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Abstract 

Condition monitoring and fault diagnosis of equipment and processes are of great concern in industries. Early fault detection 
in machineries can save millions of dollars in emergency maintenance costs. This paper presents a wavelet-based analysis 
technique for the diagnosis of faults in rotating machinery from its mechanical vibrations. The choice between the discrete 
wavelet transform and the discrete wavelet packet transform is discussed, along with the choice of the mother wavelet and 
some of the common extracted features. It was found that the peak locations in spectrum of the vibration signal could also be 
efficiently used in the detection of a fault in ball bearings. For the identification of fault location and its size, best results were 
obtained with the root mean square extracted from the terminal nodes of a wavelet tree of Symlet basis fed to Bayesian 
classier.  
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1. Introduction    * 

Development of real-time fault detection and 
identification technologies will allow a migration from 
expensive scheduled based maintenance to the more 
efficient, less costly alternative of condition-based 
maintenance. One of the principal tools for diagnosing 
early faults has been vibration analysis [1-2]. Considerable 
research has been carried out previously for the 
development of various algorithms for bearing fault 
detection and diagnosis. These algorithms can be classified 
into time domain, frequency domain, time-frequency 
domain, higher order spectral analysis, neural-network and 
model based techniques [3-7].  

Various time domain statistical parameters have been 
used as trend parameters to detect the presence of incipient 
bearing damage. Kurtosis and skew values of vibration 
signals are used in [8] for detection of bearing faults at 
early stages in their development. The paper in [9] presents 
a study on the application of sound pressure and vibration 
signals to detect the presence of defects in a rolling 
element bearing using a statistical analysis method. The 
most important shortcoming of the statistical analysis 
approach is its inability to detect bearing defects at later 
stages. In the frequency domain approach the major 
frequency components of vibration signals and their 
amplitudes are used for trending purposes. The frequency 
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characteristics of the vibration for a defective bearing 
subject to various load conditions are investigated in [10]. 
Envelope analysis, originally known as the high frequency 
resonance technique, is the most commonly used 
frequency analysis technique for the detection and 
diagnosis of bearing faults. The technique is studied in 
detail in [11]. One of the problems with envelope analysis 
and the other frequency domain approaches is that, they 
require the bearing defect frequencies be known or pre-
estimated. The other shortcoming is the increasing 
difficulty in analyzing the vibration spectrum when the 
signal to noise ratio is low and the vibration spectrum has 
a large number of frequency components due to the 
complexity of the system [3]. Bi-coherence spectra are 
used in [12] to derive features that relate to the condition 
of a bearing. Neural networks are also applied to bearing 
fault detection and diagnosis [13-14].  Time-frequency 
domain techniques use both time and frequency domain 
information allowing for the investigation of transient 
features. A number of time-frequency domain techniques 
have been proposed including Short Time Fourier 
Transform (STFT), the Wigner- Ville Distribution (WVD), 
and the Wavelet Transform (WT) [1], [4-6], [14-15]. This 
paper presents results of wavelet analysis in the detection 
and diagnosis of ball bearing faults. A brief description of 
the typical bearing faults is given along with an overview 
of wavelet analysis in the next subsections. 

The structure of this paper is as follows. In Section 2, a 
description of the typical faults of the bearing is presented 
while the basic concepts in wavelet analysis are explained 
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in Section 3. The data used for monitoring and diagnosis is 
described in Section 4, whereas the detailed fault diagnosis 
procedure based on wavelet analysis is discussed in 
Section 5. The last section concludes the paper. 

2. Bearing Condition Monitoring  

Bearing condition monitoring has received 
considerable attention for many years due to the fact that 
the majority of the problems in rotating machines are 
caused by faulty bearings. A schematic diagram of rolling 
element bearing is shown in Figure 1a. The typical failure 
mode of rolling element bearings is a localized defect, 
which occurs when a piece of material on the contact 
surface is dislodged during operation. The dislodgement is 
mostly caused by fatigue cracking under cyclic contact 

stressing. In general, a ball bearing has three main 
components that can typically experience damage: the 
rolling elements, the inner race and the outer race [16].  

During bearing operation, wide band impulses are 
generated when rollers pass over the defect at a frequency 
determined by shaft speed, bearing geometry, and defect 
location. Some of the vibrational modes of the bearing and 
its supporting structure will be excited by the periodic 
impulses, and a distinct bearing signature will be 
generated. The leading edge of each impulse typically 
comprises a very sharp rise that corresponds to the impact 
between a roller and the defect. The ringing then decays 
with an approximately exponential envelope as the energy 
is dissipated by internal damping [7, 17] as shown in 
Figure 1b. 

