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Abstract   

Ant Colony Optimisation is a recent algorithm used for solving optimisation problems. 

The algorithm is modelled on the behaviour of real ant colonies, and has traditionally 

been used exclusively for solving problems in the discrete domain. This thesis fully 

implements and evaluates a specialized version of Any Colony Optimisation capable 

of searching continuous spaces, and evaluates its performance under a range of 

conditions and test cases. 
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Chapter 1 : Introduction   

The Ant Colony Optimization Algorithm is a relatively recent approach to solving 

optimization problems by simulating the behaviour of real ant colonies. The Ant 

Colony System (ACS) models the behaviour of ants, which are known to be able to 

find the shortest path from their nest to a food source. Although individual ants move 

in a quasi-random fashion, performing relatively simple tasks, the entire colony of 

ants can collectively accomplish sophisticated movement patterns. Ants accomplish 

this by depositing a substance called a pheromone as they move. This chemical trail 

can be detected by other ants, which are probabilistically more likely to follow a path 

rich in pheromone. This trail information can be utilised to adapt to sudden 

unexpected changes to the terrain, such as when an obstruction blocks a previously 

used part of the path (Figure 1.1).   

    

Figure 1.1  Ants moving between the nest and a 
food source are blocked by an obstacle. 

Figure 1.2  Pheromone build-up allows ants to re-
establish the shortest path.   

The shortest path around such an obstacle will be probabilistically chosen just as 

frequently as a longer path - however the pheromone trail will be more quickly 

reconstituted along the shorter path, as there are more ants moving this way per time 

unit (Figure 1.2). Since the ants are more inclined to choose a path with higher 

pheromone levels, the ants rapidly converge on the stronger pheromone trail, and 

thus divert more and more ants along the shorter path.  

This particular behaviour of ant colonies has inspired the Ant Colony Optimization 

algorithm, in which a set of artificial ants co-operate to find solutions to a given 

optimization problem by depositing pheromone trails throughout the search space. 
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Existing implementations of the algorithm deal exclusively with discrete search 

spaces, and have been demonstrated to reliably and efficiently solve a variety of 

combinatorial optimization problems, such as the Travelling Salesman Problem 

(TSP).   

1.1     The Travelling Salesman Problem  

The TSP is extensively studied in literature dealing with optimisation, and is 

considered a standard test-bed for the evaluation of new algorithmic ideas – indeed, 

good performance for the TSP is considered reasonable proof of an algorithm’s 

usefulness. The TSP is the problem of a salesman who wants to find the shortest 

possible trip through a set of cities on his tour of duty, visiting each and every city 

exactly once.  

The problem space can essentially be viewed as a weighted graph (Figure 1.3), 

containing a set of nodes (cities). The objective is to find a minimal-length circuit of 

the graph. The ACS solves the problem by using a population of ants to construct 

tours by moving from city to city on the graph, traversing the edge that connect the 

cities, and applying pheromone trails to the arcs that connect the nodes. The 

pheromone strength associated with each arc is modified as the algorithm runs 

(Figure 1.4), and ants are able to utilize this pheromone trail information to help them 

build “good” solutions.  

   

Figure 1.3  Trail distribution at the beginning of the 
search. 

Figure 1.4  Trails distribution after 100 
generations.  

Ants exploring the TSP are probabilistically biased by the pheromone trails they 

encounter, and are more likely to select a path that is rich in pheromone. This 

information sharing leads to the construction of good solutions, and preferential 

exploitation of the more desirable search paths. 
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1.2     Applications areas of ACO  

As mentioned, the ACO algorithm has been successfully applied to a number of 

different problems, the most famous example being the Travelling Salesman 

Problem. Other similar application examples include the Sequential Ordering 

Problem and the Vehicle Routing Problem. ACO has also been used to solve 

instances of the Quadratic Assignment Problem, as well as telecommunication 

network problems involving routing. All of these examples involve the ordering of a 

discrete number of n items, where the size of the search space is limited to n! 

permutations.  

To date, almost all of the work in the area of ACO has concerned discrete 

optimization problems, and little work has considered the possibility of applying the 

ant colony metaphor to continuous space optimisation.    

1.3     Thesis Objectives and Motivation  

The principal goal of this thesis was to implement a specialised version of the ACO 

algorithm capable of searching continuous spaces. The motivation for implementing 

this new optimisation technique may not be immediately apparent (since there 

already exists numerous other well-known and highly refined algorithms for searching 

continuous spaces) - however, it is thought that using this “natural” metaphor will 

integrate several useful features into the search, similar to those features that make 

Simulated Annealing so unique. Features relevant to ACO include a highly efficient 

form of best-path exploitation (pheromone detection), and a sensible mechanism for 

exploration (probabilistic path selection). It will be shown that CACO quickly 

converges on “good” solutions – due in part to the fact that information gained during 

the search can help to reduce the time and effort expended in looking in unpromising 

regions, and guide subsequent search to areas likely to contain good solutions.        
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1.4     Document Overview  

In the remainder of this thesis, the design, implementation, and evaluation of a 

Continuous Ant Colony Optimisation algorithm (CACO) is discussed in detail, with 

particular attention given to the way in which the various elements of the original 

ACO algorithm were adapted and modified to handle continuous spaces. This 

document is divided into several sections, as outlined below:  

Chapter 2 : Background 

This chapter offers a review of some of the work that is currently being conducted in 

the area of discrete Ant Colony Optimisation, and provides a more detailed look at 

the application of ACO to various optimisation problems. A basic overview of the 

algorithm is also discussed, explaining the procedure on which the system is 

modelled.  

Chapter 3 : Algorithm Design 

This section details the design choices that were made when implementing the 

continuous version of the algorithm, and describes in general terms how the sub-

components of the system function together to achieve the desired emergent 

properties. This chapter also focuses on how elements of discrete ACO are adapted 

to work in the continuous domain, and introduces some new concepts that were 

specifically devised to overcome new problems that arose.  

Chapter 4 : Algorithm Performance 

In this chapter, the CACO algorithm is tested by evaluating its performance on a 

range of well-known continuous optimisation problems. CACO is also compared to 

some other stochastic optimisation methods. In addition to this, the effects of 

parameter setting are examined to investigate the algorithm dynamics.  

Chapter 5  : Conclusion 

This final chapter contains a summary of the work undertaken during the project, and 

addresses issues such as scaling the algorithm to handle higher-dimensional 

problems. Areas of possible future work in the CACO algorithm are also considered. 

