11 by the matrix approach,
namely,

ṽ11(1) = 1

m

m∑
i=1

(Yi1 − x′
i1β)2,

ṽ11(2) = 1

m

n∑
i=m+1

(Yi1 − x′
i1β)2.

However, none of the latter estimators is as efficient as v̂11, because each of them
is based on half of the samples.

For such a reason, in the sequel we mainly focus on the elementwise estimators.

3.3. Iterative procedure. The main points of the previous subsections may be
summarized as follows: If the Vi’s were known, one could estimate β by the GEE;
on the other hand, if β were known, one could estimate the Vi ’s by the MoM. It is
clear that there is a cycle here, which motivates the following iterative procedure.
Starting with an initial estimator of β , use (3.2), with β replaced by the initial es-
timator, to obtain the estimators of the covariances; then use (3.1) to update the
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estimator of β; and repeat the process. We call such a procedure iterative estimat-
ing equations, or IEE. If the procedure converges, the limiting estimator is called
the IEE estimator.

In practice, the initial estimate of β may be obtained as the solution to (3.1)
with Vi = I , the identity matrix (with the suitable dimension). It can be shown
(see Jiang, Luan and Wang [10]) that in the case of balanced data of Example 1,
procedure is equivalent to maximum likelihood (ML), if the errors εi = Yi −µi are
normal. Thus, without the normality assumption, IEE may be viewed as a quasi-
likelihood method. Although for unbalanced data IEE is not equivalent to ML
even under normality, the procedure is expected to improve the efficiency of the
estimator of β . To see this, note that if the initial estimator of β is consistent, the
estimators of the Vi ’s by (3.2) are expected to be consistent; and, with consistent
estimators of the Vi’s, the efficiency of the next step estimator of β should improve
(because V̂i ≈ Vi ), and so on. Furthermore, IEE is very easy to operate and is, in
fact, no stranger to practitioners. For example, the procedure has some similarity
with the so-called backfitting algorithm (e.g., Hastie and Tibshirani [6], Section
4.4). But before we study the efficiency and other potentially nice properties of
this procedure, we need to make sure that it converges. The next question is: Given
the convergence of IEE, is the limiting estimator asymptotically as efficient as
the GEE estimator that one would have obtained if the Vi’s were known? These
fundamental questions will be answered in the next section.

4. Convergence and asymptotic properties.

4.1. Linear convergence. First we formulate the IEE procedure as follows. Let
v = (vr)1≤r≤R denote the vector of different covariances involved in the Vi ’s. We
assume that for any v, there is a unique solution to (3.1) for β . Denote this solution
by β(v). Also, for any β , let v(β) denote the vector v whose corresponding com-
ponents are given by the right-hand side of (3.2). We use an example to illustrate.

EXAMPLE 5 (Continued). Consider, once again, Example 5. In this case, we
have v = (v11, v12, v22, v13, v33)

′. Equation (3.1) has a unique solution given by

β(v) =
(

n∑
i=1

X′
iV

−1
i Xi

)−1 n∑
i=1

X′
iV

−1
i Yi,

where Xi = (x′
ij )j∈Ji

, Ji = {1,2}, Vi = V (1), 1 ≤ i ≤ m, and Ji = {1,3},
Vi = V (2), m + 1 ≤ i ≤ n. Furthermore, v(β) is the vector whose components
are given by the right-hand sides of (3.4) and the four equations below.

With such notation, the IEE may be formulated as follows: Take the initial v

as v̂(0) whose component is 0, if it is a covariance (i.e., j 	= k); otherwise, the
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component is 1. This means that, initially, all the Vi’s are taken as the iden-
tity matrices of suitable dimensions. Then we have β̂(1) = β{v̂(0)}, v̂(1) = v̂(0);
β̂(2) = β̂(1), v̂(2) = v{β̂(1)}, and so on. In general, we have β̂(2m−1) = β{v̂(2m−2)},
v̂(2m−1) = v̂(2m−2); β̂(2m) = β̂(2m−1), v̂(2m) = v{β̂(2m−1)} for m = 1,2, . . . . There
is an alternative expression, which is more convenient in terms of obtaining the
convergence rate. Write τ = β ◦ v and ρ = v ◦ β . Then we have β̂(2m) = β̂(2m−1),
β̂(2m+1) = τ {β̂(2m−1)}, v̂(2m−1) = v̂(2m−2), v̂(2m) = ρ{v̂(2m−2)} for m = 1,2, . . . .

Theorem 1 below states that, under very mild conditions, the IEE converges lin-
early with probability tending to one. Here we adapt a term from numerical analy-
sis: An iterative algorithm that results in a sequence x(m), m = 1,2, . . . , converges
linearly to a limit x∗, if there is 0 < � < 1 such that supm≥1{|x(m) − x∗|/�m} < ∞
(e.g., Press et al. [14]).

Let L1 = max1≤i≤n maxj∈Ji
sij with sij = sup|β̃−β|≤ε1

|(∂/∂β)gj (Xi, β̃)|,
where β represents the true parameter vector, ε1 is any positive constant, and
(∂/∂β)f (β̃) means (∂f/∂β)|β=β̃ . Similarly, let L2 = max1≤i≤n maxj∈Ji

wij ,

where wij = sup|β̃−β|≤ε1
‖(∂2/∂β ∂β ′)gj (Xi, β̃)‖ (‖ · ‖ is the spectral norm de-

fined in Section 9). Furthermore, define the set V = {v :λmin(Vi) ≥ δ0, λmax(Vi) ≤
M0,1 ≤ i ≤ n}, where λmin and λmax represent the smallest and largest eigenval-
ues, respectively, and δ0 and M0 are given positive constants. Note that V is a
nonrandom set.

An array of nonnegative definite matrices {An,i} is bounded from above if
‖An,i‖ ≤ c for some constant c; the array is bounded from below if A−1

n,i exists

and ‖A−1
n,i‖ ≤ c for some constant c. A sequence of random matrices is bounded

in probability, denoted by An = OP(1), if for any ε > 0, there are M > 0 and
N ≥ 1 such that P(‖An‖ ≤ M) > 1 − ε, if n ≥ N . The sequence is bounded away
from zero in probability if A−1

n = OP(1). Note that the definition also applies to a
sequence of random variables, considered as a special case of random matrices.

Recall that p is the dimension of β and R the dimension of v. Also recall as-
sumption Assumption A1 (above Lemma 1). We make the following additional
assumptions.

ASSUMPTION A2. The functions gj (Xi, β) are twice continuously differ-
entiable with respect to β; E(|Yi |4), 1 ≤ i ≤ n, are bounded; and L1, L2,
max1≤i≤n(‖Vi‖ ∨ ‖V −1

i ‖) are OP(1).

ASSUMPTION A3 (Consistency of GEE estimator). For any given Vi , 1 ≤ i ≤
n, bounded from above and below, the GEE equation (3.1) has a unique solution β̂

that is consistent.

