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Visualizing elusive phase transitions with geometric entanglement
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We show that by examining the global geometric entanglement it is possible to identify “elusive” or hard to
detect quantum phase transitions. We analyze several one-dimensional quantum spin chains and demonstrate
the existence of nonanalyticities in the geometric entanglement, in particular, across a Kosterlitz-Thouless
transition and across a transition for a gapped deformed Affleck-Kennedy-Lieb-Tasaki chain. The observed
nonanalyticities can be understood and classified in connection to the nature of the transitions, and are in sharp
contrast to the analytic behavior of all the two-body reduced density operators and their derived entanglement

measures.
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I. INTRODUCTION

The effect of interactions in many-body systems gives rise
to striking collective phenomena.! Phase transitions, both
classical and quantum, are the archetypical example. Across
such a transition, collective properties of the system undergo
abrupt changes that can sometimes be related to nonanalytic
behavior of the free energy. This observation was at the basis
of the first historical attempt to classify phase transitions by
Ehrenfest, according to the order of the nonanalyticity in-
volved. Modern classification schemes have refined this idea
in order to include new types of transitions.!?

Across quantum phase transitions (QPT), one expects that
the ground-state wave function undergoes drastic changes
and hence manifests this behavior via physical quantities
such as correlations. Recently there has been a significant
effort toward exploring the relation between the revived
quantum-mechanical entanglement and QPT (Ref. 3) to
complement traditional approaches. For instance, important
scaling properties have been found for the entanglement en-
tropy and single-copy entanglement between macroscopic
regions in various contexts,? including the connection to the
central charge. A different approach has been the use of en-
tanglement between individual constituents, such as the two-
qubit concurrence’ and other correlation-based measures.® In
particular, concurrence was demonstrated to display singular-
ity across QPT. It was later recognized that such nonanalytic
behavior originates in the two-body reduced density matrices
and is linked to the nonanalyticity in the ground-state energy
(the so-called “generalized Hohenberg-Kohn Theorem”).
Also, a similar approach (but not originated from entangle-
ment) called fidelity measure, which employs the overlap
between two ground states, has been successful in identify-
ing QPT.3

According to the above picture, it is possible to detect
finite-order transitions just by examining the nonanalyticities
of two-body entanglement measures. However, one encoun-
ters difficulty with other types of transitions. For instance, in
co-order transitions, such as Kosterlitz-Thouless (KT), the
ground-state energy and its derivatives are analytic, as well
as all correlation functions, such as two-body observables.
This is the case of, e.g., the spin-1/2 XXZ chain near the
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antiferromagnetic Heisenberg point. A further example, not
of the KT type, is a transition occurring in a deformed
Affleck-Kennedy-Lieb-Tasaki (AKLT) chain introduced by
Verstraete et al. in Ref. 9, where the existence of a diverging
entanglement length scale in the system remains undetected
by any correlation functions of the ground state, as the sys-
tem is always gapped and the correlation length remains fi-
nite. The complex nature of these transitions makes them
elusive and undetectable by all the above entanglement ap-
proaches (as well as the fidelity susceptibility measure),'”
and previous investigations indicate that they may be better
understood in terms of global quantities.!!~!3

Here we provide a perspective along this direction, and
show that for one-dimensional (1D) quantum many-body
systems the global geometric entanglement can be used to
successfully detect QPT, including finite-order and the above
elusive ones. The geometric entanglement (GE) (Ref. 14) has
previously been shown to exhibit divergence consistent with
a scaling hypothesis,'>!% and has also been related to the
central charge of the underlying conformal theories at
criticality.'” Moreover, its finite-size corrections at criticality
are also governed by conformal symmetry."> In this context,
the aim of the present work is to show that even when all
correlation functions remain analytic, the GE is still able to
display singularity across transitions. We shall also elaborate
on the connection between the origin of these singularities
and the nature of the observed transitions.