This is followed by a bibliography.  
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Chapter 2 : Background   

Ant Colony Optimisation was first proposed in 1992 by Marco Dorigo, and in the 

decade since its introduction, a growing number of researchers have been involved 

in further developing it. Literature on the topic of Ant Colony Optimization is currently 

largely restricted to journals and research papers, as this is still an emerging 

algorithm that has not yet weaved its way into mainstream optimisation texts. The 

following paragraphs briefly outline some of the better papers that may be considered 

relevant to this project.   

2.1     Previous Work  

A good introductory paper [1] describing the Ant System has been written by Dorigo 

& Colorni,  which describes in considerable detail the way a system of cooperating 

agents (ants) can be used for stochastic combinatorial optimization problems. This 

paper clearly outlines the principles of pheromone deposition and evaporation, and 

how the resultant properties of the system are a due to positive feedback from 

pheromone information. The paper also examines the results of several trials, 

comparing the effects of different run-time parameters on the performance of the 

algorithm, and showing optimal values for different scenarios. The Ant System 

algorithm is also compared against Simulated Annealing and Tabu Search for a set 

problem, showing how the Ant System performs compared to these other common 

optimisation methods.  

Another journal publication by Dorigo [2] details the explicit application of ACO to 

problems like the TSP, and demonstrate fully how a discrete problem can be solved 

using this technique with “state-of-the-art performance”. In another recent paper [3], 

Dorigo and Mealeau showed that ACO is very much similar to the stochastic gradient 

descent algorithm. Dorigo, regarded as the pioneer in the field, has published dozens 

of other papers on the topic of ACO, ranging from introductory papers [4], to those 

discussing in depth the results of actual experiments [5], and papers discussing 

possible applications to other areas [6], a number of which are actually investigated 

by other researchers in subsequent papers [7].  

Some more recent ACO adaptation ideas have proposed a hybrid version combining 

ACO with local search [8]. This new version is capable of outperforming all known 
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algorithms on a vast class of benchmark problems, including the Quadratic 

Assignment Problem and the Sequential Ordering Problem.  

Information pertaining strictly to ACO for continuous design spaces is virtually non-

existent, as this has not been attempted previously. Indeed, only one article [9] 

actually suggests an Ant Colony metaphor for continuous spaces, and it is the 

proposal in this paper that this thesis is based upon. The paper suggests a method of 

mapping the discrete nature of ACO onto a continuous search space by using a 

discrete (yet dynamic) structure – by representing a finite number of search 

directions as vectors. This idea is explained in more detail in Chapter 3.   

2.2     Adaptation Problems   

While the articles referred to above present a comprehensive description of how 

ACO can be used as an optimisation tool (and how effective it is), a substantial 

portion of the detail delivered in these papers has little relevance to this project. It is 

certainly true that there are a large number of common elements in both the discrete 

and continuous models of the ACO system – (for instance, pseudo-random localised 

search, pheromone trails and biased path selection), however there are also a 

number of significant differences. The lack of well-defined paths for transitions 

between “nodes” in the continuous domain means that movement between search 

states is now purely dependant on the nature of the heuristics that direct the ants 

through the search space. Similarly, placing and updating pheromone trails becomes 

another major issue. Even in Bilchev & Parmee’s paper [9] which proposes ACO for 

continuous spaces, neither of these issues is addressed. Resolution of this problem 

was a significant part of the algorithm design phase.  

The specifics of the search technique for continuous ACO - in particular, exploration 

and pheromone trail placement - are quite similar to the approach adopted in the 

discrete version of the algorithm, however there are a number of important 

distinctions. These differences are largely accounted for by the fact that there is not a 

finite number of elements to be visited in the continuous domain, nor is there a finite 

number of paths between nodes. In theory, ants should be able to visit any of an 

effectively infinite number of points – and as a result, the task of recording 

pheromone trails in the system soon becomes an unmanageable task, unless a 

different approach is used.  
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2.3     ACO Structure  

As mentioned previously, little work until now has considered extending the Ant 

Colony paradigm to continuous spaces. The approach for doing this outlined by 

Bilchev and Parmee [9] gave only a vague suggestion as to how this might be 

accomplished, and a number of major issues are ignored completely in their 

treatment. The design of the algorithm was therefore one of the most significant 

components of the work undertaken in this thesis.   

The general structure of the ACO algorithm is as follows:  

         initialize colony()  

         evaluate(t) 

         while (not termination_condition){ 

           time  time + 1 

           add_trail(t) 

           send_ants(t) 

           evaluate(t) 

           evaporate(t) 

         } 

         end  

Each section of this pseudo-representation of the algorithm is discussed in detail in 

the following chapter.   

The initialisation of the colony is discussed in Sections 3.1 and 3.5. 

The laying of pheromone trails and path selection is discussed in Section 3.2. 

Ant movement and solution convergence is discussed in Section 3.3. 

Evaporation of pheromone trails is discussed in Section 3.4. 

Algorithm termination conditions are discussed in Section 3.6.  

In addition to these topics, some new ideas are introduced to the Ant Colony System 

aimed to help minimise the possibility of local optima trapping. The discussion 

attempts to steer away from implementation-specific details, and aims to provide a 

clear, descriptive explanation of the behaviour of the Continuous Ant Colony 

Optimisation Algorithm.  
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Chapter 3 : Algorithm Design   

3.1     Modelling the Nest Neighbourhood  

The design of a specialised version of the Ant Colony Optimization algorithm for 

searching continuous (non-discrete) domains was a significant problem. Existing 

(discrete) versions of the algorithm are able to handle highly constrained order-based 

problems, however the ant colony metaphor cannot be directly applied to continuous 

spaces unless some kind of order-based representation is invented. To do this, it is 

necessary to first model a continuous nest neighbourhood with a discrete structure.   

This is accomplished by representing a finite number of directions as vectors starting 

from a base point – in this scenario, referred to as the nest (Figure 3.1). The nest is a 

central point from which all ants begin their search. The vectors coming from the nest 

represent the directions that ants may choose to travel when they leave the nest. 

These vectors can be weighted with a value representing a pheromone 

concentration, which serves as an indicator of the success or “fitness” of ants that 

have chosen to explore that particular path.  

Ants are capable of updating these vector weightings (or pheromone trails), so that 

the values correspond to the likelihood of finding a good solution in the region 

described by the vector. This enables ants to determine the more promising areas of 

the search space by comparing pheromone levels of available direction vectors. The 

points described by the vectors are also able to evolve over time according to the 

ants’ fitness (Figure 3.2). This effectively allows pheromone trails to adapt to the 

terrain, enabling ants to find increasingly better solutions.   

   

Figure 3.1  The nest (centre point), with a number 
of direction vectors indicating the initial directions 
ants will travel. 

