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We use a combination of analytical and numerical techniques to calculate the noise threshold and resource
requirements for a linear optical quantum computing scheme based on parity-state encoding. Parity-state encoding
is used at the lowest level of code concatenation in order to efficiently correct errors arising from the inherent
nondeterminism of two-qubit linear-optical gates. When combined with teleported error-correction (using either
a Steane or Golay code) at higher levels of concatenation, the parity-state scheme is found to achieve a saving of
approximately three orders of magnitude in resources when compared to the cluster state scheme, at a cost of a
somewhat reduced noise threshold.
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I. INTRODUCTION

It was shown by Knill, Laflame, and Milburn (KLM) [1]
that, in principle, scalable optical quantum computing could
be achieved using only passive linear elements, single-photon
sources, measurement, and feedforward. Nondeterministic
gates were developed that failed through the accidental
measurement of qubit value. Parity-state error codes were
developed to protect against such accidental measurement.
KLM showed that, by concatenating the parity codes, gate
failures could be reduced to arbitrarily small levels, thus
justifying the claim of scalibility. However, because of the
massive complexity of the scheme, it has not been practical to
couple it to a higher-level error correction protocol capable of
correcting environmental errors and hence evaluate its resource
requirements and fault-tolerant threshold.

A major simplification of the KLM circuit approach was
achieved by the introduction of incremental parity codes [2]
and fusion gate techniques [3,4]. We refer to this modification
of KLM as parity-state quantum computing. These techniques
reduce the complexity of the scheme sufficiently that it
becomes possible to make a full fault tolerant analysis, thus
completing the original KLM program.

In this article, we derive the resource usage and error
thresholds achievable when a concatenated error-correcting
code such as the STEANE code [5] is used to to handle
environmental and residual gate errors in the parity-state
optical quantum computing scheme. This type of analysis has
previously been done for cluster state [6] and cat state [7] (also
known as coherent state) schemes. It is important to establish
these thresholds for the parity-state implementation both as
a target for technological development and for comparison
with the other proposals. Our results show that the parity-state
protocol may offer a useful trade-off between the higher
resource usage of cluster-state schemes and the lower noise
threshold of cat state schemes.

Significant progress has been made in optical quantum com-
puting experiments in the last decade [8]. In particular the basic
principles of optical parity-state production and their ability to
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correct Z-measurement errors has been demonstrated [9–11].
These promising experiments indicate that effective use of
such error-correcting codes in future designs is viable.

The layout of the article as follows. Section II gives
a brief review and introduction of parity encoding and
the operations that may be done on parity-encoded states.
Section III describes the physical noise model that we
consider and gives expressions for the effective noise rates on
various parity-encoded operations. In Sec. IV these error-rate
expressions are used as the basis of simulations of higher levels
of encoding. The results of the simulations are presented in the
form of noise-threshold curves. Finally, Sec. V considers the
resources required by this scheme and provides a comparison
with the thresholds and resource requirements of some other
schemes for fault-tolerant optical quantum computation.

II. UNIVERSAL GATE SET

This section describes the states and operations used
in the two lowest levels of encoding in our scheme: the
physical qubits in the dual-rail nondeterministic linear-optical
architecture and the first level of logical qubits which use
parity-state encoding. These designs lead to the central focus
of this article, a discussion of the effects of noise on the
parity-state encoding and the effects of higher levels of
encoding (fault-tolerant STEANE and GOLAY encoding), which
is covered in Secs. III–V.

A. Physical encoding and operations

At the physical level, qubits in our scheme are encoded and
manipulated according to the techniques of nondeterministic
dual-rail linear optics. Although other implementations, such
as spatial encoding, are possible, we will explicitly consider
polarization qubits, encoded in the horizontal and vertical
polarization modes of single photons. This entails a series
of physical and technological assumptions including the fol-
lowing: that single-photon states can be produced on-demand
in a desired mode, such modes can be made to interact
using mode-matched linear optics, modes can be stored in
a quantum memory, and the number of photons in a mode
can be measured and the results used in the fast control of
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FIG. 1. (a) The type I fusion gate. (b) The type II fusion gate. Here
the gates are shown being performed on two polarization-encoded
photonic input qubits, Q1 and Q2. These input qubits are typically
part of larger entangled states. The gates are constructed from
photon-counting detectors, polarizing beam-splitters, and half-wave
plates, where the half-wave plates act as Hadamard operations on the
polarization qubits.

optical switching. Single-qubit operations in this scheme are
relatively straightforward, but two-qubit gates are inherently
nondeterministic even in the absence of noise.