ASSUMPTION A4 (Differentiability of GEE solution). For any v, the so-
lution to (3.1), β(v), is continuously differentiable with respect to v, and
supv∈V ‖∂β/∂v‖ = OP(1).
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ASSUMPTION A5. n(j, k, l) → ∞ for any 1 ≤ l ≤ Ljk , (j, k) ∈ D, as
n → ∞.

THEOREM 1. Under Assumptions A1–A5, P(IEE converges) → 1 as
n → ∞. Furthermore, we have P[supm≥1{|β̂(m) − β̂∗|/(pη)m/2} < ∞] → 1,
P[supm≥1{|v̂(m) − v̂∗|/(Rη)m/2} < ∞] → 1 as n → ∞ for any 0 < η < (p∨R)−1,

where (β̂∗, v̂∗) is the (limiting) IEE estimator.

REMARK 1. Because our approach is based on estimating functions (EFs), it
is therefore necessary to impose some “regularity” conditions to make sure that the
EFs are valid. Assumption A3 may be regarded as such regularity conditions. Note
that here we did not specify the technical conditions for the existence, uniqueness
and consistency of the solution to the GEE equation (3.1). However, standard con-
ditions for the existence and consistency of the GEE solution have been discussed
extensively in the literature. See, for example, Liang and Zeger [12] and Heyde [7],
Section 12.2. Furthermore, an easy-to-verify sufficient condition can be given for
the uniqueness of the GEE solution, with the additional assumption that the initial
estimator, β̂(1), is consistent. To see this, note that by the proof of Theorem 1 given
in Section 9, it is seen that the linear convergent property of the sequences β̂(m)

and v̂(m) (m = 1,2, . . .) only depends on a small neighborhood of the true β where
the first sequence is confined, if the initial estimator β̂(1) is consistent. On the other
hand, note that, for fixed Vi’s, the left-hand side of (3.1) is the gradient of a func-
tion of β . Namely, write q(β) = ∑n

i=1(Yi − µi)
′V −1

i (Yi − µi). Then, ∂q/∂β is
−2 times the left-hand side of (3.1). Therefore, any conditions that guarantee (lo-
cal) convexity of q(·) will be sufficient for the (local) uniqueness of the solution
to (3.1) [note that, because of the earlier remark, all one needs is that (3.1) has a
unique solution locally, i.e., in a small neighborhood of the true β]. It is easy to
show that ∂2q/∂β ∂β ′ = 2(I1 − I2) with I1 = ∑n

i=1(∂µ′
i/∂β)V −1

i (∂µi/∂β
′) and

I2 = ∑n
i=1 I2,i , where the (k, l) element of I2,i is (∂2µ′

i/∂βk ∂βl)V
−1
i (Yi − µi).

Since I1 is nonnegative definite, a condition of (asymptotic) nonsingularity is:

(i) lim infn→∞ λmin(n
−1I1) > 0.

Furthermore, it is seen that at the true β , I2 has mean zero. Also, Assumption
A2 and boundedness from below of the Vi’s imply that var(I2) = O(n). Hence,
we have n−1I2 → 0 in L2. Thus, if I2 is uniformly continuous in β , the matrix
∂2q/∂β ∂β ′ is expected to be (asymptotically) positive definite in a small neighbor-
hood of the true β , which implies asymptotic local convexity of q(·). A condition
for the (asymptotic) uniform continuity is:

(i) for any δ > 0, there is ε > 0 such that |µ̃i −µi | < δ, |s̃ikl − sikl| < δ for all
1 ≤ i ≤ n and k, l ∈ Ji , if |β̃ − β| < ε.
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Here sikl denotes ∂2µi/∂βk ∂βl evaluated at β and s̃ikl the same quantity evaluated
at β̃ . It can be shown that conditions (i) and (ii) are, indeed, sufficient for the
asymptotic uniqueness of the solution to the GEE equation (3.1) (see Jiang, Luan
and Wang [10]).

REMARK 2. For the most part, Assumption A4 is about differentiability of the
implicit function β(v). It simply requires that the β estimates not be too sensitive
to the changes in v. This is quite reasonable because, otherwise, the estimates of β

will be very unstable so that convergence cannot be achieved. Sufficient conditions
for such differentiability can be found in standard texts of advanced calculus. For
example, the following result can be implied directly from the theorem on page 265
of Courant and John [2]: Let φ denote the left-hand side of (3.1) as a (vector-
valued) function of β and v. If equation (3.1) is satisfied at a point (β̃ ′, ṽ′)′, and
the Jacobian of φ with respect to β differs from zero at that point, then in the
neighborhood of that point equation (3.1) can be solved in one and only one way
for β , and this solution gives β as a continuously differentiable function of v. Note
that the existence of (β̃ ′, ṽ′)′ is a consequence of Assumption A3 (see the remark
above). Also, as noted above, for the results of Theorem 1 to hold, one only needs
the assumptions to be valid in a small neighborhood of β . Finally, the nonzero-
Jacobian property is only required with probability tending to one.

REMARK 3. It is clear that the restriction η < (p ∨ R)−1 is unnecessary [be-
cause, for example, (pη1)

−m/2 < (pη2)
−m/2 for any η1 ≥ (p ∨ R)−1 > η2], but

linear convergence would only make sense when � < 1 (see the definition above).

REMARK 4. The proof of Theorem 1 in fact demonstrates that for any δ > 0,
there are positive constants M1, M2 and integer N that depend only on δ such
that, for all n ≥ N , we have P[supm≥1{|β̂(m) − β̂∗|/(pη)m/2} ≤ M1] > 1 − δ,
P[supm≥1{|v̂(m) − v̂∗|/(Rη)m/2} ≤ M2] > 1 − δ.

4.2. Asymptotic behavior of the IEE estimator. In the discussion in Section 3.3
we conjectured that the (limiting) IEE estimator is an efficient estimator. In this
subsection we show that this conjecture is indeed true. Since efficiency is usually
defined from an asymptotic point of view (e.g., Lehmann [11]), we need to study
asymptotic properties of the IEE estimator. The first result is regarding its consis-
tency.

THEOREM 2. Under the assumptions of Theorem 1, (β̂∗, v̂∗) is consistent.

To establish the asymptotic efficiency, we need to strengthen Assumptions
A2 and A5. Define the following: L2,0 = max1≤i≤n maxj∈Ji

‖∂2µij/∂β ∂β ′‖,
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L3 = max1≤i≤n maxj∈Ji
dij , where

dij = max
1≤a,b,c≤p

sup
|β̃−β|≤ε1

∣∣∣∣ ∂3

∂βa ∂βb ∂βc

gj (Xi, β̃)

∣∣∣∣.
ASSUMPTION A2′ . Same as Assumption A2 except that gj (Xi, β) are three-

times continuously differentiable with respect to β , and that L2 = OP(1) is re-
placed by L2,0 ∨ L3 = OP(1).