Figure 3.2  Evolution of a direction vector, showing 
how improvements in an ants’ fitness results in 
vector displacement. 
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The use of direction vectors and pheromone concentrations to store information 

about the suitability of solutions that ants have encountered is useful for a number of 

reasons. The main advantage is that areas containing poor or unpromising solutions 

are effectively assigned lower priorities, allowing more computational resources to be 

spent looking for better solutions in areas already known to contain good solutions. 

This means that although there may be an increasingly small chance than ants will 

select a low pheromone-level path for inspection, exploration of these areas is not 

expressly forbidden, just increasingly unlikely as the algorithm progresses. This is 

because the selection of direction vectors to explore is probabilistically determined, 

and the best paths are not guaranteed selection each time.  

     

Figure 3.3  A simple terrain containing one global 
maximum.    

Figure 3.4  Ants are scattered outwards from the 
nest. 

Figure 3.5  Pheromone vectors gradually evolve, 
encouraging ants to explore promising regions. 

Figure 3.6  The optimal global solution is 
discovered.   

It is necessary to adopt this approach of modelling the nest neighbourhood with a 

discrete number of vectors due to the fact that unmediated pheromone trail laying in 

a continuous search-scape would be unmanageable, owing to the fact that there are 

no well-defined “nodes” or “edges”. If trail information was retained for every trip 
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made by every ant over every generation, the data-structure needed to store this 

information would become unmanageably large, especially for problems containing 

any more than a few variables.    

3.2     Direction Vector Selection  

When an ant leaves the nest, it must make a decision about which way to travel. This 

decision is influenced by the pheromone trails leading out from the nest, which are 

represented by weighted directional vectors.   

To implement the probabilistic nature of the direction vector selection mechanism, a 

special structure was devised, modelled partially on a roulette wheel. A set of n 

initially equally-sized slots is set up, representing the n direction vectors in the 

system (Figure 3.7). These slots each represent a particular range of numbers. Next, 

a random number is generated which will correspond to a particular slot. This 

process of random number generation and slot matching is analogous to the spinning 

of a roulette wheel.    

    

Figure 3.7  Five equally weighted direction vectors, each with an equal probability of selection for future 
exploration.  

V1

 

V2

 

V3

 

V4

 

V5
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Figure 3.8  Pheromone build-up now favours vector V1, which points to a very promising region. Vector 
V5 remains unchanged, whereas V4, V3 and V2 are areas which probably should be avoided.  

As ants begin to discover the characteristics of the terrain they are exploring, they will 

update the pheromone concentration values associated with the vector they are 

exploring. A pheromone level that is significantly higher than other values in the 

system indicates that ants exploring that vector are having some degree of success, 

having found a region that possibly warrants more attention. The system will now 

assign the vector in question a wider range of numbers, meaning that there is now a 

greater probability of selecting the vector when another random number is generated.   

Correspondingly, vectors showing less promise have their range restricted, meaning 

that there is a smaller chance that the vector will be selected for exploration. This 

allows the majority of ants to investigate the more promising regions, while 

minimizing the effort expended in exploring areas not likely to contain good solutions. 

In effect, shrinking the size of unpromising vector slots helps to steer the ants away 

from areas that seem to yield poor solutions.  

To help minimize the chances of ants converging prematurely on local optima, a 

mechanism was put in place to ensure that the probability of selecting any given 

vector can never fall to zero. This also ensures that certain areas of the search space 

are not completely impossible to reach; in other words, “no search is impossible”.   

V1

 
V2

 
V3

 
V4

 
V5
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3.3     Ant Movement  

In the Ant Colony system, ants are simple agents with limited scope, sent out to 

explore a search space. An individual ant is effectively blind, and cannot see what 

other ants are doing. Ants can, however, make informed decisions about the paths 

they choose to explore by utilizing pheromone concentration information.  

When an ant selects a particular direction in which to travel, it is instantaneously 

transported to the location of the best previous ant to have chosen that same 

direction. From this point, the ant makes a random movement to some new location, 

within some maximum search radius defined for that stage of the search. This radius 

gradually contracts throughout the duration of the search, so that the ants can 

converge on a solution with a high degree of accuracy.  

   

Figure 3.9  Initial model for ant displacement, with 
denser probability regions closer to the current 
position of the ant. 

Figure 3.10  Later model for ant displacement, 
with all areas within the maximum exploration 
radius allowed. Ants may only move further than 
this under special circumstances (See section 
3.4).  

The initial implementation used for the ant movement procedure assigned regions 

closest to the ant’s current location with higher probabilities (Figure 3.9). This method 

used a Gaussian distribution approach to determine where the ant would move, with 

small displacements favoured over larger ones. The ants were still constrained by a 

search radius, however ants were generally unlikely to move the maximum distance 

available to them. This was found to unnecessarily restrain the ants, and resulted in 

an effective radius significantly less than the maximum. To combat this problem, the 

probability regions were removed completely from the algorithm, and replaced with a 

simpler “pure random positioning” system (Figure 3.10), in which all areas within the 

search radius are equally likely to be selected, provided that they did not violate 

boundary conditions for the search. 
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When an ant moves to a new location, it next evaluates its fitness. The fitness of an 

ant is a measure of the “goodness” of the solution that the ants’ position represents. 

If the ant reports a fitness greater than the best current fitness recorded for the 

current direction vector being explored, the vector position is updated, and the 

vector’s pheromone concentration will be appropriately incremented. If the new 

position is not an improvement, it is disregarded, and the ant defaults back to the last 

known best position in the following cycle.  

As the algorithm progresses and pheromone concentrations begin to reveal the 

promising regions of the terrain, the search radius for individual ant movement begins 

to contract. This gradual reduction in the range available to ants allows the algorithm 

to home in on a very precise solution. The constriction of the radius effectively gives 

the ants a decreasing amount of space to move, making exploration of new areas 

less of a priority, and forcing ants to converge on the local optimum they are 

exploring.   

  

                                  Figure 3.11  The search radius gradually diminishes, allowing  
                                  the ants to converge on a solution.   

Various methods of radius reduction were considered, with three different options 

actually being implemented. The first method uses a fixed decremental amount, 

which is subtracted from the search radius after each ant in the current generation 

has moved. This results in a constant rate of restriction (Figure 3.12), with each 

generation having a proportionally smaller search area than the last. The second 

method uses a fixed radius restriction factor (some value less than 1), by which the 

radius is multiplied after each generation. This option allows ants to narrow down 

their search more rapidly initially, and to spend longer in detailed local solution 

exploration (Figure 3.13). The third method uses a similar approach, but instead is 

more biased towards global exploration. This approach leaves the ants with more 

time to investigate the properties of the entire search scape, and undergoes rapid 

convergence on solutions towards the end of the algorithm’s life (Figure 3.14). 
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Figure 3.12  Constant rate of 
radius reduction.  