As in Ref. [3], our scheme utilizes two particularly simple
nondeterministic two-qubit gates, the so-called type I (fI)
and type II (fII) fusion gates (Fig. 1). A type II fusion gate
performs a two-qubit destructive measurement in the basis
{|00〉 + |11〉,|00〉 − |11〉,|01〉,|10〉}. The first two outcomes
(corresponding to maximally entangled basis elements) are
considered “successful,” whereas the second two outcomes
are considered to be failures of the gate. A type I fusion gate
is a partial Bell measurement on two qubits. Two outcomes,
considered successful, project the input state into the space
spanned by {|00〉,|11〉} and outputs a single qubit according
to the operator |0〉〈00| ± |1〉〈11|. Again, there are two failure
outcomes which correspond to a destructive measurement in
the basis {|01〉,|10〉}.

For the type of input states we will consider, both the type I
and type II fusion gates are successful with 50% probability
(in the absence of noise).

B. Parity encoding

A length-n parity code encodes one logical qubit into n

physical qubits. The logical basis states of the code, denoted
|0〉(n) and |1〉(n), are defined to be:

|0〉(n) ≡ (|+〉⊗n + |−〉⊗n)/
√

2
(1)

|1〉(n) ≡ (|+〉⊗n − |−〉⊗n)/
√

2,

where |±〉 = (|0〉 ± |1〉)/√2. Note that |0〉(n) is the equal
superposition of all even-parity n-bit strings and |1〉(n) is the
equal superposition of all odd-parity strings. A useful property

of the parity-code basis states is that they have a simple
expansion in terms of smaller code states:

|0〉(n) = (|0〉(n−j )|0〉(j ) + |1〉(n−j )|1〉(j ))/
√

2, (2)

|1〉(n) = (|1〉(n−j )|0〉(j ) + |0〉(n−j )|1〉(j ))/
√

2, (3)

where 1 � j � n − 1. For j = 1 this expansion shows that a
computational basis measurement (such as occurs with a failed
fusion gate) of one of the physical qubits will not destroy
a parity-encoded qubit, but will only reduce the length of
encoding by 1 (and possibly introduce a known logical Pauli
X operation, depending on the measurement outcome).

C. Generating parity states

The production of parity-encoded states is a necessary
procedure both for the preparation of encoded qubits as sources
and as part of the resource generation required by some of the
nondeterministic logical gates in our universal gate set for
parity-encoded qubits.

The state |0〉(n) is locally equivalent to a star-shaped cluster
state (by a Hadamard operation applied to the central node of
the star). Consequently, given a supply of Bell states (|0〉(2)),
the resource |0〉(n) can be built up using essentially the same
techniques as used in [3] to build up star-shaped cluster states.

Parity states |0〉(n) and |0〉(m) can be fused using the fI gate
as follows:

HfI(H ⊗H )|0〉(n)|0〉(m) →
{|0〉(m+n−1) (success)

|+〉⊗n−1|−〉⊗m−1 (failure)
(4)

(where we have omitted other possible locally equivalent
outcomes for both success and failure). The operator HfI(H ⊗
H ) should be understood as a Hadamard gate acting on
one of the physical qubits from each of the encoded states,
followed by the fI gate applied to the same pair, followed by
a Hadamard gate applied to the output of fI in the case of
success. Alternatively the fII gate can be used to carry out
fusion, as follows:

fII|0〉(n)|0〉(m) →
{|0〉(m+n−2) (success)

|0〉(m−1)|0〉(n−1) (failure)
(5)

(again, some additional locally equivalent outcomes have been
omitted).

The first alternative, where fI is used with Hadamard gates
to perform fusion, has the advantage of losing only a single
physical qubit from the input states, but the disadvantage of
completely destroying the entanglement in both input states in
the event of failure. In the second case, fII is used to join the
input states at the expense of losing two of the initial physical
qubits. There are three advantages to the second scheme—in
the case of failure we do not destroy the entanglement of the
input states, just reduce their encoding by 1; we do not need
photon number discriminating detectors to operate fII; and it
is failsafe with respect to loss, in the sense that a lost photon
will not cause a failed fII gate to appear to have operated
successfully.

Thus, to create the state |0〉(3), two |0〉(2) are fused together
using the fI gate. Since fI functions with a probability of 1/2,
on average two attempts are necessary so on average each |0〉(3)

consumes 4|0〉(2). Once there is a supply of |0〉(3) states, either
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fI or fII can be used to progressively build up larger resource
states.

D. Simple single-qubit gates

For the parity code, encoded single-qubit unitaries can be
divided into those which have a particulary simple determinis-
tic implementation and those which have a more complicated
nondeterministic implementation involving the consumption
of resource states.

