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ABSTRACT
Most globular clusters have half-mass radii of a few pc with no apparent correlation with
their masses. This is different from elliptical galaxies, for which the Faber–Jackson relation
suggests a strong positive correlation between mass and radius. Objects that are somewhat in
between globular clusters and low-mass galaxies, such as ultracompact dwarf galaxies, have
a mass–radius relation consistent with the extension of the relation for bright ellipticals. Here
we show that at an age of 10 Gyr a break in the mass–radius relation at ∼106 M� is established
because objects below this mass, i.e. globular clusters, have undergone expansion driven by
stellar evolution and hard binaries. From numerical simulations we find that the combined
energy production of these two effects in the core comes into balance with the flux of energy
that is conducted across the half-mass radius by relaxation. An important property of this
‘balanced’ evolution is that the cluster half-mass radius is independent of its initial value and
is a function of the number of bound stars and the age only. It is therefore not possible to
infer the initial mass–radius relation of globular clusters, and we can only conclude that the
present day properties are consistent with the hypothesis that all hot stellar systems formed
with the same mass–radius relation and that globular clusters have moved away from this
relation because of a Hubble time of stellar and dynamical evolution.

Key words: methods: numerical – globular clusters: general – galaxies: fundamental param-
eters – galaxies: star clusters.

1 I N T RO D U C T I O N

The half-mass radius of old globular clusters in the Milky Way
depends only weakly on mass (e.g. van den Bergh, Morbey & Pazder
1991). If anything, a negative correlation between radius and mass
is found for the clusters in the outer halo (van den Bergh & Mackey
2004). Because this is also found for extragalactic globular clusters
(Jordán et al. 2005; Barmby et al. 2007; Georgiev et al. 2009), the
mass–radius relation, or lack thereof, is an important aspect of the
Fundamental Plane relations of globular clusters (Djorgovski 1995;
McLaughlin 2000).

Objects more massive than typical globular clusters, such as the
recently discovered ultracompact dwarf galaxies (UCDs, Hilker
et al. 1999; Drinkwater et al. 2003), and also the most massive
globular clusters, do exhibit a positive correlation between radius
and mass (Haşegan et al. 2005; Rejkuba et al. 2007; Mieske et al.
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2008). Interestingly, the position of systems more massive than
∼106 M� in the mass–radius diagram coincides with the extension
to low masses of the Faber & Jackson (1976) relation for bright
elliptical galaxies (Haşegan et al. 2005). The mass–radius relation
of stellar systems more massive than ∼106 M� has been explained
by the details of their formation (Murray 2009), where this was
considered a deviation from the near constant radius of less massive
systems. In this study we test the hypothesis that all hot stellar
systems (globular clusters, UCDs and elliptical galaxies) had the
same mass–radius relation initially and that the globular clusters
(�106 M�) are the deviators because they have moved away from
this relation because of dynamical evolution.

Intuitively we can expect that low-mass stellar systems are dy-
namically more evolved than massive systems because of their
shorter relaxation time-scale. This evolutionary time-scale is of-
ten expressed in terms of the half-mass properties of the system
(Spitzer 1987):

Trh = 0.138
N1/2R

3/2
h

G1/2m̄1/2 ln �
, (1)
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The mass–radius relation of stellar systems L17

where N is the number of stars, Rh is the half-mass radius, G is
the gravitational constant, m̄ is the mean stellar mass and � is
the argument of the Coulomb logarithm and equals 0.02N � � �
0.11N depending on the stellar mass function in the cluster (Giersz
& Heggie 1994a). If we take the initial mass–radius relation to be
of the form Rh0 ∝ Mλ

0, then T rh0 is an increasing function of M0 for
all λ > −1/3. Although the value of λ is poorly constrained from
observations, it is unlikely to be negative and we can, therefore,
safely say that low-mass stellar systems have shorter relaxation
times than massive systems immediately after formation.

Here we consider the expansion of star clusters driven by mass
loss due to stellar evolution and hard binaries, and we present a
description for the radius evolution including both effects, based on
results of N-body simulations (Section 2). In Section 3 we show
that at an age of 10 Gyr, a Faber–Jackson type initial mass–radius
relation has been erased because of the expansion of stellar systems
with M � 106 M�. A summary and discussion is presented in
Section 4.