The structure of this paper is as follows: in Sec. II we
review briefly the basics on the global geometric entangle-
ment. In Sec. III we show our results for a variety of 1D
systems, namely, the spin-1/2 Ising model in transverse and
longitudinal fields, the spin-1/2 XXZ model, and the de-
formed AKLT model. Section IV offers a discussion of the
results focusing on two aspects: first, the connection between
the observed singularities for the GE and the nature of the
phase transitions, and second, a comparison of the perfor-
mance to detect QPTs between the GE and other
entanglement-related quantities. Finally, Sec. V contains the
conclusions.

II. GLOBAL GEOMETRIC ENTANGLEMENT PER SITE

In this section we briefly remind the basics of the global
geometric entanglement. To characterize global entangle-
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ment, consider a general, N-partite, normalized pure state
V) e H= ®fi1H["], where H['l is the Hilbert space of party i.
For a spin system each party could be a single spin but could
also be a block of contiguous spins.'*"'7 Our scheme in-
volves considering how well an entangled state can be ap-
proximated by some unentangled (normalized) state: |®)=
®@N |y, motivated by mean-field theory. For quantum spin
systems, the mean-field scheme attempts to find the best
product state |®) minimizing the Hamiltonian H. Here, we
aim to find the best mean-field approximation to the ground
state |¥). The proximity of |W) to |®) is captured by their
overlap; the entanglement of | W) is revealed by the maximal
overlap'

Ao (V) = m£X|<‘1>|‘I’>|- (1)

A is thus related to the best mean-field energy of the “re-
duced” Hamiltonian

Hred =- |\I,><\I’| (2)

as the closest product state |®*) is the best mean-field state
such that

ngn<q)|Hred|q)> = <(D*|Hred|¢)*> == Amax(q,)z- (3)

It makes sense to quantify the entanglement via the follow-
ing extensive quantity'>'¢ (analogous to the relation between
the free energy and the partition function)

E(¥) = ~log, A7, (P), )

max

where we have taken the base-2 logarithm. GE gives zero for
unentangled states and is a measure of how difficult it is to
approximate a given state (in particular, the ground state) by
mean-field states, or equivalently a measure of unfactoriz-
ability. To deal with large systems we define the thermody-
namic entanglement density £ and its finite-size version &y
by

. E(Y)
SEllm 5N, ENE_

Jim N (5)

This is the quantity that will be of interest in this paper.

III. VISUALIZING DIFFERENT TYPES OF
TRANSITIONS

In this section we provide an analysis of different 1D
quantum spin systems undergoing different types of QPTs,
from the point of view of the GE. Specifically, we focus on
the spin-1/2 Ising model in transverse and longitudinal fields,
the spin-1/2 XXZ model, and the deformed AKLT model.
Let us mention that the global geometric entanglement per
site & has already been applied to ground states of 1D models
across different types of phase transitions.>"!7 Our analysis
here complements those from previous studies by offering
results in more exotic situations.

A. Spin-1/2 Ising model

For comparative purposes, we first revisit the spin-1/2
quantum Ising model in transverse and longitudinal fields

PHYSICAL REVIEW B 82, 155120 (2010)

0.10 0.030
008 0.025
0.020
0.06
w 0.015
0.04
0.010
0.02 0.005

0.5 1 1.5 2 25 -0.1 -0.05 ;)L 0.05 01

FIG. 1. (Color online) & for the Ising model obtained with MPS
vs the transverse field & for several values of the longitudinal field
N\ (left) and vs the longitudinal field \ for several values of the
transverse field A (right). The insets show the derivatives with re-
spect to & and \. The derivative d€/dh in the left panel corresponds
to the line for A=0.

H=-3 (a£i]0£i+l]+h0'£i]+7\0'£i])’ (6)

i

where h(N\) is the transverse (longitudinal) field, and o'[(f] is
the ath Pauli matrix at site k. This Hamiltonian has a 7,
symmetry-breaking second-order quantum phase transition at
h*=+1 and A=0, whereas at fixed |h| <1 it has a first-order
discontinuous transition at A*=0 due to a crossing of energy
levels. Namely, the phase diagram is a first-order line termi-
nated by second-order points. For this model, we employ the
infinite time evolving block decimation (TEBD) algorithm'®
to find a matrix product state (MPS) approximation to the
ground state in the thermodynamic limit. Then, GE is readily
obtained from the MPS state by maximizing the overlap in
Eq. (1) with standard optimization.