Figure 1. (a) Schematic diagram of rolling element bearings, and (b) the typical time waveform due to a crack on the outer race of a rolling 
element bearing. [17] 

Applying Fourier transform to this type of signals 
results in a peak at the impact frequency along with 
harmonics due to the spike-resonance nature of the signal.  
However, the bearing fault component is often difficult to 
be distinguished due to the high levels of noise and other 
fault sources in the vicinity of the bearing fault 
frequencies. In addition, the frequency domain approaches 
are incapable of detecting nonstationary signals [18]. 
These problems can be overcome by using the wavelet 
analysis, which provides multi-resolution in time-
frequency distribution for easier detection of abnormal 
vibration signals. Next section presents a brief summary 
about wavelet technique. 

3. Wavelet Analysis 

The wavelet transform has emerged as an efficient tool 
to deal with non-stationary signals such as vibrational 
signal waveforms [19-20]. It offers simultaneous 
interpretation of the signal in both time and frequency 
domain which allows local, transient or intermittent 
components to be exposed. Such components are often 
obscured due to averaging inherent within spectral only 
methods such as the Fourier transform. Wavelet transform 

can be continuous or discrete. The continuous wavelet 
transform reveals more details about a signal but its 
computational time is enormous. For most applications, 
however, the goal of signal processing is to represent the 
signal efficiently with fewer parameters and less 
computation time. The discrete wavelet transform (DWT) 
can satisfy these requirements. 

The DWT employs a dyadic grid and orthonormal 
wavelet basis functions and exhibits zero redundancy. The 
DWT computes the wavelet coefficients at discrete 
intervals (integer power of two) of time and scales [20]. 
The computed DWT coefficients can be used to form a set 
of features that unambiguously characterize different types 
of signals. The dilation function of the DWT can be 
represented as a tree of low and high pass filters, with each 
step transforming the low pass filter into further lower and 
higher frequency components as shown in Figure 2. The 
original signal is successively decomposed into 
components of lower resolution, while the high frequency 
components are not analysed any further. The low-
frequency components of the signal are called 
approximations, while the high-frequency components are 
called details. For example, if Fs is the sampling 
frequency, then the approximation of an N level DWT 
decomposition corresponds to the frequency band  
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Figure 2. Filter bank representation of the DWT and DWPA decompositions [17]. 
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The power and the flexibility of the DWT can be 
enhanced by using the discrete wavelet packet transform, 
(DWPT). Unlike the DWT, which only decomposes the 
low frequency components (approximations), DWPT 
utilises both the low frequency components 
(approximations), and the high frequency components 
(details) [20-21]. From this family of bases, a method for 
choosing the optimum scheme for a particular signal can 
be developed. This process requires a lot of a-priori 
information such as the choice of a mother-wavelet, the 
level of decomposition, and the features to be extracted. In 
addition, an algorithm has to be found for the selection of 
the best basis. 

4. Vibration Data Acquisition 

The experiments presented in this paper used the 
vibration data obtained from the Case Western Reserve 
University Bearing Data Centre [22]. The data were 
collected from an accelerometer mounted on the housing 
of an induction motor system coupled to a load that can be 
varied within the operating range of the motor. The data 
collection was done at two locations, one at the drive-end 
bearing and the other at the fan-end bearing. Data was 
gathered for four different conditions: (i) normal (N); (ii) 
inner race fault (IRF); (iii) outer race fault (ORF); (iv) ball 
fault (BF). Faults were introduced into the drive end 
bearing by using electro-discharge machining. For inner 
race and ball fault cases, the size of the fault is 0.007, 
0.014 or 0.021 inches. For outer race fault case, the size of 
the fault is either 0.007 or 0.021 inches. The data is 
sampled at a rate of 12 kHz and the duration of each 
vibration signal was 10 seconds. All the experiments were 
repeated for four different load conditions: 0, 1, 2 and 3 
horse power (HP). Therefore, experimental data consisted 
of 8 vibration signals for normal condition and 24 
vibration signals for the inner race and ball fault 
conditions. For the outer race faulty case there were 23 
vibration signals. 