ASSUMPTION A5′ . There is a positive integer γ such that n/{n(j, k, l)}γ → 0
for any 1 ≤ l ≤ Ljk , (j, k) ∈ D, as n → ∞.

We also need the following additional assumption.

ASSUMPTION A6. n−1 ∑n
i=1 µ̇′

iV
−1
i µ̇i is bounded away from zero in proba-

bility.

Also, let β̃ be the solution to (3.1) with the true Vi’s. Note that β̃ is efficient,
or optimal in the sense discussed in Section 1, but not computable unless the true
Vi’s are known.

THEOREM 3. Under Assumptions A1, A2′, A3, A4, A5′ and A6, we have√
n(β̂∗ − β̃) → 0 in probability. Therefore, asymptotically, β̂∗ is as efficient as β̃ .

The proofs of Theorem 2 and Theorem 3 follow, for the most part, the standard
arguments for asymptotic properties of Z-estimators (e.g., van der Vaart and Well-
ner [16], Section 3.3) and optimality of estimating equations (Godambe [4]), and
therefore are omitted. Interested readers are referred to a technical report (Jiang,
Luan and Wang [10]). The proof of Theorem 3 also reveals the asymptotic expan-
sion

β̂∗ − β =
(

n∑
i=1

µ̇′
iV

−1
i µ̇i

)−1 n∑
i=1

µ̇′
iV

−1
i (Yi − µi) + oP(1)√

n
,(4.1)

where oP(1) represents a term that converges to zero (vector) in probability. By
Theorem 3, (4.1) also holds with β̂∗ replaced by β̃ , even through the latter is
typically not computable. In the next section, we will be looking at a case with
an “exact” version of (4.1), that is, the equation without the term oP(1)/

√
n,

for β̃ .
Suppose that the initial estimator of β is consistent. Then, under some regular-

ity conditions, the next-step estimator of v is consistent; furthermore, the next-step
estimator of β , say, β̂(3) [according to the notation below Example 5 (continued)
in Section 4.1], is not only consistent but also asymptotically as efficient as β̃ . In
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other words, one has obtained an efficient estimator of β after one iteration of the
IEE. Although both β̂∗ and β̂(3) are efficient estimators, there are reasons that β̂∗
is more desirable in some situations. For example, in the case of balanced data of
Example 1 with normality, β̂∗ is the same as the maximum likelihood estimator
(MLE), while β̂(3) is not. In Section 6.2 we show by a simple simulated exam-
ple that IEE may result in substantial improvement over β̂(3) in a small sample
situation. Although, in general, β̂∗ may not be the MLE (especially if normality
fails), there is a tendency of seeking for continuing improvement, and therefore
not to stop after one iteration. It should be pointed out that the continuing im-
provement may not be as significant as in the early stage when the procedure is
close to convergence. Nevertheless, because of the fast convergence (Theorem 1;
also see Sections 6 and 7), one may not need to run the IEE for a lot of steps any-
way in order to achieve convergence. This, combined with the fact that one has
an asymptotically efficient estimator even after one iteration, would give a practi-
tioner double confidence that he/she does not have to run the IEE for many steps
in order to use it.

5. The special case of linear models. One special case of the semiparametric
regression model is the following linear model for longitudinal data. Let Xi be a
matrix of fixed covariates associated with the ith subject. Suppose that Y1, . . . , Yn

are independent such that E(Yi) = Xiβ and Var(Yi) = Vi , where Vi is an unknown
fixed covariance matrix, 1 ≤ i ≤ n. Under this model, the GEE (3.1) reduces to∑n

i=1 X′
iV

−1
i (Yi − Xiβ) = 0, which has an explicit solution

β̂ =
(

n∑
i=1

X′
iV

−1
i Xi

)−1 n∑
i=1

X′
iV

−1
i Yi,(5.1)

provided that the matrix
∑n

i=1 X′
iV

−1
i Xi is nonsingular. Note that (5.1) is the opti-

mal weighted least squares (WLS) estimator, provided that the Vi ’s are known.
Here a WLS estimator is defined as the solution to the minimization prob-
lem minβ{(Y − Xβ)′W(Y − Xβ)}, where Y = (Yi)1≤i≤n, X = (Xi)1≤i≤n and
W is a weighting matrix. Thus, (5.1) corresponds to WLS with W = V −1 =
diag(V −1

i ,1 ≤ i ≤ n). This estimator is also known as the best linear unbiased
estimator, or BLUE, denoted by β̂BLUE.

The IEE developed in previous sections can now be expressed more explicitly.
Namely, if the Vi’s are known, one can calculate the BLUE by (5.1). On the other
hand, if β is known, the Vi’s can be estimated by MoM as follows [see (3.2)]:

v̂(j, k, l) = 1

n(j, k, l)

∑
i∈I (j,k,l)

(Yij − X′
ij β)(Yik − X′

ikβ),(5.2)

where X′
ij is the j th row of Xi . When both β and the Vi’s are unknown, one iterates

between (5.1) and (5.2), starting with the OLS estimator. The latter is (5.1) with



ITERATIVE ESTIMATING EQUATIONS 2247

Vi replaced by the identity matrix with the same dimension as Vi . The procedure
is also called iterative reweighted least squares, or IRLS.

It is clear that IRLS is very easy to operate and is, in fact, no stranger to practi-
tioners. However, even in this special case, very little is known about the conver-
gence property. A procedure with some similarities has been used in robust linear
regression (Huber [8]), and its convergence property has been studied. For exam-
ple, Wolke and Schwetlick [18] considered a similar iterative procedure in solving
robust regression problems involving an additional scale parameter. However, lon-
gitudinal data is certainly more complicated.

The results of Section 4 now have their versions in this special case.

COROLLARY 1. Suppose that ‖V −1
i ‖, ‖Xi‖ and E(|Yi |4), 1 ≤ i ≤ n, are

bounded, Assumption A5 holds and lim infn→∞ λmin(n
−1 ∑n

i=1 X′
iXi) > 0. Then

we have P(IRLS converges) → 1, P[supm≥1{|β̂(m) − β̂∗|/(pη)m/2} < ∞] → 1, and
P[supm≥1{|v̂(m) − v̂∗|/(Rη)m/2} < ∞] → 1 as n → ∞ for any 0 < η < (p∨R)−1,

where (β̂∗, v̂∗) is the (limiting) IRLS estimator.

COROLLARY 2. Under the conditions of Corollary 1, (β̂∗, v̂∗) is consistent.

COROLLARY 3. Under the same conditions of Corollary 1 except that As-
sumption A5 is strengthened to Assumption A5′, we have

√
n(β̂∗ − β̂BLUE) → 0

in probability. Therefore, asymptotically, β̂∗ is as efficient as the BLUE.