Results for the ground state of the quantum Ising model in
Eq. (6) are shown in Fig. 1. On the left panel we extend the
results from Ref. 16 for GE across the quantum phase tran-
sition as a function of the transverse field 4 for different
values of N. We have checked that our MPS results for A
=0 reproduce accurately the exact solution in Ref. 16 (less
than 1% of relative error). Notice that, at A=0, £ is smooth
across the second-order phase transition with a peak slightly
after the quantum-critical point (around i~ 1.13). The de-
rivative, however, is divergent at the quantum-critical point
h=h"=1, as shown in the inset, and obeys the critical scaling
law

de 1
—AN=0,h) ~——1 h-1 7
0h( ) Py 0g2| | (7)

for |h—1|< 1.1 Also, as can be easily inferred from Fig. 1,
our MPS results prove that this derivative is smooth for A
#0, as there is no transition. The behavior of £ is rather
different across the line of the first-order transition as a func-
tion of the longitudinal field A, for which we give our results
in the right panel of Fig. 1. There, we see that £ has a kink
(thus being nonanalytic) as a function of \ at the first-order
(discontinuous) phase transition point A=\"=0 for h#0, 1.
At the second-order phase transition point A=0, h=1 our
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FIG. 2. (Color online) &y for the XXZ model in zero field vs the
anisotropy parameter A for system sizes N=10, 12, 14, 16, 18, 20,
24, and 26. The dashed lines correspond to the thermodynamic limit
&, obtained by fitting the finite-size scaling law in Ey(A)~E(A)
+b(A)/N (upper dashed line) and by the infinite MPS method
(lower line). We also indicate the closest product state |®) on each
side.

MPS results are compatible with a logarithmic divergence of
the derivative

de
X(A’h: 1) ~ —a log,|\| (8)

for |\|<1, with a~-7.5(1). Notice that £ is symmetric
around N=\" since at this point the Hamiltonian is self-dual
under the duality transformation N——\. The observed
nonanaliticity at A=0 and 2#0,1 can be understood as a
consequence of a global change in the ground-state wave
function, characteristic of first-order transitions with a cross-
ing of ground state energy levels. What is more intriguing is
that similar nonanalytical behaviors in £ are also found in
other types of transitions, even continuous ones, as we will
see in what follows.

B. Spin-1/2 XXZ model

We now consider a system with an elusive phase transi-
tion, i.e., the 1D spin-1/2 XXZ model

H= 2 (0£i]0_£i+l]+ Olyi]o_£i+l]+Ao_gi]o_giﬂ]_’_ho_gi])’ 9)

where A is an anisotropy parameter and & a magnetic field.
Let us first study the case of zero field (h=0). In this
regime, this model is critical for A e (=1,1], with a KT
quantum phase transition at the Heisenberg point A*=1.1°
Within this setting, first we do an exact diagonalization of H
for sizes up to 26 spins and find the geometric entanglement,
followed by a finite-size scaling and extrapolation to the
thermodynamic limit. Then we compare this value with that
obtained by using the MPS method for infinite systems, as
used for the quantum Ising model. In turn, this allows us to
further validate the consistency of our numerical methods.
In Fig. 2 we show the results for the spin-1/2 XXZ model
in Eq. (9) in zero field. We see that the global geometric
entanglement per site £y for finite size N already displays a
pronounced kink at the KT quantum critical point A=A*=1.
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FIG. 3. (Color online) &y for the spin-1/2 XXZ model in zero
field, as a function of 1/N for system sizes N=10, 12, 14, 16, 18,
20, 24, and 26. The data correspond to A=0.5, 1, and 1.5. The
dashed lines are our best fits to Eq. (10). The values extrapolated to
the thermodynamic limit 1/N— 0 correspond to those of the dashed
line plotted in Fig. 2.

As observed in the figure, £y seems to converge fast toward
a thermodynamic value as N increases. Our finite-size scal-
ing analysis indicates a scaling law

En(A) ~ E(A) + % (10)

in good agreement with the ones proposed in Ref. 15, see
Fig. 3.