We can deterministically perform encoded versions of
any of the gates in the set {Xθ,Z}. Here, Xθ refers to
an arbitrary rotation about the x axis of the Bloch sphere,
Xθ = cos(θ/2)I + i sin(θ/2)X. An encoded Xθ operation is
achieved by applying Xθ to just one physical qubit in the code
state. The encoded Z gate is achieved by applying a Z gate
transversally to all physical qubits in the code state.

E. Z90 gate

To make our set of encoded single-qubit gates universal, we
add the Z90 operation. Similarly to the notation introduced in
the previous subsection, Z90 refers to a rotation by 90◦ around
the z axis of the Bloch sphere.

The logical Z90 operation is based on the process of re-
encoding. Re-encoding can be understood by considering the
following generalization of Eq. (5):

fII|�〉(n)|0〉(m) →
{|�〉(m+n−2) (success)

|�〉(m−1)|0〉(n−1) (failure)
, (6)

where |�〉(n) ≡ α|0〉(n) + β|1〉(n) is an arbitrary parity-encoded
input state, and like Eq. (5) we have omitted other locally
equivalent outcomes.

To re-encode a logical qubit |�〉(n), a type II fusion gate is
first performed between the logical qubit and another ancillary
parity state |0〉(n+1). Then, each of the remaining n − 1 qubits
that belonged to the original encoded input state are measured
in the computational basis, leaving the new ancilla qubits in the
same state as the original input, |�〉(n). A logical X operation
may be required as a correction depending on the total parity
of the measurements made.

A slight modification of this procedure yields the encoded
Z90 gate. Let

|�〉(n) = α(|0〉(n−1)|0〉I + |1〉(n−1)|1〉I )

+β(|0〉(n−1)|1〉I + |1〉(n−1)|0〉I ) (7)

be the logical qubit on which we wish to perform an encoded
Z90 operation. One of the component physical qubits (here
denoted by the subscript I ) is chosen to represent the input for
the type II fusion in the re-encoding procedure. To achieve an
encoded Z90 gate on |�〉(n), we simply apply the un-encoded
Z90 gate to qubit I , then carry out the re-encoding procedure
detailed above. The final logical state following a successful
fusion is Z90|�〉. In this case, a correction corresponding to
a logical Y operation may need to be applied to the output
state depending on the parity of the measurements made. In
the event that the fusion gate fails, the size of the input state
is reduced, and the operation may be reattempted if there are
enough remaining qubits. If all qubits in the input state are
depleted, then the logical gate is considered to have failed.

FIG. 2. The relationship between the XX90 gate and the
controlled-NOT gate. The combined operation inside the dotted area
defines the XX′

90 gate.

To implement a logical Hadamard operation in this gate set
we use the decomposition H = X90Z90X90. Since operations
of the form Xθ are relatively easy to perform, the logical
Hadamard is essentially equivalent to the Z90 gate in terms of
difficulty, time taken, and error emergence.

F. XX ′
90 gate

We define two maximally entangling two-qubit gates XX90

and XX′
90 as follows:

XX90 ≡ 1√
2

(I1I2 − iX1X2), (8)

XX′
90 ≡ (X−90 ⊗ X−90)XX90. (9)

The relationship between the XX90, XX′
90 and controlled-NOT

(CNOT) gates is shown in Fig. 2 in circuit form. XX90 and XX′
90

have the useful property that the parity-encoded versions of
these gates can be achieved by applying just one copy of the
unencoded gate to a pair of physical qubits (where one physical
qubit is selected from each of the encoded input blocks).

An unencoded XX′
90 can be achieved nondeterministically

as follows. First, a four-qubit resource state is created using the
circuit shown in Fig. 3. If the three fusion gates are successful,

FIG. 3. The circuit used to create the resource state |RXX〉 used in
implementing the XX′

90 gate. The circuit can be modified by treating
the top and bottom qubits as length-2 parity-encoded qubits in order
to improve the nondeterministic behavior of the gate.
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the resulting state is

|RXX〉 = 1
2 [| + +〉(|00〉 + |11〉) + | − −〉(|01〉 + |10〉)].

(10)

Next, two fII gates are applied between the input qubits and
the resource state in the following manner: a fII gate is applied
between a qubit of the first input and the first qubit of the
resource state, and a fII gate is applied between a qubit of the
second input and the fourth qubit of the resource state. If both
are successful, the remaining two qubits will be in the state
XX′

90|ψ〉, where |ψ〉 was the input state (subject to possible
known Pauli corrections).