Figure 3.13  Exponential decay 
of radius, model #1.  

Figure 3.14  Exponential decay 
of radius, model #2.   

For all of these models, the value (or rate) of radius reduction is typically set very 

small. This is necessary to ensure that the algorithm does not terminate before the 

ants are given sufficient time to explore the terrain, and pheromone trails are given 

ample opportunity to accumulate. Setting the values extremely small also ensures 

that ants do not prematurely converge on solutions that may not be global optimums. 

If the radius restricts too quickly, a situation may arise in which an ant no longer has 

the range required to escape the current local optima. This is obviously undesirable 

behaviour, and so appropriately small values are needed to prevent this from 

happening.   

Other techniques for radius reduction were considered as well, including a number of 

more complicated shrinkage patterns (such as the one shown in Figure 3.16). 

However, this was found to introduce unnecessary complexity to the algorithm, as 

determining at what point rates should change resulted in more variables to control. 

The choice of which technique to use was left as a parameter to investigate during 

the evaluation phase of the algorithm (Chapter 4).  

   

Figure 3.15  The gradual restriction of the search 
radius allows ants to “home in”  on solutions with 
an increasing degree of precision. 

Figure 3.16  A more complex radius restriction 
model, in which the radius only begins to contract 
after a certain number of generations.  
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3.4     Food Source Exhaustion   

Ants that do not result in improvement do not participate in the trail laying process, 

and the reverse process (trail evaporation) helps divert attention away from the area 

in question. As mentioned previously, trail evaporation cannot cause a vector to 

disappear entirely, as there is a minimum value determining the smallest possible 

amount of pheromone a trail can contain. This prevents the probability of selecting an 

unpromising vector ever falling completely to zero, and encourages ants to explore 

other more promising vectors.   

When an ant is stuck in a region yielding no good results, the pheromone 

concentration of the vector being explored will begin to fall. Obviously, if an ant 

cannot reach a better solution, the pheromone trail will continue to evaporate until 

there is a very small probability than subsequent ants will bother looking in that 

direction. When this situation arises (analogous to food source exhaustion in a real 

ant colony environment), ants have to either pick another path to explore, or risk 

starvation. A mechanism was built into the algorithm to model this scenario, in which 

ants inspecting paths with minimal pheromone concentrations are marked “starving”, 

and are therefore granted special manoeuvrability powers. These ants are able to 

exceed the maximum search radius defined for that particular moment of the search, 

allowing them to (hopefully) break out of their area of low-performance, and 

encounter greener pastures.  

   

Figure 3.17  Ants that are classified “starving” are able to escape the “event 
horizon” defined by the search radius, and reach new territory.   

These “desperate” ants are therefore capable of escaping local optima, provided that 

sufficiently better solutions are being discovered elsewhere.    
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Five vectors, each with exactly equal pheromone 
concentrations.  

Vectors V1 and V2 are both yielding good results, 
whereas V3-5 are doing poorly.  
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Vectors V3-5 have reached their minimum 
possible values.  

A starving ant exploring V5 has escaped the region, 
and found a better solution.   

The diagrams above illustrate the concept of food source exhaustion and “starving” 

ants. In Figure 3.18, five vectors are shown, each with an equal concentration of 

pheromone – a condition that would be present in the start state. Figure 3.19 shows 

the system some time later, in which vectors V1 and V2 have shown significant 

improvement, whereas the remaining three vectors have not. Figure 3.20 illustrates 

the point at which vectors V3-5 have undergone trail evaporation to the point where 

they have reached their minimum allowable values. From this point onwards, any ant 

to pick one of these vectors would be granted Super Ant powers, and allowed to 

move extra large distances due to the desperation of the situation. In Figure 3.21, 

Vector V5 has improved substantially, indicating that one of the starving ants 

successfully jumped to a better position. When a vector recovers sufficiently, ants are 

de-classified as starving, and normal radius-bound exploration continues. 
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3.5     Initial Nest Configuration  

The location of the nest is of particular importance to the performance of the 

algorithm. The nest is the point from which all the ants first move, and located by 

default in the centre of the search space. This position is calculated by examining the 

boundaries of the search, and initialising the initial ant and vector co-ordinates to this 

point.  

There are, however, some circumstances where initialising the nest to the centre of 

the search space may not be appropriate. Consider the simple parabolic dish, shown 

in Figure 3.22. If the objective function is being maximized, there would be no 

problem, however if we were trying to minimize the function, the ants would already 

be sitting on the global solution by default (Figure 3.23). While this might be 

considered extraordinarily good luck, it provides no useful information about the 

performance of the algorithm, and for problems where the nest happens to fall in 

exactly at the global optimum, the location can be manually over-ridden.   

   

Figure 3.22  A parabolic bowl.  Figure 3.23  The nest is initialised to the centre of 
the search space by default.   

Determining an alternate position for the nest can be done a number of different 

ways, including random assignment, or placing the nest a “sufficiently difficult” 

distance away. Of course, if the algorithm was being used to solve a real-world 

problem, we would not complain if the ants chanced to be initialised close to a 

solution. However, when benchmarking the performance of the Ant Colony algorithm 

against other well-known algorithms, it would be improper to claim the performance 

was superior to another just because the test-suite of functions all contained 

solutions at (or very near) the starting point of the algorithm. This issue is addressed 

in more detail in Chapter 4. 
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3.6     Algorithm Termination Conditions  

An important consideration for the design of the algorithm was to decide the 

conditions for which the algorithm is said to have “finished”. Because the 

circumstances under which the algorithm might be used are many and varied, there 

exist a number of different termination scenarios. These include:  

A maximum number of evaluations (EMAX) have been performed 

A maximum number of generations (GMAX) have been executed 

The search radius (R) has shrunk to zero 

The solution is sufficiently close to a known global solution  

The first two conditions are likely to be used when comparing the performance of the 

Ant Colony algorithm to the performance of some other well-known search technique. 

In this case, the best solution for some given number of fitness function evaluations 

would be recorded over a number of trials for the two algorithms being compared. 

GMAX, the number of generations, is an ACO-specific parameter which depends on 

the number of ants populating the search (GMAX / EMAX = No. of Ants). As is the 

case with EMAX, terminating the algorithm after some fixed number of generations 

would most often be used to gain an understanding of how the algorithm performs 

with time.  