We have done this scaling analysis for all the computed
values of A and obtained an estimation of the thermody-
namic quantity £, shown in Fig. 2, together with the infinite
MPS estimation and the finite-size data. The values of &£
estimated by both methods agree within 1% of relative error,
which validates the consistency of our different approaches.
The kink in &y at A=1 is obviously present in the thermo-
dynamic limit N— oo, This is a remarkable result, as for this
KT transition all the two-body observables and all their de-
rivatives are analytic, and this means that entanglement mea-
sures that only depend on two-body reduced density opera-
tors, such as the concurrence and the spin-spin negativity,
will not exhibit any singularity at all. Our results also indi-
cate that this kink is due to a sudden change in the product
state that maximizes the overlap in Eq. (1): for A<1 the
closest product state |®) is |---+—+—--) (as well as those
from rotating | - ~+—+—--) around z axis, due to SO(2) sym-
metry), whereas for A>1 it is |...0101...) (where |*)
=(|0) = [1))/12, and |0) and |1) are the cigenstates of a,). At
the isotropic point A=1, either of the two product states is
equally good, due to the SU(2) symmetry. The observed kink
in the global geometric entanglement evidences the existence
of the KT transition and its similitude with the nonanalytical
behavior found in discontinuous phase transitions (see Fig.
1) supports the fact that there is a sudden and global change
in the structure of the ground-state wave function.”’ Notice,
though, that according to the standard classification, the
phase transition in this model is continuous.

Let us now consider the case of nonzero field (h#0) in
the Hamiltonian. In this generic case, by looking at the dis-
continuities in the GE, we find out that it is also possible to
get both a qualitative and quantitative picture of the correct
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FIG. 4. Phase diagram of the XXZ model from Eq. (9) in the
(h,A) plane. The dots correspond to our estimation observing the
discontinuities of the GE using MPS methods for infinite systems
and the lines are the exact phase boundaries. Phases A and C are
gapped whereas phase B is gapless. Phases A and B are separated
by a line of first order transitions whereas phases B and C are
separated by a line of second-order transitions at 2> 0 that ends in
a KT transition at ~2=0.

phase diagram for this model in the (&,A) plane. Our results
for the phase diagram estimated using the GE obtained from
MPS methods for infinite systems are shown in Fig. 4. As
seen in the plot, there is a good quantitative agreement be-
tween the phase boundaries estimated with the GE and the
exact ones (computed by Bethe ansatz). Thus, we see that the
GE is able to reproduce within good accuracy the correct
properties of the phase diagram of the model.

C. Deformed AKLT model
Finally, we consider the deformed AKLT model®

H= E XEi,iH]’
i

= [ @ TN L) @ T,
(11)
where EE] =10+ sinh(,u)SE’J +[cosh(u)— 1](5‘?])2 and

. . . 1 . . 2
Xk,]l(*ﬂq]=§[z] . §[1+1]+ 5(53[1] . §[l+l])2+ 3 (12)

is the usual AKLT two-body term?! with S/ the ath compo-

nent of the spin-1 operator S, The ground state undergoes a
transition at the AKLT point u*=0 with diverging entangle-
ment length and finite correlation length. For this model, we
use the exact MPS representation of the ground state from
Ref. 9 and then extract from it the geometric entanglement
per site in the thermodynamic limit by using the exact MPS
techniques developed in the second paper of Ref. 15. For
convenience of the calculation, now we choose each party in
Eq. (5) to be composed by a block of two contiguous spins
so that £ now refers to the geometric entanglement per block
of two spins in the thermodynamic limit.??