NOTE. The condition lim infn→∞ λmin(n
−1 ∑n

i=1 X′
iXi) > 0 in Corollary 1

needs some interpretation. Note that the term inside (· · ·) is n−1X′X, where
X = (Xi)1≤i≤n. Recall that the covariance matrix of the OLS estimator β̂OLS is
(X′X)−1(X′V X)(X′X)−1, where V = diag(Vi,1 ≤ i ≤ n). If the Vi ’s are bounded
from above and below, then we have Var(β̂OLS) ∼ (X′X)−1. Hence the condition
is equivalent to the covariance matrix of

√
n(β̂OLS − β) being bounded.

The proofs follow by verification of the assumptions of the theorems in Sec-
tion 4. In the next section we study the empirical performance of IRLS.

6. Simulations.

6.1. A simulation regarding Example 2. In this subsection, we consider Exam-
ple 2 in Section 2 (continued in Section 3) with simulated datasets. More specif-
ically, we have x′

ij β = β0 + β1xij , where the xij ’s are generated from a N(0,1)

distribution and then fixed throughout the simulation. We let n = 100. The Ji ’s are
specified as in Example 2, that is, Ji = {1,3,5} or {2,4}.

One potential advantage of IRLS is that it requires neither normality nor a para-
metric covariance model. In this simulation we consider three different scenarios.
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The first is when both normality and the parametric covariance model mentioned
in Example 2 hold. The second is when normality fails but the parametric co-
variance model is still correct. In this scenario the true distribution of the ran-
dom effects is centralized exponential [i.e., the distribution of σu(ξ − 1), where
ξ ∼ Exponential(1)], while the distribution of w and e remains the same as in Sce-
nario 1. The third is when both normality and the parametric covariance model no
longer hold. In this scenario, the true distribution of u and w remains the same as
in Scenario 2, while the true process of w is MA(1) instead of AR(1) with normal
noise z. In each scenario, we consider two cases of parameter values: (1) σ 2

u = 1,
σ 2

w = 9, σ 2
e = 1 and φ = 0.9; (2) σ 2

u = 9, σ 2
w = 25, σ 2

e = 1 and φ = 0.99. Note
that the second case corresponds to stronger within-subject correlations than the
first case. In all cases, the true values for β are β0 = 0.5, β1 = 1.0. These scenar-
ios/cases will be denoted by 1.1, 1.2, and so forth.

We first study the convergence property of IRLS. The convergence criterion
is max{|β̂(m)

0 − β̂
(m−1)
0 |, |β̂(m)

1 − β̂
(m−1)
1 |} + max(j,k)∈D{|v̂(m)

jk − v̂
(m−1)
jk |} < 10−4.

Note that here d = |D| = 9. In each case, we recorded the number of steps it took
to converge. The results are summarized in Table 1.

Next, we compare the performance of IRLS with OLS and MLE, where MLE is
that under normality and the parametric covariance model described in Example 2.
Note that, under Scenarios 2 and 3, the MLE is not the true MLE. In Tables 2 and
3, we report the simulated means and covariance matrices as well as the true co-
variance matrix of the BLUE, even though the latter is not computable in practice.
The covariance matrix of the BLUE serves as a lower bound for the covariance
matrix of a WLS estimator. It should be pointed out that the IRLS estimator is not
a WLS estimator and neither is the MLE, because both are nonlinear in Y . Never-
theless, we expect, by Corollary 3, the covariance matrix of the IRLS estimator to
be close to that of the BLUE. The results for OLS and IRLS are based on 1,000
simulations. The results for MLE are a bit complicated. Although 1,000 simula-
tions were run, not all resulted in convergence. Therefore, the results for MLE are

TABLE 1
Number of steps to converge

Case 2 3 4 5 6 7 8 9 10 11

1.1 0.0 4.2 34.1 47.8 11.6 2.1 0.2 0.0 0.0 0.0
1.2 0.0 0.6 19.4 45.9 25.5 7.1 1.0 0.3 0.1 0.1
2.1 0.1 3.9 42.1 38.9 12.5 2.1 0.2 0.1 0.1 0.0
2.2 0.0 1.0 21.5 45.7 23.3 6.8 1.3 0.4 0.0 0.0
3.1 0.0 5.8 39.9 39.3 12.8 2.0 0.2 0.0 0.0 0.0
3.2 0.0 1.4 25.2 43.1 22.9 5.9 1.1 0.3 0.1 0.0

Numbers in the first row represent the steps; in each case, the numbers are percentages of times (out
of a total of 1,000 simulations) that the IRLS converged after certain steps. Here Case 1.1 represents
Scenario 1, Case 1, and so forth.
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TABLE 2
Simulated mean vectors

Scenario 1 Scenario 2 Scenario 3

Case β̂OLS β̂IRLS β̂MLE β̂OLS β̂IRLS β̂MLE β̂OLS β̂IRLS β̂MLE

1 0.50 0.50 0.50 0.50 0.49 0.50 0.51 0.51 0.52
0.99 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01

2 0.50 0.51 0.50 0.51 0.51 0.53 0.50 0.47 0.56
1.00 1.00 1.00 1.00 1.01 1.00 1.02 1.02 1.01

In each case, the top row gives the simulated means for β0; the bottom row gives those for β1.

based on the runs which converged. More specifically, for the Cases 1.1, 1.2, 2.1,
2.2, 3.1 and 3.2, the number of runs which converged for MLE were 798, 812, 794,
805, 749 and 724. (So, in the worst case, about 28% of the runs failed to converge.)
In Table 2, β̂OLS, β̂IRLS and β̂MLE denote the simulated means of OLS, IRLS es-
timators and MLE. Similarly, in Table 3 V̂OLS, V̂IRLS and V̂MLE are the simulated
covariance matrices and VBLUE is the true covariance matrix of the BLUE.

Summary of results. In most cases the IRLS algorithm converged in four to
six steps. As for comparison of estimators, the main difference is in the variances
of the estimators of β1. Both IRLS and MLE significantly outperform OLS. Fur-
thermore, the performance of IRLS is very close to that of BLUE, although the
latter is not computable in practice. Note that, when there is no correlation, OLS

TABLE 3
Simulated covariance matrices

Case V̂ OLS V̂ IRLS V̂ MLE VBLUE

1.1 9.80 0.11 10.36 0.36 10.00 0.48 9.30 0.11
0.11 5.51 0.36 2.09 0.48 1.87 0.11 2.16

1.2 36.41 0.61 36.41 −0.10 35.57 −0.08 34.10 0.06
0.61 17.41 −0.10 1.30 −0.08 1.23 0.06 1.29

2.1 9.87 0.14 9.94 0.07 9.19 0.02 9.30 0.11
0.14 5.35 0.07 2.25 0.02 2.08 0.11 2.16

2.2 38.74 1.78 38.48 −0.01 34.54 0.15 34.10 0.06
1.78 15.86 −0.01 1.31 0.15 1.11 0.06 1.29

3.1 7.14 0.44 7.25 0.41 6.77 0.45 7.15 0.23
0.44 5.34 0.41 4.01 0.45 4.13 0.23 3.74