2 EXPANSION OF STELLAR SYSTEMS

We want to understand the evolution of the radius of a stellar system
with a realistic stellar mass function in which the stars evolve and
lose mass in time. This evolution is distinct from the well-studied
and well-understood behaviour of an equal-mass cluster (e.g. Hénon
1965; Goodman 1984). Because we are mainly interested in the ex-
pansion we ignore the effect of a tidal cut-off. As we will show in
Section 3, the results explain the mass–radius relation of objects
with M � 105 M�, suggesting that tides are not very important in
shaping the mass–radius relation of these objects. We first consider
various stellar mass functions, ignoring the effect of stellar evolu-
tion (Section 2.1), and then add the effect of stellar evolution in
Section 2.2.

2.1 Expansion driven by hard binaries

The evolution of equal-mass clusters has been studied in quite some
detail (e.g. Giersz & Heggie 1994a; Baumgardt, Hut & Heggie
2002). To first order their entire evolution follows from the fact
that gravitational systems have negative total energy, which causes
them to always evolve away from thermal equilibrium. In the early
evolution, this results in a contraction of the core and this inevitably
leads to the gravothermal catastrophe, or core collapse (Lynden-Bell
& Eggleton 1980). For an equal-mass Plummer (1911) model the
time of core collapse is at Tcc ≈ 17 T rh0 (e.g. Spitzer 1987). After
core collapse the evolution is driven by binaries in the core that
release energy to the rest of the cluster when they form and harden
in three-body interactions. This energy is conducted outwards by
two-body relaxation and in the absence of a tidal field this results
in an expansion of the cluster as a whole, because escape of stars is
inefficient. This increase of Rh happens on a relaxation time-scale
such that we can say Ṙh = ζRh/Trh. If we integrate this relation from
Tcc to T , taking into account the Rh dependence in T rh (equation 1),
we find

Rh = Rh0

[
1 + χ (T − Tcc)

Trh0

]2/3

, (2)

≈ Rh0

(
χT

Trh0

)2/3

, (3)

where χ is a constant that relates to ζ as χ ≡ (3/2)ζ . In the last step
we have used Tcc ≈ T rh0/χ as the integration boundary, which is
not strictly true. For an equal-mass cluster χ ≈ 0.14 (Hénon 1965;
Heggie & Hut 2003) and, therefore, 1/χ ≈ 7.2, whereas for the
Plummer model we have Tcc/T rh0 ≈ 17 (see also Giersz & Heggie
1994b). But equation (3) describes the asymptotic behaviour of Rh

for T � Tcc and is therefore a useful approximation. It also follows
from equation (3) that after Tcc the evolution of Rh is independent
of Rh0; if we assume that N and m̄ do not change in time then
we can say T rh0 = T rhR3/2

h0 /R3/2
h (equation 1), and equation (3) is

equivalent to T rh = χT . This means that after some time clusters
evolve towards a mass–radius relation of the form Rh ∝ T2/3M−1/3,
independent of the initial mass–radius relation. This is an important
result, and in Section 3 we will show that it applies to globular
clusters.

The presence of a mass function speeds up the dynamical evo-
lution (Inagaki & Saslaw 1985), in the sense that core collapse
happens earlier (Gürkan, Freitag & Rasio 2004) and the escape rate
of clusters in a tidal field is higher (Lee & Goodman 1995). Here
we establish by means of direct N-body simulations how the rate of
expansion, i.e. the value of χ , depends on the mass function of the
stars. We consider a Kroupa (2001) stellar mass function and vary
μ ≡ mmax/mmin, where mmax and mmin = 0.1 M� are the maximum
and minimum stellar mass, respectively.1 We consider values from
μ = 1 (= equal mass) to 103 (= full mass function) in steps of a
factor of 10. These values cover the relevant values of μ for real
clusters. We model clusters with N = 4096, 8192, 16 384 and 32 768
particles, and multiple runs are done for clusters with low N and/or
high μ to average out statistical fluctuations due to the low number
of (massive) stars. The number of simulations was chosen to be
max [1, (32768/N)/(5 − log μ)]. The initial density profile of all
clusters is described by Plummer models in virial equilibrium and
during the simulation, stars are taken out of the simulation when
they reach 20 Rv, where Rv is the virial radius. The models are all
scaled to the usual N-body units (G = Rv0 = −4 E0 = 1, where
E0 is the total initial energy, Heggie & Mathieu 1986), and we use
the KIRA integrator which is part of the STARLAB software (Portegies
Zwart et al. 2001) to numerically solve the N-body problem in time.
At each time the values for Rh, m̄ and N are recorded and T rh is
calculated using equation (1). For μ = 1 we use γ = 0.11, while
for μ > 1 we use γ = 0.02 as recommended by Giersz & Heggie
(1994a).