From Fig. 5 we see that GE & has a pronounced kink at
the AKLT point u=u*=0 in the thermodynamic limit, simi-
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FIG. 5. (Color online) &£ for blocks of two spins for the de-
formed AKLT model vs the deformation parameter w. The right
inset shows a close-up around the AKLT point u*=0 and the left
inset shows the coefficient a(u) associated with the closet product
state |®(u)) (see text). These results are exact.

lar to that in the KT transition of the XXZ model and the
first-order transition of the Ising spin chain in a longitudinal
field. This similitude supports again the idea of a sudden
global change in the ground-state wave function. However,
notice that as explained in Ref. 9, here the system is always
gapped and the correlation length of the ground state of the
system is always smooth and remains finite for this transi-
tion. Thus, this sort of transition does not even exist accord-
ing to the standard criteria and two-body correlation func-
tions are unable to detect the observed nonanalyticity.
However, the entanglement length diverges at the AKLT
point.? Remarkably, we see here that GE is also successful in
identifying the existence of this transition in the ground state
of the system. We also determine the closest product state

(1) = {cm){a(m 0.0)+ %lxw»]} (13)

with

(p=0)=|-1.-1), [x(u=0)=[1,1) (14

C(u) a normalization constant, a(u) a real positive coeffi-
cient (see Fig. 5), and |~1), |0), and |1) the eigenstates of the
spin-1 operator S,.

IV. DISCUSSION

The results obtained in the previous section prove the use-
fulness of the GE to detect phase transitions of many differ-
ent kinds, including those that seem difficult to detect with
alternative methods. In this section we discuss a number of
important considerations that can be observed from our re-
sults, namely, (i) how do the singularities in GE connect to
the nature of the transitions and (ii) how does the GE com-
pare to other alternative measures in efficiency of calcula-
tions and visualization of results.

A. Singularities in GE and the nature of the transitions

To illustrate the nature of the observed singularities in the
GE, consider for simplicity spin-1/2 systems and rewrite the
N-spin product state |®) via
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N
|OND|= ® %(Mﬂ + Al Gy, (15)
i=1

where the unit vectors A’s represent directions of local
spins. The overlap [(¥|®)|?> can be expressed (by expanding
the above product) as a linear combination of all correlations
with respect to |¥)

M@ =1+ XA (6 + 3 Aol

i#j.a,8
AT Y 4 .

+ X

i#j#k,a,B,y
(16)

This can be easily generalized to systems of higher spins.
Therefore, it is seen that a singularity of the entanglement
can come from two t Fes of sources: (i) correlation func-
tions, CE:%@_‘JE(U[;]O% 0'[;‘]..) for the ground state |¥) and
(ii) parameters 717, which denote the vectors that maximize
the overlap.

In all the examples that we have examined, we can clas-
sify the origin of the singularity due to (i) or (ii) or both. Let
us summarize: (1) for the transverse Ising model, which has
a standard second-order quantum critical point, (i) correla-
tion functions C’s are singular but (ii) optimal parameters r*’s
are not singular. This explains the similar behavior between
the GE and the so-called concurrence measure of entangle-
ment, which depends on correlation functions. (2) For the
longitudinal Ising model, which has a standard first-order
transition, both (i) and (ii) are singular, as the transition is
first-order. (3) For the XXZ model at zero field, the transition
is oo order, therefore (i) correlations C’s are not singular, but
(ii) the parameters r*’s of the optimal local states are singu-
lar. It is this second point the one that helps to signify certain
nonanalytic change in the wave function and thus identifies
the transition. (4) For the deformed AKLT model, (i) corre-
lations C’s are not singular, since the correlation length is
finite, but (ii) r*’s are singular. Similar to XXZ, it is this
second point the one that detects nonanalyticity in the wave
function across the transition.

B. Comparison to correlation functions

Let us now discuss the relevance of the GE as compared
to other approaches based on correlation functions to study
phase transitions. One could be tempted to affirm that any
phase transition, if it exists, can, in principle, be detected by
measuring all the possible correlation functions of the sys-
tem, and that therefore the GE offers no true extra informa-
tion and is not useful to study phase transitions.

We argue here that this approach may not actually apply.
To see this, first notice that it is impractical to exhaust all
possible correlations to find out if there is any singularity in
a given system. And moreover, there exist example Hamilto-
nians where all the ground-state correlations are well be-
haved and no singularity can be found (e.g., XXZ model at
h=0). Entanglement measures that depend on correlation
functions, such as the concurrence, also inherit this analytical
behavior. Therefore, a quantity which includes all the pos-
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sible correlation functions in a single quantity is potentially
very useful as one then would need to examine this single
quantity to see if any singularity exists in the correlations. As
shown above, one has that (i) the GE is actually such a
quantity since it can be expressed in terms of a combination
of all possible correlation functions (general k-point correla-
tions) and (ii) there are additional quantities (e.g., the vectors
that characterize the best local product state) that also assist
the examination of singularities. In all our examples exam-
ined in the paper, we can classify the origin of the singularity
is due to (i) or (ii) or both. In short, GE is a simple and
meaningful quantity that provides information that cannot be
codified in any (local) correlation function and the approach
is clearly more efficient than calculating all possible correla-
tion functions and examining them one by one.