3.2 25.48 0.26 26.22 0.22 24.73 0.46 25.40 0.63
0.26 17.55 0.22 10.80 0.46 12.35 0.63 9.61

In each case, the (2 × 2) simulated covariance matrices corresponding to OLS, IRLS and MLE and
the true covariance matrix of the BLUE are presented. Here Case 1.1 represents Scenario 1, Case 1,
and so forth.
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is the same as BLUE. As σ 2
u , σ 2

w and φ increase, the within-subject correlation in-
creases and, as a result, the difference between OLS and IRLS becomes larger. In
the first two scenarios, MLE appeared to slightly outperform IRLS (and BLUE).
This suggests that normality is not very important for the efficiency of the MLE for
estimating β . However, the situation changes in Scenario 3 with IRLS (and BLUE)
slightly outperforming MLE. In fact, the largest difference in favor of MLE is 18%
less than IRLS in Case 2.2, while the largest difference in favor of IRLS is 14%
less than MLE in Case 3.2. This suggests that the efficiency of MLE is likely to be
undermined by misspecification of the covariance structure. It should be pointed
out that, as mentioned above, the results for MLE are based on only runs which
converged, the numbers of which are somewhere between 20 to 30 percent less.
We expect the actual performance of MLE to be somewhat worse than reported
here if all runs are reported, because the discarded runs may correspond to some
“bad cases.” Despite such concerns, the simulation results are consistent with our
theoretical findings.

6.2. A comparison with the one-step estimator. In this subsection, we compare
the small-sample performance of IEE with the one-step estimator β̂(3) discussed
in the second paragraph following Theorem 3. We consider the following simple
example: Yij = β0 + β1xi + eij , i = 1, . . . , n, j = 1,2, where the xi ’s are known
covariates; β0, β1 are unknown regression coefficients; the εij ’s are independent
with εij ∼ N(0, σ 2

j ), j = 1,2.
Here we let n = 10. The xi ’s are generated from a Uniform[0,1] distribu-

tion, and then fixed throughout the simulation. The true parameters are chosen as
β0 = 0.2, β1 = 0.1, σ1 = 1.0 and σ2 = 4.0. The results based on 1,000 simulations
are reported in Table 4. It is seen that, once again, there is not much difference in
terms of the simulated means. However, the simulated variances of the one-step
estimator are about 31% and 28% larger than those of the IRLS estimator, which
is the same as the MLE in this case, for the estimation of β0 and β1, respectively.
Of course, both the one-step and IRLS estimators significantly outperformed the
OLS estimator in terms of the simulated variance. It is remarkable that, although
Theorem 1 (or Corollary 1) only ensures convergence with probability tending to
one in large samples, with a fairly small sample size of n = 10, every one of our

TABLE 4
Comparison with the one-step estimator

Estimation of β0 Estimation of β1

OLS One-step IRLS OLS One-step IRLS

Simulated mean 0.15 0.17 0.18 0.16 0.16 0.15
Simulated variance 31.40 12.70 9.73 60.71 24.76 19.35
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1,000 IRLS runs actually converged. Here the criterion for convergence is similar
to that in the previous subsection. The number of steps it took to converge ranged
from 3 to 64 steps, and so are not reported here.

7. A numerical example. In this section we consider a data set presented by
Hand and Crowder [5] regarding hip replacements of 30 patients. Each patient was
measured four times, once before the operation and three times after, for hema-
tocrit, TPP, vitamin E, vitamin A, urinary zinc, plasma zinc, hydroxyprolene (in
milligrams), hydroxyprolene (index), ascorbic acid, carotine, calcium and plasma
phosphate (twelve variables). One important feature of the data is that there is a
considerable amount of missing observations. In fact, most of the patients have at
least one missing observation for all twelve measured variables. In other words,
the longitudinal data set is (seriously) unbalanced.

We consider the measured variable: hematocrit. This variable was considered by
Hand and Crowder [5], who used the data to assess age, sex and time differences.
The authors assumed an equicorrelated model and obtained Gaussian estimates of
regression coefficients and variance components (i.e., MLE under normality). Here
we take a robust approach without assuming a specific covariance structure. The
covariates consist of the same variables as suggested by Hand and Crowder. They
are an intercept, sex, occasion (three), sex by occasion interaction (three), age and
age by sex interaction. For the hematocrit data the IRLS algorithm converged in
seven steps. The results are shown in Table 5. The Gaussian (point) estimates of
Hand and Crowder [5], page 106, are also included for comparison.

It is seen that the IRLS estimates are similar to the Gaussian estimates, espe-
cially for the parameters that are found significant. This is, of course, not surpris-
ing, because the Gaussian estimator and IRLS should both be close to the BLUE,
provided that the covariance model suggested by Hand and Crowder is correct (the
authors believed that their method was valid in this case). Taking into account the
estimated standard errors, we found the coefficients β1, β3, β4, β5 and β6 to be
significant and the rest of the coefficients to be insignificant, where β1, β2, . . . are

TABLE 5
Estimates for hematocrit

Coef. β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

IRLS 3.19 0.08 0.65 −0.34 −0.21 0.12 −0.051 −0.051 0.033 −0.001
s.e. 0.39 0.14 0.06 0.06 0.07 0.06 0.061 0.066 0.058 0.021
Gaussian 3.28 0.21 0.65 −0.34 −0.21 0.12 −0.050 −0.048 0.019 −0.020

The first row gives IRLS estimates corresponding to, from left to right, intercept, sex, occasions
(three), sex by occasion interaction (three), age and age by sex interaction; the second row gives
estimated standard errors corresponding to the IRLS estimates; the third row gives the Gaussian
maximum likelihood estimates that were obtained by Hand and Crowder [5].
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the coefficients corresponding to the variables described in the second paragraph
of this section in that order. These are consistent with the findings of Hand and
Crowder, with the only exception being β6. Hand and Crowder considered jointly
testing the hypothesis that β6 = β7 = β8 = 0 and found an insignificant result. In
our case, the coefficients are considered separately, and we found β7 and β8 to be
insignificant and β6 to be barely significant at 5% level. However, since Hand and
Crowder did not publish the individual standard errors, this does not necessarily
imply a difference.