In Fig. 1 we show the (average) resulting evolution of T rh for all
16 different initial conditions, specified by the number of stars N and
the width of the stellar mass function, μ. The increase of T rh after
T ≈ T rh0/χ is dominated by expansion, because m̄ remains constant
(no stellar evolution) and the number of bound stars does not change
much. The dashed lines indicate different values of χ and it can be
seen that the dependence of χ on the mass function can to first order
be approximated by χ ≈ 0.1μ1/2 [or χ ≈ 0.1(mmax/m̄)0.7]. This
scaling roughly recovers Hénon’s result for equal-mass models. In
summary, we see from Fig. 1 that T/T rh increases until T ≈ T rh0/χ ,
after which T/T rh ≈ constant.

In Section 2.2 we repeat the simulations with μ = 103 and turn
stellar evolution on such that μ naturally decreases from 103 at T =
0 to μ ≈ 10 at T ≈ 10 Gyr during the simulation because of stellar
evolution.

1 We use the ratio mmax/mmin because it is easy to relate to real clusters.
Gürkan et al. (2004) show that the relevant parameter is mmax/m̄ which
captures variations in mmax and the slope of the mass function.
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L18 M. Gieles et al.

Figure 1. Evolution of the half-mass relaxation time, T rh, for clusters with
different N and different μ. The N-body unit of time, Tdyn, can be related
to physical units through Tdyn = (GM/R3

v)−1/2. A Kroupa (2001) mass
function is used for the stars in the range 0.1 ≤ m/M� ≤ 0.1μ. Clusters
of different N and the same μ evolve to the same T rh ≈ χT after core
collapse (equation 3). This asymptotic behaviour is roughly matched by
the relation χ ≈ 0.1μ1/2, shown as dashed lines. The T rh values of the
equal-mass clusters are calculated using a slightly different argument in the
Coulomb logarithm (� = 0.11N, equation 1) as compared to the multi-mass
clusters (� = 0.02N). For clarity the μ = 1 curves are only plotted for
T � 3Trh0.

2.2 The combined effect of stellar evolution and binaries

The time-scales of stellar evolution are set by the stellar interiors and
are independent of the relaxation time-scale of the cluster wherein
the stars evolve. We thus expect the details of the evolution to
depend on a combination of the stellar evolution time-scale and
the relaxation time of the cluster. Here we show that the resulting
expansion still depends in a simple way on the dynamical properties
of the cluster as a whole.

We want to consider a large range of T rh0 with our simulations to
cover a parameter space that is relevant for real globular clusters.
Because computing times limit us to N � 105 with direct N-body
simulations, we vary both N and the initial half-mass density, ρh

≡ 3M/(8πR3
h). We consider 15 different values of T rh0 ranging

from T rh0 ≈ 1 Myr ([N, log ρh] = [8192, 6]) to T rh0 ≈ 4 Gyr ([N,
log ρh] = [131072, 1]), with ρh in M� pc−3. Here T rh0 is increased
by increasing N by factors of 2 and by decreasing ρh by factors
of 10. We again use the KIRA integrator and the stellar evolution
package SEBA for solar metallicity (Portegies Zwart et al. 2001).
We use a Kroupa (2001) initial mass function between 0.1 M� and
100 M�, which has m̄ ≈ 0.64 M�. The retention fraction of black
holes and neutron stars was set to zero.

In Fig. 2 we show the resulting expansion in the form of Rh/Rh0

as a function of T rh0 at different ages. The asymptotic behaviour of
these runs can easily be understood by considering the extremes.
Clusters that are dynamically young (low T/T rh0) expand adiabat-
ically in order to retain virial equilibrium after stellar mass loss.
The continuous loss of mass from a Kroupa (2001) mass function
together with the stellar evolution prescription of STARLAB (appendix
B2 of Portegies Zwart et al. 2001) leads to a reduction of the total

Figure 2. Expansion from the N-body runs including the effect of stellar
evolution together with the functional fits (equation 6, full lines).

cluster mass:

M ≈ M0

(
T

T∗

)−δ

, T ≥ T∗, δ ≈ 0.07, T∗ ≈ 2 Myr. (4)

In this regime the radius thus evolves as (e.g. Hills 1980)

Rh ≈ Rh0

(
T

T∗

)δ

. (5)

This adiabatic expansion is slow in time and gives a maximum
increase of Rh/Rh0 ≈ 2 after a Hubble time. At the other extreme
we have clusters that are dynamically old (high T/T rh0) and they
expand quickly in a way that is comparable to what we have seen in
Section 2.1. We propose a function that stitches together these two
extremes in an attempt to match Rh/Rh0 for all values of T/T rh0:

Rh = Rh0

[(
T

T∗

)2δ

+
(

χT T

Trh0

)4/3
]1/2

, T ≥ T∗. (6)