For parity-encoded inputs the procedure is almost identical,
except that one has more opportunities to attempt the fII gates
between the inputs and the resource state. If both of the fII gates
fail, the corresponding encoded input qubits will be reduced
in size by 1 and the gate can be reattempted. Note that if
one of the fII gates fails and the other succeeds, then one of
the input states will be reduced in size by one but the other
input effectively retains its size, if we consider one of the
remaining qubits in the resource state to now belong to the
particular encoded input that corresponds to the fusion gate
that succeeded.

The procedure described above provides an encoded XX′
90

gate which on average decreases the size of its inputs by
1. A simple modification can be made to the resource-state
generation circuit so that the resulting gate will instead on
average preserve the size of its inputs. The modification
involves treating the first and fourth qubits in Fig. 3 as length-2
parity qubits instead of physical qubits, meaning that the
resource state is now a state of six physical qubits. We will
make use of this version of the XX′

90 gate in the remainder of
the article.

III. ANALYSIS OF ERRORS

A. Error modeling

The theory of error correction in general requires that
some assumptions be made concerning the nature of errors
that may occur in a system. The set of possible errors that
are considered, and their probability, form an error model on
which the conclusions of a theory are based. In developing
error correction methods, the aim is to choose error models
which closely match the physical reality. Typically, this
involves focusing on the most common types of error found
in the corresponding experimental systems. However, it is
not always possible to make the error model a detailed fit
to the requirements of a particular system, especially when the
technology is still in development.

In optical quantum computing systems with single photons,
the greatest source of error is normally photon loss. This can
occur in many different ways, including tunneling, detection
failure, imperfect coupling, and unreliable sources. Another
important type of error in optical systems is dephasing. It is
expected that dephasing errors will typically be less frequent
than loss errors in future optical computer components but still
likely to have a significant effect in any large-scale quantum
circuit. These errors can also be caused by imperfect coupling

or, indeed, any misalignment or flaw in the optical elements
that can affect the polarization of the photon.

We use a simple error model for the noise on physical
qubits. Each gate operation is divided into time steps, with
a single time step being roughly the time required to make a
measurement or set of measurements and perform feedforward
based on the results. Each physical qubit is considered to
experience loss at a rate of γ per qubit per time step, and
Pauli errors at a rate of η per qubit per time step. The
Pauli error is selected randomly from the set {X,Y ,Z} with
equal probability. This corresponds to a depolarization error
of rate 4

3η and to a marginal probability of a bit-flip of 2
3η.

Depolarization errors are a generic way of representing the
effects of dephasing noise, as well as other errors which act
locally on each qubit and do not cause leakage from the qubit
state space.

The physical error model described above is used as the
basis for estimating the effective error rates on encoded qubits
at higher levels of encoding. The relationship between the
levels of encoding are summarized in Fig. 4. At each encoding
level, the aim is to estimate the rates of two different error
types: located errors, which are those errors which are heralded
(in a way analogous to the failure of fusion gates at the
physical encoding level), and unlocated errors, which are
Pauli errors that are not directly heralded and must be found
indirectly via syndrome measurement. The remainder of this
section is devoted to deriving expressions approximating the
effective error rates of the various parity-encoded operations,
i.e., operations at the first level of encoding above the physical
level. Then in the following section, these expressions are
used as the error model for simulations of concatenated fault-
tolerant teleported error correction (telecorrection), using
STEANE and GOLAY coding.

In deriving expressions for the effective error rates at level 1,
we use approximations which are correct only to first order in
the physical error rate. In particular, we find the probability
that a qubit remains error-free after multiple time steps by
taking the product of the individual probabilities of an error
not occurring for each time step. In general, this is correct only
to first order, since in reality multiple errors of the same type
occurring on the same qubit can cancel. For bit- or sign-flip
errors of the type included in our error model, an even number
of errors has no overall effect on the qubit. However, since we
are considering only very small values of physical error rate,
and since each parity-encoded gate consists of only a relatively
small number of optical components, these higher-order error
terms are insignificant.

It is important to note that this model assigns the same
error probability to a time step regardless of whether a qubit
was involved in operations during that time. Hence this model
takes into account errors that arise while a qubit is kept in
memory and assumes that such error rates are similar to those
for a qubit actively involved in computation. This aspect of
the model may be unduly pessimistic, but we have chosen to
consider the worst case in this regard.