Another possible reason to terminate the search would be when the search radius 

has shrunk to zero. This signifies that the ants can progress no further, since a zero-

sized radius implies a zero-area search zone. The r = 0 condition does, in effect, bind 

the algorithm to some fixed number of evaluations (since the radius decreases with 

respect to time only), however if the radius has been allowed to decay gradually, we 

can be far more certain that the ants have discovered a solution that is locally 

precise.   

Finally, if a function is being tested for which we already know the global solution(s), 

we can choose to stop the algorithm as soon as it discovers an answer that is within 

a given acceptable range of the global answer. This allows us to determine exactly 

how many cost-function evaluations were needed before the algorithm successfully 

identified a solution with an acceptable proximity of the global optimum.   
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3.7     Implementation Environment   

The Continuous Ant Colony Optimisation (CACO) algorithm was coded in ANSI C, 

and was successfully compiled and tested in OpenBSD 3.0, SunOS 5.8 (Sparc) and 

the Windows32 environments. Because the code was fully portable between a 

number of different platforms, evaluation trials were carried out on several different 

systems. Testing focussed strictly on cost-function evaluation comparisons, and so 

CPU and memory issues that would have affected time-based comparisons were 

avoided completely. 
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Chapter 4 : Algorithm Performance   

4.1     Initial Algorithm Verification  

Before testing the algorithm on complex problems, it was first necessary to validate 

that the algorithm behaved as was originally intended. To achieve this, the algorithm 

was tested on a number of simple problems, including the inclined plane (Figure 4.1) 

and the parabolic curve.  

In order to observe the movement of the ants as the algorithm progressed, ant 

position and fitness values were recorded for each generation. Plotting this 

information for selected generations gave a clear visual description of how the ants 

responded to the subtleties of the environment as it was explored. Figure 4.2 shows 

the ants after the first generation, scattered approximately evenly around the nest, 

while Figures 4.3 and 4.4 show the migration of ants up the slope over subsequent 

generations as the algorithm progresses.  

 

Figure 4.1  An inclined plane, described by the equation z = 2x + y + 3  

    

Figure 4.2  Generation = 1. Ants 
have just left the nest.  

Figure 4.3  Generation = 20. The 
majority of ants have migrated to 
the top end of the plane.  

Figure 4.4  Generation = 50.  
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Following this initial verification of the algorithm’s behaviour, tests were conducted on 

some more complex surfaces. Direction vector information was gathered when the 

algorithm had undergone a sufficient number of generations for the ants to converge 

on solutions.  

The information gathered from these trials indicated that the ants were indeed 

capable of simultaneously exploring multiple promising regions in parallel. The 

surface 23 3),( yxyxF += shown in Figure 4.6 contains 2 global maximums, both of 

which were discovered by the ants. Similarly, for the surface 22),( yxyxF += 
(shown in Figure 4.7), all 4 solutions were discovered.   

    

Figure 4.5  A surface with a 
distribution of optimal solutions 
lying on the extremity of the 
search.   

Figure 4.6  Surface with two 
optimal solutions.  

Figure 4.7  Surface with 4 
optimal solutions,  

     

Figure 4.8  Ants discover a 
number of solutions along the 
border of the search space.  

Figure 4.9  Ants converge on the 
two corners. Arrows show 
direction vectors.  

Figure 4.10  Ants discover all 4 
solutions in all 4 corners. 

 

A unique feature of the Any Colony algorithm is that these solutions are developed in 

parallel, due to the fact that ACO is a population-based optimisation technique. The 

information sharing amongst ants exploring the system allows better solutions to be 

attained faster, but also allows independent local search to progress virtually 

unhindered. This gives ACO the ability to locate multiple optimums (if more than one 

exists); a feature that many other optimisation methods can only achieve by running 

for several iterations.   
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4.2     Test Function Suite   

To test the performance of the CACO algorithm more rigorously, a standard set of 

test functions was used to evaluate it. The test suite consisted of 5 well-known 

optimisation functions [REFERENCE], suitable for optimization in 1 or more 

dimensions.  These functions range from reasonably simple to relatively difficult, and 

the performance of CACO for each of the 5 test functions is discussed in the next 

section.  

In order to obtain a valid comparison of CACO across all of the test cases, a number 

of parameters within the algorithm had to be set to pre-determined values prior to 

execution. A brief discussion of these parameters is as follows:  

A - Number of ants : The number of ants in the system is the number of agents sent 

out to explore the direction vectors. This value was set to 50 to allow a reasonably-

sized population.  

V - Number of direction vectors : This corresponds to the number of regions of 

interest that ants may be exploring in the system at any given time. The quantity V 

also determines the number of pheromone trails the system needs to track. This 

value was set to 12.  

P - Pheromone Update Rate : The maximum rate at which pheromone 

concentrations are able to accumulate. The existing pheromone concentration for 

each vector (some value between 0 .. 1) is multiplied by P to obtain the new value. 

For these trials P was set to 0.05.  

E - Evaporation Rate : The rate at which pheromone trails evaporate. This value 

was set to 0.95. If a vector has not undergone any improvement in the current cycle, 

the existing pheromone concentration is multiplied by E.  

R - Initial Search Radius : The initial scope (maximum single displacement) of the 

ants is defined as some proportion of the diagonal distance across the search space. 

For these trials, this value was set to 10, meaning that ants could not move any 

further than 1/10th of the total distance across the search area in any single move.  
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F - Radius Restriction Factor : The rate at which the search radius R is being 

decreased. The radius decreases at the rate of R * F. For these trials, F was set to 

0.999, allowing a sufficiently gradual rate of restriction.  

A - Accepted Range : This value specifies the acceptable “closeness” a solution 

must be to the (known) global optimum before it will be considered good enough to 

allow algorithm termination. For these trials, A was set to 0.001, where the global 

solution was 0.0. This means that any solution evaluating to below 0.001 was 

considered “optimal”.  

These values were chosen somewhat arbitrarily, but were set to values that seemed 

realistically appropriate at the time of implementation. Setting these values prior to 

running a primary batch of trials was essentially just a formality to ensure control 

parameters were kept consistent between test cases.  

When running CACO for each test function, statistical data was generated for 100 

trials (executions). In each trial, information regarding the total number of function 

evaluations required to find the “optimal” solution was gathered, as well as the best 

solution the system held at the time of termination. In the next section, CACO is 

compared to blind (random) search for each of the 5 test functions, and the results 

are discussed for each. 
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4.2.1     Rosenbrock   

The Rosenbrock function is described by the expression – 

( ) ( )[ ]F x x x xi i i
i

n

1 1
2 2 2

1

1

100 1( ) = − + −+
=

−

∑                           for the range [ ]− 30 30,
n
, n ≥ 2  

The global solution to this function is defined as - 

{ }F x x1 0 111 1( ) , , ,...,∗ ∗= =       

In other words, in the 2-dimensional problem being considered for this trial, the global 

solution lies at the point (1, 1), where the function evaluates to exactly 0.0. As can be 

seen in the figure below, the surface described by the function resembles a parabolic 

sheet.   