8. Discussion and concluding remarks. In analysis of longitudinal data un-
der linear mixed models, maximum likelihood (ML) and restricted maximum like-
lihood (REML) are well-established methods which apply to linear mixed models
in general. What is the advantage of IRLS over these methods? First, the ML and
REML methods require (i) normality; and (ii) correct specification of the para-
metric covariance structure. We do not believe that (i) is very important to the
estimation of β , because the ML and REML estimators are consistent even with-
out normality (Richardson and Welsh [15], Jiang [9]). However, (ii) is crucially
important. In fact, if (ii) fails, the ML and REML estimators may lose efficiency,
even consistency (e.g., Liang and Zeger [12], White [17]). Note that, if the co-
variances are estimated using inconsistent estimators, the resulting “BLUE” is no
longer BLUE, even asymptotically. In contrast, IRLS is not normality-based and
does not require a parametric covariance structure. In this paper, we have shown
that the IRLS estimator is asymptotically as efficient as the BLUE regardless of
the covariance structure (and normality). This is confirmed by our simulation re-
sults. Second, IRLS is computationally easier to implement. The ML and REML
methods require maximization of a nonlinear function or, at least, solution of a
system of nonlinear equations. Although standard numerical procedures are avail-
able, problems and difficulties are often encountered in practice. For example, the
Newton–Raphson procedure is known to be inefficient when the dimension of the
solution is high, and its convergence is heavily affected by the choice of start-
ing values; the EM algorithm is known to converge slowly. On the other hand,
each step of IRLS is defined by closed-form expressions, therefore can be cal-
culated analytically; the convergence is very fast, as we have demonstrated, and
one does not need to worry about starting values. Note that because of the fast
convergence of IRLS, in practice one may not need a lot of iterations (see the
last paragraph of Section 4). This is also confirmed by our simulations. By the
way, we have encountered difficulties in our simulations for computing the ML
or quasi-likelihood estimator using the standard Newton–Raphson procedure. In
fact, in some of our simulations, nearly thirty percent of the ML runs failed to con-
verge. In contrast, every one of our IRLS runs converged and converged quickly,
sometimes in two or three steps. Furthermore, the asymptotic properties of IEE,
namely, Theorems 2 and 3, make sure that v̂∗ always converges (in probability)
to the true v, and hence results in an asymptotically optimal estimator of β . Other
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methods such as ML or REML do not necessarily ensure the latter property in case
of misspecification of the variance–covariance structure. Therefore, IEE presents
a robust and asymptotically efficient estimation procedure.

A basic assumption in this paper is Assumption A1, which essentially says
that the number of different covariances between the observations is bounded.
Although the assumption is required for establishing the theoretical properties of
IEE, it does not mean that IEE cannot operate without such an assumption — it just
makes it more difficult to justify. Alternatively, if the number of different covari-
ances increases with the sample size, a parametric model for the covariance struc-
ture may be assumed to reduce the number of covariance parameters. Although, as
mentioned earlier, such a model may be more sensitive to model misspecifications,
it seems to be a reasonable approach in this difficult situation. For example, one
may think of a linear model for the covariance components with factor covariates.
Then, under Assumption A1, the number of columns of the design matrix in such
a linear model is finite. More generally, one may incorporate continuous covari-
ates in the linear model, which may be useful in some cases where the covariances
of the observations depend on continuous covariates. Note that, however, the ex-
plicit expressions of the estimates of the covariance components that we derived
in this paper may not exist under a parametric model. In fact, even under a lin-
ear model the estimates of the covariance components are subject to constraints,
such as nonnegativity for the variance components, which are not guaranteed for
the least-squares type estimates. Nevertheless, it is possible to develop a similar
iterative procedure under a parametric covariance model.

IEE is not very picky about the initial estimator. For example, the starting point
of IRLS is the OLS estimator; however, this is not an essential part of the algo-
rithm. In fact, the only properties of OLS that are used are that (i) it is consis-
tent, and (ii) W = I is bounded from above and below (i.e., ‖W‖ and ‖W−1‖
are bounded). Therefore, the starting point of IRLS may be replaced by another
WLS estimator such that W is bounded from above and below. A further question
is whether one actually has global convergence, meaning that the algorithm con-
verges regardless of the initial estimator (e.g., Luenberger [13]). It is an interesting
question for which we do not have an answer at this point.

In this paper, we not only have proved that the IEE procedure converges un-
der very mild conditions, we have shown that it converges linearly, that is, at an
exponential rate. This is the main theoretical finding of this paper. Although the
convergence of IEE would have been expected, the issue has never been rigorously
addressed, especially regarding its convergence rate. Furthermore, the limiting IEE
estimator is consistent and asymptotically efficient. These theoretical results are
confirmed by our simulation studies. In addition, our method leads to consistent
estimators of the covariances without assuming a parametric covariance structure
and/or normality. Finally, we extended the robust estimation procedure (see Sec-
tion 1) to unbalanced cases, which should make it a more attractive method for the
analysis of longitudinal data.
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9. Proof of Theorem 1. Notation. Throughout the rest, β , v, and so forth
represent the true β , v, and so forth when there is no confusion. Given v̂, the
corresponding β̂ is understood as β̂ = β(v̂); similarly, given β̂ , the corresponding
v̂ is v̂ = v(β̂) (see Section 4.1). Note that the two equations β̂ = β(v̂) and v̂ = v(β̂)

need not hold simultaneously (unless at convergence). Therefore, for example, v ◦
β(v̂) may not equal v̂. Also, we use notation such as β(l) for β{v(l)}, and so forth,
when there is no confusion.

The (spectral) norm of a matrix A is defined as ‖A‖ = {λmax(A
′A)}1/2, and the

2-norm is defined as ‖A‖2 = {tr(A′A)}1/2.
Let δ0 and M0 denote positive numbers such that δ0 ≤ 1, M0 ≥ 1 and δ0 ≤

M0/16. We define the following sets [see notation below (2.2), above (3.2) and
above Theorem 1]:

B0 = {∣∣β̂(1) − β
∣∣ ≤ ε0

}
,

where ε0 is a positive constant suitably chosen later on;

B1 = {λmin(Ṽi) ≥ 2δ0 and λmax(Ṽi) ≤ M0/2,1 ≤ i ≤ n},
where Ṽi = (ṽijk)j,k∈Ji

and ṽijk is defined by the right-hand side of (3.2), if vijk =
v(j, k, l);

B2 =
{
n(j, k, l)−1

∑
i∈I (j,k,l)

(1 + sij )|Yik − µik| ≤ ε
−1/2
0 ,1 ≤ l ≤ Ljk, (j, k) ∈ D

}
;

B3 =
{

sup
v∈V

‖∂β/∂v‖ ≤ ε
−1/4
0

}
;

B4 = a set defined in Lemma 5 below such that P(B4) → 1 as n → ∞;

B5 =
{
n(j, k, l)−1

∣∣∣∣∣
∑

i∈I (j,k,l)

(∂µij /∂βq)(Yik − µik)

∣∣∣∣∣ ≤ ε
1/2
0 ,

1 ≤ q ≤ p,1 ≤ l ≤ Ljk, (j, k) ∈ D

}
;

C0 = {(1/4)λmin(Vi) ≥ δ0 and 4λmax(Vi) ≤ M0,1 ≤ i ≤ n};
C1 = {b2(2ε

1/2
0 + L2

1ε
2
0) ≤ δ0};

C2 = {√
R(R ∨ p)[L2

1ε
3/4
0 + (L2 + 1)ε

1/4
0 ] ≤ η/2

}
.

A rule for the notation is that B represents a set involving both the Yi ’s and the
Xi’s, while C represents a set that only involves the Xi’s. Note that these are
subsets of the probability space on which all the random variables are defined.