Having defined the error model, it is also necessary to
consider how these errors propagate through the elements of an
optical system. First, it should be noted that measurement in the
Z basis renders any X errors on that qubit irrelevant (likewise
for Z errors and X-basis measurements). Measurement also
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FIG. 4. (Color online) The teleported error-corrector (telecorrector) circuit shown at different scales. This diagram demonstrates the
manner in which logical operations are broken down into a series of operations at the lower layers of encoding. Box 1 shows the circuit for the
production of the resource required for one round of telecorrection. Here the subscript “S” indicates qubits encoded using the STEANE code.
Box 2 demonstrates how a CNOT gate on the STEANE-encoded qubits can be performed using 7 XX′

90 gates and 14 Hadamards at the parity
encoding layer. Box 3 shows the process of using resource preparation plus teleportation to implement an XX′

90 gate, and Box 4 provides the
circuit used to prepare the required resource.

serves to locate loss errors. Due to the regular measurements
that occur in our protocol (either directly or via a fusion gate), it
can be seen that loss errors will always be quickly transformed
into located errors.

The properties of parity-state encoding are such that any
X errors on physical qubits immediately become X errors on
the logical, parity-encoded qubit. Hence the probability of a
logical X error will depend simply on the rate of such errors
at the physical level, the number of qubits, and the duration of
the computation. Z errors on individual photonic qubits do not
automatically become logical; however, if a photonic qubit on
which a Z error has occurred is used as an input for a fusion
gate, the error is then applied to all the qubits forming the
parity state of which the input qubit was a member. We will
use ηX = ηZ = 2

3η to denote the marginal error probabilities
of X and Z errors (where Y is considered to be “both an X and
a Z error”). This notation allows one at a glance to see which
physical error type contributes to a particular logical error rate
in the expressions of the following subsections.

B. Size of the parity code

There is a trade-off in the located error rate for the
nondeterministic gates between the errors due to gate failure
and those due to loss (Fig. 5). This occurs as each additional
qubit in the encoding increases the possibility of a loss
occurring. However, a certain level of encoding is necessary in
order to reduce the probability of gate failure. We can optimize
the size of the parity states by calculating the located error rates
for the nondeterministic operations and examining how these
errors vary with code size. Figure 5 shows this relationship for
the XX90 gate. In this plot, the floor is set at a 10% failure
rate as this is the maximum located error rate for which the
concatenated STEANE code can drive the error rate arbitrarily
close to zero. It can be seen that a seven-qubit encoding offers
the best loss threshold for this gate. This also proves to be
optimal for the Z90 operation.

For loss rates below the threshold, the most efficient parity
qubit size for handling located errors will increase, as the
intrinsic failure rate of the nondeterministic gates comes to
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FIG. 5. (Color online) The probability of success for the XX90

gate as a function of the photon loss rate (γ ) and code size (n).

dominate. Hence it is possible to adjust the code size for greater
efficiency if the error rates are known precisely and remain
fairly constant. However, it should be noted that a larger parity
encoding will also cause an increase in unlocated error rates,
which means that smaller codes sizes may still be favored even
in a low-loss system. For the purposes of this article, we will
solely consider a seven-qubit parity encoding, as this code size
gives in the largest range of errors tolerated.

C. Source production

We assume that copies of the state |0〉(7) are prepared as
needed by massively parallel production in order to have them
ready when required by the circuit. We begin with Bell pairs in
the state (|00〉 + |11〉)/√2 and link these by means of types I
and II fusion gates. For a parity state of size 7, seven Bell
pairs and six fusion gates are required to build the resource.
As each gate has a 50% failure rate, parallel production of
each resource requires an average of 7 × 26 Bell pairs and
takes three time steps. The resulting state has an unlocated
X error rate of 1 − (1 − ηX)41 and a located error rate of
1 − (1 − γ )21. (There are 41 locations in the optical circuit
which can contribute errors to the output state. For 20 of these
locations, photon loss will be immediately heralded, and so
we postselect on no loss occurring at those locations).

D. Z90 error rates

This gate occurs in two steps: the first step is the attempt
to fuse the encoded state with a resource state, and the second
step is measuring the remaining component qubits from the
original state once a successful fusion has been performed.
The probability of a failure at the first step is:

1 −
7∑

j=1

2−j (1 − γ )
1
2 j (1+j ), (11)

which combines the possibility of a loss during fusion with the
fusion failure rate to get the total located error rate during the
fusion attempts. To cover the possibility of loss occurring on
any of the other component qubits, we include the factor

(1 − γ )3j+(1+j )(7−j ) (12)

in the sum, which depends on the number of qubits remaining
and the time they have been in memory.