C. Comparison to other measures: Localizable entanglement,
entropy, and fidelity

Let us now briefly discuss how the GE compares to other
entanglement-related quantities in detecting phase transi-
tions. We focus on the localizable entanglement, the en-
tanglement entropy, and the ground-state fidelity. Notice that
of all these quantities, the fidelity is not a measure of en-
tanglement by itself. We remark, however, that this does not
diminish its usefulness in studying phase transitions.

Let us first considered the appearance of singular behav-
iors across QPTs. Quite importantly, for the two elusive
models studied in this work (XXZ and deformed AKLT),
measures such as the entanglement entropy and fidelity
measures'® (which we also analyzed for deformed AKLT—
results not shown) fail to show any singularity across the
transitions. Furthermore, if one considers a derived quantity
from fidelity, called fidelity susceptibility, it can be shown
that for KT transition it does not show any singularity.'® The
localizable entanglement, however, shows a singular behav-
ior in these two transitions as well,”!? in a way similar to the
one observed with the GE. Notice, though, that the GE may
be easier to compute than the localizable entanglement in
many cases, as we argue below.

Next, let us consider the efficiency in the calculation of
the different measures. For certain exactly solvable models,
the GE can be calculated essentially analytically. Further-
more, for nonsolvable models, with existing numerical tech-
niques based on tensor networks such as MPS or projected
entangled pair state (PEPS) (Ref. 23) it is rather straightfor-
ward to compute the GE.

In fact, the geometric entanglement is probably one of the
multipartite entanglement measures that is easier to calculate
while most of the other known multipartite entanglement
measures end up being rather hard to compute. For example,
in the framework of MPS, computing GE is not harder than
computing the ground state. Once we have a MPS approxi-
mation of the ground state, it is numerically easy to calculate
the GE, i.e., we take bond dimension 1 in an MPS that mini-
mizes the energy of the Hamiltonian H'=—|W)(W|, where
|W) is the MPS ground state approximation of the original
Hamiltonian under study. Comparing to other approaches,
we note that the calculation of the fidelity susceptibility also
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requires the knowledge of ground states but is perhaps more
inefficient than our approach from a computational point of
view, as it would require the overlap between two MPS in-
stead of an MPS and a product state. Regarding the entangle-
ment entropy, its calculation requires computing the reduced
density matrix of a block of finite size together with its spec-
trum, which cannot always be done efficiently (especially for
systems in more than one dimension). Finally, regarding the
localizable entanglement, there is, in general, the necessity to
maximize over all possible local measurements (not neces-
sary projective measurements), which makes it the most dif-
ficult calculation of all the ones discussed so far for a generic
model.

V. CONCLUSIONS

Here we have shown that the global geometric entangle-
ment can be used to successfully detect conventional and
elusive phase transitions, such as the ones for the 1D spin-
1/2 Ising, XXZ and deformed spin-1 AKLT models. We have
also clarified the connection between the nature of the ob-
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served transitions and the fact that the geometric entangle-
ment exhibits singularities whereas other entanglement mea-
sures do not. Thus, we have demonstrated that the GE can be
used to detect elusive transitions for which other conven-
tional methods and other entanglement measures (including
the fidelity susceptibility between ground states) fail.

All in all, we believe that the GE may provide comple-
mentary information about the complicated ground states of
quantum many-body systems to the one offered by alterna-
tive measures such as, e.g., correlation functions, entangle-
ment entropy, localizable entanglement, and ground-state fi-
delity. However, there is still lack of extensive study of the
relations among all these methods. Further study in this di-
rection would help to clarify the complex nature of the
ground state of strongly correlated systems.
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