For the most part, the proof consists of two major steps. The first is to show
that the sequences β̂(m) and v̂(m) (m = 1,2, . . .) are bounded. The second is to
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show that, within such a bounded range, the partial derivatives of τ(·) and ρ(·) are
bounded by some small numbers. We first state and prove some lemmas. Lemma
4 below ensures that, with high probability, β̂ is confined to a neighborhood of β

implies that v̂ is bounded; while Lemma 5 ensures the opposite, that is, with high
probability, v̂ is bounded implies that β̂ is confined to the same neighborhood of
β . Then, with Lemma 4 and Lemma 5, one is running a cycle, which allows one
to argue that the entire sequence of β̂(m), v̂(m), m = 1,2, . . . , is bounded, starting
from the beginning. Given that the sequence is bounded, the next thing is to obtain
upper bounds for the derivatives, which is what Lemma 6 does. The proofs of
Lemma 4 and Lemma 5 are fairly straightforward and therefore are omitted. Recall
that ε1 is the arbitrary positive constant involved in the definition of Lj , j = 1,2,3
(see Section 4).

LEMMA 4. For any 0 < ε0 ≤ ε1, we have {|β̂ − β| ≤ ε0 implies λmin(V̂i) ≥ δ0
and λmax(V̂i) ≤ (9/16)M0, 1 ≤ i ≤ n} ⊃ B1 ∩ B2 ∩ C1.

LEMMA 5. Under Assumptions A3 and A4, for any ε0 > 0, there is a set B4
with P(B4) → 1 as n → ∞ such that {v̂ ∈ V implies |β̂ − β| ≤ ε0} ⊃ B3 ∩ B4.

LEMMA 6. For any 0 < ε0 ≤ ε1, we have{
|β̂ − β| ≤ ε0 and v̂ ∈ V implies

∣∣∣∣ ∂τ

∂βq

∣∣∣
β=β̂

∣∣∣∣ ≤ η,1 ≤ q ≤ p, and

∣∣∣∣ ∂ρ

∂vr

∣∣∣
v=v̂

∣∣∣∣ ≤ η,1 ≤ r ≤ R

}

⊃ B2 ∩ B3 ∩ B5 ∩ C2.

PROOF. We have

∂τ

∂βq

=
R∑

r=1

∂β

∂vr

· ∂vr

∂βq

,(9.1)

∂ρ

∂vr

=
p∑

q=1

∂v

∂βq

· ∂βq

∂vr

.(9.2)

Let vr = ṽ(j, k, l) for some j , k, l. Then, by (3.2), we have

∂vr

∂βq

∣∣∣
β=β̂

= − 1

n(j, k, l)

∑
i∈I (j,k,l)

{
∂gj

∂βq

(Xi, β̂)

}
{Yik − gk(Xi, β̂)}

− 1

n(j, k, l)

∑
i∈I (j,k,l)

{
∂gk

∂βq

(Xi, β̂)

}
{Yij − gj (Xi, β̂)}

= −(I1 + I2).
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Furthermore, we have

I1 = 1

n(j, k, l)

∑
i∈I (j,k,l)

{
∂gj

∂βq

(Xi, β)

}
(Yik − µik)

+ 1

n(j, k, l)

∑
i∈I (j,k,l)

{
∂gj

∂βq

(Xi, β̂) − ∂gj

∂βq

(Xi, β)

}
(Yik − µik)

+ 1

n(j, k, l)

∑
i∈I (j,k,l)

{
∂gj

∂βq

(Xi, β̂)

}
{gk(Xi, β) − gk(Xi, β̂)}

= I11 + I12 + I13.

Suppose that |β̂ − β| ≤ ε0. Then, it is easy to show that |I13| ≤ L2
1ε0; |I12| ≤

L2ε
1/2
0 on B2; and |I11| ≤ ε

1/2
0 on B5. Thus, on B2 ∩ B5, |β̂ − β| ≤ ε0 implies

|I1| ≤ L2
1ε0 + (L2 + 1)ε

1/2
0 , and, similarly, |I2| ≤ L2

1ε0 + (L2 + 1)ε
1/2
0 . Therefore,

by (9.1), we have, on B2 ∩ B3 ∩ B5 ∩ C2, that |β̂ − β| ≤ ε0 and v ∈ V imply
|(∂τ/∂βq)|β=β̂

| ≤ η. The arguments also show that, on B2 ∩ B5, |β̂ − β| ≤ ε0

implies |(∂v/∂βq)|
β=β̂

| ≤ 2
√

R{L2
1ε0 + (L2 + 1)ε

1/2
0 }. Thus, by (9.2), we have,

on B2 ∩B3 ∩ B5 ∩ C2, that |β̂ −β| ≤ ε0 and v ∈ V imply |(∂ρ/∂vr)|v=v̂| ≤ η. �

We are now ready for the proof. For any δ > 0, by Assumption A2, there
is M > 0 such that P(A) > 1 − δ, where A = {Lj ≤ M,j = 1,2, and ‖Vi‖ ∨
‖V −1

i ‖ ≤ M,1 ≤ i ≤ n}. Then, choose δ0 and M0 as in the third paragraph of this
section such that λmin(Vi) ≥ 4δ0 and λmax(Vi) ≤ M0/4, 1 ≤ i ≤ n, on A. Further-
more, if ε0 > 0 is chosen such that

ε0 ≤ ε1, b2(2ε
1/2
0 + M2ε2

0) ≤ δ0,√
R(R ∨ p){M2ε

3/4
0 + (M + 1)ε

1/4
0 } ≤ η

2

(ε1 is defined below Assumption A5), we have Cj ⊃ A, j = 0,1,2.
By Assumption A3, there is N0 such that P(Bc

0) < δ, if n ≥ N0.
We have ṽ(j, k, l)−v(j, k, l) = n−1(j, k, l)

∑
i∈I (j,k,l) �i,j,k for any (j, k) ∈ D,

1 ≤ l ≤ Ljk , where �i,j,k = (Yij − µij )(Yik − µik) − vijk . It follows, by As-
sumption A2, that E{ṽ(j, k, l) − v(j, k, l)}2 = n−2(j, k, l)

∑
i∈I (j,k,l) E(�2

i,j,k) ≤
cn−1(j, k, l) for some constant c. It is then easy to show, by Assumption A5,
that there is N1 such that P(maxi ‖Ṽi − Vi‖ > δ0) < δ, if n ≥ N1. Since B1 ⊃
A ∩ {maxi ‖Ṽi − Vi‖ ≤ δ0}, we have P(Bc

1) < 2δ, if n ≥ N1.
Similarly, there is N4 such that P(Bc

4) < δ, if n ≥ N4.
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Now consider B2. It is easy to see that B2 ⊃ A ∩ G, where

G =
{

1

n(j, k, l)

∑
i∈I (j,k,l)

|Yij − µij | ≤ (M + 1)−1ε
−1/2
0 ,

1 ≤ l ≤ Ljk, (j, k) ∈ D

}
.