Here χT is a parameter comparable to χ of Section 2.1, but now
time-dependent due to the variation of the mass function, and its
value at an age T is found from a fit of equation (6) to the results of
the N-body runs. In Fig. 2 we show the fit results as full lines and
the resulting values of χT are indicated. It shows that equation (6)
provides a good description of the evolution of Rh/Rh0. The relation
between χT and T is well approximated by a simple power-law
function

χT ≈ 3

(
T

T∗

)−0.3

, T∗ ≤ T � 20 Gyr. (7)

If we now define T∗ ≡ min([2 Myr, T]) we have a continuous
function for Rh(T rh0, T), or Rh(M0, Rh0, T) for all T . For high
T/T rh0 we find from equation (6) that Trh = (m̄0/m̄)1/2 χT T ∝ T 0.74

(equations 4 and 7). We indicate below how the small deviation from
a linear scaling with T (as found in Section 2.1) can be interpreted
in terms of the evolution of the mass function. In Section 2.1 we
found T rh ∝ μ1/2T . If we approximate the main-sequence lifetime
of stars by tms ∝ m−2.5 (Bressan et al. 1993) and thus μ ∝ T−1/2.5,
then from the changing mass function we expect T rh ∝ T0.8, very
close to what we find from the numerical simulations. We conclude
that the evolution of the cluster is ‘balanced’ when the second term
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on the right-hand side of equation (6) dominates (high T/T rh0),
in the sense that the energy flux at the half-mass boundary that
drives the expansion is provided by the production of energy in the
core by binaries and stellar evolution combined. Stellar evolution
in fact slows down the expansion rate, because Ṙh is determined
by the instantaneous width of the stellar mass function, resulting in
a smaller Ṙh at old ages than if μ had stayed constant at μ = 103

(Section 2.1). When the first term on the right-hand side of equation
(6) dominates (low T/T rh0) the evolution is unbalanced and we have
the usual adiabatic expansion.

The fact that the interplay between dynamical evolution and stel-
lar evolution is in fact quite simple can be understood from the
energy budget. The total energy of a stellar system depends on M
and Rh as E ∝ − M2/Rh. Together with equations (4) and (5) we
find that E evolves in time as E ∝ − (T/T∗)−3δ because of mass loss
and (adiabatic) expansion. The rate of energy change as a result of
stellar evolution is then ĖSEV ∝ |E|/T , where the constant of pro-
portionality depends on the degree of mass segregation; it will be
higher when stars lose mass from the centre and/or when the density
profile is centrally concentrated. The rate of energy increase due to
binaries and relaxation is similar. This is because Ė ∝ |E|/Trh and
T rh ∝ T (Section 2.1). After some dynamical relaxation mass loss
by stellar evolution will be predominantly from the core because
of mass segregation and this will boost ĖSEV. We tentatively pose
the idea that ĖSEV acts as a central energy source that is subject
to a feedback mechanism comparable to what happens with bina-
ries; if ĖSEV is too high, the core expands and the central potential
decreases and ĖSEV drops. If ĖSEV is too low, the core contracts,
thereby increasing the depth of the central potential and increas-
ing ĖSEV. This fits in the view of Hénon (1975) that ‘the rate of
flow of energy is controlled by the system as a whole, not by the
singularity’. One of the consequences is that there is no sharp tran-
sition between a stellar evolution dominated phase and a relaxation
dominated phase.

3 APPLICATION TO OLD STELLAR SYSTEMS

With the expression for the evolution of the radius as a function of
T rh0 at hand, we can easily calculate the evolution of Rh for any
initial mass–radius relation. We apply our result to the mass–radius
relation of old and hot stellar systems in the mass range ∼104–
108 M�.

The original Faber–Jackson relation relates the central velocity
dispersion of (bright) elliptical galaxies to their total luminosity.
Haşegan et al. (2005) have converted this result into relations be-
tween M, Rh and surface density. The resulting mass–radius relation
(their equation 15) with an additional log 4/3 to correct for projec-
tion is log(Rh/pc) = −3.142 + 0.615 log(M/M�). They show that
this relation matches the objects with M � 106 M� (UCDs, mas-
sive globular clusters and their dwarf-globular transition objects,
DGTOs) in the mass–radius diagram. Because this concerns colli-
sionless systems, we can safely assume that two-body relaxation has
not affected this relation and it should, therefore, reflect the initial
relation. To get an expression for the initial mass–radius relation,
we only need to correct for mass loss by stellar evolution and the
subsequent adiabatic expansion. For T = 10 Gyr, we find M/M0 =
Rh0/Rh ≈ 0.55 (equations 4 and 5) and thus

log

(
Rh0

pc

)
= −3.560 + 0.615 log

(
M0

M�

)
. (8)