  

Figure 4.11  A plot of the Rodenbrock function  

Trial results for the Rosenbrock function showed that CACO out-performed blind 

search by several orders of magnitude, averaging only ~18300 cost function 

evaluations to find the optimal solution (Figure 4.12), compared to the ~11.9 million 

evaluations taken by blind search (Figure 4.13).  
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Figure 4.12  Trial results for random search, showing the number of function evaluations required before 
a value sufficiently close to the global optimum was found.     
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Figure 4.13  Trial results for the Ant Colony Optimisation algorithm, showing the number of function 
evaluations required before a value sufficiently close to the global optimum was found.   
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4.2.2     Rastrigin   

The Rastrigin function is a far more complex surface, containing multiple local optima 

dispersed over a wide area. The function is described by the expression –  

( )[ ]∑
=

−+=
n

i
ii xxnxF

1

2
2 2cos1010)( π

  
             for the range [ ]− 512 512. , .

n
, n ≥ 1  

The global solution for this function is defined as - 

{ }F x x2 0 0 0 0 0( ) , , ,...∗ ∗= =       

One curiosity of this function is that the global optimum exists at the point (0,0). 

Because CACO initialises the nest to this point, it was necessary to relocate the nest 

so that some meaningful run-time information could be obtained. In order to do this, 

the nest was positioned at a random point within the bounds of the search at the 

beginning of each trial run. This ensured that there was no “biased placement” of the 

nest in positions likely to result in faster-than-average solution discovery.    

  

Figure 4.14  A plot of the Rastrigin function  

Once again, CACO easily out-performed blind search, taking an average of ~9900 

cost-function evaluations, compared to the ~5.5 million needed for blind search. 
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Figure 4.15  Trial results for random search, showing the number of function evaluations required before 
a value sufficiently close to the global optimum was found.   
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Figure 4.16  Trial results for the Ant Colony Optimisation algorithm, showing the number of function 
evaluations required before a value sufficiently close to the global optimum was found.    
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4.2.3     Schwefel  

The Schwefel function is described by the expression – 

( )F x x xi i
i

n

3
1

( ) sin= −
=
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n
, n ≥ 1  

The global solution to this function is defined as – 

{ } 97.420    ,,...,,,     98291.418)(3 ==−= ∗∗ sssssxnxF

    

Figure 4.17  A plot of the Schwefel function  

Initial tests for the Schwefel function found that CACO failed to find the global 

minimum in over 70% of cases. It was not immediately clear why this was happening, 

at first, however further investigation revealed a close correlation between the 

starting point (location of the nest) and the success rate. Eventually, it was 

discovered that ants were becoming trapped in local minima, but were unable to 

escape due to two main reasons. The first problem was that ant starvation was not 

occurring, as the ants were all being drawn to the same region of attraction (ie, all the 

ants were encountering the same (relatively) good area, and were not “complaining” 

about the quality of the solutions they were finding there. The second (and more 

significant) problem was that ants did not have enough “range” to escape from these 

local optimums. Essentially, ants were converging on solutions they could reach, but 
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did not have a large enough search radius to escape the local basins of attraction 

they had been pulled into. This phenomena is explained in Figure 4.18, which shows  

a cross-sectional plot of points taken from a plane intersecting the x-axis of the 

Schwefel function. In this diagram, ants are positioned at two separate local minima. 

Ant 1 is at the “higher” position, and is capable of reaching better territory by moving 

left a distance equal to the maximum allowable search radius. Ant 1 will eventually 

encounter the point occupied by Ant 2. Ant 2, however, will never be able to reach 

the global optimum, because it has insufficient range to move to better ground. The 

maximum search radius prevents Ant 2 from ever discovering the global solution, due 

to the width of the barrier in between the ant and the lower point.  

   

Figure 4.18  A small search radius prevents ants from overcoming large obstacles, and may prevent 
them from discovering the global optimum.   

From the above illustration, it is clear why the matter of ant range affects the 

performance of CACO on the Schwefel equation. Simply put, for the cases where the 

ant nest is situated on the “far” side of an impassable barrier, ants are never able to 

reach the optimal solution. However, when the ants begin on the near side, there is 

no (impassable) obstacle preventing them from eventually finding the solution. In two 

(or more) dimensions, the problem is no different. Figure 4.19 shows a topological 

plot of the Schwefel function, with the optimal solution being located in the lower left 

corner (dark blue). As can be seen in the diagram, a relatively wide L-shaped region 

of unpromising solutions exists not far from the edge of the boundary (indicated by 
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Ant 2 

    Global Optimum 
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the red and yellow). Assuming that the nest has been (randomly) positioned 

somewhere inside the region bounded by this fringe, ants will be unable to pass over 

into the better areas. In effect, the search space has been partitioned into two distinct 

areas – those within which ants can reach the optimum, and those where ants can’t.  

  

Figure 4.19  Topology of the Schwefel function, showing the fringe preventing certain ants from ever 
reaching the global solution.    

This particular problem is not limited only to CACO, but also to many other algorithms 

that employ similar tactics of refining a local search result to obtain better solutions. 

For instance, the issue described here as “insufficient range” can be likened to 

setting the system temperature too low in Simulated Annealing.  

To overcome this problem, the simplest approach is to widen the starting radius. This 

allows ants greater flexibility and less restriction in movement, allowing them to 

successfully climbs over hills that they would otherwise be unable to climb. A 

drawback to this is that the algorithm will take slightly longer to converge, since the 

rate of restriction is independent of the length of the radius. However, it must be said 

that, generally speaking, having an optimal solution to the problem would be worth 

the fractionally longer execution time required to find it.  

To generate some usable results for CACO handling the Schwefel function, the initial 

search radius was doubled. The results are shown in Figures 4.20 and 4.21.  
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Figure 4.20  Trial results for random search, showing the number of function evaluations required before 
a value sufficiently close to the global optimum was found.   
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Figure 4.21  Trial results for the Ant Colony Optimisation algorithm, showing the number of function 
evaluations required before a value sufficiently close to the global optimum was found.     
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4.2.4     Griewangk    

The Griewangk function is described by the expression – 

( )F x x x ii i
i

n

i

n

4
2

11
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∏∑              for the range [ ]− 500 500,
n
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The global solution to this function is defined as – 

{ }F x x4 0 0 0 0 0( ) , , ....,∗ ∗= =       

Once again, this function calls for dynamic nest relocation, since the global optimum 

exists at the default point of nest initialisation (0, 0). Unlike the case with the 

Schwefel function, the placement of the nest did not drastically affect solution 

discovery time (or prevent discovery at all). However, it was found that the standard 

rate of radius restriction was too rapid, meaning that some trial runs did not find a 

solution within the accepted “value-to-reach” range before algorithm termination. To 

counter this problem and allow more time for ants to “home in” on the global solution, 

the convergence rate was relaxed from 0.99 to 0.999. This gave the ants the extra 

degree of precision necessary to find the global optimum, with an average of ~45000 

cost function evaluations required by CACO, and roughly ~5.1 million by random 

search.  