By Chebyshev’s inequality and Assumptions A1, A2, we have

P(Gc) ≤ ∑
1≤l≤Ljk,(j,k)∈D

(M + 1)ε
1/2
0

n(j, k, l)

∑
i∈I (j,k,l)

E(|Yij − µij |)

≤ c1(M + 1)ε
1/2
0

for some constant c1. Thus, we have P(Bc
2) < δ + c1(M + 1)ε

1/2
0 .

Also, by Assumption A4, there is ε2 > 0 such that P(Bc
3) ≤ δ, if ε0 ≤ ε2.

Finally, for any 1 ≤ q ≤ p, (j, k) ∈ D and 1 ≤ l ≤ Ljk , write

Sq,j,k,l =
{

1

n(j, k, l)

∣∣∣∣∣
∑

i∈I (j,k,l)

(
∂µij

∂βq

)
(Yik − µik)

∣∣∣∣∣ > ε
1/2
0

}
,

and A(i) = {|∂µij /∂βq | ≤ M,vikk ≤ M}. Then we have 1A(i) = 1 ∀i on A. Thus,
we have

P(Sq,j,k,l ∩ A) ≤ P

{
1

n(j, k, l)

∣∣∣∣∣
∑

i∈I (j,k,l)

(
∂µij

∂βq

)
(Yik − µik)1A(i)

∣∣∣∣∣ > ε
1/2
0

}

≤ 1

ε0n2(j, k, l)

∑
i∈I (j,k,l)

E
{(

∂µij

∂βq

)2

vikk1A(i)

}

≤ M3

ε0n(j, k, l)
.

Therefore, there is N5 which depends on M and ε0, such that P(Sq,j,k,l ∩ A) <

δ/h, for all such q , j , k and l, if n ≥ N5, where h is the cardinality of the set H =
{(q, j, k, l) : 1 ≤ q ≤ p, (j, k) ∈ D, l ≤ Ljk}, which is bounded by Assumption A1.
It follows that

P(Bc
5 ∩ A) ≤ ∑

(q,j,k,l)∈H

P(Sq,j,k,l ∩ A) < δ,

and hence P(Bc
5) ≤ P(Bc

5 ∩ A) + P(Ac) < 2δ, if n ≥ N5.
In conclusion, for any δ > 0, choose ε0 > 0 such that ε0 ≤ ε1 ∧ ε2 ∧ 1,

b2(2ε
1/2
0 + M2ε2

0) ≤ δ0,
√

R(R ∨ p){M2ε
3/4
0 + (M + 1)ε

1/4
0 } ≤ η/2 and c1(M +
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1)ε
1/2
0 < δ. Then, choose Nj , j = 0,1,4,5, as above, and let N be the maximum

among them. It follows that P(Cc
j ) < δ, j = 0,1,2, and, when n ≥ N , P(Bc

j ) < δ,
j = 0,3,4, and P(Bc

j ) < 2δ, j = 1,2,5. Thus, with E = B0 ∩ · · · ∩B5 ∩C0 ∩C1 ∩
C2, we have P(E c) < 12δ, if n ≥ N .

Now consider what happens on E . For any β(j) such that |β(j) − β| ≤ ε0, j =
1,2, we have

τ
{
β(1)} − τ

{
β(2)} = [

τq

{
β(1)} − τq

{
β(2)}]

1≤q≤p.

By Taylor expansion we have

τq

{
β(1)} − τq

{
β(2)} =

p∑
j=1

∂τq

∂βj

∣∣∣
β̃

{
β(1) − β(2)},

where β̃ lies between β(1) and β(2) (but may depend on q). Note that |β(j) − β| ≤
ε0, j = 1,2, implies |β̃ − β| ≤ ε0. Thus, by Lemma 4, we have ṽ ∈ V . Therefore,
by Lemma 6 and the Cauchy–Schwarz inequality, we have∣∣τq

{
β(1)} − τq

{
β(2)}∣∣ ≤ √

pη
∣∣β(1) − β(2)

∣∣,
hence ∣∣τ{

β(1)} − τ
{
β(2)}∣∣ ≤ pη

∣∣β(1) − β(2)
∣∣.(9.3)

Similarly, by Lemma 5 and Lemma 6 it can be shown that for any v(j) ∈ V , j =
1,2, we have ∣∣ρ{

v(1)} − ρ
{
v(2)}∣∣ ≤ Rη

∣∣v(1) − v(2)
∣∣.(9.4)

Now, on E we have |β̂(1) − β| ≤ ε0 and v̂(1) = v̂(0) ∈ V; |β̂(2) − β| = |β̂(1) −
β| ≤ ε0, hence by Lemma 4, v̂(2) ∈ V; thus, by Lemma 5, |β̂(3) − β| ≤ ε0, and
v(3) = v(2) ∈ V; and so on. It follows that |β̂(m) − β| ≤ ε0 and v̂(m) ∈ V , m =
1,2, . . . .

We now apply (9.3) to obtain, for any a, b > k,∣∣β̂(2a−1) − β̂(2b−1)
∣∣ = ∣∣τ{

β̂(2a−3)} − τ
{
β̂(2b−3)}∣∣

≤ (pη)
∣∣β̂(2a−3) − β̂(2b−3)

∣∣
≤ · · ·(9.5)

≤ (pη)k
∣∣β̂(2a−2k−1) − β̂(2b−2k−1)

∣∣
≤ 2ε0(pη)k.

It follows that the sequence {β̂(2a−1), a = 1,2, . . .} is a Cauchy sequence and hence
convergent. Furthermore, since β̂(2a) = β̂(2a−1), the entire sequence {β̂(m),m =
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1,2, . . .} converges. By letting b → ∞ and k = a − 1 in (9.5), it is easy to show
that

|β̂(m) − β̂∗|
(pη)m/2 ≤ 2ε0

pη
≡ M1, m = 1,2, . . . .

Similarly, by (9.4), it can be shown that |v̂(2a) − v̂(2b)| ≤ (Rη)k|v̂(2a−2k) −
v̂(2b−2k)| ≤ (2

√
RM0)(Rη)k for any a, b ≥ k. Thus, by similar arguments, the se-

quence {v(m),m = 1,2, . . .} converges, and we have

|v̂(m) − v̂∗|
(Rη)m/2 ≤ 2M0

√
R ∨ η−1 ≡ M2, m = 1,2, . . . .

Let

ζ1 = sup
m≥1

{∣∣β̂(m) − β̂∗∣∣/(pη)m/2}
,

ζ2 = sup
m≥1

{∣∣v̂(m) − v̂∗∣∣/(Rη)m/2}
.

We have shown that for any δ > 0, there is N ≥ 1 such that, when n ≥ N ,
P(IEE converges) ≥ P(E) > 1 − 12δ and P(ζj < ∞) ≥ P(ζj ≤ Mj) ≥ P(E) >

1 − 12δ, j = 1,2. This completes the proof.
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