Hence the Z90 gate has a combined located error rate per
parity qubit of

PLE = 1 −
7∑

j=1

2−j (1 − γ )
1
2 j (1+j )(1 − γ )3j+(1+j )(7−j ). (13)

For unlocated errors, the average rate can be found by
combining the error rates for memory and for producing an
ancillary parity state, due to the re-encoding process used to
implement the gate. The average time required to implement
this gate would be two time steps. However, for all error types,
it is assumed that the average time spent is four time steps (this
corresponds to the average time required for the slowest gate,
XX′

90). This is done so that all encoded operation types can
be treated as taking an equal amount of time. By counting the
number of locations that may contribute to logical errors on the
output, we obtain overall effective rates of unlocated X and Z

errors of 1 − (1 − ηX)69 and 1 − (1 − ηZ)10 respectively, for
the Z90 gate.

E. XX90 error rates

The propagation of errors through this gate is fairly
simple: a Z error on either input qubit will cause an X

error on the opposite qubit. X errors on an input qubit
propagate to the output without having an effect on the other
qubit.

As described in subsection II F, the gate is achieved by
performing fusion gates between qubits from the encoded input
state and a six-qubit resource state. As we are interested in an
error rate per parity qubit, we model the success or failure
of the fusion gates applied to an input parity qubit using a
random walk on a semi-infinite one-dimensional lattice with
1 absorbing boundary at −n [12]. Here the lattice represents
the size of the parity state, with failure occurring either due
to a loss or when all component qubits are measured due to
repeated teleportation failures.

The number of paths that reach the boundary at time t is

N (n,t) = t!

( t+n
2 !)( t−n

2 !)
for (t − n) mod 2 = 0

N (n,t) = 0 for (t − n) mod 2 = 1,

(14)

where n is the initial size of the parity code. To incorporate the
possibility of a successful gate operation, we include a scaling
factor in the number of paths:

Nscaled(n,t) = 2− t−n
2 N (n,t). (15)

The number of first passage paths for this type of walk is

F (n,t) = n

t
Nscaled(n,t). (16)

Therefore, total probability of success per parity qubit in the
absence of loss is:

PS = 1 −
∞∑

t=n

F (n,t)

2t
. (17)

For a parity qubit of size 7, this evaluates to PS = 0.9763.
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As the average size of the state and the rate of loss per time
step is constant, the average loss per parity qubit during this
operation can be simplified to:

PL = 1 − (1 − γ )t(n+3). (18)

The average time taken for this operation is four time
steps. Thus, the approximate located error rate per parity-
encoded input is 1 − 0.9763(1 − γ )40. The unlocated X and
Z error rates, obtained by counting error locations in the
average-time case, are 1 − (1 − ηX)28 and 1 − (1 − ηZ)4,
respectively.

F. Memory and measurement

The memory or identity operation on an encoded qubit
simply entails keeping the constituent physical qubits in
memory while other operations are performed. We treat the
encoded memory operation as taking four time steps, equal to
the average time taken to perform the slowest encoded gate,
XX′

90. This yields approximate rates of X, Z, and located
errors of 1 − (1 − ηX)28, 1 − (1 − ηZ)4, and 1 − (1 − γ )28,
respectively.

An encoded computational-basis measurement involves
measuring each physical qubit in the computational basis and
finding the parity of the measurement results. Thus, the rates
of located and unlocated errors in the measurement outcome
are 1 − (1 − γ )7 and 1 − (1 − ηX)7, respectively.

IV. FAULT TOLERANCE THRESHOLD

Having analyzed the emergence of logical errors at the
parity code layer, we used numerical simulation to calculate
the error rates at higher levels of concatenation and, from this,
the value of the noise threshold for optical parity-state quantum
computation.

The simulations were performed using similar techniques
to those described in subsection VD of Ref. [6]. In particular,
we simulate one level of the telecorrector protocol for both the
7-qubit (STEANE) and 23-qubit (GOLAY) codes. Our simulation
differs from Ref. [6] in the noise model and gate set used. The
telecorrector circuit in Ref. [6] uses the following gate set:
preparation of |0〉 and |+〉 states, CNOT, CPHASE, and X-basis
measurement. We converted this circuit to our gate set in the
following way. First the circuit was expressed solely in terms
of CPHASE gates, Hadamard gates, |+〉 creation, and X-basis
measurements by making appropriate substitutions of each
CNOT gate, |0〉 creation, and computational basis measure-
ments in the circuit and simplifying the resulting circuit where
possible. Then a simple change of basis |0〉 ↔ |+〉, |1〉 ↔ |−〉
yielded a circuit in our gate set (XX′

90 gates, Hadamard gates,
|0〉 creation, and computational-basis measurement).

We carried out a series of Monte Carlo simulations for
a range of values of the physical error rates (γ,η), in
each case measuring the resulting rate of unlocated and
located errors at the next highest level of encoding. For a
particular choice of the physical noise rates, Pauli errors (both
unlocated and located) are introduced by each gate with a
probability that is governed by the noise model derived in
the previous section. In the case of unlocated errors, X and
Z errors are introduced independently. For the XX′

90 gate,

errors are introduced independently on each of the two output
qubits.