  

Figure 4.22  A plot of the Griewangk function 
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Figure 4.23  Trial results for random search, showing the number of function evaluations required before 
a value sufficiently close to the global optimum was found.   
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Figure 4.24  Trial results for the Ant Colony Optimisation algorithm, showing the number of function 
evaluations required before a value sufficiently close to the global optimum was found.    
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4.2.5     Salomon  

The Salomon function is described by the expression – 
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For this function, the global solution is defined as - 

{ }F x x5 0 0 0 0 0( ) , , ,...∗ ∗= =       

The Salomon function is widely regarded a difficult optimisation problem due to the 

fact that any highly focussed local search is often “tricked” into thinking that the slope 

towards better solutions runs upwards towards the search boundaries. This is due to 

the number of small upward-jutting ridges covering the surface, seen in Figure 4.25.  

  

Figure 4.25  A plot of the Salomon function  

Despite this, CACO successfully located the global optimum in each of the 100 trial 

runs, averaging ~66000 cost function evaluations before the solution was found. 

Comparatively, blind search took around ~29 million evaluations to achieve the same 

result. 
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Figure 4.26  Trial results for random search, showing the number of function evaluations required before 
a value sufficiently close to the global optimum was found.  
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Figure 4.27  Trial results for the Ant Colony Optimisation algorithm, showing the number of function 
evaluations required before a value sufficiently close to the global optimum was found.     
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4.3     Parameter Setting   

The trials in the previous section demonstrate that CACO is capable of solving a 

diverse range of optimisation problems, and in most cases can discover global 

solutions without too much difficulty. However, care must be taken to ensure that 

ants are given enough flexibility to roam all throughout the search space, or the risk 

of completely missing the best solution may arise. Unfortunately, for some functions, 

the nature of the search terrain is not known in advance, and so it is prudent to set a 

generously large initial search radius for these cases, to avoid the likelihood of 

problems.  

Following these trials, some parameter variance experiments were conducted to 

determine how the algorithm behaves under different starting conditions. The first 

and most obvious of these experiments concerned the number of ants that are used 

to explore the space, and how this number affects the rate of convergence (Figure 

4.28). 
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Figure 4.28  The number of ants used to explore a search space (Rastrigin), and the corresponding 
number of cost function evaluations needed to find the optimal solution.  

Perhaps surprisingly, it was found that the number of ants the system is initialised 

with does not significantly affect the overall performance of the algorithm. Once 

again, this can be explained by considering the fixed rate of radius reduction, and the 

build up of pheromone. An increased ant colony population results in a higher 

average of visits per direction vector for each cycle or generation of the algorithm. 
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For systems with more ants than vectors, this means that some vectors will be visited 

more than once. This increased ant density, although not necessarily contributing 

directly to detailed local exploration, results in more extensive terrain sweeping, and 

ultimately more rapid pheromone build up. The colony is therefore able to quickly 

establish the best areas in the terrain, and concentrate search in these areas.  

Because of the fact that pheromone weightings associated with direction vectors are 

updated on an ant-by-ant basis (i.e., each ant updates the vector it is exploring after 

evaluating its own fitness), some vectors may get a double (or triple, or higher) doses 

of pheromone (depending on the ant : vector ratio) – and these vectors will therefore 

gain much higher selection probabilities. This, in part, helps to account for the results 

described above – the catch being that the chance of stumbling across a solution 

increases when the number of ants in the area is higher.  

However, it was noted that for ant populations significantly higher than the number of 

direction vectors (10 times or more higher), the pheromone system begins to break 

down, and ants are led to believe that any area not showing immediate improvement 

must not be worth examining at all. This defeats the purpose of pheromone-based 

path selection and exploration, and really isn’t an efficient or reliable way of running 

the algorithm.  

It is therefore recommended, from the findings of these trials, that an ant : vector ratio 

somewhere in the vicinity of 2 : 1 is used, ensuring an adequate amount of vector 

end-point exploration, while at the same time disallowing enormously fast pheromone 

build-up, and premature “ruling out” of areas of the search that haven’t been properly 

considered.   

Similarly, it was ascertained that the number of direction vectors (representative of 

the amount of parallelism in the system), should be set to a value likely to encourage 

the consideration of many different regions at once (12 was a value that seemed to 

work well, however it was values below 4 and above 50 that resulted in noticeably 

degraded performance). Without a reasonable number of direction vectors (more 

than 4), the system finds it much harder to distinguish between good and bad 

solutions. Too many vectors, on the other hand, results in a gross amount of 

exploration over-lap, as all the vectors are drawn to the same regions, where ants 

repeatedly cover territory that other ants have already evaluated, without being the 

wiser. 



Ant Colony Optimisation for Continuous Spaces                                                         Chapter 4       

Lachlan Kuhn                                                                                                                  Page 46 

4.4     Evaluation of Pheromone Usefulness   

In section 4.2, CACO was compared to blind search for each of the 5 functions in the 

test suite. These trials clearly demonstrated that CACO was capable of out-

performing random search, however little was said about how the use of pheromone 

trails was actually influencing the search. To investigate this, a further set of trials 

was conducted, examining the performance of CACO with and without the use of 

pheromone trails.  

In order to conduct this comparison, the Rastrigin function was again used (Figure 

4.14). This function was chosen because the surface it described is reasonably 

complex, and can be considered a non-trivial optimisation problem due to the large 

number of local optima it contains.   

To determine the usefulness of pheromone trails in guiding the search, a batch of 

trials was run in which all pheromone-related functionality in the CACO algorithm was 

disabled. This is explained in the revised CACO pseudo code below, showing which 

components of the algorithm were removed. These modifications leave what is 

essentially a kind of population-based hill climbing algorithm; however there is no 

kind of information exchange between ants in the system.  

    initialize colony()  

    evaluate(t) 

    while (not termination_condition){ 

      time  time + 1 

      add_trail(t)                   

 

Disabled 

      send_ants(t) 

      evaluate(t) 

      evaporate(t)                   

 

Disabled 

    } 

    end   

Removing pheromone trails (and all associated guidance devices, including ant 

starvation) results in a system that is entirely devoid of any search direction 

management. Ants are free to roam around anywhere (provided they move no further 

than the maximum search radius), and all direction vectors are just as likely as each 

other to be selected for exploration. As before, ants can only update vector positions 
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if they move to a location that is an improvement over the last point they previously 

occupied - however no information is left to guide subsequent ants as to the 

“goodness” of the solutions encountered. This adaptation of CACO without 

pheromone communication effectively amounts to a radius-bound distributed hill 

climbing algorithm.  