5. Experimental Results  

The first step in a diagnosis of a ball bearing condition 
is to detect the presence of a fault, then identify its location 
and its size. Each step is discussed separately in the next 
sub-sections. 

                                         (a) 

                                       (b) 
Figure 3. Typical spectrum of vibration data for (a) normal 
bearing, and (b) faulty bearing (IRF). 
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5.1. Fault Detection 

Fault detection is an important and critical step. Any 
method developed for this purpose should be highly 
accurate. In this section, two approaches are investigated.  

The first approach is based on the mechanical 
phenomenon of resonance. For a normal behaviour, the 
mechanical system is built to avoid resonance (Figure 3.a). 
But when there is a fault in the bearing, the resonant 
frequencies are likely to appear in the spectrum as peaks in 
high frequencies (Figure 3.b). The location of the 
frequencies peaks can be used to distinguish between 
normal and abnormal behaviours. In the first approach, the 
locations of the three first dominant frequency peaks 
obtained from the signal spectrums are used as features to 
discriminate between healthy and faulty behaviours. 

Table 1. Frequency sub-bands for third level DWT 
decomposition. 

Frequency 
Bands 

1 2 3 4 

Frequency 
range (Hz) 

[0, 750][750,1500][1500, 3000] [3000,6000]

 A3 D3 D2 D1 

 
The second approach is based on the fact that cracks 

are translated into transient and high frequency phenomena 
in the vibration signal. Consequently, the abnormal 
behaviour can be detected by analysing the percentage of 
energy contained in high frequencies. In this study, DWT 
decomposition is applied to the vibration data for normal 
and abnormal bearing using mother wavelet Daubechies 
(Db1). Extensive experiments have showed that third level 
decomposition is sufficient for the problem of fault 
detection. The original signal is decomposed into four 
components: third level approximation A3, third level 
detail D3, second and first level details D2 and D1. The 
frequency sub-bands corresponding to each component of 
the signal are shown in Table1. It was found that when this 
approach is applied to the available data, the percentage of 
energy contained in the higher frequencies is large if the 
bearing is faulty and small if the bearing is healthy. Figure 
4 shows sample results of the average energy contained in 
the frequency sub-bands 1, 2, 3 and 4 for vibration data of 
normal and abnormal bearing. The results demonstrate that 
the average energy in the first band is always the highest if 
the bearing is normal while it will be highest in other 
frequency bands if the bearing has defects. From these 
experiments, we could efficiently distinguish between 
normal and abnormal ball bearing behaviours by 
comparing the average energy of each sub-band. 

In order to simulate noisy environments and compare 
the efficiency of the two methods, a white Gaussian noise 
with various power levels is added to the data. The 
detection results were perfect as long as the SNR is greater 
than -5 dB for the first method and greater than -20 dB for 
the second one. Therefore, for a noisy environment, the 
detection of a fault in a ball bearing is far more efficient 

with a system based on frequency peaks location obtained 
from the Fourier analysis rather than based on energy per 
band obtained from the DWT decomposition.  

5.2. Fault Localisation 

For many applications, the detection of the fault might 
not be sufficient; it is also essential to determine its 
location. For the ball bearing, the fault can generally be 
located at three places: the inner race, the ball and the 
outer race. Thus, the identification of the fault location can 
be looked at as a classification problem where each class 
represent one fault location. To have high classification 
accuracy, adequate and reliable features should be 
extracted from the data. In this section, two wavelets based 
techniques are explored and applied to the vibration data. 
The signals are decomposed using third level DWPT or 
DWT decomposition, and features such as root mean 
square (RMS), variance and norm are extracted from the 
terminal nodes. A Bayesian classifier is used to segregate 
between different classes where each class represents one 
type of fault location. A Bayesian classifier is dealing with 
a simple probabilistic classifier based on applying Bayes' 
theorem with strong independence assumptions combined 
with a decision rule. One common rule is to pick the 
hypothesis that is most probable using the well-known 
maximum a posteriori or MAP decision rule [23]. Using 
this method, a number of experiments were carried out 
with the aim of comparing the performance of the DWPT 
and the DWT and finding the best mother wavelet that 
produces the best extracted features. Noise with three 
power levels was added to the data with SNR equal to 120, 
20 and 0 dB. The noisy data is added to test the strength of 
the proposed methods.  