The results of the simulations were used to characterize the
mapping of error rates from the physical level to the second
level of encoding (i.e., the parity encoding plus one level of
telecorrection encoding) by way of a polynomial fit to the
measured values. Let (γj ,ηj ) denote the particular choices
of physical error rates for which the simulator was run, and
let (�j ,Hj ) denote the corresponding rates of unlocated and
located errors at the second level of encoding as measured
by the simulator. We use fitting techniques to find functions
�(γ,η) and H(γ,η) which closely approximate the observed
values of (�j ,Hj ) when evaluated at the appropriate values
(γj ,ηj ). We perform the polynomial fit so that we have a way
of estimating the second-level unlocated and located error rates
� and H for any arbitrary value of the physical error rates γ

and η, even though we have performed the time-consuming
simulation step only for some finite set of physical error rates
(γj ,ηj ). The order of the polynomials �(γ,η) and H(γ,η)
is chosen to be that which results in the mean square error
between the polynomials and the data points being roughly
equal to the amount of error that is known to be present in
the values of (�j ,Hj ) due to the finite sampling in the Monte
Carlo simulations.

We also need a way of estimating error rates at levels of
encoding higher than the second. However, the polynomials
�(γ,η) and H(γ,η) that we have constructed for mapping error
rates from the physical level to the second level are not suitable
for mapping from the second to higher levels, since the error
correction at higher levels does not include parity encoding.
Reference [6] deals with a similar situation, where in their
case cluster-state encoding is used only at the lowest level,
in analogy with our own use of parity-state encoding. Their
solution is to perform a separate set of simulations of a circuit
and corresponding noise model that represents a single level
of error correction at the third or higher level. Then, from
the results of such a simulation they use polynomial fitting
to yield polynomials P (p,q) and Q(p,q) which, in analogy
with the functions �(γ,η) and H(γ,η) above, map the effective
unlocated and located error rates p and q from one level of
encoding to the next higher level. The rather generic noise
model of unlocated and located errors used by Ref. [6] is
applicable to the higher levels of encoding in our situaion
too, so we simply take the polynomials P (p,q) and Q(p,q)
obtained in Ref. [6] and use them to characterize each of our
levels of error correction above the second level. Thus, for a
given choice of physical error rates (γ,η), we can estimate
the effective error rates at any arbitrary level of encoding by
first applying the mapping (γ,η) → (�(γ,η),H(γ,η)) and then
repeatedly applying the mapping (p,q) → (P (p,q),Q(p,q))
for as many levels as required.

We say that the physical error rates (γ,η) are below the noise
threshold if the effective error rates tend to zero in the limit of
many levels of encoding. The threshold curve is then defined
to be the curve in the γ -η plane which separates those values of
(γ,η) which are below the noise threshold from those which are
not. Calculating the threshold curve simply involves dividing
the γ -η plane into a fine grid and testing whether each point is
below the threshold by applying the appropriate polynomials
some large number of times and then finding the boundary of
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FIG. 6. The threshold curve for optical parity-state computing
using the seven-qubit STEANE code. The region below the solid curve
represents the set of error rates which can be tolerated by the scheme.

the set of points that were tested to be below the threshold. Our
calculated threshold curves are shown in Figs. 6 and 7. In the
plots, the small circles show the values of (γj ,ηj ) for which
a Monte Carlo simulation was run. (Note that those points
are not the same as the much finer grid of points for which the
polynomials were evaluated when finding the threshold curve.)
Like previous schemes for optical quantum computing, the
results demonstrate a trade-off between a tolerance of photon
loss and depolarization errors. It is worth noting that the code
is always required to deal with some probability of located
errors due to the nondeterministic gates and the finite size of the
underlying parity encoding. These errors are taken into account
when calculating the threshold for the loss and depolarizing
rates plotted here.

V. RESOURCES

For a useful comparison with other schemes for error-
correcting quantum computing, it is necessary to also consider
the resources that would be required to implement this scheme.
As noted previously, the method considered here for the
creation of resources involves parallel production of many
copies of a resource to ensure it is available on demand.
This is a simple approach that leads to a higher cost in
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FIG. 7. The threshold curve for optical parity-state computing
using the 23-qubit GOLAY code.