During the trials, run-time information was collected for certain parameters. Most 

importantly, the “best solution so far” was recorded for each generation (after every 

50 cost function evaluations). The results are shown in Figure 4.29, which shows 

data from a typical trial run.  
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Figure 4.29  Performance of CACO with pheromone trails, and without pheromone trails.  

This comparison clearly shows that the inclusion of pheromone mediated 

communication allows the ants to locate promising regions much faster than without 

pheromone trails. In this test, the pheromone system allowed good solutions to be 

located much more quickly than the distributed hill-climbing method.   
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An interesting (and unexpected) result in the above set of trials was the revelation 

that CACO was able to narrow down its search very close to the optimum solution in 

well under the average number of cost function evaluations required to converge on 

a “sufficiently exact” solution. CACO was successfully finding results evaluating to 

within 0.1 of the global optimum in just under ~2700 evaluations, when it was earlier 

shown that the average number of evaluations to solve the Rastrigin function was 

somewhere in the vicinity of ~9900 evaluations. This indicates that the algorithm is 

locating the “good” areas much quicker than expected, but ants are drifting distances 

too large to result in any local improvement. To enhance the performance of the 

algorithm under these circumstances, a faster rate of radius restriction could be used. 

Alternatively, a slightly different model of radius restriction could be adopted (such as 

the one described in Figure 3.14), that allows more flexibility in the initial phase of the 

algorithm, but an exponentially decreasing radius towards the end. This would 

ensure that less time is wasted with broader exploration when the areas of high 

solution fitness are already well-established.      
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Chapter 5 : Conclusion   

This thesis has demonstrated that the Ant Colony Optimisation algorithm, originally 

used exclusively for discrete optimisation problems, can be successfully adapted to 

continuous spaces, offering an excellent trade-off between exploration and 

exploitation. The work outlined in this document has shown that a population of co-

operating artificial ants using pheromone trails as a method of information sharing is 

capable of solving both simple and reasonably difficult optimisation problems, with 

consistently encouraging results.   

5.1     Summary of Results  

The CACO algorithm implemented in this thesis was generally proven to be 

extremely versatile, being able to satisfactorily solve 4 of the 5 functions in the test 

suite with no modification at all to the default run-time parameters. However, it was 

found that for certain problems (such as the Schwefel function), the choice of 

parameters can directly hinder the algorithm’s ability to locate the global optimum. 

The problem stems from the maximum search radius value limiting the search to 

specific areas, from which it is impossible to ever reach the global solution. This can 

be overcome by setting the initial search radius to some suitably large value, thus 

allowing ants the range and flexibility they require to reach all areas in the search 

scape.  

CACO was shown to out-perform blind search by several orders of magnitude for all 

test functions, and has the unique feature that it considers many search directions in 

parallel. The use of pheromone trails as a method of information sharing between 

ants exploring the system allows for better solutions to be attained faster, but also 

allows independent local search to progress virtually unhindered. For some multi-

minima problems (for example, the Rastrigin function), the distributed nature of 

CACO led to the unusual situation in which the ants discovered not only the global 

solution, but several other “next best” solutions discovered at nearby local optima.  

It was also demonstrated that CACO was capable of out-performing a distributed hill-

climbing method (quite similar to local search) for spaces that contained numerous 

basins of attraction.  
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5.2     Review of Project Plan  

For the most part, all of the goals of this thesis project were accomplished, with the 

evaluation results indicating a very pleasing level of performance. Unfortunately, due 

to the sheer amount of time required to run batches of trials, collect, tabulate, and 

analyse results, examining the intricacies of all of the run-time parameters in the 

system was not possible. In spite of this, a great deal of useful information was 

obtained, which clearly indicated the usefulness of the CACO system. However, 

there are still aspects of CACO which could be further investigated and better 

understood in order to further refine future versions of this algorithm.   

5.3     Future Work / Research  

This paper has demonstrated that CACO is a viable option for continuos optimisation 

problems; however there are several areas in which further research could be 

conducted. These include:  

1) Extension of CACO to handle higher-dimensional problems.  

This version of the CACO algorithm was designed to exclusively handle 2-

dimensional problems for two main reasons: ease of testing and debugging, and 

simplicity of observing and visualising search results. However, most of the 

optimisation problems that would be considered non-trivial involve a large number of 

variables. Fortunately, CACO could be quite easily adapted to handle N-dimensional 

search without an absurd blow-out in data structure storage requirements. 

Implementing and evaluating a version of CACO able to handle an arbitrary number 

of variables would be an interesting area for future research.  

2) Comparison of CACO to other “good” algorithms.  

In this paper, CACO was compared to blind search, and to a lesser extent, 

distributed hill-climbing. However, it would be worthwhile to compare CACO to a 

number of more advanced optimisation algorithms. It would be of particular interest to 

see how CACO performs when compared to other nature-inspired systems, such as 

Simulated Annealing, or Genetic Algorithms.   
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3) Pheromone trail dissipation  

One idea that surfaced during the evaluation phase of this project was the possibility 

of implementing a form of pheromone trail dissipation. This would be useful for cases 

when several different direction vectors are all drawn to the same basin of attraction. 

It might be possible to take an average of two or more vectors in the same vicinity, 

and create a new vector pointing to some intermediate point. This could be 

particularly useful in the synthesis of new solutions, and would allow ants to access 

global information via the diffusion of pheromone trails. This “pheromone trail 

sharing” would be, in a sense, similar to cross-over in a genetic algorithm.  

4) Replacement of the nest with localised “interest regions”  

As a final suggestion for possible future research, removing the nest as a centralised 

starting point for all ants and replacing it instead with a distribution mechanism which 

starts ants dispersed evenly throughout the search space might be another option to 

consider. While this is a slight departure from the ant colony metaphor, the individual 

search agents (ants) would be unchanged, and pheromone trails could be replaced 

with pheromone rings; regions of interest which ants may decide to visit. Obviously 

this is a fairly different idea, but one that could be implemented reasonably easily 

from the existing CACO framework without too much adaptation. This option could be 

the topic of future research in continuous space optimisation. 
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