In order to compare the performance of the two types 
of decompositions when used with the Bayesian classifier, 
the classification accuracy has been evaluated for various 
extracted features and for different wavelet bases. Tables 2 
and 3 present the results for the fan–end bearing and for 
the drive-end bearing respectively. The tables show that 
DWPT is more efficient than DWT in identifying the fault 
location for the two above-mentioned cases. However, 
DWT-based technique can still be used if a lower level of 
computation is required.   

Table 2. Classification accuracy (%) using the extracted features 
from the DWPT and DWT on the fan-end bearing data. 

Feature Wavelet IRF* BF* ORF* 

  DWPT DWT DWPT DWT DWPT DWT

RMS Db4 100 88 100 82 100 100 

RMS Db6 100 85 100 91 100 100 

RMS Sym4 100 79 100 88 100 100 

RMS Sym6 100 85 100 94 100 100 

Norm Db4 73 61 100 94 100 97 

Norm Db6 85 55 100 100 100 91 

Norm Sym4 64 67 100 97 100 88 

*IRF: inner race fault, BF: ball fault, ORF: outer race fault 

 

 

http://en.wikipedia.org/wiki/Classifier_(mathematics)
http://en.wikipedia.org/wiki/Bayes%27_theorem
http://en.wikipedia.org/wiki/Bayes%27_theorem
http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Maximum_a_posteriori
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Figure 4. Average energy contained in the frequency sub-bands 1, 2, 3 and 4 for vibration data for rolling element bearing with (a) no fault, 
(b) IRF , (c) BF, and (d) ORFz

Table 3. Classification accuracy (%) using the extracted features 
from the DWPT and DWT on the drive-end bearing data. 

Feature Wavelet IRF BF ORF 

  DWPT DWT DWPT DWT DWPT DWT

RMS Db4 100 97 67 6 100 100 

RMS Sym4 100 97 78 30 100 100 

RMS Sym6 100 100 70 6 100 100 

Norm Db4 100 100 100 89 100 94 

Norm Sym6 100 95 100 91 97 100 

The next step is to determine the best mother wavelet 
that produces the best DWPT-based features. Table 4 
shows the classification accuracy results obtained using 
the extracted features from the DWPT of the data for 
various mother wavelets: Daubechies family (Db) and 
Symlets family (Sym). The root mean square (RMS) and 
the norm are found to be the best features extracted from 
the DWPT. The choice of the mother wavelet is not as 
critical as its size and could be selected from Db4, Db5, 
Db6, Sym4, Sym5, and Sym6. When the combined RMS 
and Sym6 were applied to the database, a perfect 
classification was achieved.  

5.3. Fault Size 

The results of the previous experiments do not solve 
the issue of the fault size. The problem is now to determine 

the best information that can help in the classification of 
the size of the faults. First, we assume that the diagnosis is 
going to adopt a multi-level classification as shown in 
Figure 5. The Bayesian method, as explained in the 
previous section, is used here on signals belonging to a 
specific type of fault location. The signals are decomposed 
by a third level DWT decomposition to obtain four 
terminal nodes for the drive-end bearing and to second 
level decomposition for the fan-end bearing. The study of 
the results for the two bearings shows that RMS with a 
mother wavelet among Db4, Db5, Db6, Sym4, Sym5, and 
Sym6 is a suitable choice. 

Table 4. Classification accuracy (%) after a DWPT for the drive-
end bearing (DE) and a fan-end bearing (FE) data. 

Feature Wavelet IRF BF ORF 

  DE FE DE FE DE FE 

Variance Db4 100 88 0 91 100 100 

Variance Sym6 100 97 0 94 100 100 

RMS Db4 100 100 69 100 100 100 

RMS Db6 100 100 69 100 100 100 

RMS Sym6 100 100 75 100 100 100 

Norm Db4 100 73 100 100 100 100 

Norm Sym6 100 67 100 100 97 100 
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Figure 5. Multilevel classification where Size 1= 0.007 inch, Size 2= 0.014 inch and Size 3= 0.021 inch.  

6. Conclusion 

This paper shows that wavelet-based analysis 
techniques can be efficiently used in condition monitoring 
and fault diagnosis of bearings. In the first part of the 
paper, it was found that the peak locations in spectrum of 
the vibration signal could be efficiently used in the 
detection of a fault in ball bearings. For the identification 
of fault location and its size, the RMS extracted from the 
terminal nodes of a wavelet tree can be reliably used as 
discriminating feature. It was found that the choice of the 
mother wavelet Sym6 combined with the use of the RMS 
feature produce excellent classification results.  
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