In Fig. 3 we show how this initial mass–radius relation evolves using
our result from equation (6) together with data points that cover the

Figure 3. Mass–radius values for hot stellar systems. The values for glob-
ular clusters in the Milky Way, the Magellanic Clouds and Fornax are taken
from McLaughlin & van der Marel (2005). The clusters in M31 are from
Dubath & Grillmair (1997). The values for globular clusters in NGC 5128
(Cen A), UCDs and DGTOs are from the compilation presented in Mieske
et al. (2008). The lines show the evolution of the mass–radius relation using
the Faber–Jackson relation, corrected for stellar evolution, as initial condi-
tions. The break at ∼106 M� at T ≈ 10 Gyr is because lower mass objects
have expanded.

mass regime we are interested in. For high T/T rh0 the radius is set
by M0, independent of Rh0, while for low T/T rh0 we are seeing
roughly the initial mass–radius relation. By construction the right-
hand side of the 10-Gyr line coincides with the representation of
the Faber–Jackson relation of Haşegan et al. (2005). From solving
dRh/dM = 0 in equation (6), we find that at an age of 10 Gyr the
break between the two regimes occurs at M0 ≈ 1.1 × 106 M�
and at that age systems with this mass have T rh/T ≈ 0.8. Mieske
et al. (2008) noted already that the break occurs at systems with T rh

roughly equal to a Hubble time. In this Letter we give a quantitative
explanation for it.

4 SUMMARY AND DI SCUSSI ON

In this study we provide the arguments that explain why there
is a break in the mass–radius relation of hot stellar systems at
∼106 M�. We show that the mass–radius relation of the massive
systems (�106 M�) is only slightly affected by stellar evolution and
represents, therefore, approximately the initial mass–radius relation.
The origin of this relation needs to be searched for in the details of
their formation and is not discussed here (see e.g. Murray 2009).
Combining scaling relations for the (adiabatic) expansion of clusters
because of stellar evolution with relations for expansion due to two-
body relaxation we present a simple formula for the radius evolution
as a function of initial mass, radius and time. Applying this result to a
Faber–Jackson type initial mass–radius relation (the representation
in units of mass and radius are taken from Haşegan et al. 2005),
we show that at an age of 10 Gyr a break occurs at ∼106 M�. This
break can be thought of as the boundary between collisional systems
(T rh � age) and collisionless systems (T rh � age).

For young massive clusters there is also no obvious correlation
between radius and mass/luminosity (Zepf et al. 1999; Larsen 2004;
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Scheepmaker et al. 2007; Portegies Zwart, McMillan & Gieles
2010). From Fig. 3, it can be seen that for clusters with an age
of ∼10–100 Myr there has already been significant expansion of
clusters with masses �105 M�. Although this break mass depends
on the initial mass–radius relation, it at least qualitatively shows
that at young ages most clusters2 are affected by the expansion
we consider here. It is worthwhile to compare the theory to the
parameters of young, well-resolved star clusters (e.g. Mackey &
Gilmore 2003). We emphasize that the balanced evolution provides
a lower limit to cluster radii. If clusters form above the relation
marked initial in Fig. 3, then they expand only slightly because
of stellar evolution at young ages until T/T rh0 is high enough for
the balanced evolution/expansion to start. The mass–radius relation
of young clusters is important in the evolution of cluster popula-
tions. This is because in the early evolution clusters suffer from
encounters with the molecular gas clouds from which they form.
The time-scale of disruption due to such encounters scales with the
density of the cluster (Spitzer 1958). If all cluster have the same
density, their disruption time-scale is independent of their mass.
For a constant radius the time-scale of disruption becomes strongly
mass-dependent because then ρh ∝ M, and for a constant T rh we
have ρh ∝ M2. The mass–radius relation, therefore, determines the
properties of the clusters that survive continuous encounters with
massive clouds (Gieles et al. 2006; Elmegreen 2010).

We have ignored the tidal limitation due to the host galaxy. Once
the density of a cluster drops below a critical value, depending on
the tidal field strength, our result will overestimate the radius of
such clusters because the presence of a tidal limitation will prevent
further growth. The good agreement between the simple model
presented here and the data points suggest that at least to first order
the positions in the mass–radius diagram of objects with M � few ×
104 M� is not much affected by tides. Including a tidal field would
bend down the curves at low masses. The transition from expansion-
dominated evolution to Roche lobe filling evolution is considered
in more detail in a follow-up study (Gieles, Heggie & Zhao, in
preparation).
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