FIG. 8. Process for generating a six-qubit parity state, beginning
with six Bell states and performing two rounds of fusion gates.

terms of entangled photon generation and avoids more com-
plicated resource-saving techniques such as storing previously
prepared resources and “recycling” entangled states from
unsuccessful attempts. Such techniques tend to require more
intricate design and photon switching, as well as potentially
introducing more errors due to the longer photon storage time.

We calculate the resources required in terms of the number
of Bell states used. This a useful unit to consider as it is a
common starting point for building entangled states across
many optical schemes. It is also handy for comparisons with
current optical quantum computation experiments as most use
the entangled output of optical parametric down-conversion
systems as photon sources.

As no recycling is used, the resource production has a 50%
chance of failing for every fusion gate performed, meaning
that the number of parallel attempts required doubles with each
fusion gate. This exponential growth can be tolerated as it only
occurs on a small scale—in our case none of the resource states
need to be larger than eight qubits. To estimate the resources we
calculate the average number of Bell states required to produce
the appropriate resources using this parallel production method
and implement a parity-encoded operation.

Much of this resource production simply involves the
creation of ancillary parity states, which is done by linking
the initial Bell states together using type I and II fusion gates
(Fig. 8). State preparation at the parity layer requires a seven-
qubit parity state, which would take an average of 448 Bell
pairs to produce. Re-encoding, and hence the Z90 operation,
would require an eight-qubit parity state for each attempt, and
an average of two attempts to implement the operation. Hence
we estimate the resources for the Z90 operation at 2048 Bell
pairs on average. The circuit for the preparation of the XX′

90
resource was shown previously in Fig. 3. This resource requires
an average of 128 Bell pairs to produce.

As a basis for comparison, we will consider the require-
ments for producing the telecorrector state needed for one
round of correction. Using the gate costs described above, it
can be calculated that the state requires approximately 177,670
Bell pairs to generate. In Table I resource usage and threshold
values are compared between parity-state and cluster-state
schemes for optical quantum computing. Due to its greater
difference from the other two schemes, we did not include
in the table a scheme for quantum computing using “cat”
states [7]. Cat states are in general more difficult to generate
than Bell states, so this makes a direct comparison of resource
usage difficult. We note that on average 103 cat states are
needed to create a telecorrector state in that scheme. The loss
threshold for the cat states is 2 × 10−4, and a threshold for
depolarization was not specified in that work.

Thus, our scheme for fault-tolerant parity-state quantum
computing gives a resource usage figure three orders of
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TABLE I. A comparison of thresholds and resource requirements
for linear-optics quantum computing error correction schemes using
a seven-qubit STEANE code. Here the resources are those required
at threshold for the first level of telecorrection. The loss threshold
given for each scheme is the maximum achievable in the case of no
depolarization errors and vice versa.

Loss Depolarization
Scheme threshold threshold Resources

Cluster states 4 × 10−3 8 × 10−5 1.3 × 108a

Parity states 2 × 10−3 2.4 × 10−5 1.8 × 105

aReference [6] quotes an incorrect resource usage number; the one
cited here is the corrected value.

magnitude smaller than that for an equivalent cluster-state
circuit [6] (and, in some sense, three orders of magnitude larger
than the requirements for the cat-state version [7]). However,
threshold is poorer than that of the cluster-state protocol but
better (with respect to loss) than the scheme using cat states.
Note that the scheme of Ref. [6] is just one example of many
possible ways of designing a cluster-state error correction
scheme, and it is conceivable that other cluster-state schemes
would give quite different combinations of resource usage
and threshold. It would be interesting to study whether such
alternatives would follow a trade-off between resource usage
and threshold in a way which is consistent with Table I.

VI. CONCLUSIONS

We have shown that an error-correcting system based
on parity encoding falls in between other schemes in both
threshold and resource requirements. The parity scheme has
a higher error threshold than that found for cat states but
also significantly larger resource requirements. Conversely,
it is two orders of magnitude cheaper in resources than
a cluster-state implementation when both schemes are op-
erated at their thresholds but also has lower thresholds
for both located and unlocated error rates. Together, these
results suggest a necessary trade-off between resources and
achievable threshold, which indicates that the preferred
encoding method in any experimental attempt to demon-
strate optical quantum error correction will depend on the
capabilities and limitations of the physical system and its
components.

It is worth noting the general principle demonstrated here:
that concatenation can be used to tailor error correction to suit
the relative error rates. In this case, some parity encoding is
used to reduce the rate of failures due to nondeterministic gates
to a level at which the remaining errors can be handled by the
general error correction code. However, the same principle
could be applied to other errors. For example, a system with a
very high loss rate in comparison with other errors could use
concatenation with a dedicated loss-correction code [13] to
allow a higher threshold for loss at the cost of lower thresholds
for other errors.
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